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Abstract. In this paper it is shown that for any measure µ in Rd and for a non-integer

0 < s < d, the Wolff energy

∫∫ ∞
0

(
µ(B(x, r))

rs

)2
dr

r
dµ(x) is comparable to∫∫ ∞

0

(
µ(B(x, r))

rs
− µ(B(x, 2r))

(2r)s

)2
dr

r
dµ(x),

unlike in the case when s is an integer. We also study the relation with the L2−norm of
s-Riesz transforms, 0 < s < 1, and we provide a counterexample in the integer case.

1. Introduction

Let µ be a Radon measure in Rd. Given x ∈ Rd, r > 0 and s > 0, we set

(1.1) ∆s
µ(x, r) :=

µ(B(x, r))

rs
− µ(B(x, 2r))

(2r)s
.

The main result of this paper shows the comparability between the squared L2(µ)−norm
of a square function involving the difference of densities (1.1) and the Wolff energy of the
measure µ, for measures µ in Rd and non-integer s, 0 < s < d. Before stating precisely
the theorem, we need to introduce some notation.

Let θsµ(B(x, r)) be the average s-dimensional density of µ on B(x, r), that is

θsµ(B(x, r)) =
µ(B(x, r))

rs
,

so that
∆s
µ(x, r) = θsµ(B(x, r))− θsµ(B(x, 2r)).

Let α > 0 and p ∈ (0,∞) such that αp ∈ (0, d). The Riesz capacity Ċα,p of E ⊂ Rd is
defined as

Ċα,p(E) = sup
µ∈M(E)

(
µ(E)

‖Iα ∗ µ‖p′

)p
, Iα(x) =

Ad,α
|x|d−α

,

where M(E) is the set of positive Radon measures supported on E and as usual p′ =
p/(p − 1). In nonlinear potential theory Riesz capacities occur naturally in the study of
Sobolev spaces, for example they measure exceptional sets for functions in these function
spaces, see e.g [AH].
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For α and p as before the Wolff potential of a positive Radon measure µ is defined as

Ẇµ
α,p(x) =

∫ ∞
0

(
µ(B(x, r))

rd−αp

)p′−1 dr

r
, x ∈ Rd,

and its Wolff energy is ∫
Ẇµ
α,p(x)dµ(x).

Riesz capacities can be characterized via Wolff potentials, as a well known theorem of
Wolff, see e.g. [AH, Theorem 4.5.4], asserts that

C−1 ‖Iα ∗ µ‖p
′

p′ ≤
∫
Ẇµ
α,p(x)dµ(x) ≤ C ‖Iα ∗ µ‖p

′

p′

where C is a constant depending only on d, α and p.
In this paper we consider Wolff potentials with indices 2

3(d − s), 3
2 , where 0 < s < d.

Notice that Wolff potentials with these choice of indices are related to the s-dimensional
density of µ, in particular

Ẇµ
2
3

(d−s), 3
2

(x) =

∫ ∞
0

(
µ(B(x, r))

rs

)2 dr

r
=

∫ ∞
0

θsµ(B(x, r))2 dr

r
, x ∈ Rd.

We further remark that these potentials are related to the Calderón-Zygmund capacities
associated with the vector valued Riesz kernels Ks(x) = x/|x|1+s, x ∈ Rd, see e.g. the
excellent survey [EV2] or [MPV].

Our main result reads as follows:

Theorem 1.1. Let µ be a Radon measure on Rd and 0 < s < d be non-integer. Then

(1.2)

∫∫ ∞
0

∆s
µ(x, r)2 dr

r
dµ(x) ≈

∫
Ẇµ

2
3

(d−s), 3
2

(x) dµ(x).

The notation A ≈ B means that there is an absolute constant c > 0, depending on d
and s (and sometimes on other fixed parameters), such that c−1A ≤ B ≤ cA.

We remark that for integer 0 < s < d the estimate (1.2) does not hold; just let µ = Hs|V ,
the restriction of the s-dimensional Hausdorff measure to any affine s-plane V . This is
connected to the well known theorem of Marstrand [M], which asserts that for s > 0, given
a Radon measure µ on Rd such that the density limr→0 θ

s
µ(B(x, r)) exists and is positive

and finite in a set of positive µ measure, s must be an integer.
In the context of integer s, there are also results relating rectifiability and the kind of

square functions appearing in the left hand side of (1.2). In [TTo] it is shown that,
for Radon measures µ in Rd with µ-almost everywhere positive and finite lower and
upper s-dimensional densities (s ∈ N here) the fact that µ is s-rectifiable is equiva-

lent to the µ−almost everywhere finiteness of
∫ 1

0 ∆s
µ(x, r)2 dr

r and also to the fact that
limr→0 ∆s

µ(x, r) = 0 µ-almost everywhere. It is worth also saying that the first just men-
tioned equivalence from [TTo] is a pointwise version of a previous result in [CGLT], which
characterizes the so called uniform rectifiability. In fact, in [CGLT, Lemma 3.1] a blow up
argument is used, which turns to be one of the main ingredients in the proof of Theorem
1.1 (see Lemma 2.5).
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Let us remark that a suitable p-th version of Theorem 1.1 holds for p ∈ [1,∞). Indeed,
almost the same proof yields that, for 0 < s < d non-integer and such p,∫∫ ∞

0
|∆s

µ(x, r)|p dr
r
dµ(x) ≈

∫∫ ∞
0

(
µ(B(x, r))

rs

)p dr
r
dµ(x),

with the comparability constant depending only on s, d and p. Notice that
∫∞

0

(
µ(B(x,r))

rs

)p
dr
r

coincides with the Wolff potential Ẇµ
p
p+1

(d−s),p(x), so that∫∫ ∞
0
|∆s

µ(x, r)|p dr
r
dµ(x) ≈

∫
Ẇµ

p
p+1

(d−s),p(x) dµ(x).

Nevertheless, we think that the case p = 2 is by far the most important one because of the
connection with rectifiability mentioned above and because of the relationship with Riesz
transforms.

In fact, Theorem 1.1 answers a question of F. Nazarov (private communication), mo-
tivated by an open problem concerning the comparability between the Wolff energy of a
measure µ in Rd and the squared L2(µ)−norm of the s-Riesz transform with respect to
µ, for non-integer 0 < s < d. To state the problem in detail, we need to introduce some
additional notation and background. For 0 < s < d, consider the signed vector valued
Riesz kernels

Ks(x) =
x

|x|1+s
, x ∈ Rd, x 6= 0.

The s-Riesz transform of a real Radon measure µ with compact support is

Rsµ(x) =

∫
Ks(y − x)dµ(y)

whenever the integral makes sense. To avoid delicate problems with convergence, one
considers the truncated s−Riesz transform of µ, which is defined as

Rsεµ(x) =

∫
|y−x|>ε

Ks(y − x)dµ(y), x ∈ Rd, ε > 0.

One says that Rsµ is bounded in L2(µ) if the truncated Riesz transforms Rsεµ are bounded
in L2(µ) uniformly in ε.

It was shown in [MPV] that given a finite Radon measure µ in Rd with growth s,
0 < s < 1, that is, µ satisfying µ(B(x, r)) ≤ cµrs for all x ∈ Rd, r > 0 and some constant
cµ > 0, one has

(1.3)

∫
Ẇµ

2
3

(d−s), 3
2

(x)dµ(x) ≈ sup
ε>0

∫
|Rsεµ(x)|2dµ(x), 0 < s < 1.

It is known that for the positive integers s this comparability is false, while for non-integer
s ∈ (1, d) it is an open problem to prove (or disprove) it. There are some (very) partial
results in this direction. In [ENV] it is shown that for s ∈ (0, d), the Wolff energy controls
the L2-norm of the s-Riesz transform; in [JNV] it is proved that for s ∈ (d− 1, d), d ≥ 2,
boundedness of the s-Riesz transform of µ implies µ-almost everywhere finiteness of a
non-linear potential of exponential type. In the special case of measures supported on
Cantor type sets, the comparability (1.3) has been proven for all 0 < s < d (see [EV1],
[T2] and [RT]). Since the square function on the left hand side of (1.2) has a cancellative
nature while the Wolff potential does not, one could think of Theorem 1.1 as being, in a
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sense, an intermediate stage towards the proof of (1.3) for non-integer 1 < s < d, since
the s-Riesz transform also has an analogous cancellative nature.

The plan of the paper is the following. In Section 2 we prove Theorem 1.1. Section
3 is devoted to the study of the relation between the L2-norm of the s-Riesz transform,
the Wolff energy and the square function on the left hand side of (1.2), for 0 < s < 1. In
the final section we construct a measure with linear growth and infinite Wolff energy for
which the L2(µ)-norm of the 1-Riesz transform with respect to µ is finite and much bigger

than

∫∫ ∞
0

∆1
µ(x, r)2dr

r
dµ(x).

Throughout the paper, the letters c, C will stand for absolute constants (which may
depend on d and s) that may change at different occurrences.

Acknowledgments. We extend our sincere thanks to the referees for several useful com-
ments which improved the readability of our paper.

2. Densities and Wolff potentials

The aim of this section is to prove our main result, Theorem 1.1. Its proof follows easily
once we have at our disposal the following proposition.

Proposition 2.1. Let s be positive and non-integer. Then there exists some δ ∈ (0, 1)
such that for every Radon measure µ on Rd and every open ball B0 ⊂ Rd of radius r0,∫ δ−1r0

δr0

∫
δ−1B0

∆s
µ(x, r)2 dµ(x)

dr

r
≥ c(δ) θsµ(B0)2 µ(B0),

for some constant c(δ).

Proof of Theorem 1.1. It is enough to prove that

(2.1)

∫∫ ∞
0

∆s
µ(x, r)2 dr

r
dµ(x) &

∫
Ẇµ

2
3

(d−s), 3
2

(x) dµ(x),

since the remaining inequality is immediate.
Let D denote the usual lattice of dyadic cubes of Rd, and let Dk ⊂ D, k ∈ Z, be

the subfamily of the dyadic cubes with side length `(Q) = 2k. For Q ∈ D, let BQ =

B(xQ, r(Q)) where xQ is the center of Q and r(Q) = (2 +
√
d)`(Q). Using Fubini’s

theorem and Proposition 2.1 one easily sees that∫
Ẇµ

2
3

(d−s), 3
2

(x) dµ(x) =
∑
k∈Z

∑
Q∈Dk

∫
Q

∫ 2k+1

2k

(
µ(B(x, r))

rs

)2 dr

r
dµ(x)

.
∑
Q∈D

θsµ(BQ)2µ(BQ)

.
∑
Q∈D

∫ δ−1 r(Q)

δ r(Q)

∫
δ−1BQ

∆s
µ(x, r)2 dµ(x)

dr

r
,

(2.2)
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for some δ ∈ (0, 1). Given k ∈ Z the family of balls {δ−1BQ}Q∈Dk has finite overlap (which
depends only on δ and on the ambient dimension d). Therefore using (2.2) we get,∫

Ẇµ
2
3

(d−s), 3
2

(x) dµ(x) .
∑
k∈Z

∑
Q∈Dk

∫
δ−1BQ

∫ δ−1 (2+
√
d) 2k

δ (2+
√
d) 2k

∆s
µ(x, r)2dr

r
dµ(x)

.
∫ ∑

k∈Z

∫ δ−1 (2+
√
d) 2k

δ (2+
√
d) 2k

∆s
µ(x, r)2dr

r
dµ(x)

.
∫∫ ∞

0
∆s
µ(x, r)2dr

r
dµ(x).

�

Before providing the proof of Proposition 2.1 we need some auxiliary results and addi-
tional notation. For any Borel function ϕ : [0,∞)→ R let

ϕt(x) =
1

ts
ϕ
(x
t

)
, t > 0,

and define

∆s
µ,ϕ(x, t) :=

∫ (
ϕt(|y − x|)− ϕ2t(|y − x|)

)
dµ(y),

whenever the integral makes sense.

Lemma 2.2. Let ϕ : [0,∞)→ R be a C∞ function supported in [0, 2] which is constant in
[0, 1/2]. Let x ∈ Rd and 0 ≤ r1 < r2. Then∫ r2

r1

|∆s
µ,ϕ(x, r)| dr

r
≤ c

∫ 2r2

r1/2
|∆s

µ(x, r)| dr
r
,

where c depends only on ϕ.

Proof. This follows by writing ϕ as a suitable convex combination of functions of the form
χ[0,r]. For completeness we show the details. For t ≥ 0 and R > 0, we write

1

Rs
ϕ

(
t

R

)
= −

∫ ∞
0

1

Rs+1
ϕ′
( r
R

)
χ[0,r](t) dr,

so that, by Fubini and changing variables,

∆s
µ,ϕ(x,R) = −

∫ ∞
0

1

Rs+1
ϕ′
( r
R

)
χ[0,r](| · |) ∗ µ(x) dr

+

∫ ∞
0

1

(2R)s+1
ϕ′
( r

2R

)
χ[0,r](| · |) ∗ µ(x) dr

= −
∫ ∞

0
ϕ′(t)

(
1

Rs
χ[0,tR](| · |) ∗ µ(x)− 1

(2R)s
χ[0,2tR](| · |) ∗ µ(x)

)
dt

= −
∫ 2

1/2
ts ϕ′(t) ∆s

µ(x, tR) dt,

(2.3)
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taking into account that ϕ′ is supported on [1/2, 2] in the last identity. As a consequence
we get

|∆s
µ,ϕ(x, r)| ≤

∣∣∣∣∣
∫ 2

1/2
ts ϕ′(t) ∆s

µ(x, tr) dt

∣∣∣∣∣ .
∫ 2

1/2
|∆s

µ(x, tr)| dt =

∫ 2r

r/2
|∆s

µ(x, u)| du
r
.

Thus ∫ r2

r1

|∆s
µ,ϕ(x, r)| dr

r
.
∫ r2

r1

∫ 2r

r/2
|∆s

µ(x, u)| du dr
r2
.
∫ 2r2

r1/2
|∆s

µ(x, u)| du
u
.

�

Remark 2.3. Notice that if ϕ : [0,∞)→ R is a smooth function vanishing at infinity, then
as in (2.3) we get

∆s
µ,ϕ(x,R) = −

∫ ∞
0

ts ϕ′(t) ∆s
µ(x, tR) dt.

Lemma 2.4. Let s be positive and non-integer and let µ be a non-zero Radon measure in
Rd. Then ∆s

µ(x0, r0) 6= 0 for some x0 ∈ supp(µ) and r0 > 0.

Proof. By way of contradiction suppose that ∆s
µ(x, r) = 0 for all x ∈ supp(µ) and all

r > 0. We will first show that in that case the measure µ is s-AD regular and we will then
proceed as in the proof of [CGLT, Lemma 3.9]. Recall that µ is called s-Ahlfors-David
regular, or s-AD regular, if for some constant cµ > 0,

c−1
µ rs ≤ µ(B(x, r)) ≤ cµ rs for all x ∈ supp(µ), 0 < r ≤ diam(supp(µ)).

To prove the s-AD-regularity of µ, assume for simplicity that 0 ∈ suppµ. Since
∆s
µ(0, r) = 0 for all r > 0, we deduce that µ(B(0, 2n)) = 2ns µ(B(0, 1)) for all n ≥ 1.

For x ∈ supp(µ) ∩B(0, 2n−1) and any integer m ≤ n, using now that ∆s
µ(x, r) = 0 for all

r > 0, we infer that µ(B(x, 2m)) = 2(m−n)sµ(B(x, 2n)). Since B(0, 2n−1) ⊂ B(x, 2n) ⊂
B(0, 2n+1), we have

2(n−1)sµ(B(0, 1)) ≤ µ(B(x, 2n)) ≤ 2(n+1)sµ(B(0, 1)).

Thus
c0 2(m−1)s ≤ µ(B(x, 2m)) ≤ c0 2(m+1)s,

with c0 = µ(B(0, 1)). Since n can be taken arbitrarily large and the preceding estimate
holds for all m ≤ n, the s−AD regularity of µ follows.

Let ϕ(u) = e−u
2
, u ≥ 0. Then by Remark 2.3 it follows that ∆s

µ,ϕ(x, r) = 0 for all
x ∈ supp(µ) and for all r > 0. This is equivalent to

φr ∗ µ(x)− φ2r ∗ µ(x) = 0

for all x ∈ supp(µ) and for all r > 0, where φ : Rd → R is defined by φ(y) = e−|y|
2
. In

particular

(2.4) φ2−k ∗ µ(x)− φ2k ∗ µ(x) = 0 for all k > 0 and all x ∈ supp(µ).

Now consider the function F : Rd → R given by

F (x) =
∑
k>0

2−k
(
φ2−k ∗ µ(x)− φ2k ∗ µ(x)

)2
.
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Taking into account that |φ2−k ∗µ(x)−φ2k ∗µ(x)| ≤ c for all x ∈ Rd and k ∈ N, it is clear
that F (x) <∞ for all x ∈ Rd, and so F is well defined. Moreover, by (2.4) we have F = 0
on supp(µ).

Now we claim that F (x) > 0 for all x ∈ Rd \ supp(µ). Indeed, it follows easily that

lim
k→∞

φ2−k ∗ µ(x) = 0 for all x ∈ Rd \ supp(µ),

while, by the s-AD-regularity of µ,

lim inf
k→∞

φ2k ∗ µ(x) ≥ c c0 for all x ∈ Rd.

Thus if x ∈ Rd \ supp(µ) we have φ2−k ∗ µ(x) − φ2k ∗ µ(x) 6= 0 for all large enough
k > 0, which implies that F (x) > 0 and proves our claim. We have thus shown that
supp(µ) = F−1(0).

Next we will prove that the zero set of F is a real analytic variety. It is enough to check
that φ2−k ∗ µ − φ2k ∗ µ is a real analytic function for each k > 0, because the zero set of
a real analytic function is a real analytic variety and the intersection of any family of real
analytic varieties is again a real analytic variety; see [Na]. So it is enough to show that
φr ∗ µ is a real analytic function for every r > 0. To this end, we consider the function
f : Cd → C defined by

f(z1, . . . , zd) =
1

rn

∫
exp

(
−r−2

d∑
i=1

(yi − zi)2

)
dµ(y).

It is easy to check that f is well defined and holomorphic in the whole Cd, and thus
φr ∗ µ = f |Rd is real analytic.

Therefore we have shown that supp(µ) is an analytic variety, in particular this implies
that supp(µ) has Hausdorff dimension n for some n ∈ N. Since µ is s-AD regular, supp(µ)
has non-integer Hausdorff dimension and we have thus reached a contradiction. �

The following blow-up lemma is essential for the proof of Proposition 2.1. The proof is
inspired by the proof of [CGLT, Lemma 3.1]

Lemma 2.5. Let s be a positive and non-integer real number. There exists some δ > 0
such that for every Radon measure µ in Rd which satisfies 1 ≤ µ(B̄(0, 1)) ≤ µ(B(0, 2)) ≤
25s+2, the following estimate holds∫ δ−1

δ

∫
x∈B(0,δ−1)

|∆s
µ(x, r)| dµ(x)

dr

r
≥ δ1/2.

Proof. By way of contradiction suppose that for each m ≥ 1 there exists a Radon measure
µm such that 1 ≤ µm(B̄(0, 1)) ≤ µm(B(0, 2)) ≤ 25s+2 which satisfies

(2.5)

∫ m

1/m

∫
x∈B(0,m)

|∆s
µm(x, r)| dµm(x)

dr

r
≤ 1

m1/2
.

We will first show that the sequence {µm} has a subsequence {µmj} which converges
weakly * (i.e. when tested against compactly supported continuous functions) to a measure
µ. This follows from [Ma, Theorem 1.23] once we show that µm is uniformly bounded on
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compact sets. That is, for any compact K ⊂ Rd, supm µm(K) < ∞. To prove this, for
n ≥ 4, 1/4 < r < 1/2, and x ∈ B(0, 1), we write

µm(B(0, 2n−3))

2(n+2)s
≤ µm(B(x, 2nr))

(2nr)s
≤

n∑
k=1

|∆s
µm(x, 2k−1r)|+ µm(B(x, r))

rs

≤
n∑
k=1

|∆s
µm(x, 2k−1r)|+ 4s µm(B(0, 2)).

Integrating this estimate with respect to µm on B(0, 1) and with respect to r ∈ [1/4, 1/2],
using (2.5) for m big enough we obtain

µm(B(0, 2n−3)) ≤ 2(n+2)s

[
n∑
k=1

1

log 2

∫ 1/2

1/4

∫
B(0,1)

|∆s
µm(x, 2k−1r)|dµm(x)

dr

r
+ 4sµm(B(0, 2))

]
≤ c(n),

which proves the uniform boundedness of µm on compact sets.
Our next objective consists in proving that that ∆s

µ(x, r) = 0 for all x ∈ supp(µ) and
all r > 0. Once this is done, the lemma would follow from Lemma 2.4 since it is easy to
check that µ(B̄(0, 1)) ≥ 1, and thus µ is not identically zero.

To prove that ∆s
µ(x, r) vanishes identically on suppµ for all r > 0, we will show first

that, given any C∞ function ϕ : [0,∞) → R which is supported in [0, 2] and constant in
[0, 1/2], we have

(2.6)

∫ ∞
0

∫
x∈Rd

|∆s
µ,ϕ(x, r)| dµ(x)

dr

r
= 0.

The proof of this fact is elementary. Fix m0 and let η > 0. Set K = [2/m0, m0/2] ×
B̄(0,m0). Now {y → ϕt(|x − y|) − ϕ2t(|x − y|), (t, x) ∈ K} is an equicontinuous family
of continuous functions supported inside a fixed compact set. Hence setting, φ(x) =
ϕ(|x|), x ∈ Rd, we get that (φt − φ2t) ∗ µmj (x) converges to (φt − φ2t) ∗ µ(x) uniformly on
K. It therefore follows that∫∫

K
|∆s

µ,ϕ(x, t)|dµ(x)
dt

t
=

∫∫
K
|(φt − φ2t) ∗ µ(x)|dµ(x)

dt

t

= lim
j

∫ m0/2

2/m0

∫
x∈B̄(0,m0)

|(φt − φ2t) ∗ µmj (x)|dµmj (x)
dt

t

= lim
j

∫
x∈B̄(0,m0)

∫ m0/2

2/m0

|∆s
µmj ,ϕ

(x, t)|dt
t
dµmj (x)

. lim
j

∫
x∈B̄(0,m0)

∫ m0

1/m0

|∆s
µmj

(x, t)|dµmj (x)
dt

t
= 0

by Lemma 2.2 and (2.5). Since this holds for any m0 ≥ 1, our claim (2.6) is proved.
Denote by G the subset of those points x ∈ supp(µ) such that∫ ∞

0
|∆s

µ,ϕ(x, r)| dr
r

= 0.

It is clear now that G has full µ-measure. By continuity, it follows that ∆s
µ,ϕ(x, r) = 0

for all x ∈ suppµ and all r > 0. Finally, by taking a suitable sequence of C∞ functions
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ϕk which converge to χ[0,1] we infer that ∆s
µ(x, r) = 0 for all x ∈ suppµ and r > 0. By

Lemma 2.4, this is impossible. �

By renormalizing the preceding lemma we get:

Lemma 2.6. Let s be a positive and non-integer real number. There exists some δ > 0
such that for every Radon measure µ in Rd and every open ball of radius r0 such that
0 < µ(B̄0) ≤ µ(2B0) ≤ 25s+2 µ(B̄0), the following estimate holds∫ δ−1 r0

δ r0

∫
x∈δ−1B0

|∆s
µ(x, r)| dµ(x)

dr

r
≥ δ1/2 µ(B̄0)2

rs0
.

Proof. Let T : Rd → Rd be an affine transformation which maps B̄0 to B̄(0, 1). Con-
sider the measure σ = 1

µ(B̄0)
T#µ, where as usual T#µ(E) := µ(T−1(E)), and apply the

preceding lemma to σ. �

We can now complete the proof of Proposition 2.1.

Proof of Proposition 2.1. Let B0 be an open ball of radius r0 such that µ(B0) > 0. Let
δ ∈ (0, 1) to be fixed below and let k = k(δ) be such that 2−k ≤ δ < 2−k+1. If∫ 2k+2r0

2−k−2r0

∫
2k+2B0

∆s
µ(x, r)2dµ(x)

dr

r
> δ4 θsµ(B0)2 µ(B0)

we are done. Otherwise, there exists some x ∈ B0 such that

(2.7)

∫ 2k+2r0

2−k−2r0

∆s
µ(x, r)2dr

r
≤ 2δ4 θsµ(B0)2.

Notice also that after changing variables, for any n ∈ Z, we have∫ r0

r0/2
∆s
µ(x, 2nr)2dr

r
=

∫ 2nr0

2n−1r0

∆s
µ(x, r)2dr

r
.

Therefore

(2.8)

∫ 2k+2r0

2−k−2r0

∆s
µ(x, r)2dr

r
=

∫ r0

r0/2

k+2∑
n=−k−1

∆s
µ(x, 2nr)2dr

r
.

Using (2.7), (2.8) and applying Chebyshev’s inequality with respect to the measure dt/t
we find some t ∈ [r0/2, r0] such that

k+2∑
n=−k−1

∆s
µ(x, 2nt)2 ≤ 4δ4

log 2
θsµ(B0)2.

In particular,

|∆s
µ(x, 2nt)| ≤ 2δ2

√
log 2

θsµ(B0)

for n = −k − 1, . . . , k + 2. This implies that∣∣∣∣µ(B(x, 2k+3t))

(2k+3t)s
− µ(B(x, t))

ts

∣∣∣∣ ≤ 4(k + 2)(2−k+1)2 θsµ(B0) ≤ θsµ(B0).
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Therefore,

µ(2δ−1B0)

(2δ−1r0)s
≤ 23sµ(B(x, 2k+3t))

(2k+3t)s
≤ 23s

(
µ(B(x, t))

ts
+ 2s θsµ(2B0)

)
≤ 25s+1θsµ(2B0),

and so

(2.9) µ(2δ−1B0)) ≤ 25s+1 δ−sµ(2B0).

In the same way (in fact, just setting δ = 1/2) one easily deduces that

µ(4B0) ≤ 25s+2µ(2B0).

Therefore we can apply Lemma 2.6 to 2B0 and obtain

(2.10)

∫ 2δ−1 r0

2δ r0

∫
x∈2δ−1B0

|∆s
µ(x, r)| dµ(x)

dr

r
> δ1/2 µ(2B0)2

(2r0)s
.

By Cauchy-Schwartz and (2.10), it follows that

µ(2δ−1B0) log(δ−2)

∫ 2δ−1 r0

2δ r0

∫
x∈2δ−1B0

∆s
µ(x, r)2 dµ(x)

dr

r
> δ

µ(2B0)4

(2r0)2s
.

Finally using (2.9) we have,∫ 2δ−1 r0

2δ r0

∫
x∈2δ−1B0

∆s
µ(x, r)2 dµ(x)

dr

r
&

δs+1

log(δ−2)
θsµ(B0)2 µ(B0).

�

3. Relationship with the s-Riesz transform for 0 < s < 1

It was shown in [MPV] that for a finite Radon measure µ in Rd, we have

(3.1) sup
ε>0

∫
|Rsε(µ)(x)|2dµ(x) ≈

∫
Ẇµ

2
3

(d−s), 3
2

(x)dµ(x).

In this section we extend this result to the case of non-finite Radon measures. In part, our
motivation stems from the counterexample that we will construct in Section 4 for the case
s = 1, which consists of a non-finite Radon measure for which the squared L2(µ)-norm of
the 1-Riesz transform of µ is not comparable to

∫∫∞
0 ∆1

µ(x, r)2 dr
r dµ(x).

The next proposition is stated in terms of the doubly truncated Riesz transform of µ.
Given 0 < ε1 < ε2, this is defined as

Rsε1,ε2(µ)(x) =

∫
ε1<|y−x|≤ε2

Ks(y − x) dµ(y).

Proposition 3.1. Let µ be a Radon measure in Rd and 0 < s < 1. Then the following
statements hold:

(a) For every ε1, ε2 > 0,

(3.2)

∫
|Rsε1,ε2(µ)(x)|2dµ(x) ≤ C

∫
Ẇµ

2
3

(d−s), 3
2

(x)dµ(x),

with C independent of ε1 and ε2.
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(b) If µ is such that lim inf
r→∞

µ(B(0,r))3

r2s <∞, then

(3.3)

∫
Ẇµ

2
3

(d−s), 3
2

(x)dµ(x) ≤ C sup
ε2>ε1>0

∫
|Rsε1,ε2(µ)(x)|2dµ(x).

Remark 3.2. First, let us mention that it is easy to see that there exist non-finite measures
µ with finite Wolff energy.

Second, notice that in general (3.3) does not hold without assuming the finiteness of

lim inf
r→∞

µ(B(0,r))3

r2s . Take for example µ = H1|R, then by antisymmetry one has
∫
|Rsε1,ε2(µ)|2dµ =

0, while
∫
Ẇµ

2
3

(d−s), 3
2

dµ =∞.

On the other hand, it is easy to check that

(3.4)

∫
Ẇµ

2
3

(d−s), 3
2

(x)dµ(x) <∞ ⇒ lim
r→∞

µ(B(0, r))3

r2s
= 0.

We would also like to mention that the part (a) of Proposition (3.1) holds for any s ∈ (0, d),
as it was established in [ENV, p. 733-734].

By combining Proposition 3.1 and Theorem 1.1 we get the following corollary

Corollary 3.3. Let µ be a Radon measure in Rd and let 0 < s < 1. If µ is such that

lim inf
r→∞

µ(B(0,r))3

r2s <∞, then

sup
ε1,ε2>0

∫
|Rsε1,ε2(µ)(x)|2dµ(x) ≈

∫
Ẇµ

2
3

(d−s), 3
2

(x)dµ(x) ≈
∫∫ ∞

0
∆s
µ(x, r)2dr

r
dµ(x).

Before proving the proposition we need to recall the definition of balls with thin bound-
aries. Given t > 0, a ball B(x, r) is said to have t-thin boundary (or just thin boundary)
if

µ
(
{y ∈ B(x, 2r) : dist(y, ∂B(x, r)) ≤ λ r}

)
≤ t λ µ(B(x, 2r))

for all λ > 0. The following result is well known. For the proof (with cubes instead of
balls) see Lemma 9.43 of [T3], for example.

Lemma 3.4. Let µ be a Radon measure on Rd. Let t be some constant big enough
(depending only on d). Let B(x, r) ⊂ Rd be any fixed ball. Then there exists r′ ∈ [r, 2r]
such that the ball B(x, r′) has t-thin boundary.

Now we turn to the proof of Proposition 3.1.

Proof of Proposition 3.1. If µ is a compactly supported Radon measure and 0 < s < 1,
then by [MPV], for any r > 0,∫

B(0,r)
|Rsε1(χB(0,r)µ)(x)|2dµ(x) .

∫
Ẇµ

2
3

(d−s), 3
2

(x)dµ(x)

for all ε1 > 0 and r > 0. Therefore,∫
B(0,r0)

|Rsε1,ε2(χB(0,r)µ)(x)|2dµ(x) .
∫
Ẇµ

2
3

(d−s), 3
2

(x)dµ(x)

for any r0 < r and ε1, ε2 > 0. Since

lim
r→∞

|Rsε1,ε2(χB(0,r)µ)(x)| = |Rsε1,ε2(µ)(x)|
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and for a fixed r0 > 0 and x ∈ B(0, r0),

|Rsε1,ε2(µ)(x)| ≤ µ(B(0, r0 + ε2))

εs1
= Cr0,ε1,ε2 ,

the dominated convergence theorem proves (3.2).
Now we deal with inequality (3.3). Clearly we may assume that

sup
ε1,ε2

∫
|Rsε1,ε2(µ)(x)|2dµ(x) <∞,

since otherwise the statement (b) is trivial. Using [MPV], given r > 0 and taking ε2 = 2r
we get ∫

B(0,r)
Ẇ

χB(0,r)µ
2
3

(d−s), 3
2

(x) dµ(x) . sup
ε1>0

∫
B(0,r)

|Rsε1,ε2(χB(0,r)µ)(x)|2dµ(x)

. sup
ε1>0

∫
|Rsε1,ε2(µ)(x)|2dµ(x)

+ sup
ε1>0

∫
B(0,r)

|Rsε1,ε2(χB(0,r)cµ)(x)|2dµ(x).

(3.5)

We claim that if B(0, r) has thin boundary, then

(3.6) |Rsε1,ε2(χB(0,r)cµ)(x)| . θsµ(B(0, 3r)) for ε2 = 2r and x ∈ B(0, r).

Assuming this for the moment, we get∫
B(0,r)

|Rsε1,ε2(χB(0,r)cµ)(x)|2 dµ(x) . θsµ(B(0, 3r))2 µ(B(0, r)),

and thus ∫
B(0,r)

Ẇ
χB(0,r)µ
2
3

(d−s), 3
2

(x) dµ(x) .

sup
ε2>ε1>0

∫
|Rsε1,ε2(µ)(x)|2dµ(x) + θsµ(B(0, 3r))2 µ(B(0, 3r)).

(3.7)

By the assumption in (b), there exists a sequence rk →∞ such that

sup
k>0

θsµ(B(0, rk))
2 µ(B(0, rk)) <∞.

By Lemma 3.4, for each k there exists some r̃k ∈ [1
6rk,

1
3rk] such that the ball B(0, r̃k) has

thin boundary. Since θsµ(B(0, 3r̃k))
2 µ(B(0, 3r̃k)) . θsµ(B(0, rk))

2 µ(B(0, rk)), from (3.7)
we deduce∫
B(0,r̃k)

Ẇ
χB(0,r̃k)µ
2
3

(d−s), 3
2

(x) dµ(x) . sup
ε2>ε1>0

∫
|Rsε1,ε2(µ)(x)|2dµ(x) + θsµ(B(0, rk))

2 µ(B(0, rk)).

Letting k →∞, we obtain

(3.8)

∫
Ẇµ

2
3

(d−s), 3
2

(x)dµ(x) . sup
ε2>ε1>0

∫
|Rsε1,ε2(µ)(x)|2dµ(x) + lim inf

r→∞

µ(B(0, r))3

r2s
.
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By the assumptions in (b) the right hand above is finite and thus
∫
Ẇµ

2
3

(d−s), 3
2

(x)dµ(x) <

∞, which in turn implies that lim
r→∞

µ(B(0,r))3

r2s = 0 by (3.4). Hence the statement (b) of the

proposition follows from (3.8).
It remains to prove (3.6). For x ∈ B(0, r) and ε2 = 2r, we have

|Rsε1,ε2(χB(0,r)cµ)(x)| ≤
∫
B(0,3r)\B(0,r)

1

|y − x|s
dµ(y)

.
∑
k≥1

µ(B(x, 2−kr) ∩B(0, 3r) \B(0, r))

(2−kr)s
.

Note now that if B(x, 2−kr) ∩B(0, 3r) \B(0, r) 6= ∅, then

B(x, 2−kr) ∩B(0, 3r) ⊂ B(0, 3r) ∩ U2−k+1(∂B(0, r)),

where Uδ(A) stands for the δ-neighborhood of A. Thus, in any case we have

µ(B(x, 2−kr) ∩B(0, 3r) \B(0, r)) . 2−k µ(B(0, 3r)),

because B(0, r) has thin boundary. Therefore,

|Rsε1,ε2(χB(0,r)cµ)(x)| .
∑
k≥1

2−k(1−s)µ(B(0, 3r))

rs
. θsµ(B(0, 3r)),

as claimed. �

4. Counterexample in the integer case s = 1

In this section we give an example of an infinite measure in the plane such that the
quantities

(4.1)

∫
|R1(µ)(x)|2dµ(x),

∫
Wµ

2
3
, 3
2

(x)dµ(x),

∫∫ ∞
0

∆1
µ(x, r)2dr

r
dµ(x)

are not comparable, in contrast to the result stated in Corollary 3.3 for 0 < s < 1. Our
example consists of a measure µ with linear growth (i.e. growth 1), infinite Wolff energy,
for which the squared L2(µ)-norm of the 1-Riesz transform with respect to µ is finite
and much bigger than

∫∫∞
0 ∆1

µ(x, r)2 dr
r dµ(x). We think that this fact is quite surprising,

because for general measures µ with linear growth (i.e., with growth 1) in the complex
plane, it has been recently shown in [T4] that∫

Q
|R1

µχQ|2dµ ≤ Cµ(Q) for every square Q ⊂ C

if and only if∫
Q

∫ ∞
0

∆1
χQµ

(x, r)2dr

r
dµ(x) ≤ C ′µ(Q) for every square Q ⊂ C.

Now we turn to the construction of the measure for our counterexample. Consider the
curve Γα as in Figure 1, for 0 < α ≤ π/4. In particular, Γα ⊂ R2 can be realized as the



14 VASILIS CHOUSIONIS, LAURA PRAT AND XAVIER TOLSA

Figure 1. The curve Γα.

graph of the piecewise linear function f : R→ R defined by

f(x) =


0 if x ∈ (−∞,−1/2] ∪ [1/2,∞),

tanα (x+ 1/2) if x ∈ (−1/2, 0],

− tanα (x− 1/2) if x ∈ (0, 1/2).

We set

• Lα1 = (−∞, 1/2]× {0},
• Tα1 = {(x, f(x)) ∈ R2 : x ∈ [−1/2, 0]},
• Tα2 = {(x, f(x)) ∈ R2 : x ∈ [0, 1/2]},
• Lα2 = [1/2,∞)× {0}
• Tα = Tα1 ∪ Tα2 .

We will show that, for the 1-dimensional Hausdorff measure µ = H1|Γα , the three
quantities in (4.1) are not comparable. Note that, strictly speaking, this fact cannot be
consider as a counterexample to Corollary 3.3 for the case s = 1, since the assumption

lim inf
r→∞

µ(B(0,r))3

r2 <∞ does not hold.

Proposition 4.1. Let α ∈ (0, π/4]. Then

(4.2)

∫∫ ∞
0

∆1
H1|Γα

(x, r)2dr

r
dH1|Γα(x) . sin4 α.

Also,

(4.3) sup
ε1,ε2>0

∫
|R1

ε1,ε2(µ)(x)|2dµ(x) ≈ sin2 α.

It is clear that, letting α→ 0, we will get∫∫ ∞
0

∆1
H1|Γα

(x, r)2dr

r
� sup

ε1,ε2>0

∫
|R1

ε1,ε2(µ)(x)|2dµ(x).

On the other hand, it is easy to check that
∫
W
H1|Γα
2
3
, 3
2

(x)dH1|Γα(x) =∞.

To prove Proposition 4.1, we consider the auxiliary 1-AD regular measure on Γα:

µα = cosαH1|Tα +H1|Γα\Tα ,
for which the following holds:

Lemma 4.2. Let α ∈ (0, π/4]. Then∫∫ ∞
0

∆1
µα(x, r)2dr

r
dµα(x) . sin4 α.

Using Lemma 4.2, we are now able to prove Proposition 4.1.
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Proof of Proposition 4.1. To show (4.2), notice that

∆1
H1|Γα

(x, r)−∆1
µα(x, r) ≤ c (1− cosα)

H1(Tα ∩B(x, 2r))

r

≤ c α2H1(Tα ∩B(x, 2r))

r
.

(4.4)

Hence,

(∫ ∞
1/10

∫
∆1
H1|Γα

(x, r)2dH1|Γα(x)
dr

r

)1/2

.

(∫ ∞
1/10

∫ (
∆1
H1|Γα

(x, r)−∆1
µα(x, r)

)2
dH1|Γα(x)

dr

r

)1/2

+

(∫ ∞
1/10

∫
∆1
µα(x, r)2dH1|Γα(x)

dr

r

)1/2

= A+B,

the last identity being a definition for A and B. By Lemma 4.2, we have B ≤ c α2.
Concerning A, using (4.4) and the linear growth of H1|Γα , we get

A2 ≤ α4

∫
r≥1/10

∫
|x|≤10r

H1(Tα ∩B(x, 2r))2

r2
dH1|Γα(x)

dr

r

≤ α4

∫
r≥1/10

∫
|x|≤10r

dH1|Γα(x)

r3
dr ≤ cα4

∫
r≥10

dr

r2
≤ cα4.

Now we write(∫ 1/10

0

∫
∆1
H1|Γα

(x, r)2 dH1|Γα(x)
dr

r

)1/2

.

(∫ 1/10

0

∫ (
∆1
H1|Γα

(x, r)−∆1
µα(x, r)

)2
dH1|Γα(x)

dr

r

)1/2

+

(∫ 1/10

0

∫
∆1
µα(x, r)2dH1|Γα(x)

dr

r

)1/2

= C +D,

the last identity being the definition of C and D. Again by Lemma 4.2, D ≤ c α2. To
estimate C, we consider the vertices {za} = Lα1∩Tα1 , {zb} = Tα1 ∩Tα2 and {zc} = Tα2 ∩Lα2 . It
is easy to check that ∆1

H1|Γα
(x, r)−∆1

µα(x, r) vanishes unless za ∈ B(x, 2r), zb ∈ B(x, 2r)

or zc ∈ B(x, 2r). Then we split the integral in C into three integrals according to the
three preceding cases. Since they are treated similarly, we will deal only with the first one.
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Using again (4.4), we get∫ 1/10

0

∫
za∈B(x,2r)

∆1
H1|Γα

(x, r)2 dH1|Γα(x)
dr

r

. α4

∫ 1/10

0

∫
|x−za|<2r

(
H1(Tα ∩B(x, 2r))

r

)2

dH1|Γα(x)
dr

r
≤ cα4.

Gathering all the preceding estimates, (4.2) follows.
The proof of (4.3) can be obtained either by [T1, Corollary 1.4] or by more elementary

methods (which we leave for the reader). �

Proof of Lemma 4.2. We fix α ∈ (0, π/4]. To simplify notation write µ, Γ, T , L and so
on, instead of µα, Γα, Tα, Lα.

To estimate ∆1
µ(x, r) for x ∈ Γ and r > 0, note first that ∆µ(x, r) vanishes if one of the

following conditions holds:

• B(x, 2r) ∩ Γ ⊂ Li for i = 1 or 2,
• B(x, 2r) ∩ Γ ⊂ Ti for i = 1 or 2.
• x ∈ L1 ∪ L2 and T ⊂ B(x, r).

In this case, we set (x, r) ∈ Z.
In the case (x, r) 6∈ Z, we write

|∆1
µ(x, r)| ≤

∣∣∣∣µ(B(x, r))− 2r

r

∣∣∣∣+

∣∣∣∣µ(B(x, 2r))− 4r

2r

∣∣∣∣
=: δµ(B(x, r)) + δµ(B(x, 2r)).

(4.5)

We claim that

(4.6) δµ(B(x, r)) . min

(
1,

1

r2

)
sin2 α for (x, r) 6∈ Z.

In fact, this holds for all x ∈ Γ and r > 0, but we only need to prove it for (x, r) 6∈ Z. Let
us see that the lemma follows from this estimate. We write∫∫ ∞

0
∆1
µ(x, r)2 dr

r
dµ(x) .

∫∫
(x,r)∈(Γ×(0,∞))\Z

δµ(B(x, r))2 dr

r
dµ(x)

. sin4 α

∫∫
(x,r)∈(Γ×(0,∞))\Z

min

(
1,

1

r4

)
dr

r
dµ(x).

So, to prove the lemma it is enough to show that the last integral does not exceed some
absolute constant. To this end, denote {z1} = L1∩T1, {z2} = L2∩T2, and {z0} = T1∩T2,
and set

B1 = {(x, r) ∈ Γ× (0,∞) : zi ∈ B(x, 2r) for some i = 0, 1, 2 and T 6⊂ B(x, r)}

and

B2 = {(x, r) ∈ Γ× (0,∞) : x ∈ T and T ⊂ B(x, r)}.
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Notice that Γ× (0,∞)) \ Z = B1 ∪B2 and if (x, r) ∈ B2 then r > 1/2. We then have∫∫
(x,r)∈(Γ×(0,∞))\Z

min

(
1,

1

r4

)
dr

r
dµ(x)

=

∫∫
B1

min

(
1,

1

r4

)
dr

r
dµ(x) +

∫∫
B2

min

(
1,

1

r4

)
dr

r
dµ(x)

=
2∑
i=0

∫∫
(x,r)∈Γ×(0,∞)
zi∈B(x,2r), T 6⊂B(x,r)

min

(
1,

1

r4

)
dr

r
dµ(x) +

∫∫
B2

min

(
1,

1

r4

)
dr

r
dµ(x).

For 0 ≤ i ≤ 2 we consider two cases according to whether r < 1/2 or not. We set∫∫
(x,r)∈Γ×(0,1/2)
zi∈B(x,2r), T 6⊂B(x,r)

min

(
1,

1

r4

)
dr

r
dµ(x) =

∫∫
(x,r)∈Γ×(0,1/2)
zi∈B(x,2r), T 6⊂B(x,r)

dr

r
dµ(x).

Integrating first with respect to x, taking into account that |x− zi| < 2r, the last integral
is bounded by

c

∫
r∈(0,1/2)

r
dr

r
≈ 1.

For r > 1/2 we have

(4.7)

∫∫
(x,r)∈Γ×[1/2,∞)
zi∈B(x,2r), T 6⊂B(x,r)

min

(
1,

1

r4

)
dr

r
dµ(x) =

∫∫
(x,r)∈Γ×[1/2,∞)
zi∈B(x,2r), T 6⊂B(x,r)

dr

r5
dµ(x).

It is easy to check that for (x, r) in the domain of integration above we have

r − c ≤ |zi − x| ≤ r + c

for some absolute constant c, which implies that

µ
(
{x : (x, r) ∈ Γ× [1,∞), zi ∈ B(x, 2r), T 6⊂ B(x, r)}

)
≤ c′.

Thus the integral in (4.7) is bounded by

c

∫
r>1/2

dr

r5
. 1.

Therefore we have shown that

(4.8)

∫∫
B1

min

(
1,

1

r4

)
dr

r
dµ(x) . 1.

In the same way, for r > 1/2

µ
(
{x : (x, r) ∈ B2}

)
≤ c′′,

hence

(4.9)

∫∫
B2

min

(
1,

1

r4

)
dr

r
dµ(x) . 1.

Thus (4.8) and (4.9) imply∫∫
(x,r)∈(Γ×(0,∞))\Z

min

(
1,

1

r4

)
dr

r
dµ(x) . 1,

as wished.
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Figure 2. The case A1 Figure 3. The case A2

To prove the claim (4.6) we distinguish several cases:

Case A: (x, r) 6∈ Z and x ∈ T .

Subcase A1: B(x, 2r) ∩ Γ ⊂ T .
We note that this subcase is possible only for r < 2. We write

δµ(B(x, r)) ≤
∣∣∣∣µ(B(x, r))

r
− 2 cosα

∣∣∣∣+ 2(1− cosα)

≈
∣∣∣∣µ(B(x, r))

r
− 2 cosα

∣∣∣∣+ sin2 α.

(4.10)

Since (x, r) /∈ Z we have that B(x, 2r) ∩ Ti 6= ∅ for both i = 1, 2. Without loss
of generality let x ∈ T2 and set {v0} = T1 ∩ T2, {vi} = ∂B(x, 2r) ∩ Ti, for i = 1, 2,
{p} = ∂B(x, 2r) ∩ Lv0v2\{v2}, where Lv0v2 denotes the line crossing v0 and v2. Let also
p′ be the point of intersection of Lv0v1 and the perpendicular line to Lv0v2 which passes
through p. See also Figure 2.

We have

|µ(B(x, r))− 2 r cosα| = | cosα (d(v1, v0) + d(v0, v2))− cosα(d(v0, v2) + d(v0, p))|
≈ |d(v1, v0)− d(v0, p))|.

Observing that

|d(v1, v0)− d(v0, p)| ≤ d(v0, p
′)− d(v0, p) = d(v0, p

′)− d(v0, p
′) cos(2α)

≈ sin2(2α) d(v0, p
′) . r sin2 α

and recalling (4.10), we deduce that δµ(B(x, 2r)) . sin2 α.

Subcase A2: B(x, 2r) ∩ Γ ⊂ Ti ∪ Li for i = 1 or 2.
Without loss of generality we can assume that i = 2. We consider the following points:

{v0} = L2 ∩ T2, {v1} = ∂B(x, 2r) ∩ T2, {v2} = ∂B(x, 2r) ∩ L2, and {p} = ∂B(x, 2r) ∩
Lv0v1\{v1}. Let also p′ be the point of intersection of Lv0v2 and the perpendicular line to
Lv0v1 which passes through p. See also Figure 3.
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Figure 4. The curve Γα.

We have

|µ(B(x, r))− 4 cosα r| = | cosαd(v1, v0) + d(v0, v2)− cosα(d(v0, v1) + d(v0, p))|
≤ (1− cosα)d(v0, v2) + cosα (d(v0, v2)− d(v0, p))

. r sin2 α+ cosα (d(v0, v2)− d(v0, p)).

As in the previous subcase,

d(v0, v2)− d(v0, p) ≤ d(v0, p
′)− d(v0, p) = d(v0, p

′)− d(v0, p
′) cosα

≈ d(v0, p
′) sin2 α . r sin2 α,

hence we deduce that δµ(B(x, 2r)) . sin2 α.

Subcase A3: B(x, r) ∩ L1 6= ∅ and B(x, r) ∩ L2 6= ∅.
If r ≤ 1, combining the arguments from the two previous cases, it follows that δµ(B(x, r)) .

sin2 α.
We now consider the case when r > 1 and without loss of generality we assume that

x = (w, h) ∈ T1. Given two lines L,L′, we denote by ](L,L′) the smallest angle between
L and L′. Let {v1} = ∂B(x, r) ∩ L1 and let θ1 = ](Lx,v1 , L1). Then it follows easily that

δµ(B(x, r)) . sin2 θ1 ≈
(
h

r

)2

≤ sin2 α

r2
,

see also Figure 4.

Case B: (x, r) /∈ Z and x /∈ T .

Let {v1} = ∂B(x, r) ∩ T , then if θ1 = ](LxV1 , L2) we get

(4.11) δµ(B(x, r)) = 1− cos θ1 ≈ sin2 θ1.

Since θ1 < α, we have that sin2 θ1 < sin2 α. Moreover if r > 1, as in subcase A3, we get

that sin2 θ1 <
sin2 α
r2 . Therefore,

δµ(B(x, r)) . min

(
1,

1

r2

)
sin2 α.

Thus (4.6) follows and the proof of the lemma is complete.
�

We wish now to compare the integral
∫∫∞

0 ∆1
µ(x, r)2 dr

r dµ(x) to the analogous one in-
volving the so called β-numbers of Peter Jones, which play a key role in the theory of
the so called quantitative rectifiability (see [Jo], [DaS1] and [DaS2], for example). Given
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a Radon measure µ in Rd, the Jones’ β-numbers are defined as follows. For x ∈ supp(µ)
and r > 0, set, for 1 ≤ p <∞,

βµp (B(x, r)) = inf
L

(∫
B(x,r)

dist(y, L)p

rp+1
dµ(y)

)1/p

,

and

βµ∞(B(x, r)) = inf
L

sup
y∈B(x,r)∩supp(µ)

dist(y, L)

r
,

where in both cases the infimum is taken over all lines L ⊂ Rd.
By [Do, Theorem 6] (in the case 1 ≤ p <∞), for the measure µα of Proposition 4.1 we

have ∫∫ ∞
0

βµαp (B(x, r))2dr

r
dµα(x) ≈ ‖f ′‖22 ≈ sin2 α.

This also holds for p =∞, by [Jo]. So together with Proposition 4.1, this yields∫∫ ∞
0

∆1
µα(x, r)2dr

r
dµα(x)�

∫∫ ∞
0

βµαp (B(x, r))2dr

r
dµα(x) as α→ 0,

for all 1 ≤ p ≤ ∞.
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