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Abstract In this paper we study singular integrals on small (that is, measure zero
and lower than full dimensional) subsets of metric groups. The main examples of the
groups we have in mind are Euclidean spaces and Heisenberg groups. We shall pay
particular attention to the behaviour of singular integral operators on self-similar
subsets.

1 Introduction

The general question we are interested in here is: how is the L2-boundedness of sin-
gular integral operators related to geometric properties of the underlying sets and
measures? A little more precisely, in some space, say d-dimensional space in terms
of Hausdorff dimension, we study singular integral operators on s-dimensional sub-
sets with s < d. The spaces we are mainly interested in, are Euclidean spaces and
Heisenberg groups but we shall say something also in more general metric groups.
Such questions in Euclidean spaces have been studied systematically for more than
20 years, the book [9] of David and Semmes is a good source for background infor-
mation. This survey focuses mostly to our recent progress in Heisenberg groups in
[5] and [6]. The general setting is the following:

We assume that (G,d) is a complete separable metric group with the following
properties:

(i) The left translations τq : G→ G,
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τq(x) = q · x,x ∈ G,

are isometries for all q ∈ G.
(ii) There exist dilations δr : G→ G,r > 0, which are continuous group homomor-

phisms for which,

a. δ1 = identity,
b. d(δr(x),δr(y)) = rd(x,y) for x,y ∈ G,r > 0,
c. δrs = δr ◦δs.

It follows that for all r > 0, δr is a group isomorphism with δ−1
r = δ 1

r
.

Euclidean spaces, Heisenberg groups and the more general Carnot groups are the
main examples of such groups.

Let µ be a finite Borel measure on G and let K : G×G \ {(x,y) : x = y} → R
be a Borel measurable kernel which is bounded away from the diagonal, i.e., K
is bounded in {(x,y) : d(x,y) > δ} for all δ > 0. The truncated singular integral
operators associated to µ and K are defined for f ∈ L1(µ) and ε > 0 as,

Tε( f )(y) =
∫

G\B(x,ε)
K(x,y) f (y)dµy,

and the maximal singular integral operator is defined as usual,

T ∗K ( f )(x) = sup
ε>0
|Tε( f )(x)|.

For a vector-valued kernel K = (K1, . . . ,Kl) we define

T ∗K ( f )(x) = max
1≤ j≤l

{T ∗K j
( f )(x)}.

Then T ∗K bounded in L2(µ) means that∫
T ∗K ( f )2dµ ≤C

∫
| f |2dµ for all f ∈ L2(µ).

We are particularly interested in the following class of kernels.

Definition 1. For s > 0 the s-homogeneous kernels are of the form,

KΩ (x,y) =
Ω(x−1 · y)

d(x,y)s , x,y ∈ G\{(x,y) : x = y},

where Ω : G→R is a continuous and homogeneous function of degree zero, that is,

Ω(δr(x)) = Ω(x) for all x ∈ G,r > 0.

We shall discuss results saying that such maximal singular integral operators
are often unbounded on fractal type sets. We shall mostly restrict to s-dimensional
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Ahlfors-David regular, briefly s-regular, Borel measures µ , which means that for
some positive and finite constant C,

rs/C ≤ µ(B(x,r))≤Crs for all x ∈ spt µ,0 < r < d(spt µ).

Here B(x,r) is the closed ball with centre x and radius r, and d(E) denotes the
diameter of E. A closed set E is called s-regular if the s-dimensional Hausdorff
measure H sbE restricted to E is s-regular.

First we shall review briefly some of the Euclidean results. Recent surveys are
[24] and [15].

2 The one-dimensional case

We start with the following result from [MMV] for 1-dimensional sets. It charac-
terizes geometrically the 1-regular measures on which the singular integral operator
related to the 1-dimensional Riesz kernel

R1(x) = x/|x|2,x ∈ Rn,

is bounded in L2(µ). Note that in the complex plane this kernel is essentially the
Cauchy kernel 1/z = z̄/|z|2.

Theorem 1. Let µ be a 1-regular measure in Rn. The following two conditions are
equivalent.

(i) T ∗R1
is bounded in L2(µ)

(ii) spt µ ⊂ Γ where Γ is a curve with H 1(Γ ∩B(x,r))≤Cr
for all x ∈ Rn and for all r > 0.

The key for the proof was the following identity found by Melnikov in [M] for
z1,z2,z3 ∈ C:

c(z1,z2,z3)
2 = ∑

σ

1

(zσ(1)− zσ(3))(zσ(2)− zσ(3))
, (1)

where σ runs through all six permutations of 1,2 and 3, and c(z1,z2,z3) is the recip-
rocal of the radius of the circle passing through z1,z2 and z3. It is called the Menger
curvature of this triple. It vanishes exactly when the three points lie on the same line.
In general it measures how far they are from being collinear. Melnikov and Verdera
used this identity to give a new proof for the boundedness of the Cauchy singular
integral operator on Lipschitz graphs in [19]. Integrating the above identity with re-
spect to all three variables and using Fubini’s theorem, one can prove Theorem 1 by
proving that the conditions (i) and (ii) are both equivalent to∫

B

∫
B

∫
B

c(x,y,z)2dµxdµydµz≤Cd(B)



4 Vasilis Chousionis and Pertti Mattila

for all balls B⊂ Rn and for all r > 0.
The identity (1) connects the sum over permutations, which is a kind of sym-

metrization over the three variables, to a nice geometric object. But already the fact
that this sum is non-negative is unexpected and useful. The proof of the identity is
an exercise.

In the plane, Theorem 1 remains valid if the kernel R1 is replaced by any of
its coordinate parts x1/|x| or x2/|x|,x = (x1,x2) ∈ R2, because the symmetrization
method described earlier works in this case as well. Recently, in [4], Theorem 1 was
extended to all kernels kn(x) = x2n−1

1 /|x|2n, n ∈ N. It should be noted that the proof
in [4] also depends on some good symmetrization properties of the kernels kn.

Based on earlier work of many people Theorem 1 gives the following corollary:

Corollary 1. Let E be a compact 1-regular subset of the complex plane. The follow-
ing three conditions are equivalent.

(i) E is removable for bounded analytic functions.
(ii) E is removable for Lipschitz harmonic functions.

(iii) E is purely unrectifiable.

Here the pure unrectifiablity of E means that E meets every rectifiable curve
in zero length. The removability of E for bounded analytic functions means that
if E is contained in an open set U , any bounded analytic function in U \ E can
be extended analytically to U . The removability for Lipschitz harmonic functions
is analogous, but since Lipschitz functions on U \E can be uniquely extended as
Lipschitz functions, (ii) means that any Lipschitz function in U which is harmonic
in U \E is harmonic in U .

David showed later in [7] that instead of AD-regularity it is enough to assume that
E has finite 1-dimensional Hausdorff measure. Still later Tolsa gave in [23] a char-
acterization of removability for all compact subsets of the complex plane in terms
of Menger curvature. A consequence of this is that (i) and (ii) in the above corollary
are equivalent for any compact set E. An amusing feature is that nobody knows how
to prove this without going through the Menger curvature characterization. For a
survey, see [24] or [20]. Tolsa’s result is

Theorem 2. Let E be a compact subset of the complex plane. The following three
conditions are equivalent.

(i) E is not removable for bounded analytic functions.
(ii) E is not removable for Lipschitz harmonic functions.

(iii) There is a finite Borel measure µ supported in E such that µ(E) > 0, µ(B) ≤
d(B) for all discs B and∫ ∫ ∫

c(x,y,z)2dµxdµydµz < ∞.
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3 The higher dimensional case

The higher dimensional analogues of the above results are unknown. Let Rm be the
vector-valued m-dimensional Riesz kernel;

Rm(x) = x/|x|m+1,x ∈ Rn.

Let µ be an m-regular measure and E an m-regular set in Rn. The natural questions
are: when m is an integer, is it true that

(a) T ∗Rm
is bounded in L2(µ) if and only if spt µ is uniformly rectifiable,

(b) when m = n−1, E is removable for Lipschitz harmonic functions if and only if
E is purely unrectifiable?

The reason that the Riesz kernel |x|−nx appears in connection of removable sets of
Lipschitz harmonic functions is that it is essentially the gradient of the fundamental
solution of the Laplacian.

The m-dimensional pure unrectifiability can be defined, for example, as the prop-
erty that the set intersects every m-dimensional C1 surface in a set of zero m-
dimensional measure. The uniform rectifiability is a quantitative concept of recti-
fiability due to David and Semmes, see [9]. For 1-dimensional sets it means exactly
the condition (ii) of Theorem 2.1. It is known that the “if”-part in (a) and the “only
if”-part in (b) are true. Some partial results for the converse can be found in [17],
[14] and [12]; they are discussed also in the book [13]. The main problem for the
converse is to prove that boundedness such as in (a) implies some sort of rectifi-
ability. One characterization of the rectifiability of E is approximation of E with
m-dimensional planes almost everywhere at all small scales. The partial results re-
ferred to above are in the spirit that the boundedness implies such approximation
almost everywhere at some, but maybe not all, small scales. Such partial results
hold also in Heisenberg groups and we shall below formulate them more precisely
there.

One can also consider the Riesz kernels when m in not an integer. Vihtilä showed
in [26] that then T ∗Rm

is never bounded in L2(µ) for m-regular measures µ .

4 Self-similar sets and singular integrals

We shall now return to the general setting of Introduction. Let S = {S1, . . . ,SN},N≥
2, be an iterated function system (IFS) of similarities of the form

Si = τqi ◦δri (2)

where qi ∈ G,ri ∈ (0,1) and i = 1, . . . ,N. The self-similar set C with respect to S
is the unique non-empty compact set such that
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C =
N⋃

i=1

Si(C).

If this system satisfies the strong separation condition, that is, the sets Si(C) are
pairwise disjoint for i= 1, . . . ,N, it follows by a general metric space result of Schief
in [21] (which holds also under the open set condition) that

0 < H s(C)< ∞ for
N

∑
i=1

rs
i = 1,

and the Hausdorff measure H sbC is d-regular.
The following result was proved in [6]:

Theorem 3. Let S = {S1, . . . ,SN} be an iterated function system in G satisfying the
strong separation condition, let C be the corresponding s-dimensional self-similar
set, and let KΩ be an s-homogeneous kernel. If there exists a fixed point x for some
Si1 ◦ · · · ◦Sik ; Si1 ◦ · · · ◦Sik(x) = x, such that∫

C\Si1◦···◦Sik (C)
KΩ (x,y)dH sy 6= 0,

then the maximal operator T ∗KΩ
is unbounded in L2(H sbC), moreover ‖T ∗KΩ

(1)‖L∞(H sbC)=
∞.

Remark 1. Since such fixed points are dense in C, we have infinitely many points in
a dense set and it suffices to check the condition at any one of them. Even when the
ambient space is Euclidean, Theorem 3 provides new information about the behav-
ior of general homogeneous singular integrals on self-similar sets. For any kernel
KΩ (x) = Ω(x/|x|)

|x|s ,x∈Rn \{0},s∈ (0,n), where Ω is continuous, one can easily find
Sierpiński-type s-dimensional self-similar sets Cs for which one can check using
Theorem 3 that the corresponding operator T ∗KΩ

is unbounded. For example it fol-
lows that the operator associated to the kernel z3/|z|4,z ∈ C\{0}, is unbounded on
many simple 1-dimensional self-similar sets. In the case of the Sierpiński gasket this
is immediate while in the case of the 1/4-Cantor set it requires more computational
work and it was checked after compiling a computer program. In [11], Huovinen
considered such kernels in the plane and he proved that the a.e. existence of princi-
pal values of operators associated to any kernel z2n−1

|z|2n , for n≥ 1 implies rectifiability.

5 Self-similar sets in Heisenberg groups

For an introduction to Heisenberg groups and some of the facts mentioned below,
see for example [2] or [1]. Below we state the basic facts needed in this survey.

The Heisenberg group Hn, identified with R2n+1, is a non-abelian group where
the group operation is given by
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p ·q = (p1 +q1, . . . , p2n +q2n, p2n+1 +q2n+1 +A(p,q)),

where

A(p,q) =−2
n

∑
i=1

(piqi+n− pi+nqi).

We will denote points p ∈Hn by p = (p′, p2n+1), p′ ∈ R2n, p2n+1 ∈ R. For any q ∈
Hn and r > 0, let again τq : Hn→Hn be the left translation

τq(p) = q · p,

and define the dilation δr : Hn→Hn by

δr(p) = (rp1, . . . ,rp2n,r2 p2n+1).

A natural metric d on Hn is defined by

d(p,q) = ‖p−1 ·q‖

where
‖p‖= (‖(p1, . . . , p2n)‖4

R2n + p2
2n+1)

1
4 .

The metric is left invariant, that is d(q · p1,q · p2) = d(p1, p2), and the dilations
satisfy d(δr(p1),δr(p2)) = rd(p1, p2). All the conditions of the general setting of
Introduction are satisfied.

A subgroup G of Hn is called homogeneous if it is closed and invariant under
the dilations; δr(G) = G for all r > 0. Every homogeneous subgroup G is a linear
subspace of R2n+1. We call G a k-subgroup if its linear dimension is k. The homoge-
neous subgroups fall into two categories, vertical and horizontal: the vertical homo-
geneous k-subgroups are the linear subspaces of R2n+1 of the form V×T where V is
a (k−1)-dimensional linear subspace of Rn and T is the t-, that is, p2n+1-axis. Their
Hausdorff dimension is k+ 1. The horizontal homogeneous k-subgroups are those
k-dimensional linear subspaces of R2n on which A vanishes identically. Their Haus-
dorff dimension is k. The Haar measure on a k-subgroup is just the k-dimensional
Lebesgue measure on it. We denote the set of these measures by H (n,k).

In this section we consider certain families of self-similar sets in Hn and we
discuss their relations with Riesz-type transforms.

Definition 2. Let Q = [0,1]2n ⊂ R2n and r ∈ (0, 1
2 ). Let z j ∈ R2n, j = 1, . . . ,22n, be

distinct points such that z j,i ∈ {0,1− r} for all j = 1, . . . ,22n and i = 1, . . . ,2n. We
consider the following 22n+2 similitudes depending on the parameter r,
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S j = τ(z j ,0)δr, for j = 1, . . . ,22n,

S j = τ(zb jc
22n

, 1
4 )

δr, for j = 22n +1, . . . ,2 ·22n,

S j = τ(zb jc
2·22n

, 1
2 )

δr, for j = 2 ·22n +1, . . . ,3 ·22n,

S j = τ(zb jc
3·22n

, 3
4 )

δr, for j = 3 ·22n +1, . . . ,22n+2,

where b jcm := j mod m and 1≤ b jcm ≤ m.

Theorem 4. Let r ∈ (0, 1
2 ) and Sr = {S1, . . . ,S22n+2} where the S′js are the simili-

tudes of Definition 2. Let Kr be the self-similar set defined by

Kr =
22n+2⋃
j=1

S j(Kr).

Then the the sets S j(Kr) are disjoint for j = 1, . . . ,22n+2, and

0 < H s(Kr)< ∞ with s =
(2n+2) log(2)

log( 1
r )

.

We give a sketch of the proof. It is similar to the one given by Strichartz in [22]
in the case r = 1/2. He obtains then a fractal tiling of Hn. It is enough to find some
set R⊃ K such that for all j = 1, ..,22n+2,

(i) S j(R)⊂ R and
(ii) the sets S j(R) are disjoint.

This is established by finding a continuous function ϕ : Q→ R such that the set

R = {q ∈Hn : q′ ∈ Q and ϕ(q′)≤ q2n+1 ≤ ϕ(q′)+1}

satisfies (i) and (ii).
This will follow immediately if we find some continuous ϕ : Q→ R which sat-

isfies for all j = 1, . . . ,22n,

τ(z j ,0)δr(R) = {q ∈Hn : q′ ∈ Q j and ϕ(q′)≤ q2n+1 ≤ ϕ(q′)+ r2}, (3)

where Q j = τ(z j ,0)(δr(Q)). Since

τ(z j ,0)δr(R) = {p ∈Hn : p′ ∈ Q j and r2
ϕ(

p′− z j

r
)−2

n

∑
i=1

(z j,i pi+n− z j,i+n pi)≤ p2n+1

≤ r2
ϕ(

p′− z j

r
)−2

n

∑
i=1

(z j,i pi+n− z j,i+n pi)+ r2},

proving (3) amounts to showing that
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ϕ(w) = r2
ϕ(

w− z j

r
)−2

n

∑
i=1

(z j,iwi+n− z j,i+nwi) for w ∈ Q j, j = 1, . . . ,22n. (4)

Such a function ϕ is found with an application of the Banach fixed point theorem
to a contraction T satisfying

T ( f )(w) = r2 f (
w− z j

r
)−2

n

∑
i=1

(z j,iwi+n− z j,i+nwi) for w ∈ Q j.

6 Riesz-type kernels in Heisenberg groups

Definition 3. The s-Riesz kernels in Hn, s ∈ (0,2n+2), are defined as

Rs(p) = (Rs,1(p), . . . ,Rs,2n+1(p))

where
Rs,i(p) =

pi

‖p‖s+1 for i = 1, . . . ,2n

and
Rs,2n+1(p) =

p2n+1

‖p‖s+2 .

Notice that these kernels are antisymmetric,

Rs(p−1) = (Rs(p))−1,

and s-homogeneous,

Rs(δr(p)) =
1
rs (Rs(p)).

Let µ be a finite Borel measure in Hn. The image f#µ under a map f : Hn→Hn

is the measure on Hn defined by

f#µ(A) = µ
(

f−1(A)
)

for all A⊂Hn.

For a ∈Hn and r > 0, Ta,r : Hn→Hn is defined for all p ∈Hn by

Ta,r(p) = δ1/r(a
−1 · p).

Definition 4. We say that ν is a tangent measure of µ at a ∈ Hn if ν is a Radon
measure on Hn with ν(Hn)> 0 and there are positive numbers ci and ri, i = 1,2, . . . ,
such that ri→ 0 and

ciTa,ri#µ → ν weakly as i→ ∞.

We denote by Tan(µ,a) the set of all tangent measures of µ at a.

The numbers ci are normalization constants which are needed to keep ν non-
trivial and locally finite. Often one can use ci = µ(B(a,ri))

−1.
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The following result was proved in [5] (recall that H (n,k) denotes the set of the
Haar measures of the k-subgroups):

Theorem 5. Let s ∈ (0,2n+ 2) and let µ be an s-regular measure in Hn. If T ∗Rs
is

bounded in L2(µ), then

(i) s is an integer in [1,2n+1],
(ii) for µ-a.e. a ∈ Hn, the set of tangent measures of µ at a, Tan(µ,a), contains

measures in H (n,s).

One can show that the s-dimensional self-similar sets of Theorem 4 don’t have
tangent measures in H (n,s); they are too spread at all scales for that. This leads to

Corollary 2. The maximal operators T ∗Rs
are unbounded in L2(H sbC) for the s-

dimensional self-similar sets of Theorem 4.

Theorem 5 corresponds to what is known in Rn for s-regular sets and Riesz ker-
nels in this respect (in other respects much more is known by results of Tolsa, Vol-
berg and others, see e.g., [25] and [10]). The disadvantage here is that the kernels
are not natural in the same way as Riesz kernels in Rn; they don’t seem to relate to
any function classes. Analogues of harmonic functions lead to other kernels which
we look at now.

7 ∆H-removability and singular integrals

The Lie algebra of left invariant vector fields in Hn is generated by

Xi := ∂i +2xi+n∂2n+1, Yi := ∂i+n−2xi∂2n+1, T := ∂2n+1,

for i = 1, . . . ,n. In fact, these vectorfields generate the whole group and metric struc-
ture of Hn.

If f is a real function defined on an open set of Hn its H-gradient is given by

∇H f = (X1 f , . . . ,Xn f ,Y1 f , . . . ,Yn f ).

The H-divergence of a function φ = (φ1, . . . ,φ2n) : Hn→ R2n is defined as

divH φ =
n

∑
i=1

(Xiφi +Yiφi+n).

The sub-Laplacian in Hn is given by

∆H =
n

∑
i=1

(X2
i +Y 2

i )

or equivalently
∆H = divH ∇H.
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Definition 5. Let U ⊂ Hn be an open set. A real valued function f on U is called
∆H-harmonic, or simply harmonic, on U if ∆H f = 0 on U .

We shall consider removable sets for Lipschitz solutions of the sub-Laplacian:

Definition 6. A compact set C ⊂Hn will be called removable, or ∆H-removable for
Lipschitz ∆H-harmonic functions, if for every open set U with C ⊂ U and every
Lipschitz function f : U → R,

∆H f = 0 in U \C implies ∆H f = 0 in U.

Fundamental solutions for sub-Laplacians in homogeneous Carnot groups are
defined in accordance with the classical Euclidean setting. In particular in the case
of the sub-Laplacian in Hn:

Definition 7 (Fundamental solutions). A function Γ : R2n+1 \{0}→R is a funda-
mental solution for ∆H if:

(i) Γ ∈C∞(R2n+1 \{0}),
(ii) Γ ∈ L1

loc(R2n+1) and lim‖p‖→∞ Γ (p)→ 0,
(iii) for all ϕ ∈C∞

0 (R2n+1), ∫
R2n+1

Γ (p)∆Hϕ(p)d p =−ϕ(0).

It also follows easily that for every p ∈Hn,

Γ ∗∆Hϕ(p) =−ϕ(p) for all ϕ ∈C∞
0 (R2n+1). (5)

Convolutions are defined as usual by

f ∗g(p) =
∫

f (q−1 · p)g(q)dq

for f ,g ∈ L1 and p ∈Hn.
The fundamental solution Γ of ∆H is given by

Γ (p) =Cd‖p‖2−d for p ∈Hn \{0}

where d = 2n+2 is the Hausdorff dimension of Hn.
Let K = ∇HΓ , then K = (K1, . . . ,K2n) : Hn→ R2n where

Ki(p) = cd
pi|p′|2 + pi+n p2n+1

‖p‖d+2 and Ki+n(p) = cd
pi+n|p′|2− pi p2n+1

‖p‖d+2 , (6)

for i = 1, . . . ,n, p ∈ Hn \ {0} and cd = (2− d)Cd . We will also use the following
notation,

Ωi(p) = cd
(pi|p′|2 + pi+n p2n+1)

‖p‖3 and Ωi+n(p) = cd
(pi+n|p′|2− pi p2n+1)

‖p‖3 , (7)
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for i = 1, . . . ,n and p ∈Hn \{0}. Hence,

Ki(p) =
Ωi(p)
‖p‖d−1 and K(p) =

Ω(p)
‖p‖d−1 , (8)

for i = 1, . . . ,2n,Ω = (Ω1, . . . ,Ω2n) and p ∈Hn \{0}. The functions Ωi are homo-
geneous and hence, recalling Definition 1, the kernels Ki are (d−1)-homogeneous.

The following proposition asserts that K is a standard kernel.

Proposition 1. For all i = 1, . . . ,2n,

(i) |Ki(p)|. ‖p‖1−d for p ∈Hn \{0},
(ii) |∇HKi(p)|. ‖p‖−d for p ∈Hn \{0},

(iii) |Ki(p−1 ·q1)−Ki(p−1 ·q2)|. max
{

d(q1,q2)

d(p,q1)d ,
d(q1,q2)

d(p,q2)d

}
for q1,q2 6= p ∈Hn.

The following theorem, which makes use of Proposition 1, was proved in [6].
With d replaced by n, it is also valid for Lipschitz harmonic functions in Rn, as it
was shown in [17].

Theorem 6. Let C be a compact subset of Hn.

(i) If H d−1(C) = 0, C is removable.
(ii) If dimC > d−1, C is not removable.

8 ∆H-removable self-similar Cantor sets in Hn

In this section we consider a modified class of the self-similar Cantor sets C in Hn

which were introduced in Section 3. Notice that there is one piece S0(Cr,N) of Cr,N
below, which is well separated from the others. This is in order to make the condition
of Theorem 3 easily checkable. It is very probable that also the more symmetric
self-similar sets of Section 3 would satisfy that condition, but the calculation would
become much more complicated.

Let Q = [0,1]2n ⊂ R2n,r > 0,N ∈ 2N, be such that r < 1
N < 1

2 . Let z j ∈ R2n, j =
1, ...,N2n, be distinct points such that z j,i ∈ { l

N : l = 0,1, · · · ,N − 1} for all j =
1, · · · ,N2n and i = 1, ..,2n.

The similarities Sr,N = {S0, . . . ,S 1
2 N2n+2}, depending on the parameters r and N,

are defined as follows,

S0 = δr,

S j = τ(zb jc
N2n

, 1
2+

i
N2 )
◦δr, for i = 0, · · · , N2

2
−1 and j = iN2n +1, · · · ,(i+1)N2n.

where b jcm := j mod m.
Let Cr,N be the self-similar set defined by
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Cr,N =

1
2 N2n+2⋃

j=0

S j(Cr,N).

Then

0 < H s(Cr,N)< ∞ with s =
log( 1

2 N2n+2 +1)

log( 1
r )

.

Denote by Cd−1 the set Crd−1,N0 for which

0 < H 2n+1(Crd−1,N0)< ∞.

Theorem 7. The Cantor set Cd−1 satisfies 0 < H d−1(Cd−1)< ∞ and is removable.

The proof of Theorem 7 can be found in [6] and to prove it one verifies the
condition of the general Theorem 3.

9 Concluding comments

As discussed above, the question for what kind of 1-regular measures the singular in-
tegral operators based on the 1-dimensional Riesz kernel are L2-bounded is solved.
So are the corresponding removability questions, both even much more generally
than for regular measures and sets. For other integral dimensional Riesz kernels in
Rn and Riesz-type kernels in Hn we have partial results for general regular mea-
sures and sets. For other kernels, such as the gradient of the fundamental solution
of the sub-Laplacian, we only know results for some special self-similar sets. A
natural direction would be to proceed further with self-similar sets, studying more
systematically their properties and defining conditions in relation with kernels and
L2-boundedness. The L2-boundedness on some particular self-similar sets for ker-
nels adapted to them was shown in [8], by David, and in [3].
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