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ABSTRACT. In this paper it is shown that for any measure p in R? and for a non-integer

© (w(B(z, )\ dr .
0 < s < d, the Wolff energy —_ 7 Td,u(m) is comparable to
0

rs

[ () BRI ),

unlike in the case when s is an integer. We also study the relation with the L2—norm of
s-Riesz transforms, 0 < s < 1, and we provide a counterexample in the integer case.

1. INTRODUCTION

Let i be a Radon measure in R Given z € R%, 7 > 0 and s > 0, we set

u(B(x,r))  p(B(z,2r))
rs (2r)s
The main result of this paper shows the comparability between the squared L?(u)—norm
of a square function involving the difference of densities (1.1) and the Wolff energy of the
measure p, for measures p in R? and non-integer s, 0 < s < d. Before stating precisely
the theorem, we need to introduce some notation.
Let 6, (B(z,7)) be the average s-dimensional density of u on B(z,r), that is

w(B(z,r))

rs

(1.1) A (z,r) =

0,(B(x,r)) =

)

so that
AZ(QE, r) = HZ(B(x, r)) — QZ(B(JU, 2r)).

Let a > 0 and p € (0,00) such that ap € (0,d). The Riesz capacity Cy,, of E C R? is

defined as 5 » 1
Ca,p(E) = Ssup <M()> ) Ia(l') = Zf{a’
peM () \ Lo * il ||

where M (FE) is the set of positive Radon measures supported on E and as usual p' =
p/(p — 1). In nonlinear potential theory Riesz capacities occur naturally in the study of
Sobolev spaces, for example they measure exceptional sets for functions in these function
spaces, see e.g [AH].
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For a and p as before the Wolff potential of a positive Radon measure p is defined as

.  /u(B(z,r)\" ! dr
W () :/O <(rd_ap> ) T rer,

r

and its Wolff energy is

[ @duta).

Riesz capacities can be characterized via Wolff potentials, as a well known theorem of
Wolff, see e.g. [AH, Theorem 4.5.4], asserts that

CH Mol < [ W2 (@)du(e) < C Lol

where C is a constant depending only on d, « and p.

In this paper we consider Wolff potentials with indices %(d — s), 5, where 0 < s < d.
Notice that Wolff potentials with these choice of indices are related to the s-dimensional
density of u, in particular

00 2 00
i _ pB@,r))\" dr _ / s Bz Y R
W%(d—s)%(x) _/0 < rs ro 0 eu( (1‘,7’)) r T € .

We further remark that these potentials are related to the Calderén-Zygmund capacities
associated with the vector valued Riesz kernels K*(x) = z/|z|'T%, 2 € RY, see e.g. the
excellent survey [EV2] or [MPV].

Our main result reads as follows:

Theorem 1.1. Let y be a Radon measure on R% and 0 < s < d be non-integer. Then

(1.2) / A8 (x,7) —du /W” (@) dula).

’2

The notation A ~ B means that there is an absolute constant ¢ > 0, depending on d
and s (and sometimes on other fixed parameters), such that ¢ !4 < B < cA.

We remark that for integer 0 < s < d the estimate (1.2) does not hold; just let u = H*|y,
the restriction of the s-dimensional Hausdorff measure to any affine s-plane V. This is
connected to the well known theorem of Marstrand [M], which asserts that for s > 0, given
a Radon measure p on R? such that the density lim, g 0, (B(z,7)) exists and is positive
and finite in a set of positive u measure, s must be an integer.

In the context of integer s, there are also results relating rectifiability and the kind of
square functions appearing in the left hand side of (1.2). In [TTo] it is shown that,
for Radon measures ;o in R¢ with p-almost everywhere positive and finite lower and
upper s-dimensional densities (s € N here) the fact that p is s-rectifiable is equiva-
lent to the p—almost everywhere finiteness of fol AZ(I‘,T)Q % and also to the fact that
lim, g AZ(.T, r) = 0 p-almost everywhere. It is worth also saying that the first just men-
tioned equivalence from [TTo| is a pointwise version of a previous result in [CGLT], which
characterizes the so called uniform rectifiability. In fact, in [CGLT, Lemma 3.1] a blow up
argument is used, which turns to be one of the main ingredients in the proof of Theorem
1.1 (see Lemma 2.5).
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Let us remark that a suitable p-th version of Theorem 1.1 holds for p € [1,00). Indeed,
almost the same proof yields that, for 0 < s < d non—integer and such p,

I s i [ (425D S,

with the comparability constant depending only on s, d and p. Notice that fooo (
coincides with the Wolff potential W“L (d—s) p(az), so that
1 ).

I 18ianr Cdutor = [, @) duta).

Nevertheless, we think that the case p = 2 is by far the most important one because of the
connection with rectifiability mentioned above and because of the relationship with Riesz
transforms.

In fact, Theorem 1.1 answers a question of F. Nazarov (private communication), mo-
tivated by an open problem concerning the comparability between the Wolff energy of a
measure u in R? and the squared L?(p)—norm of the s-Riesz transform with respect to
1, for non-integer 0 < s < d. To state the problem in detail, we need to introduce some
additional notation and background. For 0 < s < d, consider the signed vector valued
Riesz kernels

u(B(ﬂw))>p dr

rs T

K3 (x) = zeRY z#£0.

x
‘x‘l—i-s’

The s-Riesz transform of a real Radon measure y with compact support is

= /Ks(y —)dp(y)

whenever the integral makes sense. To avoid delicate problems with convergence, one
considers the truncated s—Riesz transform of p, which is defined as

Riu(x) = /| K, <R e
y—zx|>e

One says that Ry is bounded in L?(y) if the truncated Riesz transforms Ry are bounded
in L?(y) uniformly in e.

It was shown in [MPV] that given a finite Radon measure p in R? with growth s,
0 < s < 1, that is, u satisfying u(B(z,r)) < c,r® for all z € R, r > 0 and some constant
¢, > 0, one has
(1.3) /W“ 53 ~sup/|R o) [2du(x), 0<s<l1.

’2

It is known that for the positive integers s this comparability is false, while for non-integer

€ (1,d) it is an open problem to prove (or disprove) it. There are some (very) partial
results in this direction. In [ENV] it is shown that for s € (0, d), the Wolff energy controls
the L?-norm of the s-Riesz transform; in [JNV] it is proved that for s € (d — 1,d), d > 2,
boundedness of the s-Riesz transform of p implies p-almost everywhere finiteness of a
non-linear potential of exponential type. In the special case of measures supported on
Cantor type sets, the comparability (1.3) has been proven for all 0 < s < d (see [EV1],
[T2] and [RT]). Since the square function on the left hand side of (1.2) has a cancellative
nature while the Wolff potential does not, one could think of Theorem 1.1 as being, in a
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sense, an intermediate stage towards the proof of (1.3) for non-integer 1 < s < d, since
the s-Riesz transform also has an analogous cancellative nature.

The plan of the paper is the following. In Section 2 we prove Theorem 1.1. Section
3 is devoted to the study of the relation between the L?-norm of the s-Riesz transform,
the Wolff energy and the square function on the left hand side of (1.2), for 0 < s < 1. In
the final section we construct a measure with linear growth and infinite Wolff energy for
which the L?(u)-norm of the 1-Riesz transform with respect to y is finite and much bigger

o0

d
than // A}L(Z‘,T‘)Qld,u(l’).
0 r
Throughout the paper, the letters ¢, C' will stand for absolute constants (which may

depend on d and s) that may change at different occurrences.

Acknowledgments. We extend our sincere thanks to the referees for several useful com-
ments which improved the readability of our paper.

2. DENSITIES AND WOLFF POTENTIALS

The aim of this section is to prove our main result, Theorem 1.1. Its proof follows easily
once we have at our disposal the following proposition.

Proposition 2.1. Let s be positive and non-integer. Then there exists some 6 € (0,1)
such that for every Radon measure n on R? and every open ball By C R? of radius o,

5_17‘0 d
/ / A () dpu() > ¢(6) 65(Bo)? (Bo),
57‘0 57130 r

for some constant c(0).

Proof of Theorem 1.1. Tt is enough to prove that

(2.1) / A8 (z,7)? —du /W” 3 z) dp(x),

since the remaining inequality is immediate.
Let D denote the usual lattice of dyadic cubes of R? and let D, C D,k € Z, be
the subfamily of the dyadic cubes with side length £(Q) = 2. For Q € D, let Bg =

B(zg,7(Q)) where z¢ is the center of @ and 7(Q) = (2 + Vd)¢{(Q). Using Fubini’s
theorem and Proposition 2.1 one easily sees that

JLCTRRETTERD b ol M Coc=ay R

k€Z QEDy,

(2.2) S Y 0:(Be)*u(Bg)

QeD

2/5 Q)/é o et o

QeD
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for some 6 € (0,1). Given k € Z the family of balls {§~'Bg}gep, has finite overlap (which
depends only on § and on the ambient dimension d). Therefore using (2.2) we get,

6~ (24+/d) 2F ,dr
A? —d
[ Wy > /| 5y / orvayy @) dn()

keZ QeDy,

61 (24+Vd) 2F dr
/ / 85, )

kez /0 (2+Vd)2
s T
5/ Au(m,r)27d,u(:v)
0
O

Before providing the proof of Proposition 2.1 we need some auxiliary results and addi-
tional notation. For any Borel function ¢ : [0,00) — R let

1 T
o) = o () 1> 0

and define
8 p(ast) = [ (rlly ) = ey ) o),
whenever the integral makes sense.

Lemma 2.2. Let ¢ : [0,00) = R be a C™ function supported in [0, 2] which is constant in
[0,1/2]. Let z € R? and 0 < ry < 5. Then

ro . dr 2ro 5
/ ]AM&(QT,T)\ . < c/ |A7(, r)| -
r1 r1/2

where ¢ depends only on .

Proof. This follows by writing ¢ as a suitable convex combination of functions of the form
X[o,r]- For completeness we show the details. For ¢ > 0 and R > 0, we write

1 t\ < 1 ,/r
we () == [ e () vt

so that, by Fubini and changing variables,

s * 1 r
Ao B) = = [ i ¢ () oD < e

+ [ (57) XD < o) ar

71 1
= [0 (e xoenll Do) = s v (- < ate)) a

2

_ / £ (1) A (a, £R) dt,
1/2
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taking into account that ¢’ is supported on [1/2,2] in the last identity. As a consequence

we get
2 2r
A5 ()] < < / ) at = / A3 ) 2

2
/ t* @' (t) Ay, (z, tr) dt
1/2

T2 dr 279
/ AV xr</ / |Asxu|du</ \As(xu)|—
T1 7‘1

Remark 2.3. Notice that if ¢ : [0,00) — R is a smooth function vanishing at infinity, then
as in (2.3) we get

Thus

O

A} (2, R) = —/0 7' (t) A, (x, tR) dt.

Lemma 2.4. Let s be positive and non-integer and let p be a non-zero Radon measure in
R%. Then AZ(SU(), ro) # 0 for some xy € supp(u) and ro > 0.

Proof. By way of contradiction suppose that Aj(z,r) = 0 for all z € supp(u) and all
r > 0. We will first show that in that case the measure p is s-AD regular and we will then
proceed as in the proof of [CGLT, Lemma 3.9]. Recall that p is called s-Ahlfors-David
regular, or s-AD regular, if for some constant ¢, > 0,

Irs < p(B(z,7)) < c,r® for all z € supp(u), 0 < r < diam(supp(p)).

To prove the s-AD-regularity of u, assume for simplicity that 0 € supppu. Since
A5(0,7) = 0 for all 7 > 0, we deduce that u(B(0,2")) = 2" u(B(0,1)) for all n > 1.
For = € supp(p) N B(0,2"~1) and any integer m < n, using now that Aj(x,r) = 0 for all
r > 0, we infer that pu(B(z,2™)) = 20m=sy(B(x,2")). Since B(0,2" ') C B(zx,2") C
B(0,2""1), we have

205 u(B(0, 1)) < u(Blz,2%)) < 20HD5(B(0, 1)),
Thus
co 2" V* < pu(B(,2™)) < o2,
with ¢o = p(B(0,1)). Since n can be taken arbitrarily large and the preceding estimate
holds for all m < n, the s—AD regularity of u follows.

Let o(u) = e, u > 0. Then by Remark 2.3 it follows that AJ, ,(z,7) = 0 for all
x € supp(p) and for all » > 0. This is equivalent to

¢r * ,u(x) - d)Qr * ,U(x) =0

for all z € supp(u) and for all r > 0, where ¢ : R? — R is defined by ¢(y) = el n
particular

(2.4) Dok * u(T) — Pk * p(z) =0 for all & > 0 and all = € supp(u).
Now consider the function F : R — R given by

= 32 (g0 % pla) — bye % ()

k>0
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Taking into account that |¢o—r * p1(2) — dor * u(z)| < ¢ for all z € R? and k € N, it is clear
that F(r) < oo for all z € R, and so F is well defined. Moreover, by (2.4) we have F' = 0

on supp(y).
Now we claim that F(z) > 0 for all z € R%\ supp(u). Indeed, it follows easily that

lim ¢g—k * pu(x) =0  for all x € R?\ supp(u),
k—ro0

while, by the s-AD-regularity of u,

lim inf ¢or * p(z) > cco for all x € R%.
k—ro0

Thus if 2 € R?\ supp(i) we have ¢o—r * pu(x) — o * pu(x) # 0 for all large enough
k > 0, which implies that F'(z) > 0 and proves our claim. We have thus shown that
supp(u) = F~(0).

Next we will prove that the zero set of F' is a real analytic variety. It is enough to check
that ¢g—r * 1 — P * p is a real analytic function for each & > 0, because the zero set of
a real analytic function is a real analytic variety and the intersection of any family of real
analytic varieties is again a real analytic variety; see [Na]. So it is enough to show that
¢r * 1t is a real analytic function for every r > 0. To this end, we consider the function
f:C? = C defined by

d
flar,. o 2a) = Tin /exp <—7‘22(y¢ - Zi)2> dp(y).

i=1

It is easy to check that f is well defined and holomorphic in the whole C? and thus
¢r * . = f|ga is real analytic.

Therefore we have shown that supp(u) is an analytic variety, in particular this implies
that supp(u) has Hausdorff dimension n for some n € N. Since p is s-AD regular, supp(u)
has non-integer Hausdorff dimension and we have thus reached a contradiction. O

The following blow-up lemma is essential for the proof of Proposition 2.1. The proof is
inspired by the proof of [CGLT, Lemma 3.1]

Lemma 2.5. Let s be a positive and non-integer real number. There exists some 6 > 0
such that for every Radon measure y in R which satisfies 1 < u(B(0,1)) < u(B(0,2)) <
255%2 the following estimate holds

ot dr
/ / |AS (2, 7)| dp(z) — > 512,
5 z€B(0,6—1) T

Proof. By way of contradiction suppose that for each m > 1 there exists a Radon measure
pm such that 1 < 1, (B(0,1)) < p (B(0,2)) < 2%F2 which satisfies

m dr 1
2.5 / / AS (7)) dum(z) — < ——.
(2.5) . xeB(Om)l o (@ 1) dpin () == <

We will first show that the sequence {ji,} has a subsequence {i,,} which converges
weakly * (i.e. when tested against compactly supported continuous functions) to a measure
. This follows from [Ma, Theorem 1.23] once we show that p, is uniformly bounded on
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compact sets. That is, for any compact K C R? sup,, ttm(K) < co. To prove this, for
n>4,1/4<r<1/2 and z € B(0,1), we write

pn(B(0,2"7%)) _ pm (B x, 2 r) s k-1 pim(B(z, 1))
2(n+2)s = < Z |A x 2 )‘ + rs

< 3 1AL (0,251 4 4° i (B(0,2)).
k=1
Integrating this estimate with respect to p,, on B(0, 1) and with respect to r € [1/4,1/2],
using (2.5) for m big enough we obtain

(B(O on— 3 < 2 (n+2)s [Z

< c(n),

/2 dr
AS (2,28 Mr)|d — + 411, (B(0,2
10g2/ B 27 () 41 (B10,2)

which proves the uniform boundedness of u,, on compact sets.

Our next objective consists in proving that that Aj(x,r) = 0 for all € supp(u) and
all » > 0. Once this is done, the lemma would follow from Lemma 2.4 since it is easy to
check that p(B(0,1)) > 1, and thus p is not identically zero.

To prove that Aj(z,7) vanishes identically on supp u for all r > 0, we will show first
that, given any C* function ¢ : [0,00) — R which is supported in [0, 2] and constant in
[0,1/2], we have

(2.6) /0 b / )] die) % ~0.

The proof of this fact is elementary. Fix mg and let n > 0. Set K = [2/mg, mo/2] X
B(0,mp). Now {y — ¢i(|z —y|) — w2z — y|), (t,2) € K} is an equicontinuous family
of continuous functions supported inside a fixed compact set. Hence setting, ¢(z) =
o(|z]), z € R, we get that (¢ — ¢oy) * pm; () converges to (¢ — ¢a¢) * p(x) uniformly on
K. It therefore follows that

[ 180l = [ 160 0w s polau) §
dt

mo/2
=tim [ ] o |60 = 020 % o, i, ()

2/mo

! [ 185 e 01 iy 0
= lim 5 (x,t)|— dpm, (x
J x€B(0,mp) J2/mo Homi t !

mo dt
St [ s @bl ()] =0
J JzeB(0,mo) J1/mo !

by Lemma 2.2 and (2.5). Since this holds for any mgy > 1, our claim (2.6) is proved.
Denote by G the subset of those points x € supp(u) such that

s dr
/0 ‘Au, (z, 7‘)|— =0.

It is clear now that G has full u-measure. By continuity, it follows that Azw(aﬁ,r) =0
for all x € suppp and all » > 0. Finally, by taking a suitable sequence of C*° functions
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¢k which converge to x[p,1) we infer that Aj(x,r) = 0 for all x € suppp and 7 > 0. By
Lemma 2.4, this is impossible. O

By renormalizing the preceding lemma we get:

Lemma 2.6. Let s be a positive and non-integer real number. There exists some § > 0
such that for every Radon measure p in R? and every open ball of radius ro such that
0 < u(Bo) < u(2By) < 2572 1u(By), the following estimate holds

T d B2
/ / A (7)) dpa() = > 542 HBo)”
dro z€6- 1B, , "

Proof. Let T : R* — R? be an affine transformation which maps By to B(0,1). Con-

sider the measure 0 = —+~ Ty, where as usual Tyu(E) := p(T1(E)), and apply the

w(Bo)
preceding lemma to o. O

We can now complete the proof of Proposition 2.1.

Proof of Proposition 2.1. Let By be an open ball of radius ry such that u(By) > 0. Let
§ € (0,1) to be fixed below and let k = k(8) be such that 27% < § < 27F+1 If

2k+27’0

dr
/ A, 2dp() ™ > 54 65(Bo)? u(By)
2k+2 B, T

we are done. Otherwise, there exists some x € By such that

27k727,0

2k+2,,,0

d
(2.7) / A (w,7)> 25 < 25 65,(Bo)>.
2—k—2p, T
Notice also that after changing variables, for any n € Z, we have

"o dr 2"ro dr
s n,.\2 _ s 2
Aj(x,2™r) —/2 Aj () o

7"0/2 r n—1lp
Therefore
2k+2r0 d 0 k+2 d
(2.5) Lo st = [ A
Q_k_21”0 T TO/Q k1 T

Using (2.7), (2.8) and applying Chebyshev’s inequality with respect to the measure dt/t
we find some t € [rg/2, 9] such that

k+2 454
2 2
> As(@,2')’ < @93(30) .
n=—k—1
In particular,
262

v1og 2

|A7 (7, 2")] < 0,,(Bo)

forn=—-k—1,...,k+ 2. This implies that
p(B(x,2515))  p(B(x,t))

@ s < Ak 4 2)(27F1)?2 0;,(Bo) < 0,,(Bo).
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Therefore,
267'B B(z, 2k3 B
,u( (il 05) < 35“( (§;3 st)) §233 :u( (f?t)) +259;(2B0) < 2554—162(230),
(26— 1rp) (2F+3¢) t
and so
(2.9) (2071 By)) < 25571 575 1u(2By).

In the same way (in fact, just setting § = 1/2) one easily deduces that
1(4By) < 2°5721(2By).

Therefore we can apply Lemma 2.6 to 2By and obtain

207t . dr 5 1(2Bo)?
(2'10) /éro /90625 1BO|A (x T)‘dﬂ( ) 6 (ZTO) ‘

By Cauchy-Schwartz and (2.10), it follows that

26— Lr 4

dr . p(2By)
251 By) log( / / AS (z,7)2d S g =B
d 0) %1y Jze25-1B, ) dpu) = r (2rg)2s

Finally using (2.9) we have,

2671 ) dr 551 )
A? d — 2> ——0(B By).
Lo e dnte) T 2 S (B ()

20 o r )

3. RELATIONSHIP WITH THE s-RIESZ TRANSFORM FOR 0 < s < 1

It was shown in [MPV] that for a finite Radon measure x in R%, we have

(31) sup [ IR @)Pdnto) = [WE, | (@)duta).

2

In this section we extend this result to the case of non-finite Radon measures. In part, our
motivation stems from the counterexample that we will construct in Section 4 for the case
s = 1, which consists of a non-finite Radon measure for which the squared L?(u)-norm of
the 1-Riesz transform of y is not comparable to [[ Al (z,7)? & qp(x).

The next proposition is stated in terms of the doubly truncated Riesz transform of pu.
Given 0 < €1 < €9, this is defined as

R, (1) () = / e K= ).

Proposition 3.1. Let i be a Radon measure in R and 0 < s < 1. Then the following
statements hold:

(a) For every e1, g2 > 0,

(32 1R @ Paute) < © [, @auta),

with C' independent of €1 and es.
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(b) If p is such that lim mfu < 00, then

r—00
(3.3) [t y@du@ <C sup [1R (00 Pdu(a).
’2 52>€1>0

Remark 3.2. First, let us mention that it is easy to see that there exist non-finite measures
1 with finite Wolff energy.
Second, notice that in general (3.3) does not hold without assuming the finiteness of

lim inf M Take for example y = H'|g, then by antisymmetry one has ['|RS, _, (u)[*dp =
r—r00
0, while [ W“ 9.8 s dj = 00.
On the other hand it is easy to check that
- u(BO,)* _
(3.4) /W2 (des % z)du(z) < oo = Tlggo -2 = 0.

We would also like to mention that the part (a) of Proposition (3.1) holds for any s € (0, d),
as it was established in [ENV, p. 733-734].

By combining Proposition 3.1 and Theorem 1.1 we get the following corollary

Corollary 3.3. Let i be a Radon measure in R? and let 0 < s < 1. If p is such that
M

lim inf £ < 00, then
r—00
SR dr
swp [ 1B, L @Pauto) ~ (W, @)~ [ a3 duta).
€1,62>0 2 0 r

Before proving the proposition we need to recall the definition of balls with thin bound-
aries. Given ¢t > 0, a ball B(x,r) is said to have ¢-thin boundary (or just thin boundary)
if

1({y € B(z,2r) : dist(y, 0B(z,r)) < Ar}) < tAp(B(z,2r))
for all A > 0. The following result is well known. For the proof (with cubes instead of
balls) see Lemma 9.43 of [T3], for example.

Lemma 3.4. Let u be a Radon measure on RY. Let t be some constant big enough
(depending only on d). Let B(xz,r) C R? be any fized ball. Then there exists r' € [r,2r]
such that the ball B(xz,r") has t-thin boundary.

Now we turn to the proof of Proposition 3.1.

Proof of Proposition 3.1. If p is a compactly supported Radon measure and 0 < s < 1,
then by [MPV], for any r > 0,

/ |RZ (XB(Or ’ dp(z /WM d—s) g x)dp(z)
B(0,r) D)
for all 1 > 0 and r > 0. Therefore,
/ ’thag(XB(O,r) ) Qdﬂ /W’u du( )
B(Oﬂ”o)

for any ro < r and £1,e9 > 0. Since
hm ’Ral 52(XB(0 7’) )( )’ |R81752( )(.T)|

r—00
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and for a fixed ro > 0 and = € B(0, o),

s w(B(0,10 + £2))
IRZ, ., () ()] < =

= Cr07€1762a

the dominated convergence theorem proves (3.2).
Now we deal with inequality (3.3). Clearly we may assume that

sup [ 1R, 2, (1)) () <
€1,€2

since otherwise the statement (b) is trivial. Using [MPV], given r > 0 and taking 9 = 2r
we get

Wi @) dua) Ssup [ R (i) ) Pdu(e)
3 B(0,r)

B(0,r) €1>0

(3.5) < sup / IR, _, () (@) 2dpa(z)

e1>0

+ sup / o Xm0 @) ).

e1>0JB
We claim that if B(0,r) has thin boundary, then
(3.6) |RZ, o, (XB(o,r)e k) ()] S 07,(B(0,3r)) for eg = 2r and x € B(0,r).

Assuming this for the moment, we get

/B(O )|R§1,52(XB(0,T)CN)(x)’2du(x) < 0,(B(0,3r))* u(B(0, 7)),

and thus
17 XB(0,r)H
B(Or) §(d s) ( )dﬂ($) S
(3.7)
sup [ 17, ()(0) Pdn(a) + (B 0,30 w(B(O,31).
eo>e1>0

By the assumption in (b), there exists a sequence r; — oo such that

sup 0 (B(0,r4))? (B0, 14) < oc.

By Lemma 3.4, for each k there exists some 7, € [ Tky 37‘k} such that the ball B(0,7}) has
thin boundary. Since 65(B(0,37%))* u(B(0,37%)) < 05(B(0,14))* u(B(0,7%)), from (3.7)
we deduce

XB(0,7 s
[ W@ dute) £ sup [ 1R, 00(@) Pduta) + 63(BO.00))° u(B0.1))
(O?) eo>e1>0
Letting £ — oo, we obtain
)2 iming ABO.7)°
I R T L
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By the assumptions in (b) the right hand above is finite and thus [ Wg(d—s) s (x)dp(z) <
3 ’2

00, which in turn implies that hm M = 0 by (3.4). Hence the statement (b) of the

proposition follows from (3.8).

It remains to prove (3.6). For x € B(0,r) and €2 = 2r, we have
1
R, s Xm0 0)] < e duly)
Fe (©0:r) B(0,3r)\B(0,r) |y - x|s

B(z,27%r)n B(0,3r) \ B(0,r
<Z/~L o k() )\ B( ))

k>1
Note now that if B(z,27%r) N B(0,3r) \ B(0,7) # @, then
B(z,27%r) N B(0,3r) € B(0,3r) N Uy—r+1(dB(0,7)),
where Us(A) stands for the d-neighborhood of A. Thus, in any case we have
u(B(x, 27" ) N B(0,3r) \ B(0,r)) < 27° u(B(0,3r)),
because B(0,7) has thin boundary. Therefore,
R a0 )] £ 32 27K 0= HEOI) e g 0y
k>1

as claimed. O

4. COUNTEREXAMPLE IN THE INTEGER CASE s =1

In this section we give an example of an infinite measure in the plane such that the
quantities

@y (IR EE@Eg@. [ W @), [ Al )

are not comparable, in contrast to the result stated in Corollary 3.3 for 0 < s < 1. Our
example consists of a measure p with linear growth (i.e. growth 1), infinite Wolff energy,
for which the squared L?(y)-norm of the 1-Riesz transform with respect to u is finite
and much bigger than [[ A}L(m, T)Q%d,u,(x). We think that this fact is quite surprising,
because for general measures p with linear growth (i.e., with growth 1) in the complex
plane, it has been recently shown in [T4] that

/ |R}LXQ]2d,u < Cu(Q) for every square @ C C
Q
if and only if
d
/ / AXQM du( ) < C'u(Q) for every square Q C C.

Now we turn to the construction of the measure for our counterexample. Consider the
curve Iy, as in Figure 1, for 0 < a < 7/4. In particular, T, C R? can be realized as the
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FIiGUure 1. The curve I',.

graph of the piecewise linear function f : R — R defined by
0 if x € (—o0,—1/2] U [1/2,00),
f(x) =S tana(z+1/2) ifze (-1/2,0],
—tana (z —1/2) ifx € (0,1/2).
We set

Ly = (—00,1/2] x {0},
T = {(x, f(2) € B2 : 0 € [~1/2,0]),
T3 = {(z, f(z)) € R* 1z € [0,1/2]},
Ly =[1/2,00) x {0}
T =T U Ty,
We will show that, for the 1-dimensional Hausdorff measure p = H!|r,, the three
quantities in (4.1) are not comparable. Note that, strictly speaking, this fact cannot be
consider as a counterexample to Corollary 3.3 for the case s = 1, since the assumption

lim inf M < 0o does not hold.

T—00

Proposition 4.1. Let a € (0,7/4]. Then

(4.2) // Aq.[1| )er dH!|r, (z) < sinta.
Also,

(4.3) sup /|R51,62 z)2du(z) ~ sin® a.

€1,62>0

It is clear that, letting a — 0, we will get

// AH1| T r) T« sup /|R61 o z)2du(z).
£1,62>0

On the other hand, it is easy to check that [ WH |F“( JdH! |p, (z) = cc.

To prove Proposition 4.1, we consider the auxﬂlary 1-AD regular measure on I'y:
o = cosaH |pa + H! [P\ T
for which the following holds:
Lemma 4.2. Let o € (0,7/4]. Then

1 2 .4
//0 A, (z,r) . dp(z) < sin® a.

Using Lemma 4.2, we are now able to prove Proposition 4.1.
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Proof of Proposition 4.1. To show (4.2), notice that

TN B(x,2
A%{llra(x’r)_A,ia(fﬂaT) SC(l—COSOz)H ( mr (z,2r))

o HY (T N B(z,2r))

T

(4.4)

<ca«a

Hence,

* 1 2 791 dr\'/?
([ st o o)
- J 1/2
< 1 _ Al 1 r
S </1/10/<AH1|FQ(%T) Aua(x,r)> dH' |, (z )T>
d V2
+</ /Al (2, ) 2dH |, () ) — A+ B,
1/10 r
2

the last identity being a definition for A and B. By Lemma 4.2, we have B < ca“.
Concerning A, using (4.4) and the linear growth of H!|r,, we get

1/ 2
A2 S0/1/ / HY (TN B(x,2r)) d?‘[lfra(x)ﬂ
>1/10 J|z|<10r r

r2

dH! dr
<« / / h;)“ )dr < cat — < cal.
>1/10 J|z|<10r r r>10 T

Now we write

</l/m/ﬁw| (@, 7)2 dH ., (z )dr>”2
1/10 N s
(/ / H1| (x,7) A (:r:,r)) dHY|r, (= )T>
+ (/01/10/Aia(a:,rfdﬂllra(x)cff")1/2 _ 04D,

the last identity being the definition of C' and D. Again by Lemma 4.2, D < ca?. To
estimate C, we consider the vertices {z,} = L{NTY, {2} = T7'NTs and {z.} = T5'NLY. It
is easy to check that A%'ll\ra (x,7)— A}m (x,r) vanishes unless z, € B(z,2r), 2, € B(z,2r)
or z. € B(x,2r). Then we split the integral in C into three integrals according to the
three preceding cases. Since they are treated similarly, we will deal only with the first one.
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Using again (4.4), we get

1/10 dr
[/ Al () i, ()
0 zqa €B(x,2r) @ r

1/10 a
< o / / ( T ﬂB(x 2T))> d?‘[lh‘a(m) ﬁ < CO44.
|x—zaq|<2r r

r

Gathering all the preceding estimates, (4.2) follows.
The proof of (4.3) can be obtained either by [T1, Corollary 1.4] or by more elementary
methods (which we leave for the reader). (]

Proof of Lemma 4.2. We fix a € (0,7/4]. To simplify notation write p, I'; 7', L and so
on, instead of pq, Ua, T, Lq.-
To estimate AL(m, r) for x € I and r > 0, note first that A, (x,r) vanishes if one of the
following conditions holds:
e B(z,2r)NT' C L; for i =1 or 2,
e B(z,2r)NT C T, fori=1or 2.
ez € l1ULyand T C B(z,r).
In this case, we set (x,r) € Z.
In the case (z,7) & Z, we write

pu(B(x,2r)) — 4r

p(B(x,r)) = 2r
(4.5) Al < ‘ r * 21
=:0,(B(x,r)) + 6,(B(x,2r)).
We claim that
(4.6) du(B(z,71)) S min(l, :2> sin? a for (z,r) & Z.

In fact, this holds for all x € T" and r > 0, but we only need to prove it for (x,r) € Z. Let
us see that the lemma follows from this estimate. We write

[ dhwr? T dnte //( . au<B<x,r>>2drdu<>

§sin4a// min(l >drd (z).
(z,r)e(I'x(0,00))\Z r

So, to prove the lemma it is enough to show that the last integral does not exceed some
absolute constant. To this end, denote {z1} = L1 NT}, {22} = LaNTs, and {29} = 11 NTx,
and set

By ={(x,r) € ' x (0,00) : 2z; € B(x,2r) for some i =0,1,2 and T' ¢ B(x,r)}

and
By ={(z,r) €T x (0,00):x € T and T C B(z,r)}.
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Notice that I x (0,00)) \ Z = B1 U By and if (z,7) € B then r > 1/2. We then have

//xre(Fx 0,00) \zmin<1 7~4>de (z)
//B mm(l 4)d v/ /B mm(l )‘”du( )
- Z//“ €rx(0,00) min<1,:4> %du(x) +//32 min<1,:4>‘i7"du(x),

z, €B(x,2r) TgZB( r)

For 0 <14 < 2 we consider two cases according to whether r» < 1/2 or not. We set
. 1 dr
/%x,r)EFX(OJ/Q) min (1’ 7«4> //a: r)elx(0,1/2) r dp().

z;€B(z,2r), T¢ B(x,r) 2z, €B(x,2r), T¢ B(z,r)

Integrating first with respect to x, taking into account that |z — z;| < 2r, the last integral
is bounded by
/ dr
c r— = 1.
re(0,1/2) T
For r > 1/2 we have

dr dr
(4.7) //zr )T x[1/2,00) mm(l’ 4> , /Af e X [1/2,00) Ed“(x)'

2 €B(z,2r), T¢ B(z,r) 2 €B(z,2r), T¢ B(z,r)
It is easy to check that for (x,r) in the domain of integration above we have
r—c<lz—z/<r+c
for some absolute constant ¢, which implies that
p({z: (z,r) €T x [1,00),2 € B(z,2r), T ¢ B(z,r)}) <.
Thus the integral in (4.7) is bounded by

d
c / —g <L
>1/2 T
Therefore we have shown that

(4.8) //Blmln< : 4>Cff”du( )< 1.

In the same way, for r > 1/2
u({z: (z,r) € Ba}) <,

hence

(4.9) //32 mm<1,:4>cffdu(x) <1

Thus (4.8) and (4.9) imply

// min(l, 14) P () <1,
(z,r)E(I'x(0,00))\Z r r

as wished.
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FIGURE 2. The case Al FIGURE 3. The case A2

To prove the claim (4.6) we distinguish several cases:

Case A: (z,r) ¢ Zand x € T.

Subcase Al: B(x,2r)NT C T.
We note that this subcase is possible only for r < 2. We write

du(B(z,r)) < ‘,u(B(rm,r)) —2cosal+2(1 —cosa)
1 ~ ‘,u(B(:r,r)) — 2 cosa| + sin? .

Since (z,r) ¢ Z we have that B(z,2r) NT; # @ for both ¢ = 1,2. Without loss
of generality let € Ty and set {vg} = Th N Th, {v;} = 0B(x,2r)NT;, for i = 1,2,
{p} = 0B(x,2r) N Ly, \{va}, where L, denotes the line crossing vy and ve. Let also
p’ be the point of intersection of L, and the perpendicular line to Ly, which passes
through p. See also Figure 2.

We have

|u(B(x,r)) — 27 cosa| = |cos a (d(vy,v0) + d(vg, v2)) — cos a(d(vg, v2) + d(vg, p))|
~ ’d(vla UO) - d(U07p))|
Observing that

’d(UhUO) - d(’UOvp)’ < d(’l)(],p/) - d(’l)(),p) = d(UOap/) - d(UOap/) COS(2OJ)

~ sin?(2a) d(vo,p') < rsin?a
and recalling (4.10), we deduce that 6,(B(z,2r)) < sin?a.

Subcase A2: B(x,2r)NT' C T; UL; for i =1 or 2.
Without loss of generality we can assume that ¢ = 2. We consider the following points:
{vo} = LaN Ty, {v1} = 0B(z,2r) N Ty, {ve} = 0B(x,2r) N Lg, and {p} = 9B(x,2r) N
Ly, \{v1}. Let also p’ be the point of intersection of L., and the perpendicular line to
L., which passes through p. See also Figure 3.
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FIGURE 4. The curve I',.

We have
|u(B(z,r)) — 4 cosar| = |cosad(v,vo) + d(vo, v2) — cos a(d(vy,v1) + d(vo, p))|
< (1 — cos a)d(vg, v2) + cos a (d(vg, v2) — d(vo, p))
< rsin® a + cos a (d(vo, v2) — d(vo, p)).
As in the previous subcase,

d(vo, v2) — d(vo, p) < d(vo,p") — d(vo, p) = d(vo,p") — d(vy,p) cos

~ d(vp,p')sin? a < rsin®
hence we deduce that 8, (B(z,2r)) < sin? a.

Subcase A3: B(x,r)N Ly # 0 and B(z,r) N Ly # (.
If r < 1, combining the arguments from the two previous cases, it follows that 6, (B(z,r)) <

sin2 a.

We now consider the case when r > 1 and without loss of generality we assume that
x = (w,h) € T1. Given two lines L, L', we denote by £(L, L) the smallest angle between
L and L'. Let {vi} = 0B(x,r) N Ly and let 61 = £(Ly,,,L1). Then it follows easily that

. 9 h\?  sin?a
Ou(B(z,7)) Ssin“6y = | — | < ,

r r2

see also Figure 4.

Case B: (z,7) ¢ Z and z ¢ T.

Let {v1} = 0B(z,r) N T, then if ) = L(Lyy,;, La2) we get
(4.11) 5, (B(z,r)) =1 — cosf ~ sin® ;.

Since #; < a, we have that sin®6#; < sin? a. Moreover if r > 1, as in subcase A3, we get
. in2
that sin? 6, < #5%. Therefore,

Ou(B(z,7)) S min(l, 12) sin? av.
r

Thus (4.6) follows and the proof of the lemma is complete.
O

We wish now to compare the integral [[° AL(CE, T)Q%du(:z:) to the analogous one in-
volving the so called S-numbers of Peter Jones, which play a key role in the theory of
the so called quantitative rectifiability (see [Jo], [DaS1] and [DaS2], for example). Given
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a Radon measure g in R?, the Jones’ S-numbers are defined as follows. For x € supp(u)
and r > 0, set, for 1 < p < o0,

and

1
dist(y, L) &

s m LCO

By (B(z,7)) = il%f /

B(z,r)

B (B(x,r)) = inf sup M,

y€EB(z,r)Nsupp (1) r

where in both cases the infimum is taken over all lines I C R<.
By [Do, Theorem 6] (in the case 1 < p < 00), for the measure i, of Proposition 4.1 we

have

//OOO BSQ(B(:U:T))Q%dMa(Z') ~ Hf/H% =~ Sil’l2 .

This also holds for p = oo, by [Jo]. So together with Proposition 4.1, this yields

& d & d
JI AT < [[7 g B Cdpa@)  asa o

forall 1 <p < oo.
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