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216 Vasilis ChousionisIf one onsiders typial examples of (n − 1)-dimensional CIFS's limit sets, forexample very simple self similar sets like the four orners Cantor set in the plane,intuitively one expets to �nd holes spread in many diretions. Motivated by thissimple observation we introdue the notion of direted porous sets. For m ∈ N, 0 <
m < n, we denote by G(n, m) the set of all m-dimensional planes in R

n rossing theorigin.De�nition 1.1. Suppose V ∈ G(n, m). A set E ⊂ R
n will be alled V -diretedporous at x ∈ E, if there exists a onstant c(V )x > 0, suh that for all r > 0 we an�nd y ∈ V + x satisfying

B(y, c(V )xr) ⊂ B(x, r) \ E.If E is V -direted porous at every x ∈ E, and c(V ) = inf{sup c(V )x : x ∈ E} > 0, itwill be alled V -direted porous.Reall that a set E ⊂ R
n will be alled m-reti�able for m = 1, . . . , n, if thereexist m-dimensional C1-submanifolds Mi, i ∈ N, suh that

H
m(E \

∞⋃

i=1

Mi) = 0.Here H m denotes the m-dimensional Hausdor� measure. Sets interseting m-ret-i�able sets in a set of zero H m measure are alled m-purely unreti�able. Moreinformation about reti�ability and related topis an be found in [M2℄.In Setion 2, we show that limit sets of �nite CIFS have very strong porosityproperties, extending Urba«ski's result in the following sense.Theorem 1.2. Let E ⊂ R
n, n ≥ 2, be the limit set of a given �nite CIFS. If Eis m-purely unreti�able then it is V -direted porous for all V ∈ G(n, m).In [K℄, Käenmäki studied the geometri struture of CIFS's limit sets. He provedthat if E is a limit set of a given CIFS with dimH E = t, where dimH stands forHausdor� dimension, and l ∈ N, 0 < l < n, then either(i) H t(E ∩ M) = 0 for every l-dimensional C1-submanifold of R

n, or,(ii) E lies in some l-dimensional a�ne subspae or l-dimensional geometri spherewhen n > 2, and in some analyti urve when n = 2.Combining the previous rigidity result with Theorem 1.2 we derive the followingorollary.Corollary 1.3. Let E ⊂ R
n, n ≥ 2, be the limit set of a given �nite CIFS. If

dimH E ≤ m where m ∈ N, 0 < m < n, then E is V -direted porous at every x ∈ Efor all, exept at most one, V ∈ G(n, m).The motivation for this paper omes from the theory of singular integral oper-ators with respet to general measures. Given a Radon measure µ on R
n and a

µ-measurable kernel K : R
n \ {0} → R that satis�es the antisymmetry ondition

K(−x) = −K(x) for all x ∈ R
n,the singular integral operator T assoiated with K and µ is formally given by

T µ,K(f)(x) =

∫
K(x − y)f(y) dµy.



Direted porosity on CIFS and weak onvergene of singular integrals 217Sine the above integral does not usually exist when x ∈ spt µ, the trunated singularintegral operators T µ,K
ε , ε > 0;

T µ,K
ε (f)(x) =

∫

|x−y|>ε

K(x − y)f(y) dµy,are onsidered. Often for simpliity we will denote T µ,K
ε by Tε. Using this onventionone de�nes the maximal operator T ∗,

T ∗(f)(x) = sup
ε>0

|Tε(f)(x)|,and the prinipal values of T (f) at every x ∈ R
n whih, if they exist, are given by

p. v. T (f)(x) = lim
ε→0

Tε(f)(x).In the lassial setting, when µ = L n, the Lebesgue measure in R
n, and K isa standard Calderón�Zygmund kernel, anelations and the denseness of smoothfuntions in L1 fore the prinipal values to exist almost everywhere for L1-funtions.One ould naturally ask if the L2(µ)-boundedness of T ∗, whih means that there existsa onstant C > 0 suh that for all f ∈ L2(µ),

∫
T ∗(f)2 dµ ≤ C

∫
|f |2 dµ,fores the prinipal values to exist. The answer to the above question is not alwayspositive, see, e.g., [D℄ and [C℄. Interestingly enough even when µ is an m-dimensionalAhlfors�David (AD) regular measure in R

n:
C−1rm ≤ µ(B(x, r)) ≤ Crm for x ∈ spt µ, 0 < r < diam(spt µ),and K is any of the oordinate Riesz kernels:

Rm
i (x) =

xi

|x|m+1
for i = 1, . . . , n,the question remains open for m > 1. For m = 1, it has positive answer by Tolsa,see [T1℄, even for more general measures. Previous results by Mattila, Melnikov andVerdera, see [MM℄ and [MMV℄, dealt with the a�rmative in the ase of AD-regularmeasures.Reently, in [MV℄, Mattila and Verdera proved that, for general measures andkernels, the L2(µ)-boundedness of T ∗ implies that the operators Tε onverge weaklyin L2(µ). This means that there exists a bounded linear operator T : L2(µ) → L2(µ)suh that for all f, g ∈ L2(µ),(1.1) lim

ε→0

∫
Tε(f)(x)g(x) dµx =

∫
T (f)(x)g(x) dµx.Furthermore they showed that(1.2) T (f)(z) = lim

r→0

1

µ(B(z, r))

∫

B(z,r)

∫

Rn\B(z,r)

K(x − y)f(y) dµy dµxfor µ a.e. z. One of the main points in their proof is that L2(µ)-boundedness foresthe limits(1.3) lim
ε→0

∫
Tε(f)(x)g(x) dµ



218 Vasilis Chousionisto exist when f, g are �nite linear ombinations of harateristi funtions of balls.We will denote this dense subspae of L2(µ) by XB(Rn).Reall that if E ⊂ R
n is H m-measurable with H m(E) < ∞ and µ = H m⌊E,the restrition of H m on E, by the works of Mattila and Preiss [MP℄, Mattila andMelnikov [MM℄, Verdera [Ve℄ and Tolsa [T2℄, the prinipal values

lim
ε→0

∫

Rn\B(x,ε)

Rm
i (x − y) dµyexist µ almost everywhere if and only if the set E is m-reti�able.With the last two paragraphs in mind one might ask if weak limits like in (1.3)might exist if we remove the strong L2-boundedness assumption even when the mea-sures are supported in some purely unreti�able sets. Before stating the main resultsof Setion 3 we give some basi notation. Let(1.4) Q(Rn) = {A(x, r) : x ∈ R

n, r > 0 and A(x, r) =
n∏

i=1

[xi − r/2, xi + r/2)}and denote by XQ(Rn) the dense subspae of L2(µ), in the same manner as XB(Rn),while instead of balls we take ubes from Q(Rn).Theorem 1.4. Let µ be a �nite Radon measure on R
n, n ≥ 2, satisfying(1.5) µ(B(x, r)) ≤ Crn−1 for all x ∈ spt µ and r > 0.Let K : R

n \ {0} → R be an antisymmetri kernel, satisfying for all x ∈ R
n,(1.6) |K(x)| ≤ CK |x|−(n−1) ,where CK is a onstant depending on the kernel K.(i) If spt µ is V i-direted porous for i = 1, . . . , n, where V i = {x ∈ R

n : xi = 0}are the usual oordinate planes of R
n, the trunated singular integral oper-ators T µ,K

ε onverge weakly in XQ(Rn).(ii) If spt µ is V -direted porous for all V ∈ G(n, n − 1), the trunated singularintegral operators T µ,K
ε onverge weakly also in XB(Rn).As an immediate onsequene of Theorems 1.2 and 1.4 we obtain the followingorollary.Corollary 1.5. Let E ⊂ R

n, n ≥ 2, be a (n − 1)-purely unreti�able limit setof a given �nite CIFS. If µ = H
n−1⌊E and K : R

n \ {0} → R is a kernel as inTheorem 1.4, the limits
lim
ε→0

∫
Tε(f)(x)g(x) dµexist for f, g ∈ XQ(Rn) and f, g ∈ XB(Rn).We onlude the introdutory part with the following two remarks.Remark 1.6. The kernels satisfying the assumptions of Theorem 1.4 belong to aquite broad lass; (n− 1)-dimensional Riesz kernels being one representative. Notiethat we do not even require them to be ontinuous. In [CM℄, it was proved, withdi�erent tehniques, that weak onvergene in XQ(Rn) and in XB(Rn) holds formuh more general measures if we restrit the kernels to a smaller but still large andwidely used family.



Direted porosity on CIFS and weak onvergene of singular integrals 219Remark 1.7. One annot hope of replaing the funtion spaes XB(Rn) and
XQ(Rn) with L2(µ) in Theorem 1.4. This follows beause as it was remarked in[MV℄, by the Banah�Steinhaus Theorem, the weak onvergene in L2(µ) impliesthat the operators Tε are uniformly bounded in L2(µ) and singular integral operatorsassoiated with 1-dimensional Riesz kernels and 1-purely unreti�able measures arenot bounded in L2(µ).2. Direted porosity on onformal iterated funtion systemsWe begin by desribing the setting of CIFS, as introdued in [MU℄. Let I be aountable set with at least two elements and let

I∗ =
⋃

m≥1

Im and I∞ = IN.If w = (i1, i2, . . .) ∈ I∗ ∪ I∞ and n ∈ N, does not exeed |w|, the length of w, wedenote w|n = (i1, . . . , in).Choose Ω to be some open, bounded and onneted subset of Rn and let {ϕi}i∈I ,
ϕi : Ω → Ω, be a family of injetive maps suh that for every i ∈ I there exists some
0 < si < 1 suh that(2.1) |ϕi(x) − ϕi(y)| ≤ si |x − y| .Funtions satisfying (2.1) are alled ontrative. We will further assume that themappings ϕi are uniformly ontrative, that is, s = sup{si : i ∈ I} < 1, andonformal. Conformality here stands for |ϕ′

i|n = |Jϕi|, where J is the Jaobian andthe norm in the left side is the usual �sup-norm� for linear mappings. This de�nitionis usually referred as 1-quasionformality, see, e.g., [Vä℄. By Theorem 4.1 of [R℄onformal maps on subsets of R
n, n ≥ 2, are C∞. Assume also that there existsa ompat set X ⊂ Ω suh that int(X) 6= ∅ with the property that ϕi(X) ⊂ Xfor all i ∈ I. Notie that for Ω = R

n, n ≥ 3, onformal, ontrative mappingsare similitudes, whih means that equality holds in (2.1). We will all a family offuntions {ϕi}i∈I , as desribed above, a onformal iterated funtion system (CIFS)if it satis�es the following property.Open set ondition (OSC). There exists a non-empty open set U ⊂ X (in therelative X−topology) suh that ϕi(U) ⊂ U for every i ∈ I and ϕi(U) ∩ ϕj(U) = ∅for every pair i 6= j ∈ I.For w = (i1, . . . , im) ∈ Im, denote ϕw = ϕi1 ◦ . . . ◦ ϕim and notie that
d(ϕw(X)) ≤ smd(X).Now de�ne the mapping π : I∞ → X suh that
π(w) =

⋂

m≥1

ϕw|m(X).The limit set of the CIFS is de�ned as,
E = π(I∞) =

⋃

w∈I∞

⋂

m≥1

ϕw|m(X).We will be interested in �nite CIFS, where Ω ⊂ R
n, n ≥ 2. The following im-portant property of these funtion systems follows from smoothness of the mappings

ϕi, for a proof see [MU℄, Lemma 2.2.



220 Vasilis ChousionisBounded distortion property (BDP). There exists some K ≥ 1 suh that
|ϕ′

w(x)| ≤ K|ϕ′

w(y)| for w ∈ I∗ and x, y ∈ Ω,Finally we state two properties of CIFS that are going to be used often in theproofs. In both properties onstants depend only on the initial CIFS parameters.The �rst one is a diret onsequene of BDP and the onnetedness of Ω. Sine�nite CIFS are ontrolled Moran onstrutions, it follows by [KV℄ that (CIFS 2) isequivalent to the OSC.(CIFS 1). There exists some onstant D ≥ 1 suh that
D−1‖ϕ′

w‖ ≤ d(ϕw(E)) ≤ D‖ϕ′

w‖ for w ∈ I∗.Here ‖ϕ′
w‖ = supx∈Ω |ϕ′

w(x)|.(CIFS 2). Denote
I(x, r) = {w ∈ I∗ : ϕw(E) ∩ B(x, r) 6= 0 and d(ϕw(E)) ≤ r < d(ϕw||w|−1

(E))},where ϕ0 = id. There exist a positive number N ∈ N and a onstant C > 0, suhthat for every x ∈ R
n and every 0 < r ≤ 1(i) card(I(x, r)) ≤ N , where card(·) denotes ardinality,(ii) Cr ≤ d(ϕw(E)) ≤ r for w ∈ I(x, r),(iii) E ∩ B(x, r) ⊂ ⋃

w∈I(x,r)

ϕw(E).The main result of this setion reads as follows.Theorem 2.1. Let E ⊂ R
n, n ≥ 2, be the limit set of a given �nite CIFS suhthat every onformal map F : Ω → R

n satis�es(2.2) F (Ω ∩ B(x, r) ∩ (V + x)) ∩ Ec 6= ∅ for all x ∈ R
n, r > 0 and V ∈ G(n, m).Then E is V -direted porous for all V ∈ G(n, m).Notie that Theorem 1.2 follows immediately from Theorem 2.1 sine m-purelyunreti�able sets satisfy (2.2). The main step in proving Theorem 2.1 is the followingLemma.Lemma 2.2. Let E ⊂ R

n be the limit set of a given CIFS suh that (2.2) holdsfor every onformal map F : Ω → R
n. Then for every V ∈ G(n, m) and every β > 0there exists some a(β) > 0 suh that for every x ∈ R

n, 0 < r ≤ 1, w ∈ I(x, r), y ∈
x + V and s ≥ βd(ϕw(E)) satisfying

B(y, s) ⊂ B(x, r),there exists z ∈ x + V and l ≥ a(β)s suh that
B(z, l) ⊂ B(y, s)\ϕw(E).Proof. Without loss of generality assume that E ⊂ B(0, 1). We will proveLemma 2.2 in the ase where V is some m-oordinate plane, say V = {x ∈ R

n : xi = 0for i = m+1, . . . , n}. The general statement follows after appropriate rotations of theset E. Let Vx = x+V for x ∈ R
n. By way of ontradition, suppose that Lemma 2.2



Direted porosity on CIFS and weak onvergene of singular integrals 221does not hold. Then there exists some onstant β > 0 suh that for every j ∈ Nthere exist sequenes
{xj}j∈N ∈ B(0, 1),

{rj}j∈N ∈ (0, 1],

{wj}j∈N ∈ I∗ suh that wj ∈ I(xj , rj) for every j ∈ N,

{yj}j∈N ∈ B(0, 1) ∩ Vxj
,

{sj}j∈N ∈ (0, 1],satisfying for all j ∈ N the following three onditions.(C1) B(yj , sj) ⊂ B(xj , rj).(C2) sj ≥ βd(ϕwj
(E)).(C3) For every z ∈ Vxj

the ondition
B(z, l) ⊂ B(yj , sj)\ϕwj

(E)implies l < 1
j
sj .By passing to an appropriate subsequene, if neessary, we �nd y ∈ B(0, 1) suh that

yj → y.From now on we will denote Vxj
= Vyj

by Vj . Let Ψj : R
n → R

n be de�ned for
z ∈ R

n as,
Ψj(z) = ‖ϕ′

wj
‖−1(z − yj) + yj.We are going to use the following properties of Ψj:(Ψ1) For all pairs z, w ∈ R

n

|Ψj(w) − Ψj(z)| = ‖ϕ′

wj
‖−1|w − z|.(Ψ2) For every δ > 0, and Vj(δ) = {x ∈ R

n : d(x, Vj) < δ},
Ψj(Vj) = Vj and Ψj(Vj(δ)) = Vj(δ‖ϕ

′

wj
‖−1).(Ψ3) For every r > 0 and every z ∈ Vj ,

Ψj(B(z, r)) = B(Ψj(z), ‖ϕ′

wj
‖−1r).Denote for j ∈ N,(2.3) Pj = Vj(2sjj

−1) ∩ ϕwj
(E) ∩ B(yj, sj)and(2.4) Tj = Ψj(Pj).By (C3), for every z ∈ Vj ∩ B(yj, sj)(2.5) B(yj , sj) ∩ B(z, 2sjj

−1) ∩ ϕwj
(E) 6= ∅.Using (2.5) we an also show that for all q ∈ Vj ∩ B(yj, ‖ϕ′

wj
‖−1sj) and every r ≥

2‖ϕ′

wj
‖−1j−1sj,(2.6) B(q, r) ∩ Tj 6= ∅.To see this, let

q̃ = (‖ϕ′

wj
‖(q1 − y1

j ) + y1
j , . . . , ‖ϕ

′

wj
‖(qm − ym

j ) + ym
j , ym+1

j , . . . , yn
j ),



222 Vasilis Chousioniswhere q = (q1, . . . , qm, ym+1
j , . . . , yn

j ) ∈ Vj ∩ B(yj, ‖ϕ′

wj
‖−1sj). Then Ψj(q̃) = q andfor i = 1, . . . , m,

|q̃i − yi
j| = ‖ϕ′

wj
‖|qi − yi

j| ≤ ‖ϕ′

wj
‖‖ϕ′

wj
‖−1sj .This implies that q̃ ∈ Vj ∩ B(yj , sj). Therefore, by (2.5), we get

B(yj, sj) ∩ B(q̃, 2sjj
−1) ∩ ϕwj

(E) 6= ∅.Consequently
Ψj(Vj(2sjj

−1) ∩ B(yj, sj) ∩ ϕwj
(E) ∩ B(q̃, 2sjj

−1))) 6= ∅and by (Ψ3)
B(q, 2‖ϕ′

wj
‖−1sjj

−1) ∩ Ψj(Pj) 6= ∅.Hene
B(q, r) ∩ Tj 6= ∅ for r ≥ 2‖ϕ′

wj
‖−1j−1sj.Next we will show that there exists some onstant B > 0 suh that for every

j ∈ N, large enough,(2.7) B−1 ≤ d(Tj) ≤ B.To prove (2.7) let pj,qj ∈ Vj ∩ B(yj, sj) suh that
pj = (y1

j − (sj − sjj
−1), y2

j , . . . , y
n
j )and

qj = (y1
j + (sj − sjj

−1), y2
j , . . . , y

n
j ).Realling (2.5) we notie that for every

e ∈ B(yj, sj) ∩ B(pj , 2sjj
−1) ∩ ϕwj

(E)and
d ∈ B(yj, sj) ∩ B(qj , 2sjj

−1) ∩ ϕwj
(E),we have

|e − d| ≥ |pj − qj| − |pj − e| − |qj − d| ≥ 2sj − 6sjj
−1 ≥ sj

2
,for j ≥ 4. Hene

d(Pj) = d(Vj(2sjj
−1) ∩ ϕwj

(E) ∩ B(yj, sj)) ≥
sj

2
where j ≥ 4.By (C2) we also dedue that

d(Pj) ≤ d(ϕwj
(E)) ≤ β−1sj.Combining the two previous estimates we derive(2.8) sj

2
≤ d(Pj) ≤ β−1sj.Now by (2.8), (C2) and (CIFS 1) it follows that

d(Tj) = d(Ψj(Pj)) = ‖ϕ′

wj
‖−1d(Pj)

≥ ‖ϕ′

wj
‖−1sj

2
≥ β

2
‖ϕ′

wj
‖−1d(ϕwj

(E))

≥ β

2
D−1‖ϕ′

wj
‖−1‖ϕ′

wj
‖



Direted porosity on CIFS and weak onvergene of singular integrals 223and, by (CIFS 1),
d(Tj) = ‖ϕ′

wj
‖−1d(Pj) ≤ ‖ϕ′

wj
‖−1d(ϕwj

(E)) ≤ D.Therefore for all j ∈ N, j ≥ 4,

B−1 ≤ d(Tj) ≤ Bwhere B = min{D, 2β−1D}. The following fat follows immediately from (CIFS 1),(C2) and (2.8), sine Pj ⊂ ϕwj
(E). We state it separately for the onveniene of thereader. For all j ∈ N, j ≥ 4,(2.9) βD−1‖ϕ′

wj
‖ ≤ sj ≤ 2D‖ϕ′

wj
‖.For every j ∈ N the funtions Fj : Ω → R

n are de�ned as
Fj := Ψj ◦ ϕwj

.Observe that for all j ∈ N(F1) Fj are onformal,(F2) Fj are bi-Lipshitz with onstants not depending on j.Property (F2) follows from BDP and the mean value theorem. To see this, for all
z, w ∈ Ω,

K−1|z − w| ≤ ‖ϕ′

wj
‖−1‖(ϕ−1

wj
)
′‖−1|z − w| ≤ ‖ϕ′

wj
‖−1|ϕwj

(z) − ϕwj
(w)|

= |Fj(z) − Fj(w)| ≤ |z − w|.Using the Asoli�Arzela theorem we are now able to �nd some uniformly onvergentsubsequene of Fj, whih for the sake of simpliity we will keep on denoting by Fj ,suh that
Fj → F and F : Ω → R

n is onformal and bi-Lipshitz.Notie that by standard omplex analysis when n = 2, and basi properties of Möbiusmaps for n ≥ 3, it follows that the map F−1 : R
n → Ω is also onformal.Now de�ne

G = {α : N →
∞⋃

j=1

Tj suh that α(j) ∈ Tj for all j ∈ N}and
T = {t ∈ R

n : there exist inreasing k : N → N and
α ∈ G suh that α(k(j)) → t}.The set T has the following properties:(T1) y ∈ T .Reall that y is the limit of the sequene yj. By (2.6),

B(yj, 2‖ϕ
′

wj
‖−1sjj

−1) ∩ Tj 6= ∅ for all j ∈ N.Therefore, by (2.9), there exists some sequene {tj}j≥4 suh that for all j ∈ N, j ≥ 4,

tj ∈ Tj ∩ B(yj, 4Dj−1).Sine yj → y, we also get tj → y and onsequently y ∈ T .(T2) B(y, D−1 β

100
) ∩ Vy ⊂ T .



224 Vasilis ChousionisSuppose that there exists some a ∈ B(y, D−1 β

100
) ∩ Vy suh that a /∈ T . Thenthere exist r0 < D−1 β

100
and j0 ∈ N suh that for all j ≥ j0,

B(a, r0) ∩ Tj = ∅.Now hoose some j1 ∈ N suh that for all j ≥ j1,
|yj − y| ≤ D−1 β

100
.Then for all suh j,

B(a, r0) ⊂ B(yj, ‖ϕ
′

wj
‖−1sj).To see this, take b ∈ B(a, r0). By (2.9),

|b − yj| ≤ |b − a| + |a − y| + |y − yj| ≤ 3D−1 β

100
≤ ‖ϕ′

wj
‖−1sj .Choose j2 ∈ N, j2 ≥ j1, suh that for all j ≥ j2,

|yj − y| ≤ r0

2
.If a = (a1, . . . , am, ym+1, . . . , yn) ∈ Vy let ãj = (a1, . . . , am, ym+1

j , . . . , yn
j ) ∈ Vj andnotie that

|ãj − a| ≤ |y − yj|.Then for j ≥ j2 and r1 =
r0

2
, by triangle inequality,(2.10) ãj ∈ B(yj, ‖ϕ

′

wj
‖−1sj)and(2.11) B(ãj , r1) ⊂ B(a, r0).Hene for j∗ ∈ N big enough satisfying

j∗ ≥ max{j0, j2} and 2‖ϕ′

wj∗
‖−1sj∗

j∗
≤ r1we get,(i) B(a, r0) ∩ Tj∗ = ∅,(ii) ãj∗ ∈ Vj∗ ∩ B(yj∗ , ‖ϕ

′

wj∗
‖−1sj∗),(iii) B(ãj∗ , r1) ⊂ B(a, r0).Consequently

B(ãj∗ , 2‖ϕ
′

wj∗
‖−1sj∗

j∗
) ∩ Tj∗ = ∅whih ontradits (2.6).(T3) T ⊂ F (E).Let t ∈ T , then there exist some inreasing funtion k(j) : N → N and some

α ∈ G suh that
α(k(j)) ∈ Tk(j) ⊂ Ψk(j)(ϕwk(j)

(E)) = Fk(j)(E) and α(k(j)) → t.Therefore there exists a sequene {ej}∞j=1 ∈ E suh that Fk(j)(ej) = α(k(j)). Sinethe limit set E is ompat there exists some subsequene of {ej}∞j=1 onverging to



Direted porosity on CIFS and weak onvergene of singular integrals 225some point e ∈ E. To simplify notation assume that ej → e. Finally beause theonvergene Fk(j) → F is uniform, we also dedue that
α(k(j)) = Fk(j)(ej) → F (e),whih implies that t = F (e).Properties (T2) and (T3) imply

F−1(B(y, D−1 β

100
) ∩ Vy) ⊂ F−1(T ) ⊂ E.Sine F−1 is onformal, this ontradits (2.2), �nishing the proof of Lemma 2.2. �Proof of Theorem 2.1. Let x ∈ R

n and 0 < r < 1. For I(x, r) ⊂ I∗, N ∈ N asin (CIFS 2) we get
I(x, r) = {w1, . . . , wm} for some m ≤ N and d(ϕwi

(E)) ≤ r for i = 1, . . . , m.Applying Lemma 2.2 for b = 1, as r ≥ d(ϕw1(E)), there exist z1 ∈ Vx and l1 ≥ 0 suhthat
B(z1, l1) ⊂ B(x, r)\ϕw1(E) and l1 ≥ a(1)r.As

r ≥ d(ϕw2(E))we also get
l1 ≥ a(1)d(ϕw2(E)).Denote a1 := a(1). Again Lemma 2.2 implies that there exist z2 ∈ Vx and l2 ≥ 0satisfying

B(z2, l2) ⊂ B(z1, l1)\ϕw2(E) ⊂ B(x, r) and l2 ≥ a(a1)l1.As before
l2 ≥ a(a1)a(1)r ≥ a(a1)a1d(ϕw3

(E)).In the same manner denote a2 := a(a1)a1. There exist z3 ∈ Vx and l3 ≥ 0 suh that
B(z3, l3) ⊂ B(z2, l2)\ϕw3

(E)and
l3 ≥ a(a2)l2 ≥ a(a2)a(a1)a1r = a(a2)a2d(ϕw4

(E)).Repeating the same arguments, after m steps, we �nally get that there exist some
zm ∈ Vx ∩ B(x, r), lm > 0 suh that

B(zm, lm) ⊂ B(zm−1, lm−1)\ϕwm
(E)and

lm ≥ a(am−1)lm−1 ≥ a(am−1) · · ·a(a1)a1r.Therefore
B(zm, C∗r) ⊂ B(x, r)\

⋃

w∈I(x,r)

ϕw(E) = B(x, r)\Ewhere C∗ = a(am−1)am−1 = a(am−1) · · ·a(a1)a1 is a onstant depending only on theCIFS's initial parameters. �



226 Vasilis Chousionis3. Geometri riteria for weak onvergeneWe begin this setion with an auxiliary result neessary to prove Theorem 1.4.Theorem 3.1. Let µ be a �nite Radon measure in R
n and K : R

n \ {0} → Ran antisymmetri kernel satisfying (1.5) and (1.6) respetively.(i) The trunated singular integral operators Tε assoiated to µ and K onvergeweakly in XQ(Rn) if for any V ∈ TA(n, n − 1) = {V i
w : i = 1, . . . , n and

w ∈ R
n},(a) µ(V ) = 0,(b) there exists some positive number aV < 1 suh that(3.1) ∞∑

k=0

µ(Sk(aV , V ))k < ∞,where Sk(aV , V ) = {x ∈ R
n :

∞∑
j=k+1

aj
V ≤ d(x, V ) <

∞∑
j=k

aj
V }.(ii) The trunated singular integral operators Tε, assoiated to µ and K onvergeweakly in XB(Rn) if for any sphere C = SR

x , entered at x of radius R,(a) µ(C) = 0,(b) there exists some positive number aC < min{1, R} suh that(3.2) ∞∑

k=0

µ(Sk(aC , C))k < ∞,where Sk(aC , C) = {x ∈ B(x, R) :
∞∑

j=k+1

aj
C ≤ d(x, C) <

∞∑
j=k

aj
C}.Proof. We give the proof only for (i) sine the proof of (ii) is almost idential.Denote E = spt µ and without loss of generality assume that E ⊂ B(0, 1/2) and

µ(E) ≤ 1. Let
f =

l∑

i=1

aiχQi
and g =

m∑

j=1

bjχPjwhere ai, bj ∈ R and Qi, Pj ∈ Q(Rn). For 0 < δ < ε,
∣∣∣∣
∫

Tε(f)(x)g(x) dµx−
∫

Tδ(f)(x)g(x) dµx

∣∣∣∣

=

∣∣∣∣∣

∫
(Tε(f)(x) − Tδ(f)(x))

m∑

j=1

bjχPj
(x) dµx

∣∣∣∣∣

=

∣∣∣∣∣

m∑

j=1

bj

∫

Pj

∫

B(x,ε)\B(x,δ)

K(x − y)f(y) dµy dµx

∣∣∣∣∣

≤
m∑

j=1

l∑

i=1

|bjai|

∣∣∣∣∣∣∣

∫

Pj

∫

Qi

δ<|x−y|<ε

K(x − y) dµy dµx

∣∣∣∣∣∣∣
.
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∣∣∣∣∣∣∣

∫

Pj

∫

Qi

δ<|x−y|<ε

K(x − y) dµy dµx

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

∫

Pj

∫

Qi∩Pj

δ<|x−y|<ε

K(x − y) dµy dµx +

∫

Pj

∫

Qi\Pj

δ<|x−y|<ε

K(x − y) dµy dµx

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣

∫

Pj∩Qi

∫

Qi∩Pj

δ<|x−y|<ε

K(x − y) dµy dµx

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∫

Pj\Qi

∫

Qi∩Pj

δ<|x−y|<ε

K(x − y) dµy dµx

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

∫

Pj \Qi

∫

Qi\Pj

δ<|x−y|<ε

K(x − y) dµy dµ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∫

Pj∩Qi

∫

Qi\Pj

δ<|x−y|<ε

K(x − y) dµy dµ

∣∣∣∣∣∣∣

≤
∫

Qi

∫

Qc
i

δ<|x−y|<ε

|K(x − y)| dµy dµx + 2

∫

Pj

∫

P c
j

δ<|x−y|<ε

|K(x − y)| dµy dµx.Therefore it is enough to show that for every A ∈ Q(Rn)(3.3) ∫

A

∫

Ac

|K(x − y)| dµy dµx < ∞.Sine µ(V ) = 0 for every V ∈ TA(n, n − 1) instead of (3.3) it su�es to prove that(3.4) ∫

A◦

∫

Ac

|K(x − y)| dµy dµx < ∞,for all A ∈ Q(Rn). Let Gi ∈ TA(n, n − 1), i = 1, . . . , 2n, be the hyperplanes thatontain the 2n sides of A. For any x ∈ A◦ ∩ E and any i = 1, . . . , 2n de�ne thefollowing distane funtions
di(x) = d(x, Gi).Let Ni(x) > 0, i = 1, . . . , 2n, be suh that
2Ni(x)di(x) = 1.Hene if ⌊Ni(x)⌋ is the smallest integer greater than Ni(x)

⌊Ni(x)⌋ ≤ (log 2)−1 log di(x)−1 + 1.Therefore
E \ A ⊂

2n⋃

i=1

⌊Ni(x)⌋⋃

j=1

B(x, 2jdi(x)) \ B(x, 2j−1di(x)),



228 Vasilis Chousionisand for all x ∈ A◦ ∩ E,
∫

Ac

|K(x − y)| dµy ≤ CK

∫
2n
S

i=1

⌊Ni(x)⌋
S

j=1
B(x,2jdi(x))\B(x,2j−1di(x))

|x − y|−(n−1) dµy

= CK

2n∑

i=1

⌊Ni(x)⌋∑

j=1

∫

B(x,2jdi(x))\B(x,2j−1di(x))

|x − y|−(n−1) dµy

≤ CK

2n∑

i=1

⌊Ni(x)⌋∑

j=1

µ (B(x, 2jdi(x)))

2−(n−1)di(x)n−12j(n−1)

≤ CK

2n∑

i=1

⌊Ni(x)⌋∑

j=1

Cdi(x)n−12j(n−1)

2−(n−1)di(x)n−12j(n−1)

≤ CKC2(n−1)(log 2)−1
( 2n∑

i=1

log di(x)−1 + 2n
)
.This leads to the following estimate(3.5) ∫

A◦

∫

Ac

|K(x − y)| dµy dµx ≤ CKC2(n−1)

log 2

( 2n∑

i=1

∫

A◦

log di(x)−1 dµx + 2n
)
.Notie that for i = 1, . . . , 2n, A◦ an be deomposed as

A ⊂
∞⋃

k=0

Sk(ai, Gi) ∪ A′
i,where ai = aGi

and A′
i = {x ∈ A : di(x) > si =

∑∞
j=0 aj

i}. Therefore
∫

A◦

log di(x)−1 dµx ≤
∞∑

k=0

∫

Sk(ai,Gi)

log di(x)−1 dµx + log s−1
i .For x ∈ Sk(aGi

, Gi)

di(x) >

∞∑

j=k+1

aj
i = ak+1

i

1

1 − aiand
log

1

di(x)
≤ log

(
1 − ai

ak+1
i

)
= k log

1

ai

+ log
1 − ai

ai

.Hene(3.6) ∫

A◦

log
1

di(x)
dµx ≤ log

1

ai

∞∑

k=0

µ(Sk(ai, Gi))k + log
1 − ai

aisi

.Using (3.5) and (3.6) we an estimate
∫

A◦

∫

Ac

|K(x − y)| dµy dµx

≤ CKC2(n−1)

log 2

(
2n∑

i=1

log
1

ai

∞∑

k=0

µ(Sk(ai, Gi))k +
2n∑

i=1

log
1 − ai

aisi

+ 2n

)
.
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∞∑

k=0

µ(Sk(ai, Gi))k < ∞,we have shown (3.4) and the proof of Theorem 3.1(i) is omplete. �We an now proeed in the proof of Theorem 1.4.Proof of Theorem 1.4. Let spt µ = E and without loss of generality assume that
E ⊂ B(0, 1/2). We start by proving (i). For x ∈ R

n, r > 0, i ∈ {1, . . . , n}, q ∈ Nde�ne the following grids,
Gr(x, r, i, q) = {g ∈ A(x, r) : gi = xi and for 1 ≤ j ≤ n, j 6= i,

gj = (xj − r

2
) +

r

2q
(2k − 1) for some k = 1, . . . , q}.Sine E is V i-direted porous for i = 1, . . . , n, as an immediate orollary of De�ni-tion 1.1 there exists some N ∈ N, N ≥ 2, suh that for every x ∈ R

n and every
r > 0 there exists some y ∈ V i

x ∩ A(x, r) satisfying(3.7) A(y, rN−1) ⊂ A(x, r) \ E.From (3.7) we also dedue that there exist some M ∈ N, M ≥ 4, in fat we an evenhoose M = 2N , suh that for every x ∈ R
n, every r > 0 and every i = 1, . . . , nthere exists some g(x,r,i) ∈ Gr(x, r, i, M) suh that(3.8) A(g(x,r,i), rM

−1) ⊂ A(x, r)\E.By Theorem 3.1 it is enough to show that for every x ∈ R
n and every i = 1, . . . , n

∞∑

k=0

µ(Sk(M
−1, V i

x))k < ∞.Thus we need to estimate the measure µ of the strips V i
x(2−1M−k). The idea is toover V i

x(2−1M−k)∩E∩A(x, 1) with ubes from Q(Rn) of sidelength M−k with theirenters in Gr(x, 1, i, Mk). The use of the spei� grids allows us to ount the overingubes easily. Note that in order to over V i
x(2−1M−k)∩A(x, 1) with ubes in Q(Rn),of sidelength M−k and with enters in V i
x we �rst over V i

x ∩ A(x, 1) with ubes
{Qj}j∈J in Q(Rn−1). Then the required ubes needed to over V i

x(2−1M−k)∩A(x, 1)will be
Pj = {(y1, . . . , yi, ..yn) ∈ R

n : (y1, . . . , yi−1, yi+1, . . . , yn) ∈ Qj and
yi ∈ [xi − 2−1M−k, xi + 2−1M−k)}.See Figures A and B for an illustration.For x ∈ R

n, r > 0 and i = 1, . . . , n, denote
Gr∗(x, r, i, M) = Gr(x, r, i, M) \ {g(x,r,i)}.Fix some x ∈ R

n, r > 0 and i = 1, . . . , n, then by (3.8)
V x

i (r(2M)−1) ∩ E ∩ A(x, r) ⊂
⋃

y∈Gr∗(x,r,i,M)

A(y, rM−1)and
card(Gr∗(x, r, i, M)) = Mn−1 − 1.
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Figure A. Figure B.Notie that the ardinality of the grid Gr∗(x, r, i, M) depends only on its thikness,i.e., only on M .In the same manner for y ∈ Gr∗(x, r, i, M) the ubes A(y, rM−1) satisfy
V x

i (r2−1M−2) ∩ E ∩ A(y, rM−1) ⊂
⋃

h∈Gr∗(y,rM−1,i,M)

A(h, rM−2).Therefore
V x

i (r2−1M−2) ∩ E ∩ A(x, r) ⊂
⋃

{h∈Gr∗(y,rM−1,i,M):y∈Gr∗(x,r,i,M)}

A(h, rM−2)and
card({h ∈ Gr∗(y, rM−1, i, M) : y ∈ Gr∗(x, r, i, M)}) = (Mn−1 − 1)2.Notie that
{h ∈ Gr∗(y, rM−1, i, M) : y ∈ Gr∗(x, r, i, M)} ⊂ Gr(x, r, i, M2).Indutively we onlude that for all x ∈ R

n, r > 0, i ∈ {1, . . . , n} and k ∈ N thereexist sets of ubes
Qk(x, r, i) ⊂ Q(Rn),onsisting of ubes A(g, r

Mk ) with g ∈ Gr(x, r, i, Mk) satisfying(i) V x
i (r2−1M−k) ∩ E ∩ A(x, r) ⊂ ⋃{Q : Q ∈ Qk(x, r, i)},(ii) card(Qk(x, r, i)) = (Mn−1 − 1)k.Properties (i) and (ii) imply that for all x ∈ R

n, r > 0, i = 1, . . . , n and k ∈ N

µ(V i
x(2−1M−k) ∩ A(x, 1)) ≤

∑

Q∈Qk(x,1,i)

µ(Q)

≤ card(Qk(x, 1, i))C(
√

nM−k)n−1

= C(
√

n)n−1(1 − M1−n)k.For every x ∈ R
n and every i = 1, . . . , n there exist y1

(x,i) and y2
(x,i) suh that

Sk(M
−1, V i

x) = V i
y1
(x,i)

(2−1M−k) ∪ V i
y2
(x,i)

(2−1M−k)and
Sk(M

−1, V i
x) ∩ E ⊂ A(y1

(x,i), 1) ∪ A(y2
(x,i), 1).
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∞∑

k=0

µ(Sk(M
−1, V i

x))k =

∞∑

k=0

µ(V i
y1
(x,i)

(2−1M−k) ∩ A(y1
(x,i), 1))k

+

∞∑

k=0

µ(V i
y2
(x,i)

(2−1M−k) ∩ A(y2
(x,i), 1))k

≤ 2C(
√

n)n−1

∞∑

k=0

(1 − M1−n)kk.This onludes the proof of (i) sine
∞∑

k=0

(1 − M1−n)kk < ∞.For the proof of (ii) notie that sine E is V -direted porous for all V ∈ G(n, n − 1)we an de�ne the funtion, Θ: G(n, n − 1) → (0, 1), as
Θ(V ) = c(V )where c(V ) are the numbers appearing in De�nition 1.1. By ompatness of G(n, n−
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