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Marstrand’s density theorem in the Heisenberg group

Vasilis Chousionis and Jeremy T. Tyson

Abstract

We prove that if µ is a Radon measure on the Heisenberg group Hn such that the density Θs(µ, ·),
computed with respect to the Korányi metric dH , exists and is positive and finite on a set of positive
µ measure, then s is an integer. The proof relies on an analysis of uniformly distributed measures on
(Hn, dH). We provide a number of examples of such measures, illustrating both the similarities and
the striking differences of this sub-Riemannian setting from its Euclidean counterpart.

1. Introduction and Notation

Let µ be a Radon measure on a metric space (X, d). For 0 ≤ s <∞ the upper and lower s-densities
of µ at x ∈ X are defined respectively by

Θ∗s(µ, x) = lim sup
r→0

µ(B(x, r))

rs
and Θs

∗(µ, x) = lim inf
r→0

µ(B(x, r))

rs
.

In the case when Θ∗s(µ, x) = Θs
∗(µ, x), their common value is called the s-density of µ at x and

is denoted by Θs(µ, x). Recall that in the case of Rn equipped with the usual Euclidean metric,
the Lebesgue density theorem [27, Corollary 2.14] asserts that whenever A is Ln-measurable, then

Θn(Ln A, x) = Ln(BE(0, 1)) for Ln-a.e. x ∈ A and Θn(Ln A, x) = 0 for Ln-a.e. x ∈ Rn \A. Here

Ln A denotes the restriction of the n-dimensional Lebesgue measure on A and BE(0, 1) is the
Euclidean unit ball. Similar, but much weaker, results hold for Hausdorff and packing measures, see
[27, Chapter 6] and [1].

Densities, and their connections to their underlying measures, have been studied extensively in
the context of geometric measure theory since the pioneering work of Besicovitch [2] in the 1940’s.
One of the fundamental questions in this line of research is the following: assuming that µ is a
Radon measure such that Θs(µ, x) exists for µ-a.e. x what can be said about the properties of the
measure µ? A major contribution due to Marstrand [26] asserts that, in the Euclidean setting, if
the s-density exists µ-a.e then s is an integer. In his seminal paper [32], Preiss showed that if the
m-density of a Radon measure µ in Rn, m ∈ [0, n], exists µ-a.e. then the measure µ is rectifiable,
that is, there exist countably many m-dimensional Lipschitz graphs Mi such that µ(Rn \ ∪iMi) = 0
and µ is absolutely continuous with respect to the m-dimensional Hausdorff measure Hm. For an
informative and highly readable presentation of the theorem of Preiss we refer the reader to the
monograph by De Lellis [8].

Obtaining analogues of the Marstrand and Preiss theorems for other metric spaces remains an
interesting and highly non-trivial problem, see e.g. [8, p. 112]. Lorent [16], [17], [18] considered
metrics defined by polytope norms on finite-dimensional vector spaces. Our main goal in this paper
is to prove Marstrand’s theorem for the Heisenberg group equipped with a metric of sub-Riemannian
type.
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We now state the basic facts about the Heisenberg group needed in this paper. For an extensive
treatment of the Heisenberg group from a variety of perspectives see e.g. [30] or [3]. The Heisenberg
group Hn, identified with R2n+1, is a non-abelian Lie group whose group operation is given by

x · y = (x1 + y1, . . . , x2n + y2n, x2n+1 + y2n+1 +A(x′, y′)),

where x = (x′, x2n+1) = (x1, . . . , x2n, x2n+1) and y = (y′, y2n+1) = (y1, . . . , y2n, y2n+1) and A
denotes the symplectic form on R2n given by

A(x′, y′) = −2

n∑
j=1

(xjyj+n − xj+nyj). (1.1)

For any q ∈ Hn and r > 0, let τq : Hn → Hn be the left translation

τq(p) = q · p

and let δr : Hn → Hn be the dilation

δr(p) = (rp1, . . . , rp2n, r
2p2n+1).

These dilations are group homomorphisms. We denote by e = (0, 0) ∈ R2n × R the neutral element
of Hn.

The Korányi metric dH on Hn is defined by

dH(x, y) = ‖x−1 · y‖

where

‖x‖ = (|x′|4 + x2
2n+1)

1
4 ,

and | · | stands for the Euclidean norm. The metric is left invariant, that is dH(z · x, z · y) = dH(x, y)
for all x, y, z ∈ Hn, and the dilations satisfy dH(δr(x), δr(y)) = rdH(x, y) for all x, y ∈ Hn and r > 0.
The closed and open balls with respect to dH will be denoted by B(x, r) and U(x, r) respectively.
The dH -diameter of a set S ⊂ Hn will be denoted diamH S. Finally, the Euclidean metric on Hn will
be denoted by dE .

We denote by HsH , s ≥ 0, the s-dimensional Hausdorff measure obtained from the metric dH , i.e.
for E ⊂ Hn and δ > 0, HsH(E) = supδ>0HsH,δ(E), where

HsH,δ(E) = inf

{∑
i

diamH(Ei)
s : E ⊂

⋃
i

Ei, diamH(Ei) < δ

}
.

In the same manner the s-dimensional spherical Hausdorff measure for E ⊂ Hn is defined as SsH(E) =
supδ>0 SsH,δ(E), where

SsH,δ(E) = inf

{∑
i

rsi : E ⊂
⋃
i

B(pi, ri), ri ≤ δ, pi ∈ Hn
}
.

Translation invariance and dilation homogeneity of the Hausdorff measures follow as usual, therefore
for A ⊂ Hn, p ∈ Hn, s ≥ 0 and r > 0,

HsH(τp(A)) = HsH(A) and HsH(δr(A)) = rsHsH(A)

and the same relations hold for the spherical Hausdorff measures as well. We will denote by dimH(A)
the Hausdorff dimension of a set A ⊂ Hn with respect to the metric dH , and by dimE(A) the
Hausdorff dimension with respect to the Euclidean metric in Hn. It is well known that the Hausdorff
dimension of the metric space (Hn, dH) is equal to Q = 2n+ 2.

Our main result reads as follows.
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Theorem 1.2. Let s > 0 and suppose that there exists a Radon measure µ on (Hn, dH) such
that the density Θs(µ, ·) exists and is positive and finite in a set of positive µ measure. Then s is an
integer.

Our proof does not follow the scheme of Marstrand’s original proof. Instead we adopt and modify
accordingly an argument due to Kirchheim and Preiss, who provided a different proof of Marstrand’s
theorem in [11]. It is unknown to us if Marstrand’s original proof—which has a strong Euclidean
flavor—could be applied in the setting of the Heisenberg group. The proof of Kirchheim and Preiss
relies on the geometric analysis of uniformly distributed measures. Such an analysis is of independent
interest. Before recalling the definition of uniformly distributed measures we note that as usual the
support of a Radon measure µ is

supp(µ) = {x ∈ Hn : µ(B(x, r)) > 0 for all r > 0}.

Definition 1. A Radon measure µ in Hn is called uniformly distributed if

µ(B(x, r)) = µ(B(y, r))

for all x, y ∈ supp(µ) and r > 0.

A particular class of uniformly distributed measures are the s-uniform measures.

Definition 2. Given s > 0, a Radon measure µ in Hn is called s-uniform if there exists some
positive constant c such that

µ(B(x, r)) = c rs

for all x ∈ supp(µ) and r > 0.

As in the proof of Kirchheim and Preiss an essential ingredient in the proof of Theorem 1.2 is the
fact that the support of any uniformly distributed measure in Hn is a real analytic variety in R2n+1.
We show that at µ-a.e. point where the s-density exists, there exist weak limits of blow-ups of µ
which are s-uniform. In particular, these measures are uniformly distributed, hence their supports
are real analytic varieties with Hausdorff dimension s. Using Lojasiewicz’s structure theorem on
analytic varieties and the fact that smooth submanifolds in Hn have integer Hausdorff dimension
(see Section 2 for details), we conclude that s is an integer.

In Section 4 we discuss uniform and uniformly distributed measures in Hn providing also several
examples. The classification of uniform and uniformly distributed measures in Rn is a very difficult
and largely unresolved problem. Marstrand’s density theorem implies that there are no s-uniform
measures for s /∈ N. Preiss in [32] showed that for m = 1, 2, any m-uniform measure is m-flat, which

means that it is of the form cHm V , where c is a positive constant and V is an m-dimensional

subspace. In the remarkable paper [13], Kowalski and Preiss proved that H3 C is 3-uniform, where

C = {x ∈ R4 : x2
1 + x2

2 + x2
3 = x2

4}

is the light cone in R4. Moreover they showed that every (n− 1)-uniform measure in Rn is either
(n− 1)-flat or is a constant multiple of Hn−1 on some isometric copy of C × Rn−4. The classification
of m-uniform measures in Rn remains open for m 6= 1, 2, n− 1. Recently Tolsa in [33] showed that
m-uniform measures are uniformly m-rectifiable for any m ≤ n in Rn. Uniform measures were also an
essential tool in obtaining a new characterization of uniform rectifiability in [4]. A characterization
of uniformly distributed measures exists only for R; this is due to Kirchheim and Preiss [11]. In a
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future paper, we intend to return to the study of uniform and uniformly distributed measures and
the Kowalski–Preiss theorem in Hn.

We emphasize that Marstrand’s density problem is highly dependent on the metric and potentially
sensitive to bi-Lipschitz deformation. It is an interesting open problem whether Theorem 1.2 holds
for other metrics of sub-Riemannian type on Hn, or for metrics on more general Carnot groups.
Among the features of the Korányi metric dH which enable the Kirchheim–Preiss argument to be
transferred to this setting is the following analyticity criterion: there exists a strictly decreasing real
analytic function g : [0,∞)→ R so that g(t) decays to zero exponentially as t→∞ and g ◦ dH is
real analytic on R2n+1 × R2n+1. (In the proof of Theorem 1.2 we use g(t) = e−t

4

.) We also employ
Proposition 2.2 on the integrality of the Hausdorff dimensions of smooth submanifolds of Hn and
the local uniformity of the spherical Hausdorff measure at transverse points. The latter results have
been generalized to other Carnot groups, sometimes only for submanifolds of a specific type or
of a specific dimension. The validity of such blowup estimates and related integral formulas for
the spherical Hausdorff measure, for arbitrary submanifolds in arbitrary Carnot groups, remains a
challenging problem of ongoing interest. This general program has been intensively investigated by
Magnani and his collaborators, see the references cited in section 2.

As mentioned earlier, only a few analogues of the Marstrand and Preiss theorems in other
metric spaces are known. In particular, it is not known for which metrics on a Euclidean space
RN Marstrand’s theorem is valid. The following result in this direction is an easy consequence of
Theorem 1.2. We equip RN with the metric

d((x′, xN ), (y′, yN )) = (|x′ − y′|4 + (xN − yN )2)1/4 (1.3)

where x = (x′, xN ) and y = (y′, yN ) are in RN−1 × R = RN . Note that d is translation invariant for
the usual abelian group law on RN . To see that the function d is a metric, it suffices to note that
(RN , d) is isometric to the subgroup (W, dH), where

W = {(x1, . . . , xN−1, 0, . . . , 0, xN ) ∈ HN−1 : x1, . . . , xN ∈ R}.

Denote by Bd(x, r) the ball of radius r and center x in (RN , d).

Theorem 1.4. Let µ be a Radon measure on (RN , d) such that limr→0 r
−sµ(Bd(x, r)) exists

and is finite and positive in a set of positive µ measure. Then s is an integer.

Proof. Define a measure µ̃ on HN−1 by µ̃(A) = µ(A1), where A1 = {(x1, . . . , xN ) :
(x1, . . . , xN−1, 0, . . . , 0, xN ) ∈ A}. Then µ̃ is a Radon measure on HN−1 and

µ̃(BH(x̃, r)) = µ(Bd(x, r))

for x̃ = (x1, . . . , xN−1, 0, . . . , 0, xN ) ∈W, where x = (x1, . . . , xN ). The result follows from Theorem
1.2.

Acknowledgements. Thanks are due to Enrico Le Donne, Valentino Magnani and Pertti
Mattila for conversations on the subject of this paper and for useful remarks. The authors are
also grateful to the referee for his or her careful reading of the paper. Research for this paper was
carried out during a visit of JTT to the University of Helsinki and Aalto University. The hospitality
of these institutions is appreciated.
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2. Differential geometry of submanifolds in the Heisenberg group

2.1. Homogeneous subgroups

A basic class of uniform measures in the Heisenberg group Hn consists of the natural volume
measures on homogeneous subgroups. Recall that a subgroup S ⊂ Hn is homogeneous if it is closed
under the dilation semigroup, i.e., δr(x) ∈ S whenever x ∈ S and r > 0. Nontrivial homogeneous
subgroups of Hn, that is, homogeneous subgroups which are not equal to Hn or e, come in two flavors.
A subgroup V is said to be a horizontal homogeneous subgroup if V = V × (0) ⊂ R2n × R, where V is
an isotropic subspace of R2n. (Recall that a subspace V ⊂ R2n is said to be isotropic if the symplectic
form A defined in (1.1) vanishes on V .) The topological dimension of a horizontal homogeneous
subgroup can be any value k ∈ {1, . . . , n}. A subgroup W is said to be a vertical homogeneous
subgroup if W = W × R ⊂ R2n × R, where W is any subspace of R2n. Vertical subgroups can have
any topological dimension k ∈ {1, . . . , 2n}.

Horizontal and vertical homogeneous subgroups are both linear subspaces of the underlying
Euclidean space R2n+1, however, their intrinsic metric structure as subsets of the Heisenberg group
Hn are quite diffferent. In particular, denoting by k′ the sub-Riemannian dimension of such a
subgroup, we note that k′ = k for k-dimensional horizontal homogeneous subgroups and k′ = k + 1
for k-dimensional vertical homogeneous subgroups [29, §2.4]. The natural volume measure on such
a subgroup Σ is the standard Lebesgue measure, which agrees up to a constant multiple with the

restriction of the spherical Hausdorff measure, Sk′H Σ, and also with the bi-invariant Haar measure
[29, Proposition 2.32]. In connection with this paper the following result is of particular interest.

Proposition 2.1. For each homogeneous subgroup Σ ⊂ Hn of sub-Riemannian dimension k′,

Sk′H Σ is a k′-uniform measure.

Proof. Since Σ is both homogeneous and a subgroup, B(x, r) ∩ Σ = (τx ◦ δr)(B(e, 1) ∩ Σ) for
each x ∈ Σ. Thus Sk′H (B(x, r) ∩ Σ) = crk

′
where c = Sk′H (B(e, 1) ∩ Σ).

In particular, S2
H Σ is 2-uniform when Σ is the vertical (x2n+1-)axis. Note that the vertical axis

is not an intrinsically rectifiable subset of Hn in the sense of [29]. Thus the Preiss rectifiability
theorem from [32] fails to hold in (Hn, dH) when rectifiability is understood in the sense of [29]. A
related observation was made by Lorent [17, p. 454].

2.2. Geometry of submanifolds

The intrinsic geometry of submanifolds and more general subsets in sub-Riemannian spaces was
advertised as a research program by Gromov in his pioneering work [9] and has undergone intensive
study since that time. In particular, Magnani has made a detailed analysis of the local structure of
submanifolds of Carnot groups from the sub-Riemannian perspective, emphasizing blow-up estimates
for volume measures, neglibility of characteristic points and associated area formulas for the spherical
Hausdorff measure. This detailed program has been carried out in an ongoing series of papers, [19],
[20], [21], [25], [22], [15], [12], [24]. In this paper we only need to recall the relevant results in the
setting of the Heisenberg group Hn equipped with the Korányi metric.

Before stating these results we remind the reader that the sub-Riemannian differential geometric
structure of Hn derives from the fundamental notion of the horizontal distribution HHn which is a
completely nonintegrable subbundle of the tangent bundle. The fiber HxHn, called the horizontal
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tangent space of Hn at x, is the span of the values at x of the left invariant vector fields

Xj =
∂

∂xj
+ 2xn+j

∂

∂x2n+1
and Xn+j =

∂

∂xn+j
− 2xj

∂

∂x2n+1
, where j = 1, . . . , n.

Proposition 2.2 Magnani. Let Σ be a k-dimensional C1,1 submanifold in Hn. Then
(i) dimH(Σ) = k′ ∈ N, where k′ is either k or k + 1,

(ii) the measure Sk′H Σ is asymptotically k′-uniform, that is,

lim
r→0

Sk′H (Σ ∩B(x, r))

rk′

exists for Sk′H -a.e. x ∈ Σ.

Part (i) of Proposition 2.2 follows from the general formula for the Hausdorff dimensions of smooth
submanifolds in (equiregular) sub-Riemannian manifolds given in [9, §0.6.B], or alternatively, as a
consequence of part (2). The dimension k′ coincides with the degree d(Σ) of Σ as defined by Magnani
[23], [25]. For submanifolds Σ ⊂ Hn we have k′ = k + 1 whenever n+ 1 ≤ k ≤ 2n, while if 1 ≤ k ≤ n
we may have either k′ = k or k′ = k + 1. In fact a k-dimensional submanifold Σ ⊂ Hn has k′ = k
if and only if Σ is horizontal, that is, TxΣ is contained in HxHn for all x ∈ Σ. The case k′ = k + 1
corresponds to nonhorizontal submanifolds, for which at least one tangent space TxΣ is transverse to
the corresponding horizontal tangent space HxHn. Naturally, the distinction drawn here corresponds
precisely to the distinction between horizontal and vertical homogeneous subgroups in subsection
2.1.

The asymptotic uniformity of Sk′H M holds at points of maximal degree, i.e., points x ∈ Σ where
the local degree dΣ(x) coincides with d(Σ). For the definition of dΣ(x) in general Carnot groups,
see [25, p. 208]. In the present setting the value of dΣ(x) for a k-dimensional submanifold Σ is
simply given by k if TxΣ ⊂ HxHn and by k + 1 otherwise. In fact, such asymptotic uniformity
is stated in [20, Theorem 1.1] or [25, Theorem 1.2] for the volume measure on Σ (relative to
an auxiliary Riemannian metric) and holds at points of maximal degree. The Sk′H negligibility of
points of lower degree can be observed in [23, Corollary 1.2], where it is stated for submanifolds in
general Carnot groups of step two, or in [21, Theorem 2.16]. (In the latter reference the negligibility
criterion is stated for maximally nonhorizontal submanifolds in general Carnot groups, however, in
the Heisenberg group Hn all submanifolds are either horizontal or maximally nonhorizontal, and
all points in a horizontal submanifold automatically have maximal degree.) Conversion from the
Riemannian volume measure to the spherical Hausdorff measure Sk′H is accomplished by means of
an area formula relating these two measures. See [20, Theorem 1.2] or [25, (1.4)].

3. Uniformly distributed measures and the proof of Marstrand’s theorem

For a uniformly distributed measure µ in Hn it is easy to see that

µ(B(x, r)) ≤
(

5r

s

)Q
fµ(s) (3.1)

for every x ∈ Hn and every 0 < s < r <∞, where fµ : (0,∞)→ (0,∞) is defined by fµ(s) =
µ(B(x, s)) for any x ∈ supp(µ). The proof of (3.1) is identical to the one in [11, Lemma 1.1].

Proposition 3.2. Let µ be a uniformly distributed measure in Hn. Then supp(µ) is a real
analytic variety in R2n+1 and dimH(supp(µ)) is an integer.
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Proof. If supp(µ) = Hn then by [27, Theorem 3.4] µ = cH2n+2
H , which is the Haar measure

in Hn, hence trivially dimH(supp(µ)) = 2n+ 2. Therefore we can assume that supp(µ) 6= Hn. Let
x0 ∈ supp(µ) and define

F (x, s) =

∫
R2n+1

(exp(−s‖x−1 · z‖4)− exp(−s‖x−1
0 · z‖4)) dµ(z),

for x ∈ Hn and s > 0. Using [27, Theorem 1.15] we get,∫
R2n+1

exp(−s‖x−1 · z‖4)dµ(z) =

∫∞
0

µ({z : exp(−s‖x−1 · z‖4) ≥ t})dt

=

∫1

0

µ

(
B

(
x,

4

√
− log t

s

))
dt.

(3.3)

Therefore, ∫
R2n+1

exp(−s‖x−1 · z‖4)dµ(z) =

∫
R2n+1

exp(−s‖y−1 · z‖4)dµ(z) (3.4)

for all x, y ∈ supp(µ) and all s > 0, and hence the function F (x, s) is well defined as it does not
depend on the choice of x0. Using (3.3) and (3.1) we also deduce that F (x, s) is finite for all x ∈ Hn
and s > 0, since ∫1

e−s

µ

(
B

(
x,

4

√
− log t

s

))
dt ≤ µ(B(x, 1)) <∞

and ∫e−s

0

µ

(
B

(
x,

4

√
− log t

s

))
dt ≤ 5Qfµ(1)

∫∞
s

(u
s

)Q/4
e−udu <∞.

We will show that x ∈ supp(µ) if and only if F (x, s) = 0 for all s > 0. By (3.4) if x ∈ supp(µ) then
F (x, s) = 0 for all s > 0. Now let x /∈ supp(µ), it suffices to show that there exists s > 0 such that
F (x, s) 6= 0. Let ε ∈ (0, 1) such that B(x, ε) ∩ supp(µ) = ∅. In that case, splitting the integral into
annuli B(x, (k + 1)ε) \B(x, kε) and using (3.1) we get∫

R2n+1

exp(−s‖x−1 · z‖4)dµ(z) ≤
∞∑
k=1

exp(−sk4ε4)µ(B(x, (k + 1)ε))

≤ 10Q fµ(ε/2)

∞∑
k=1

(k + 1)Q exp(−sk4ε4).

Noting that ∫
R2n+1

exp(−s‖x−1
0 · z‖4)dµ(z) ≥

∫
B(x0,ε/2)

exp(−s‖x−1
0 · z‖4)dµ(z)

≥ exp(−s(ε/2)4) fµ(ε/2),

we deduce that

lim
s→∞

∫
R2n+1 exp(−s‖x−1 · z‖4)dµ(z)∫
R2n+1 exp(−s‖x−1

0 · z‖4)dµ(z)

≤ lim
s→∞

10Q
∞∑
k=1

(k + 1)Q exp(−sk4(ε4 − ε4/16)) = 0.

Hence there exists some sx ∈ (0,∞) such that for all s > sx∫
R2n+1

exp(−s‖x−1 · z‖4)dµ(z) <
1

2

∫
R2n+1

exp(−s‖x−1
0 · z‖4)dµ(z),
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that is F (x, s) 6= 0 for s > sx. Therefore we have shown that

supp(µ) =
⋂
s>0

{x ∈ R2n+1 : F (x, s) = 0}.

We now fix s > 0. In order to show that F (x) := F (x, s) is a real analytic function on R2n+1 it
suffices to show that

F1(x) =

∫
R2n+1

exp(−s‖x−1 · z‖4)dµ(z)

is real analytic. We define F̃1 : C2n+1 → C for w = (w1, . . . , w2n+1) ∈ C2n+1 as

F̃1(w) =

∫
R2n+1

exp

(
−s
[( 2n∑

i=1

(zi − wi)2
)2

+
(
z2n+1 − w2n+1 + 2

n∑
i=1

(wizi+n − wi+nzi)
)2])

dµ(z),

where R2n+1 = {w ∈ C2n+1 : Im(w) = 0}. The following lemma asserts that F̃1 is well defined.

Lemma 3.5. Let F̃1 : C2n+1 → C as above. Then |F̃1(w)| <∞ for all w ∈ C2n+1.

Proof. We start with some notation. For w ∈ C2n+1, let

w′ = (w1, . . . , w2n) := (w1, w2) ∈ C2n,

where w1 := (w1, . . . , wn) and w2 = (wn+1, . . . , w2n).
We now fix some w ∈ C2n+1 and set

P (z) =
( 2n∑
i=1

(zi − wi)2
)2

+
(
z2n+1 − w2n+1 + 2

n∑
i=1

(wizi+n − wi+nzi)
)2

for z ∈ R2n+1. After expanding we can express P in the form

P (z) = dH(z,Re(w))4 −Bw(z) + iGw(z) +R(w),

where Gw(z), R(w) ∈ R,

Bw(z) = 2|z′ − Re(w′)|2| Im(w′)|2

+ 4((z′ − Re(w′)) · Im(w′))2

+ 4((z′ − Re(w′)) · (− Im(w2), Im(w1)))2

+ 4h(w)(z′ − Re(w′)) · (− Im(w2), Im(w1)),

(3.6)

h(w) = 2(Re(w2) · Im(w1)− Re(w1) · Im(w2))− Im(w2n+1),

and · denotes the usual inner product in Rn. Therefore

|e−sP (z)| = e−sR(w) e−s(dH(z,Re(w))4−Bw(z)) . e−s(dH(z,Re(w))4−Bw(z)). (3.7)

By (3.6) we have that

|Bw(z)| ≤ 10dH(z,Re(w))2| Im(w′)|2 + 4dH(z,Re(w))| Im(w′)||h(w)|. (3.8)

Let

τ(w) = 1 + 10| Im(w′)|2 + 4| Im(w′)||h(w)|.
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Since µ is a Radon measure

|F̃1(w)| ≤

∣∣∣∣∣
∫
BH(Re(w),10

√
τ(w))

e−sP (z)dµ(z)

∣∣∣∣∣+

∣∣∣∣∣
∫
R2n+1\BH(Re(w),10

√
τ(w))

e−sP (z)dµ(z)

∣∣∣∣∣
. 1 +

∣∣∣∣∣
∫
R2n+1\BH(Re(w),10

√
τ(w))

e−sP (z)dµ(z)

∣∣∣∣∣ .
(3.9)

Now for z ∈ R2n+1 \BH(Re(w), 10
√
τ(w)) using (3.8) we have

|Bw(z)| ≤ τ(w)dH(z,Re(w))2,

hence for such z,

dH(z,Re(w))4 −Bw(z) ≥ 1

2
dH(z,Re(w))4.

Therefore by (3.7)∣∣∣∣∣
∫
R2n+1\BH(Re(w),10

√
τ(w))

e−sP (z)dµ(z)

∣∣∣∣∣ .
∫
R2n+1\BH(10

√
τ(w))

e−
s
2dH(z,Re(w))4dµ(z)

≤ F (Re(w), s/2) <∞,
(3.10)

where F is as in Proposition 3.2. Therefore the lemma follows by (3.9) and (3.10).

It follows that F̃1 is holomorphic on C2n+1, and as a consequence F1 = F̃1|R2n+1 is real analytic in
R2n+1. Since the intersection of any family of analytic varieties is an analytic variety, see e.g. [31],
we deduce that supp(µ) is a real analytic variety in R2n+1.

It remains to show that dimH(supp(µ)) is an integer. We have shown that the support of µ in
(Hn, dH) is an m-dimensional analytic variety of R2n+1 for some m ∈ N. According to Lojasiewicz’s
Structure Theorem for real analytic varieties (see for example section 6.3 in [14]), supp(µ) can be
written as the union of countably many analytic submanifolds of R2n+1 whose dimensions vary
between 0 and m. An application of part (i) of Proposition 2.2 finishes the proof.

Let µ be a Radon measure on a metric space (X, d). A family of closed balls F is said to be a
Vitali relation for a set S ⊂ X if for every A ⊂ S there exists a disjoint, countable family of balls
{Bi}i∈I ⊂ F such that

µ(A \ ∪i∈IBi) = 0.

Theorem 3.11. Let (X, d) and µ be as above. Let G ⊂ X and 0 < α < β <∞ such that for
every x ∈ G there exists some r0(x) > 0 such that

µ(B(x, αr)) ≤ βµ(B(x, r))

for all 0 < r < r0(x). Then the family of closed balls F = {B(x, r) : x ∈ G, r < r0(x)} is a Vitali
relation for G.

The proof of Theorem 3.11 follows after a few straightforward modifications in the proof of [10,
Theorem 1.6]. Using Theorem 3.11 we obtain the following version of the Lebesgue differentiation
theorem.
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Theorem 3.12. Let µ be a Radon measure on a metric space X and let f be a nonnegative
locally integrable function. If there exists a set G ⊂ X as in Theorem 3.11 then

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

f dµ = f(x)

for µ-a.e. x ∈ G.

We omit the proof of Theorem 3.12 as it follows very closely the proof of [10, Theorem 1.8].

Proof Proof of Theorem 1.2. By assumption the set

G = {x ∈ Hn : Θs(µ, x) ∈ (0,∞)}

is non-empty. It follows easily that for every x ∈ G there exists some r0(x) > 0 such that
µ(B(x, 2r)) ≤ 2s+1µ(B(x, r)) for all r < r0(x). In particular, by Theorem 3.11 the family of closed
balls

F = {B(x, r) : x ∈ G, r < r0(x)}

is a Vitali relation in G. We consider the Borel measurable functions dk(x) = ks µ(B(x, 1
k )). By the

theorems of Egorov and Lusin we conclude that there is a compact set B ⊂ G with µ(B) > 0 and
a continuous function d : B → (0,∞) such that dk converges to d uniformly. Since F is a Vitali
relation in G and B ⊂ G we can apply Theorem 3.12 to the function χBc and infer that

lim
r→0

µ(B(x0, r) \B)

µ(B(x0, r))
= 0, (3.13)

for µ-a.e. x0 ∈ B.
We now pick some x0 ∈ B which satisfies (3.13) and define a sequence of measures {νk}k∈N by

νk(A) = ksµ(x0 · δ 1
k

(A)), A ⊂ Hn.

Notice that for N ∈ N,

lim
k→∞

νk(B(e,N)) = lim
k→∞

ksµ(x0 · δ 1
k

(B(e,N)))

= Ns lim
k→∞

(k/N)sµ((B(x0, N/k))) = Ns d(x0) > 0.

Therefore, since C0(Hn) is separable under the sup-norm, we can apply [27, Theorem 1.23] in order
to extract a subsequence (νki) converging to a Radon measure ν. In the sequel we use the standard
facts that

ν(K) ≥ lim sup
i→∞

νki(K) and ν(G) ≤ lim inf
i→∞

νki(G) (3.14)

for all compact K and open G, see e.g. [27, Theorem 1.24]. Since

ν(B(e, 1)) ≥ lim sup
i→∞

(ki)
sµ(x0 · δ 1

ki

(B(e, 1)))

= lim sup
i→∞

(ki)
sµ

(
B

(
x0,

1

ki

))
= d(x0) > 0,
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we easily conclude that supp(ν) is nonempty. Let x ∈ supp(ν), R > 0 and ε < R. By (3.13) we have

lim
i→∞

νki(B(e, ‖x‖+ 2ε) \ δki(x−1
0 ·B)) = lim

i→∞
(ki)

sµ(x0 · δ 1
ki

(B(e, ‖x‖+ 2ε) \ δki(x−1
0 ·B)))

= lim
i→∞

(ki)
sµ

(
B

(
x0,
‖x‖+ 2ε

ki

)
\B
)

= lim
i→∞

µ
(
B
(
x0,
‖x‖+2ε
ki

)
\B
)

µ
(
B
(
x0,
‖x‖+2ε
ki

)) (ki)
sµ

(
B

(
x0,
‖x‖+ 2ε

ki

))
= 0.

(3.15)

Using the second part of (3.14) we also get that

lim inf
i→∞

νki(B(x, ε)) ≥ lim inf
i→∞

νki(U(x, ε)) ≥ ν(U(x, ε)) ≥ ν(B(x, ε/2)) > 0. (3.16)

Therefore (3.15) and (3.16) imply that there exists some i0 such that for all i ≥ i0,

B(x, ε) ∩ δki(x−1
0 ·B) 6= ∅.

Now let yi ∈ B(x, ε) ∩ δki(x−1
0 ·B) for i ≥ i0 and observe that x0 · δ 1

ki

(yi) ∈ B. Therefore

ν(B(x,R)) ≥ lim sup
i→∞

νki(B(x,R)) ≥ lim sup
i→∞

νki(B(yi, R− ε))

= lim sup
i→∞

(ki)
sµ(x0 · δ 1

ki

(B(yi, R− ε))

= lim sup
i→∞

(ki)
sµ

((
B(x0 · δ 1

ki

(yi),
R− ε
ki

))
≥ (R− ε)sd(x0),

where the final inequality follows because the functions gk converge uniformly to d.
In a similar manner we obtain that

ν(U(x,R+ ε)) ≤ d(x0)(R+ 2ε)s.

Letting ε→ 0 we conclude that ν is an s-uniform measure. Hence we deduce, see e.g. [1,
Theorem 2.4.3], that dimH(supp(ν)) = s. By Proposition 3.2, supp(ν) is a real analytic variety
in Hn and in particular dimH(supp(ν)) and hence also s, is an integer.

Remark 1. Theorem 1.2 can also be established with the aid of tangent measures. Tangent
measures, introduced by Preiss in [32], have subsequently become important tools in geometric
measure theory. See [27] for an extensive treatment in Euclidean spaces, and [28] or [6] for
applications in the setting of metric groups with dilations, including the Heisenberg group.

Let µ be a Radon measure in Hn. The image f#µ under a map f : Hn → Hn is the measure on
Hn defined by

f#µ(A) = µ
(
f−1(A)

)
for all A ⊂ Hn.

For a ∈ Hn and r > 0, Ta,r : Hn → Hn is defined for all p ∈ Hn by

Ta,r(p) = δ1/r(a
−1 · p).

Definition 3. Let µ be a Radon measure on Hn. We say that ν is a tangent measure of µ at
a ∈ Hn if ν is a Radon measure on Hn with ν(Hn) > 0 and there are positive numbers ci and ri,
i = 1, 2, . . . , such that ri → 0 and

ciTa,ri#µ→ ν weakly as i→∞.

We denote by Tan(µ, a) the set of all tangent measures of µ at a.
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Let µ as in the assumptions of Theorem 1.2. With the help of Theorems 3.11 and 3.12 we can
reproduce the argument in Theorem [27, Lemma 14.7.1] in order to show that if

A = {x ∈ Hn : Θs(µ, x) is positive and finite},

then for µ-a.e. x ∈ A, every ν ∈ Tan(µ, x) is s-uniform. Hence we deduce, see e.g. [1, Theorem 2.4.3],
that dimH(supp(ν)) = s. By Proposition 3.2, supp(ν) is a real analytic variety in Hn and in particular
dimH(supp(ν)) and hence also s, is an integer.

The following theorem is a Heisenberg adaptation of [11, Corollary 1.6].

Theorem 3.17. Let µ be a uniformly distributed measure in (Hn, dH) with bounded support.
Then supp(µ) is an algebraic variety.

Proof. Since supp(µ) is bounded, the function F (x, s) from Proposition 3.2 admits the expansion

F (x, s) =

∞∑
j=0

(−s)j

j!

∫
R2n+1

(
‖x−1 · z‖4jH − ‖x

−1
0 · z‖

4j
H

)
dµ(z).

It easily follows that F (x, s) = 0 for every s > 0 if and only if the functions

Pj(x) =

∫
R2n+1

(
‖x−1 · z‖4jH − ‖x

−1
0 · z‖

4j
H

)
dµ(z).

vanish for every j = 1, 2, . . .. Each Pj is a polynomial in the coordinates of the point x ∈ Hn. As in
the proof of Corollary 1.6 of [11], an appeal to Hilbert’s theorem for polynomials over a Noetherian
ring implies that supp(µ) coincides with the simultaneous vanishing set of finitely many of the
polynomials Pj , whence supp(µ) is an algebraic variety.

4. Examples and discussion

In this section we exhibit uniform or uniformly distributed measures in the Heisenberg group Hn
equipped with the Korányi metric dH . New phenomena arise which lack any Euclidean counterpart.
Numerous questions remain; we indicate several of these in the course of our discussion.

4.1. Uniform measures

We have already remarked (see section 2.1) that the volume measure on any homogeneous
subgroup of Hn is uniform. In particular, vertical hypersurfaces of Hn support (Q− 1)-uniform
measures. Recall that Q = 2n+ 2 is the Hausdorff dimension of (Hn, dH). In Euclidean space Rn,
the classification of uniform measures supported on hypersurfaces (possibly with singularities) is due
to Kowalski and Preiss [13]: any such measure is a constant multiple of the Hausdorff measure Hn−1

supported on either a hyperplane or an isometric image of C × Rn−4 where C denotes the light cone

C := {x ∈ R4 |x2
4 = x2

1 + x2
2 + x2

3}.

The Kowalski–Preiss light cone example can be isometrically embedded into Heisenberg groups of
sufficiently large dimension, yielding new examples of uniform measures supported on submanifolds.
Note that due to the geometry of the Heisenberg group we do not obtain that the codimension one
algebraic variety

{(x1, . . . , xn, xn+1, . . . , x2n, x2n+1) ∈ Hn | (x1, x2, x3, x4) ∈ C},

supports a (Q− 1)-uniform measure. We do however obtain the following
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Proposition 4.1. Let n ≥ 4.
(i) The set

CH := {(x1, . . . , xk, 0, . . . , 0, 0) ∈ Hn | (x1, x2, x3, x4) ∈ C, 4 ≤ k ≤ n},
or any image of CH by an isometry of (Hn, dH), supports a (k − 1)-uniform measure.

(ii) The set

C̃H := {(x1, . . . , xk, 0, . . . , 0, x2n+1) ∈ Hn | (x1, x2, x3, x4) ∈ C, 4 ≤ k ≤ n, x2n+1 ∈ R} , (4.2)

or any image of CH by an isometry of (Hn, dH), supports a (k + 1)-uniform measure.

It is well known that the isometries of Hn are generated by left translations, by the ‘reflec-
tion’ (x1, . . . , x2n+1) 7→ (−x1, . . . ,−xn, xn+1, . . . , x2n,−x2n+1), and by the rotations (x′, x2n+1) 7→
(Ax′, x2n+1), where A ∈ U(n) acts on the point (x1 + ixn+1, . . . , xn + ix2n) ∈ Cn, x′ = (x1, . . . , x2n).
Moreover, the similarities of Hn are generated by the isometries of Hn together with the dilations
δr, r > 0.

Proof. To prove (i), fix k, 4 ≤ k ≤ n, as in the statement of the proposition, and consider the hor-
izontal homogeneous subgroup V = {(x1, . . . , xk, 0, . . . , 0) ∈ Hn : x1, . . . , xk ∈ R}. The restriction of
dH to V coincides with the restriction of the Euclidean metric of R2n+1 to V. Since CH ⊂ V we see
that for x ∈ CH and r > 0,

BH(x, r) ∩ CH = BE(x, r) ∩ CH (4.3)

where BE(x, r) denotes the Euclidean ball in Rk with center x and radius r. By the result of
Kowalski–Preiss, the set CH , equipped with the Euclidean metric, supports a (k − 1)-uniform
measure. By (4.3) this measure is also (k − 1)-uniform for the Korányi metric restricted to CH .

Part (ii) follows from part (i) and the following lemma.

Lemma 4.4. Let S ⊂ RN−1 support an m-uniform measure µ for some m ∈ {0, 1, . . . , N − 1}.
Then (S × R, d) supports an (m+ 2)-uniform measure, where d denotes the metric on RN given in
(1.3).

Proof. Let c > 0 be such that µ(B(x, r)) = crm for all x ∈ S and r > 0. Consider the measure
ν = µ⊗ L1 on S × R. For x = (x′, xN ) ∈ S × R and r > 0 we use the Fubini theorem to derive

ν(Bd(x, r) ∩ (S × R)) =

∫xN+r2

xN−r2
µ(B(x′, 4

√
r4 − (xN − yN )2) ∩ S) dyN

= c

∫xN+r2

xN−r2
(r4 − (xN − t)2)m/4 dt

= c

∫r2
−r2

(r4 − t2)m/4 dt = crm+2

∫1

−1

(1− τ2)m/4 dτ.

Hence ν is an (m+ 2)-uniform measure on S × R.

Remark 2. In [13, §3], Kowalski and Preiss draw further conclusions in the Euclidean setting.

For instance, they prove that Hm+1 (M × R) is (m+ 1)-uniform if and only if Hm M is m-

uniform. The proof of the converse direction uses the equality of Hm+1 (M × R) with the product

measure Hm M ⊗ L1 for countably m-rectifiable sets M ⊂ RN−1. In our setting, when the metric
on RN is not the standard Euclidean metric, we do not know whether such equality holds.
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Question 1. Does there exist any C1 hypersurface (or more generally, algebraic variety) in
(Hn, dH), other than vertical hyperplanes, which supports a uniform measure?

Remark 3. In an ongoing project with Magnani [5] we investigate Question 1 in the first
Heisenberg group, where we give the following partial answer: the only vertically ruled surfaces
Σ ⊂ H1 which support uniform measures are vertical planes.

4.2. Uniformly distributed measures

Kirchheim and Preiss [11, Section 2] characterized uniformly distributed measures in R and gave
examples of such measures in R2. In this section we present examples in the first Heisenberg group
(H1, dH).

Theorem 3.17 ensures that bounded supports of uniformly distributed measures on Hn are
algebraic varieties. Bounded supports of Euclidean uniformly distributed measures are contained
in spheres, see [7] or [11, Proposition 1.7]. We are currently unable to obtain analogous simple
conclusions in the Heisenberg setting. This fact complicates attempts to characterize Heisenberg
uniformly distributed measures.

We first observe (cf. [11, Remark 2.5]) that a locally finite measure is uniformly distributed
provided it is invariant under a group of isometries acting transitively on the support. More precisely,
if a locally finite Borel measure µ has the property that for each x, y ∈ supp(µ) there exists an
isometry Φ of (H1, dH) such that Φ(x) = y and Φ#µ = µ, then µ is uniformly distributed. Following
Kirchheim and Preiss, let us call such measures homogeneous. Recall that the isometries of H1 are
generated by left translations, rotations about the x3-axis, and the “horizontal reflection” ρ defined
by ρ(x1, x2, x3) = (x1,−x2,−x3), and that the similarities of H1 are generated by the isometries and
the dilations δr(x1, x2, x3) = (rx1, rx2, r

2x3).
First we consider counting measure on finite sets. In the plane, uniformly distributed counting

measures with finite support are supported on either the vertices of a regular polygon, or two regular
m-gons lying on a common circle [11, Proposition 2.4]. We adapt this example to H1 as follows. The
proof of the result consists of applying the aforementioned homogeneity criterion.

Proposition 4.5. The restriction of counting measure to each of the following finite sets A, or
its image under a similarity of H1, is homogeneous, and hence uniformly distributed:

(i) The set A consisting of the vertices of a regular polygon lying on the circle S1 × {0} ⊂ H1, or
of two regular m-gons lying on S1 × {0}.

(ii) For any given δ > 0, the set A consisting of the vertices of a regular m-gon lying on the circle
S1 × {δ} together with the vertices of a regular m-gon lying on the circle S1 × {−δ}.

A set A in a metric space (X, d) is called equilateral if d(x, y) is constant for all x, y ∈ A, x 6= y.
It is clear that counting measure is uniformly distributed on each equilateral set. We investigate
the equilateral subsets of (H1, dH). In contrast with the Euclidean case, there exist equilateral
sets on which the isometries do not act transitively. It is interesting to observe that there exist
non-homogeneous uniformly distributed measures in (H1, dH), cf. the question on p. 159 in [11].

Every one or two point subset A ⊂ H1 is trivially equilateral. The following proposition charac-
terizes equilateral triangles in (H1, dH). Such triangles fall into three distinct classes: (i) two vertices
lie on a vertical line, (ii) two vertices lie on a horizontal line, and (iii) no two vertices lie on either a
horizontal or a vertical line.
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Proposition 4.6. The following sets A ⊂ H1, or their images under similarities of H1, are the
only equilateral sets for the Korányi metric dH .
(i) A = {(0, 0, 1), (0, 0,−1), ((3/4)1/4, 0, 0)}.
(ii) A = {(1, 0, 0), (−1, 0, 0), (r cos θ, r sin θ, t), where

r = r(θ) =
(

2 sin θ
√

5 + sin2 θ − 2 sin2 θ − 1
)1/2

and

t = t(θ) = (cot θ)(r2 + 1)

for some θ ∈ [arcsin(1/4), π − arcsin(1/4)].

(iii) A = {(−x0,
√

3
2 , 0), (−x0,−

√
3

2 , 0), (r cos θ, r sin θ, t)}, where x0 > 0,

t = t(r, θ) = −(tan θ)(r2 + x2
0 + 3

4 ) (4.7)

and r and θ are related by the implicit equation

3(3 + 4x2
0 − r2) cos2 θ =

(
3

4
+
∣∣x0 + reiθ

∣∣2)2

. (4.8)

Proof. The fact that the sets in parts (i) and (ii) are equilateral is verified by a direct computation
which we omit. Note that any two points of H1 contained in a vertical line can be mapped by a
similarity of H1 onto the points (0, 0, 1) and (0, 0,−1). Similarly, any two points of H1 contained in
a horizontal line can be mapped by a similarity onto the points (1, 0, 0) and (−1, 0, 0).

To finish the proof, we first confirm that any two points of H1 which do not both lie on a horizontal
line or both lie on a vertical line can be mapped by a similarity of H1 onto the points u = (−x0,

√
3

2 , 0)

and v = (−x0,−
√

3
2 , 0) for some x0 > 0.

By applying a left translation we may assume that one of the two points is the origin e = (0, 0, 0),
while the other is of the form y = (y1, y2, y3) with both y2

1 + y2
2 > 0 and y3 6= 0. We show that there

exists x0 > 0 and a similarity of H1 which maps u and v onto e and y. First, left translate u and v
by the inverse of u. This sends v to u−1 · v = (0,−

√
3, 2
√

3x0). Apply a suitable rotation about the
vertical axis and dilate by ρ/

√
3 > 0 to send the latter point to

(ρ cosϕ, ρ sinϕ, ( 2√
3
)ρ2x0).

We seek a solution in the variables ρ, ϕ and x0 to the equations y1 = ρ cosϕ, y2 = ρ sinϕ and
y3 = ( 2√

3
)ρ2x0. Since y2

1 + y2
2 > 0 we may choose ρ =

√
y2

1 + y2
2 > 0 and ϕ to satisfy the first two

equations. Then selecting

x0 =

√
3

2

y3

ρ2
=

√
3

2

y3

y2
1 + y2

2

finishes this step of the proof.
Observe that dH(u, v) = R := (9 + 12x2

0)1/4. It now suffices to find all points x = (x1, x2, x3) ∈ H1

such that dH(u, x) = dH(v, x) = R. An extensive but elementary calculation shows that all such
points can be expressed in the form shown in the statement of the proposition. This completes the
proof.

Remark 4. We chose the normal form u = (−x0,
√

3
2 , 0) and v = (−x0,−

√
3

2 , 0) deliberately.

When x0 = 1
2 we obtain two cube roots of unity − 1

2 ± i
√

3
2 . In this case the choice r = 1, θ = 0

and t = 0 is allowed in equations (4.8) and (4.7). Indeed, the vertices of the standard equilateral
triangle in the horizontal plane {x3 = 0} of H1 remains an equilateral set in (H1, dH), since this set
is homogeneous in the sense of Kirchheim and Preiss.
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A characterization of four point equilateral sets is likely tractable, however, we decline to carry out
such an analysis here. We only remark that four point equilateral sets in H1 do exist. For instance,
consider the set {w, x, y, z} ⊂ H1 where {x, y, z} denote the vertices of the standard equilateral
triangle in the horizontal plane and w = (0, 0, w3) for a suitable choice of w3 > 0. Note that when
w3 = 0 the common distance from w to any of the points x, y or z is strictly smaller than the
common mutual distance between x, y and z, while when w3 → +∞ the common distance from w
to x, y and z also tends to +∞. By continuity, there exists a choice of w3 > 0 so that {w, x, y, z} is
equilateral.

Question 2. Are there any equilateral five point subsets of (H1, dH)?

Infinite discrete subsets of (H1, dH) on which counting measure is uniformly distributed include
the integer points in a horizontal or vertical line, or any similarity image of such a set. We do not
know whether there are any other examples.

We turn to measures supported on curves. Of course, length measure along a horizontal line
is a 1-uniform measure. The following proposition gives additional examples which are supported
on nonhorizontal curves, either bounded or unbounded. We conjecture that there are no uniformly
distributed measures in the first Heisenberg group which are supported on bounded horizontal curves.

Proposition 4.9. The restriction of S2
H to each of the following sets A, or its image under a

similarity of H1, is homogeneous and hence uniformly distributed.

(i) The unit circle A = S1 × (0).
(ii) For each a < b, the set A = S1 × {a, b}.
(iii) The set A consisting of the vertical lines passing through the vertices of a regular polygon lying

on the circle S1 × {0}, or the vertical lines passing through the vertices of two regular m-gons
lying on S1 × {0}.

Finally, we discuss measures supported on surfaces. The volume measure S3
H restricted to a vertical

hyperplane is 3-uniform. We give an additional example.

Proposition 4.10. The restriction of S3
H to the right circular cylinder

A = {(x1, x2, x3) ∈ H1 |x2
1 + x2

2 = 1},

or its image under any similarity of H1, is homogeneous and hence uniformly distributed.

Question 3. Are there other examples of uniformly distributed measures in H1 supported on
C1 surfaces? For instance, are any of the following sets in H1 the support of a uniformly distributed
measure?

(i) The Korányi unit sphere {x ∈ Hn : |x|H = 1}.
(ii) Pansu’s bubble set B (see [3]).
(iii) Closed horizontal lifts of the figure 8 curve {(x1, x2) ∈ R2 | (x1 ± 1)2 + x2

2 = 1}.

We anticipate that the answer to part (i) of the preceding question is no. The rationale for parts
(ii) and (iii) comes from the fact that Euclidean spheres, which are examples of supports of Euclidean
uniformly distributed measures in all dimensions, are surfaces of constant mean curvature. As is well
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known, Pansu’s bubble set B is a surface of constant horizontal mean curvature while the curves in
part (iii) also have constant horizontal curvature.

Question 4. Are there any uniformly distributed measures in (H1, dH) with compact and
nondiscrete support whose support is intrinsically rectifiable in the sense of [29]?

In this paper we have focused exclusively on the Korányi metric dH on Hn. Our rationale for this
choice was described in the introduction. However, the following interesting question remains.

Question 5. Let dcc denote the Carnot–Carathéodory metric on Hn. What can be said about
uniform or uniformly distributed measures in (Hn, dcc)?
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4. Chousionis, V., Garnett, J., Le, T., and Tolsa, X. Square functions and uniform rectifiability. Trans. Amer.
Math. Soc. (to appear).

5. Chousionis, V., Magnani, V., and Tyson, J. T. in preparation.
6. Chousionis, V., and Mattila, P. Singular integrals on Ahlfors-David subsets of the Heisenberg group. J. Geom.

Anal. 21 (2011), 56–77.
7. Christensen, J. P. R. Uniform measures and spherical harmonics. Math. Scand. 26 (1970), 293–302 (1971).
8. De Lellis, C. Rectifiable sets, densities and tangent measures. Zurich Lectures in Advanced Mathematics.

European Mathematical Society (EMS), Zürich, 2008.
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