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Abstract. Let G be any Carnot group. We prove that, if a subset of G is contained in a recti-
fiable curve, then it satisfies Peter Jones’ geometric lemma with some natural modifications. We
thus prove one direction of the Traveling Salesman Theorem in G. Our proof depends on new
Alexandrov-type curvature inequalities for the Hebisch-Sikora metrics. We also apply the geomet-
ric lemma to prove that, in every Carnot group, there exist −1-homogeneous Calderón-Zygmund
kernels such that, if a set E ⊂ G is contained in a 1-regular curve, then the corresponding singular
integral operators are bounded in L2(E). In contrast to the Euclidean setting, these kernels are
nonnegative and symmetric.

1. Introduction

Let X be a metric space. A set Γ ⊂ X is called a rectfiable curve if it is the Lipschitz image
of a finite interval. The Analyst’s Traveling Salesman Problem asks the following: given a set
E ⊂ X, is there a finite length rectifiable curve Γ ⊂ X so that E ⊆ Γ? This would mean that
it is possible to visit the set E in finite time. In the case when such curves Γ exist, one can also
ask for the smallest length of Γ.

WhenX = R2, Jones gave a complete answer to the first question using the notion of β-numbers
[19]. For E ⊂ X, x ∈ R2, and r > 0 we define

βE(x, r) := inf
L

sup
z∈B(x,r)∩E

d(z, L)

r
,

where the infimum is taken over the set of all affine lines L. Thus, βE(x, r) is a scale-invariant
measure of how close the set E lies to some line. He also developed upper and lower bounds for
the infimal length of rectifiable curves containing E by using these β-numbers. Okikiolu later
generalized his result to Euclidean spaces of all dimensions [24]. The following theorem is now
known as the Traveling Salesman Theorem:

Theorem 1.1 (Euclidean Traveling Salesman Theorem (TST) [19, 24]). Let E ⊂ Rn. Then E
lies on a finite length rectifiable curve if and only if

γ(E) := diam(E) +

∫
Rn

∫ ∞
0

βE(x, r)2 dr

rn
dx <∞.(1.1)

Furthermore, if γ(E) <∞, then we have an estimate on the infimal length of such curves:

1

C
γ(E) ≤ inf

Γ⊃E
`(Γ) ≤ Cγ(E),

where C is some constant depending only on n.

It is well known from Rademacher’s theorem that rectifiable curves in Rn infinitesimally re-
semble lines. However, to answer questions about the boundedness of singular integrals and
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other problems of a global nature, Rademacher’s theorem does not provide enough quantitative
information. Stated informally, one would like to know that rectifiable curves admit good affine
approximations “at most places and scales”. This is typically quantified via integrals over space
and scale as in (1.1). Such Carleson integrals convey the right quantitative information required
for the study of certain well known singular integrals. Jones was the first to realize this connec-
tion [18]. He used β-numbers to control the Cauchy singular integral on 1-dimensional Lipschitz
graphs. Since Jones’ pioneering work, β-numbers have become crucial tools in harmonic analysis,
geometric measure theory, and their connections. In fact, the introduction of β-numbers may be
viewed as a point of departure for the theory of quantitative rectifiability which was developed
in the 90’s by David and Semmes [8, 9, 10]. The study of quantitative rectifiability led to a rich
geometric framework for singular integrals acting on lower dimensional subsets of Rn. For more
information, we refer the reader to the books [9, 25, 31]

There have been numerous generalizations and variants of Theorem 1.1 beyond Euclidean
spaces. Schul [27] extended Theorem 1.1 to Hilbert spaces, David and Schul [11] recently con-
sidered the theorem in the graph inverse limits of Cheeger-Kleiner, and Hahlomaa and Schul
(independently)[15, 16, 26] obtained variants of Theorem 1.1 in general metric spaces. In the last
case, however, there is no natural notion of lines over which one may infimize in the definition of
β, so curvature-type quantities other than β-numbers must be considered.

A natural class of metric spaces in which to study the Analyst’s Traveling Salesman Problem
(TSP) is the class of Carnot groups (introduced in more detail in Section 2). This is a special
subclass of nilpotent Lie groups whose abelian members are precisely the Euclidean spaces. Thus,
these groups can be viewed as nonabelian generalizations of Euclidean spaces. Moreover, Carnot
groups are locally compact geodesic spaces which admit dilations, and they are isometrically
homogeneous. In fact, by a recent observation of Le Donne [20], Carnot groups are the only
metric spaces with these properties. Developing aspects of quantitative rectifiability (such as
the TST) in Carnot groups contributes to the systematic effort which started about 15 years
ago to develop Geometric Measure Theory (GMT) on these sub-Riemannian spaces. Rather
than providing a long list of highlights in sub-Riemannian GMT, we refer the reader to the
recent lecture notes of Serra Cassano [28] which provide a nice overview of the field with ample
references to the continuously growing literature.

Like Euclidean spaces, Carnot groups are Ahlfors regular and contain a rich family of lines
(which are cosets of 1-dimensional subgroups isometric to R). These are the so-called horizontal
lines. Hence the definition of β-numbers readily generalizes in this case. Indeed, in the definition
of βE(x, r), we instead take the infimum infL over all horizontal lines that intersect B(x, r), and
we use the sub-Riemannian metric to measure distance. Ferrari, Franchi and Pajot [13] initialized
the study of the TSP in the simplest nonabelian Carnot group; the Heisenberg group H. They
proved that, if the Carleson integral of β2

E is bounded, then E lies on a rectifiable curve. Schul
and the second named author [22, 23] improved the aforementioned result, and they obtained an
almost sharp Traveling Salesman Theorem in H:

Theorem 1.2 ([22]). There exists a universal constant C > 0 so that if Γ ⊂ H is a finite length
rectifiable curve, then

diam(Γ) +

∫
H

∫ ∞
0

βΓ(x, r)4 dr

r4
dx ≤ C`(Γ).

Theorem 1.3 ([23]). For any p < 4, there exists C(p) > 0 so that for any E ⊂ H for which

γp(E) := diam(E) +

∫
H

∫ ∞
0

βE(x, r)p
dr

r4
dx <∞,
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then there is a finite length rectifiable curve Γ that contains E and

`(Γ) ≤ Cpγp(E).

It is currently unknown whether Theorem 1.3 holds for p = 4. This would give a sharp converse
to Theorem 1.2. Note that the 4 in the exponent of dr

r4
is an obvious modification resulting from

the Hausdorff dimension of the Heisenberg group. However, the exponent 4 of βE in Theorem
1.2 is a consequence of an Alexandrov-type curvature inequality in H whose rather delicate proof
depends crucially upon the Koranýi metric in H. Note, however, that Theorem 1.2 holds for any
homogeneous metric in H including the sub-Riemannian metric.

We cannot use the Koranýi metric in the general setting since it does not generalize to arbitrary
Carnot groups. Instead, we use another family of metrics – the Hebisch-Sikora metrics [17] – for
which we will establish a similar curvature inequality (Theorem 3.1). With the new curvature
inequality, we can then use the proof of [22] to obtain the following theorem which holds for all
homogenous metrics in any Carnot group G.

Theorem 1.4. Let G be a step r Carnot group with Hausdorff dimension Q. There is a constant
C = C(G) > 0 such that, for any rectifiable curve Γ ⊂ G, we have∫

G

∫ ∞
0

βΓ(x, t)2r2 dt

tQ
dHQ(x) ≤ CH1(Γ).

In the case of step 2 Carnot groups (of which the Heisenberg group is an example), this theorem

provides a bound on the Carleson integral involving β2·22 = β8. This is weaker than the bound
on the Carleson integral of Theorem 1.2 which involves β4. We will prove in Section 5 that,
in the special case of step 2 Carnot groups, the curvature inequality can be improved so that
Theorem 1.4 holds with an exponent 4 on β. Therefore we obtain a genuine generalization of
Theorem 1.2 to any step 2 Carnot group.

Theorem 1.5. Let G be a step 2 Carnot group with Hausdorff dimension Q. There is a constant
C = C(G) > 0 such that, for any rectifiable curve Γ ⊂ G, we have∫

G

∫ ∞
0

βΓ(x, t)4 dt

tQ
dHQ(x) ≤ CH1(Γ).

As mentioned earlier, there are deep connections between quantitative rectifiability and sin-
gular integral operators (SIO) in Euclidean spaces. In particular, the boundedness of SIOs on
Lipschitz graphs (and beyond) is a classical topic developed by Calderón [1], Coifman-McIntosh-
Meyer [5], David [6], David-Semmes [8, 9], Tolsa [30], and many others. In all of these contribu-
tions, the kernels defining the SIO are odd functions. This is very reasonable since, in order to
define a SIO which makes sense on lines and other “nice” 1-dimensional objects, one heavily relies
on the cancellation properties of the kernel, see e.g. [29, Proposition 1, pp 289]. Surprisingly, the
situation is very different in Carnot groups, and this was first observed in the first Heiseinberg
group in [3]. Using Theorem 1.4, we will prove the following theorem.

Theorem 1.6. Let (G, d) be Carnot group of step r ≥ 2 equipped with a homogeneous metric d.
There exists a nonnegative, symmetric, −1 homogeneous, Calderón-Zygmund kernel K : G\{0} →
(0,∞) such that the corresponding truncated singular integrals

T εf (p) =

∫
E\Bd(p,ε)

K(q−1 · p)f(q) dH1(q)

are uniformly bounded in L2(H1|E) for every 1-regular set E which is contained in a 1-regular
curve.
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The paper is organized as follows. In Section 2, we will introduce the basic properties of
Carnot groups that will be needed for our purposes, and we will define the Hebisch-Sikora metric
used throughout the paper. We will introduce and prove the curvature estimate Theorem 3.1 in
Section 3. This curvature bound will be used to prove Theorem 1.4 in Section 4. This section
follows the example set forth in [22]. The case of step 2 groups will be addressed in Section 5.
Finally in Section 6 we will prove Theorem 1.6.

Acknowledgments. We extend our sincere thanks to the referee for reading our manuscript
extremely carefully and for pointing out to us several mistakes and inconsistencies.

2. Carnot preliminaries

A step r Carnot group is a connected, simply connected Lie group G whose Lie algebra g is
stratified in the following sense:

g = V1 ⊕ · · · ⊕ Vr, [V1, Vi] = Vi+1 for i = 1, . . . , r − 1, [V1, Vr] = {0}
where V1, . . . , Vr are non-zero subspaces of the Lie algebra. Write vi = dimVi. Choose a basis
{X1, . . . , XN} of g adapted to the stratification in the following sense:{

X∑i−1
j=1 vj+1, . . . , X

∑i
j=1 vj

}
is a basis of Vi for each i ∈ {1, . . . , r}.

For any x ∈ G, we can uniquely write x = exp(x1X1 + · · ·+ xNXN ) for some (x1, . . . , xN ) ∈ RN
via the exponential map exp : g → G. Thus we may identify G with RN using the relationship
x↔ (x1, . . . , xN ). Denote by | · | the Euclidean norm in G = RN (depending on the above choice
of basis). Say Q is the homogeneous dimension of G i.e. Q =

∑r
i=1 idimVi. There is a natural

family of automorphisms known as dilations on G. If, for any p ∈ G, we write p = (p1, . . . , pr)
where pi ∈ Rvi , then for any s > 0 define the dilation

δs(p) =
(
sp1, s

2p2, . . . , s
rpr
)
.

It follows that {δs}s>0 is a one parameter family i.e. δs ◦ δt = δst. Given p ∈ G, we will also often
write p = (p1, p2) ∈ Rn ×RN−n for n := v1. We may then think of p1 as the “horizontal part” of
p. Define the non-horizontal part of p ∈ G as

NH(p) := π̃(p)−1p

where π̃ : G→ G is the map π̃(p1, p2) = (p1, 0) (note that this is not a group homomorphism!).

We will now endow G with a metric space structure.

Theorem 2.1 (Hebisch and Sikora, 1990). There exists ε0 > 0 so that, for every η < ε0,

‖x‖ = inf{t : |δ1/t(x)| < η} for all x ∈ G

is a homogeneous, subadditive norm on G i.e. for every s > 0 and x, y ∈ G, ‖δs(x)‖ = s‖x‖ and
‖xy‖ ≤ ‖x‖+ ‖y‖. In particular, the unit ball in ‖ · ‖ coincides with the Euclidean ball BRN (0, η).

For any η < ε0, call this norm the Hebisch-Sikora (HS) norm on G as introduced in [17].
Define the induced metric d on G as d(x, y) = ‖y−1x‖. The continuity of the Carnot dilations
implies in particular that |δ1/‖x‖(x)| = η. For any horizontal point (that is, p ∈ Rn × {0}), we
have

(2.1) ‖p‖ = inf{t : 1
t |p| < η} = inf{t : 1

η |p| < t} = 1
η |p|.

Moreover, we have ‖π̃(p)‖ ≤ ‖p‖ for any p ∈ G. Indeed, if there was some t > 0 satisfying both

‖π̃(p)‖ > t and |δ1/t(p)| < η, we would have η2 >
p21
t2

+ · · · + p2r
t2r
≥ p21

t2
= ‖π̃(p)‖2

t2
η2 > η2 which is
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impossible. We also record that for any compact K ⊂ G, there is a constant C > 0 (depending
on K) so that

(2.2) d(x, y)r ≤ C|x− y| for any x, y ∈ K.

A metric d on G is said to be homogeneous if d : RN ×RN → [0,∞) is continuous with respect
to the Euclidean topology, is left invariant, and is 1-homogeneous with respect to the dilations
{δr}r>0. The 1-homogeneity of d means that

d(δr(p), δr(q)) = r d(p, q)

for all p, q ∈ G and all r > 0. We note in particular that the Hebisch-Sikora and the Carnot–
Carathéodory metrics are homogeneous. Any two homogeneous metrics d1 and d2 on a given
Carnot group G are equivalent in the sense that there exists a constant L > 0 so that

(2.3) L−1d1(p, q) ≤ d2(p, q) ≤ Ld1(p, q)

for all p, q ∈ G; this is an easy consequence of the assumptions.

We define the Jones β-numbers for a set K ⊂ G as follows: for any x ∈ G and r > 0,

βK(B(x, r)) = inf
L

sup
z∈K∩B(x,r)

d(z, L)

r
.

Here, B(x, r) is the closed ball, and the infimum is taken over all possible horizontal lines

L = {pδs(π̃(p−1q)) : s ∈ R} where p, q ∈ G.

The following is the famous Baker-Campbell-Hausdorff formula.

Theorem 2.2 (Dynkin, ’47). Suppose e(·) : g → G is the exponential map. Given X,Y ∈ g,
choose Z such that eZ = eXeY . Then

Z =
∞∑
k=1

(−1)k−1

k

∑
P (r1, s1, . . . , rk, sk)[X, · · · [X︸ ︷︷ ︸

r1

, [Y, · · · [Y︸ ︷︷ ︸
s1

, · · · [X, · · · [X︸ ︷︷ ︸
rk

, [Y, · · ·Y︸ ︷︷ ︸
sk

]]] · · · ]

where the second sum is taken over all {r1, s1, . . . , rk, sk} ∈ N2k satisfying ri + si > 0 for i =
1, . . . , k, and

P (r1, s1, . . . , rk, sk) =
1∑k

i=1(ri + si)
∏k
i=1 ri!si!

.

Notice that the nested commutators vanish if sk > 1 or if sk = 0 and rk > 1. Also, since
G is nilpotent, the first sum terminates after finitely many terms, and the length of the nested
brackets is bounded from above. That is, there are only finitely many summed nested bracket
terms in the BCH formula for a Carnot group G.

We will later make use of the following estimates established in [17] (for a verification, see the
proof of Lemma 3.2). Choose a, b ∈ G with |a| < 1 and |b| < 1. Write a = (a1, a2) and b = (b1, b2)
as above. Then

ab = (a1 + b1, a2 + b2 +R(a, b))

for some polynomialR given by the BCH formula (Theorem 2.2). WriteR1(a, b) = R((a1, 0), (b1, 0))
and R2 = R−R1. Then the BCH formula gives

(2.4) |R2(a, b)| ≤ C2(|a1||b2|+ |a2||b1|+ |a2||b2|)
and

(2.5) |R1(a, b)| ≤ C1|a1||b1|
∣∣∣∣ a1

|a1|
− b1
|b1|

∣∣∣∣ .
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for some constants C1 and C2 depending only on the group structure of G.

For the remainder of the paper, fix a positive constant η < min{ε0,
1
2} (where ε0 is as in

Theorem 2.1) such that, if |a| ≤ η and |b| ≤ η, then

(2.6) (C2 + 1)(|a1|+ |a2|+ |b1|+ |b2|) ≤
1

8

and

(2.7) (5C2
1 + 1)|a1||b1| ≤

1

2
.

Throughout the paper, we will write a . b to indicate that there is a constant C > 0 depending
only on the metric space (G, d) satisfying a ≤ Cb. Similarly, we will write a .ξ b if the constant
depends also on some other parameter ξ.

3. Curvature bound in a Carnot group

For p, q ∈ G, denote the horizontal segment between them as

Lpq := {p δt(π̃(p−1q)) : t ∈ [0, 1]}.

While this segment will always originate at p, it will not intersect q in general. Note also that
horizontal segments do not necessarily coincide with Euclidean segments if the step of G is r > 2.
For each t ∈ [0, 1], write Lpq(t) = p δt(π̃(p−1q)). If p = 0, then Lq := L0q ⊂ Rn × {0} is the
segment

Lq = {δt(π̃(q)) : t ∈ [0, 1]} = {(tq1, 0) : t ∈ [0, 1]}.

That is, Lq is simply the Euclidean line segment from the origin to π̃(q) = (q1, 0). Our goal in
this section will be to prove the following curvature estimate in G, which should be thought of
as a lower bound on the excess of the triangle inequality. We remark that the use of the term
curvature bound is partly motivated by the Menger curvature which turned out to be a very
powerful tool in the study of the Cauchy transform, see e.g. [31] and the references therein.

Here, we fix the value m = 2−217. (This value will be important in Section 4. The theorem
actually holds for any 0 < m < 1, but then the constant C0 would depend also on m.)

Theorem 3.1. Suppose a, z, v, w ∈ G satisfy

mρ ≤ min{d(a, z), d(a, v), d(z, v), d(v, w)}

and

max{d(a, z), d(a, v), d(z, v), d(v, w), d(a,w)} ≤ ρ

for some ρ > 0. Then there is a constant C0 = C0(G) > 0 so that

sup
t∈[0,1]

d(Lav(t), Law)2r2 + sup
t∈[0,1]

d(Lvw(t), Law)2r2 ≤ C0ρ
2r2−1∆

where ∆ := d(a, z) + d(z, v) + d(v, w)− d(a,w).
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Figure 1.

3.1. Preliminary lemmas. We will need the estimates from the following two lemmas in the
proof of Lemma 3.4. Recall that we have set m = 2−217.

Lemma 3.2. For any a = (a1, a2) and b = (b1, b2) in G with |a|, |b| ∈
(
η(m2 )r, 1

)
, we have

‖NH(ab)‖r . |a1||b1|
∣∣∣∣ a1

|a1|
− b1
|b1|

∣∣∣∣+ |a2|(|b1|+ |b2|) + |b2|(|a1|+ |a2|).

In particular, we will use the fact that

(3.1) α‖NH(ab)‖2r ≤
(
|a1||b1|

∣∣∣∣ a1

|a1|
− b1
|b1|

∣∣∣∣)2

+ (|a2|(|b1|+ |b2|) + |b2|(|a1|+ |a2|))2

for some 0 < α < 1 depending only on the metric and group structure of G.

Proof. We may write a = eA and b = eB for A,B ∈ g. In other words, A = log a and B = log b.
Write A = A1 + A2 and B = B1 + B2 where A1, B1 ∈ V1 lie in the horizontal (first) layer of g.
According to the Baker-Campbell-Hausdorff formula (Theorem 2.2) and the bilinearity of the Lie
bracket, log(ab) is a finite sum of constant multiples of

(3.2) [Z1, [Z2, · · · , [Zk−2, [Zk−1, Zk]] · · · ]]

for some positive integer k ≤ r where each Zi is one of A1, B1, A2, or B2. In particular, [Zk−1, Zk]
must have the form

[A1, B1], [A1, B2], [A2, B1], or [A2, B2].

Indeed, we must have sn = 1 or we have sn = 0 and rn = 1 (for otherwise the brackets vanish),
so the nested brackets (3.2) must have the form

[·, [·, · · · , [A,B] · · · ]] = [·, [·, · · · , [A1 +A2, B1 +B2] · · · ]] =

2∑
i=1

2∑
j=1

[·, [·, · · · , [Ai, Bj ] · · · ]]

(since [A,B] = −[B,A]).

By definition, we have

|NH(ab)| = |π̃(ab)−1(ab)| = |(−a1 − b1, 0)(a1 + b1, a2 + b2 + P (a, b))|

for some polynomial P (given by the BCH formula). Thus by a similar argument as above,
log(NH(ab)) equals A2 +B2 plus a finite sum of constant multiples of nested brackets (3.2) each
of which ends with a term of the form

[A1, B1], [A1, B2], [A2, B1], [A2, B2], [A1, A2], or [B1, B2].
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Consider the norm | · | on g induced by the Euclidean norm on the exponential coordinates RN ,
i.e. for X ∈ g with eX = x ∈ G, we have |X| = |x|. Since

[A1, B1] = |A1||B1|
[
A1

|A1|
,
B1

|B1|

]
= |A1||B1|

[
A1

|A1|
− B1

|B1|
,
B1

|B1|

]
,

the bilinearity of the Lie bracket gives the following bound:

|[A1, B1]| . |A1||B1|
∣∣∣∣ A1

|A1|
− B1

|B1|

∣∣∣∣ .
Thus, for those brackets (3.2) ending with [A1, B1], we have

|[Z1, [Z2, · · · , [Zk−2, [Zk−1, Zk]] · · · ]]| .

(
k−2∏
i=1

|Zi|

)
|[A1, B1]| . |a1||b1|

∣∣∣∣ a1

|a1|
− b1
|b1|

∣∣∣∣
since |a| < 1 and |b| < 1.

Now write c = η(m2 )r. Since |a| > c, it follows that |a1| + |a2| > c. Similarly, |b1| + |b2| > c.
Therefore, all other nested brackets (3.2) which do not end with [A1, B1] satisfy

|[Z1, [Z2, · · · , [Zk−2, [Zk−1, Zk]] · · · ]]| .
k∏
i=1

|Zi| . |a2|(|b1|+ |b2|) + |b2|(|a1|+ |a2|)

since, for example,

|a1||a2| ≤ |a2| ≤ c−1|a2|(|b1|+ |b2|).

Since we may estimate |NH(ab)| = | log(NH(ab))| by a finite sum of constant multiples of the
nested brackets (3.2) plus |a2|+ |b2|, we have proven

|NH(ab)| . |a1||b1|
∣∣∣∣ a1

|a1|
− b1
|b1|

∣∣∣∣+ |a2|(|b1|+ |b2|) + |b2|(|a1|+ |a2|).

Hence there is some compact set K ⊂ G (depending only on the group structure and metric) so
that NH(ab) ∈ K for any a and b in the Euclidean unit ball. That is, we may apply (2.2) to
conclude ‖NH(ab)‖r . |NH(ab)|. This completes the proof. �

The following lemma is entirely Euclidean in nature and elementary. The details of the proof
are included for completeness. Here and in what follows, we will assume that the quantity

|c||d|
∣∣∣ c|c| − d

|d|

∣∣∣ vanishes whenever c = 0 or d = 0.

Lemma 3.3. Fix c, d ∈ Rn. Let `c+d denote the segment from the origin to c+ d. Then

dRn(c, `c+d)
2 ≤ 1

2 |c||d|
∣∣∣∣ c|c| − d

|d|

∣∣∣∣2 .
Proof. If c+ d = 0, then d = −c and the result follows. Thus we may assume c+ d 6= 0. We will
make frequent use of the following consequence of the polarization identity:

(3.3) |c||d|
∣∣∣∣ c|c| − d

|d|

∣∣∣∣2 = |c|2 + 2|c||d|+ |d|2 − |c+ d|2.
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Let u denote the scalar projection of c along c + d. That is, u = 〈c,c+d〉
|c+d| . If u ≤ 0, then1 the

closest point in `c+d to c is the origin, so dRn(c, `c+d) = |c|. We then have2

2dRn(c, `c+d)
2 = 2|c|2 ≤ |c|2 + |d|2 − |c+ d|2 ≤ |c||d|

∣∣∣∣ c|c| − d

|d|

∣∣∣∣2 .
If u ≥ |c+ d|, then the closest point in `c+d to c is c+ d. Since3 |d|2 ≤ |c|2 − |c+ d|2, we have

2dRn(c, `c+d)
2 = 2|c− (c+ d)|2 = 2|d|2 = |d|2 + |d|2 ≤ |c|2 + |d|2 − |c+ d|2 ≤ |c||d|

∣∣∣∣ c|c| − d

|d|

∣∣∣∣2 .
Now suppose 0 < u < |c+ d|. That is, the projection of c to the line containing `c+d actually

lies in `c+d. Since this projection divides `c+d into segments of length u and |c + d| − u, the
Pythagorean Theorem gives

|c||d|
∣∣∣∣ c|c| − d

|d|

∣∣∣∣2 = |c|2 + 2|c||d|+ |d|2 − |c+ d|2

=
[
|c|2 − u2

]
+
[
|d|2 − (|c+ d| − u)2

]
+ 2|c||d|+ 2u2 − 2u|c+ d|

= dRn(c, `c+d)
2 + dRn(c, `c+d)

2 + 2|c||d|+ 2u(u− |c+ d|)
= 2dRn(c, `c+d)

2 + 2(|c||d| − u|d|+ u|d|+ u(u− |c+ d|))
= 2dRn(c, `c+d)

2 + 2|d|(|c| − u) + 2u(|d| − (|c+ d| − u))

≥ 2dRn(c, `c+d)
2

since (|c + d| − u)2 ≤ (|c + d| − u)2 + dRn(c, `c+d)
2 = |d|2 and u ≤ |c| by the Cauchy-Schwartz

inequality. �

The technical proof of this next lemma follows the example of the proof from [17] that the
HS-norm is subadditive. By tightening some of the bounds from [17, Theorem 2], we are able
to estimate the error in the subadditivity of the norm. Again, we have set m = 2−217, but this
lemma actually holds for any m ∈ [0, 1].

Lemma 3.4. Suppose x, y ∈ G satisfy ‖x‖, ‖y‖ ∈ [mρ, ρ] for some ρ > 0. Then

(3.4)
m2r

22r+4

(
α ‖NH (xy)‖2r

(‖x‖+ ‖y‖)2r−1
+
dRn(x1, `x1+y1)2

‖x‖+ ‖y‖

)
≤ ‖x‖+ ‖y‖ − ‖xy‖.

Proof. We will write A to respresent the left hand side of (3.4). It will be important throughout
the proof that we have 4A ≤ min{‖x‖, ‖y‖}. This is indeed true since

‖NH(xy)‖ = d(xy, π̃(xy)) ≤ ‖xy‖+ ‖π̃(xy)‖ ≤ ‖xy‖+ ‖xy‖ ≤ 2(‖x‖+ ‖y‖) ≤ 4ρ

and since
dRn(x1, `x1+y1) ≤ |x1 − (x1 + y1)| = |y1| ≤ ρ,

and thus we have

4A ≤ m2r

22r+2

(
(4ρ)2r

(mρ+mρ)2r−1
+

ρ2

mρ+mρ

)
=
mρ

2
+
m2r−1ρ

22r+3
≤ mρ ≤ min{‖x‖, ‖y‖}

1Indeed, if u ≤ 0, then the angle between the vector c and `c+d is between π/2 and 3π/2.
2The assumption u ≤ 0 implies |c|2 + 〈c, d〉 = 〈c, c〉+ 〈c, d〉 = 〈c, c+ d〉 ≤ 0. Hence the polarization identity yields
2|c|2 ≤ −2〈c, d〉 = |c|2 + |d|2 − |c+ d|2.
3The polarization identity gives |d|2 = |c|2 + |c+ d|2 − 2〈c, c+ d〉 ≤ |c|2 + |c+ d|2 − 2|c+ d|2 since the assumption
u ≥ |c+ d| implies −2〈c, c+ d〉 ≤ −2|c+ d|2.
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as desired.

Set a = δ1/‖x‖(x) and b = δ1/‖y‖(y) so that |a| = |b| = η. Write

s =
‖x‖

‖x‖+ ‖y‖ −A
and t =

‖y‖
‖x‖+ ‖y‖ −A

.

Note that s, t ∈ (0, 1) since 4A ≤ min{‖x‖, ‖y‖}. These values have been chosen so that∣∣∣δ 1
‖x‖+‖y‖−A

(xy)
∣∣∣ =

∣∣∣∣δ ‖x‖
‖x‖+‖y‖−A

(
δ 1
‖x‖

(x)
)
· δ ‖y‖
‖x‖+‖y‖−A

(
δ 1
‖y‖

(y)
)∣∣∣∣ = |δs (a) δt (b)| .

Write a = (a1, a2) and b = (b1, b2) as before. For ease of notation, we write δλ(a1) = δλ((a1, 0))
and δλ(a2) = δλ((0, a2)) for λ > 0, and we similarly use the shorthand δλ(b1) and δλ(b2). Write
v = δs(a2) + δt(b2) + (0, R2(δs(a), δt(b))) where R2 is as defined in Section 2. The bounds (2.4)
and (2.6) give

|v|
(2.4)

≤ s2|a2|+ t2|b2|+ C2 (|δs(a1)||δt(b2)|+ |δs(a2)||δt(b1)|+ |δs(a2)||δt(b2)|)
≤ s2|a2|+ t2|b2|+ st(C2 + 1) (|a2|(|b1|+ |b2|) + |b2|(|a1|+ |a2|))

− (|δs(a2)|(|δt(b1)|+ |δt(b2)|) + |δt(b2)|(|δs(a1)|+ |δs(a2)|))
(2.6)

≤ s2|a2|+ t2|b2|+ 1
4st (|a2|+ |b2|)
− (|δs(a2)|(|δt(b1)|+ |δt(b2)|) + |δt(b2)|(|δs(a1)|+ |δs(a2)|))

≤ s|a2|+ t|b2| − 1
2st (|a2|+ |b2|)

− (|δs(a2)|(|δt(b1)|+ |δt(b2)|) + |δt(b2)|(|δs(a1)|+ |δs(a2)|)) .

This last inequality follows from the following argument. Since 4A ≤ ‖y‖, we have

3
4 t− (1− s) =

3
4‖y‖

‖x‖+ ‖y‖ −A
− ‖y‖ −A
‖x‖+ ‖y‖ −A

=
A− 1

4‖y‖
‖x‖+ ‖y‖ −A

≤ 0

so (3
4 t+ s) ≤ 1 (and similarly (3

4s+ t) ≤ 1), and thus

s2|a2|+ t2|b2| − s|a2| − t|b2|+ 3
4st (|a2|+ |b2|) = s|a2|

(
(3

4 t+ s)− 1
)

+ t|b2|
(
(3

4s+ t)− 1
)
≤ 0.

Moreover, the inequalities (3
4 t+ s) ≤ 1 and (3

4s+ t) ≤ 1 imply that

|v| ≤ s2|a2|+ t2|b2|+ 1
4st (|a2|+ |b2|) ≤ |a2|+ |b2|.

Hence

|v|2 (1 + st) ≤ |v|2 + st|v| (|a2|+ |b2|)
≤ (|v|+ 1

2st (|a2|+ |b2|))2

≤ (s|a2|+ t|b2| − (|δs(a2)|(|δt(b1)|+ |δt(b2)|) + |δt(b2)|(|δs(a1)|+ |δs(a2)|)))2

≤ (s|a2|+ t|b2|)2 − (|δs(a2)|(|δt(b1)|+ |δt(b2)|) + |δt(b2)|(|δs(a1)|+ |δs(a2)|))2 .

This last inequality follows from the fact that (k − `)2 ≤ k2 − `2 when ` ≤ k and

|δs(a2)|(|δt(b1)|+ |δt(b2)|) + |δt(b2)|(|δs(a1)|+ |δs(a2)|
≤ st (|a2|(|b1|+ |b2|) + |b2|(|a1|+ |a2|))
≤ s|a2|+ t|b2|



THE TST IN CARNOT GROUPS 11

since |a| = |b| = η < 1
2 . Therefore (3.3) together with the fact that 2〈u1, u2〉 ≤ st|u1|2 + |u2|2

st for

any u1, u2 ∈ RN gives

|δs(a)δt(b)|2 = |δs(a1) + δt(b1)|2 + |v + (0, R1(δs(a), δt(b)))|2

≤ (|δs(a1)|+ |δt(b1)|)2 − |δs(a1)||δt(b1)|
∣∣∣∣ δs(a1)

|δs(a1)|
− δt(b1)

|δt(b1)|

∣∣∣∣2
+ |v|2 (1 + st) + |R1(δs(a), δt(b))|2

(
1 +

1

st

)
(2.5)

≤ (s|a1|+ t|b1|)2 + (s|a2|+ t|b2|)2 − |δs(a1)||δt(b1)|
∣∣∣∣ δs(a1)

|δs(a1)|
− δt(b1)

|δt(b1)|

∣∣∣∣2
− (|δs(a2)|(|δt(b1)|+ |δt(b2)|) + |δt(b2)|(|δs(a1)|+ |δs(a2)|))2

+

(
1 +

1

st

)
C2

1 |δs(a1)|2|δt(b1)|2
∣∣∣∣ δs(a1)

|δs(a1)|
− δt(b1)

|δt(b1)|

∣∣∣∣2 .
Since

|δs(a)| ≥ sr|a| > η

(
‖x‖

‖x‖+ ‖y‖

)r
≥ η

(
mρ

ρ+ ρ

)r
= η

(m
2

)r
(and similarly |δt(b)| > η(m2 )r), we may apply (3.1) to obtain

− (|δs(a2)|(|δt(b1)|+ |δt(b2)|) + |δt(b2)|(|δs(a1)|+ |δs(a2)|))2

≤
(
|δs(a1)||δt(b1)|

∣∣∣∣ δs(a1)

|δs(a1)|
− δt(b1)

|δt(b1)|

∣∣∣∣)2

− α ‖NH(δs(a)δt(b))‖2r

and thus, by the Cauchy-Schwarz inequality,

|δs(a)δt(b)|2

≤ (s|a|+ t|b|)2 − |δs(a1)||δt(b1)|
∣∣∣∣ δs(a1)

|δs(a1)|
− δt(b1)

|δt(b1)|

∣∣∣∣2
+

((
1 +

1

st

)
C2

1 + 1

)
|δs(a1)|2|δt(b1)|2

∣∣∣∣ δs(a1)

|δs(a1)|
− δt(b1)

|δt(b1)|

∣∣∣∣2 − α ‖NH(δs(a)δt(b))‖2r

≤ (s|a|+ t|b|)2 − α ‖NH(δs(a)δt(b))‖2r

+
((

(st+ 1)C2
1 + st

)
|a1||b1| − 1

)
|δs(a1)||δt(b1)|

∣∣∣∣ δs(a1)

|δs(a1)|
− δt(b1)

|δt(b1)|

∣∣∣∣2
(2.7)

≤ (s|a|+ t|b|)2 − α ‖NH(δs(a)δt(b))‖2r − 1
2 |δs(a1)||δt(b1)|

∣∣∣∣ δs(a1)

|δs(a1)|
− δt(b1)

|δt(b1)|

∣∣∣∣2
≤ (s|a|+ t|b|)2 − α ‖NH(δs(a)δt(b))‖2r − dRn(sa1, `sa1+tb1)2

by Lemma 3.3. Since sa1 = x1
‖x‖+‖y‖−A , tb1 = y1

‖x‖+‖y‖−A , and |δs (a) δt (b)| =
∣∣∣δ 1
‖x‖+‖y‖−A

(xy)
∣∣∣, we

have

|δs(a)δt(b)| − (s|a|+ t|b|) ≤ −α‖NH(δs(a)δt(b))‖2r − dRn(sa1, `sa1+tb1)2

|δs(a)δt(b)|+ (s|a|+ t|b|)

=
−α

∥∥∥NH (δ 1
‖x‖+‖y‖−A

(xy)
)∥∥∥2r

− dRn (x1,`x1+y1 )2

(‖x‖+‖y‖−A)2

|δs(a)δt(b)|+ (s|a|+ t|b|)
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=
−α ‖NH(xy)‖2r

(‖x‖+‖y‖−A)2r
− dRn (x1,`x1+y1 )2

(‖x‖+‖y‖−A)2

|δs(a)δt(b)|+ (s|a|+ t|b|)
= (∗).

We proved in particular above that |δs(a)δt(b)| ≤ s|a| + t|b|. Since |a| = |b| = η, this gives
|δs(a)δt(b)| ≤ 2η < 22r+3m−2r/η. Thus

(∗) ≤ − ηm
2r

22r+4

(
α ‖NH (xy)‖2r

(‖x‖+ ‖y‖ −A)2r
+

dRn(x1, `x1+y1)2

(‖x‖+ ‖y‖ −A)2

)

≤ − ηm
2r

22r+4

(
α ‖NH (xy)‖2r

(‖x‖+ ‖y‖)2r−1
+
dRn(x1, `x1+y1)2

‖x‖+ ‖y‖

)
(‖x‖+ ‖y‖ −A)−1.

Since |a| = |b| = η, the definitions of s and t give

s|a|+ t|b| = ‖x‖
‖x‖+ ‖y‖ −A

|a|+ ‖y‖
‖x‖+ ‖y‖ −A

|b| = η(‖x‖+ ‖y‖)
‖x‖+ ‖y‖ −A

.

In other words,

∣∣∣δ 1
‖x‖+‖y‖−A

(xy)
∣∣∣ = |δs(a)δt(b)| ≤ η

‖x‖+ ‖y‖ − m2r

22r+4

(
α‖NH(xy)‖2r
(‖x‖+‖y‖)2r−1 +

dRn (x1,`x1+y1 )2

‖x‖+‖y‖

)
‖x‖+ ‖y‖ −A

 = η

according to the definition of A. Therefore, the definition of the HS norm gives

‖xy‖ ≤ ‖x‖+ ‖y‖ − m2r

22r+4

(
α ‖NH (xy)‖2r

(‖x‖+ ‖y‖)2r−1
+
dRn(x1, `x1+y1)2

‖x‖+ ‖y‖

)
. �

Corollary 3.5. Fix v, w ∈ G. Suppose v, w ∈ G satisfy ‖v‖, ‖v−1w‖ ∈ [mρ, ρ] for some ρ > 0.
Then

(3.5)
m2r

22r+4

(
α ‖NH (w)‖2r

(d(0, v) + d(v, w))2r−1
+

dRn(v1, `w1)2

d(0, v) + d(v, w)

)
≤ d(0, v) + d(v, w)− d(0, w).

Proof. Write x = v and y = v−1w in Lemma 3.4. �

3.2. Proof of Theorem 3.1. We are now ready to prove Theorem 3.1. This theorem controls
the deviation of horizontal segments by the excess in a four point triangle inequality. We restate
it here for convenience. Again, we have fixed m = 2−217.

Theorem 3.1. Suppose a, z, v, w ∈ G satisfy

mρ ≤ min{d(a, z), d(a, v), d(z, v), d(v, w)}

and

max{d(a, z), d(a, v), d(z, v), d(v, w), d(a,w)} ≤ ρ
for some ρ > 0. Then there is a constant C0 = C0(G) > 0 so that

sup
t∈[0,1]

d(Lav(t), Law)2r2 + sup
t∈[0,1]

d(Lvw(t), Law)2r2 ≤ C0ρ
2r2−1∆

where ∆ := d(a, z) + d(z, v) + d(v, w)− d(a,w).
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We may assume without loss of generality from here on out that a = 0. Indeed, the metric is
left invariant, and horizontal segments commute with left multiplication in the following sense:

c−1Lab(t) = c−1aδt(π̃(a−1b)) = c−1aδt(π̃((c−1a)−1(c−1b))) = L(c−1a)(c−1b)(t)

for any b, c ∈ G and any t ∈ [0, 1]. We will first establish the important tools used in the proof
of the theorem.

Lemma 3.6. Under the assumptions of Theorem 3.1, we have

(3.6) ρ−(2r−1)‖NH(w)‖2r + ρ−1dRn(v1, `w1)2 . d(0, v) + d(v, w)− d(0, w)

and

(3.7) ρ−(2r−1)‖NH(v)‖2r + ρ−1dRn(z1, `v1)2 . d(0, z) + d(z, v)− d(0, v).

Figure 2.

Proof. Inequality (3.6) follows immediately from Corollary 3.5. Inequality (3.7) follows from
Corollary 3.5 as well with z in place of v and v in place of w. �

Consider the following version of [21, Lemma 3.6]:

Lemma 3.7. Fix a constant M ≥ 1. For any 0 < ω < M , if g, h, p, q ∈ G satisfy d(g, h) ≤ ω,
‖p‖ ≤ 1 and d(p, q) ≤ ω, then

sup
t∈[0,1]

d(gδt(p), hδt(q)) ≤ C ′ω1/r

for some constant C ′ = C ′(G,M) > 0.

In other words, given two horizontal segments whose starting points and “directions” are close,
points along the segments are close as well. Note that the original lemma in [21] is stated for
0 < ω < 1, but the triangle inequality gives

d(gδt(p), hδt(q)) ≤ d(gδt(p), g) + d(g, h) + d(h, hδt(q)) ≤ 1 + ω + (1 + ω)

≤ 4ω ≤ (4M1− 1
r )ω1/r

when 1 ≤ ω < M . We will now use this lemma to prove Theorem 3.1.

Proof of Theorem 3.1. It suffices to prove the theorem in the case ρ = 1. Indeed, given arbitrary
a, z, v, w satisfying the assumptions of the theorem, their dilations δ1/ρ(a), δ1/ρ(z), δ1/ρ(v), δ1/ρ(w)
satisfy the assumptions with ρ = 1, and horizontal lines commute with dilations in the following
sense: Lδs(p)δs(q)(t) = δs(Lpq(t)).

Note that π̃(v) ∈ Rn×{0} and Lw ⊂ Rn×{0}. Say pv ∈ Lw is the nearest point in Lw to π̃(v)
(in the Euclidean norm).
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We begin with the bound on d(Lv(t), Lw). Since δs(p) = sp for any p ∈ Rn × {0}, we have

d(π̃(v), pv)
2r . |π̃(v)− pv|2 = dRn(v1, `w1)2 . ∆

according to (2.2) and (3.6). (Note that the constant from (2.2) here depends only on G since

π̃(v) and pv lie in the unit ball of G). In other words, d(π̃(v), pv) ≤ C∆1/2r for some constant

C = C(G) > 0. Therefore, we may apply Lemma 3.7 with ω = C∆1/2r (and M = C31/2r) to get
for any t ∈ [0, 1]

d(Lv(t), Lw) = d(δt(π̃(v)), Lw) ≤ d(δt(π̃(v)), δt(pv)) . ∆1/2r2 .

We now bound d(Lvw(t), Lw). Using (3.6), (3.7), and the above inequality, we have

d(v, pv)
2r . d(v, π̃(v))2r + d(π̃(v), pv)

2r

= ‖NH(v)‖2r + d(π̃(v), pv)
2r

.
[
‖NH(v)‖2r + dRn(z1, `v1)2

]
+
[
‖NH(w)‖2r + dRn(v1, `w1)2

]
. [d(0, z) + d(z, v)− d(0, v)] + [d(0, v) + d(v, w)− d(0, w)] = ∆.

This is the bound on the distance between the starting points of our segments. We will now
bound their “directions”. That is, we will bound d(π̃(v−1w), π̃(p−1

v w)). Since the HS norm is
invariant under rotations of Rn × {0} ⊂ RN which fix the other N − n coordinates, we may
assume without loss of generality that the segment Lw lies along the x1 axis in RN . Under this
assumption, we have

π̃(w) = (w1, 0) = (w1
1, 0, 0), π̃(v) = (v1, 0) = (v1

1, v
2
1, 0), and pv = (p1

1, 0, 0)

where w1
1, v

1
1, p

1
1 ∈ R, w1

1 > 0, and v2
1 ∈ Rn−1. In particular, it follows that dRn(v1, `w1) ≥ |v2

1|.
Thus

‖π̃(v−1w)−1π̃(p−1
v w)‖ = ‖(−(w1

1 − v1
1), v2

1, 0)(w1
1 − p1

1, 0, 0)‖ = ‖(v1
1 − p1

1, v
2
1, P )‖

where P is a BCH polynomial generated by w1
1, v1

1, p1
1, and v2

1. Arguing as in the proof of
Lemma 3.2, we may see that the polynomial P is a finite sum of constant multiples of terms of
the form

(3.8) [Z1, [Z2, · · · , [Zk−2, [Zk−1, Zk]] · · · ]]

where each Zi is either w1
1, v1

1, p1
1, or v2

1. (Note the abuse of notation here in which we identify
(w1

1, 0, 0), (v1
1, 0, 0), (p1

1, 0, 0), and (0, v2
1, 0) with their associated vectors in the first layer of

the Lie algebra.) Note that the points (w1
1, 0, 0), (p1

1, 0, 0), and (v1
1, 0, 0) are co-linear. Thus,

[w1
1, v

1
1] = [w1

1, p
1
1] = [p1

1, v
1
1] = 0. In particular, it follows that, in each non-vanishing term of the

form (3.8), [Zk−1, Zk] equals

[w1
1, v

2
1], [p1

1, v
2
1], or [v1

1, v
2
1].

Since η < 1, we have |p1
1| ≤ |w1

1| = η‖π̃(w)‖ ≤ d(0, w) ≤ 1, and similarly we get |v1
1| ≤ 1 and

|v2
1| ≤ 1. Therefore,

|[Z1, [Z2, · · · , [Zk−2, [Zk−1, Zk]] · · · ]]| .
k∏
i=1

|Zi| ≤ |v2
1| ≤ dRn(v1, `w1)

for each term of the form (3.8). Hence we may conclude

d(π̃(v−1w), π̃(p−1
v w))2r . |(v1

1 − p1
1, v

2
1, P )|2 . dRn(v1, `w1)2 . ∆
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since |v1
1 − p1

1| vanishes if v1
1 ∈ [0, w1

1] and is bounded by dRn(v1, `w1) otherwise. Once again, we

apply Lemma 3.7 with ω = C∆1/2r (for some (possibly different) constant C = C(G) > 0) to get
for any t ∈ [0, 1]

d(Lvw(t), Lw) = d(vδt(π̃(v−1w)), Lw) ≤ d(vδt(π̃(v−1w)), pvδt(π̃(p−1
v w))) . ∆1/2r2

since pvδt(π̃(p−1
v w)) = (tw1

1 + (1− t)p1
1, 0, 0) lies in Lw. This completes the proof of the theorem.

�

4. Using Theorem 3.1 to prove Theorem 1.4

We will now apply the estimates from Section 3 to prove the Traveling Salesman Theorem
(Theorem 1.4) in G. In this section, we will follow the proof of the Traveling Salesman Theorem
in the Heisenberg group [22, Theorem I] given in [22]. Many of the arguments therein hold in
any metric space. As such, this section will provide a rough outline of the proof of Theorem 1.4.
Full proofs will be provided for the results whose proofs differ significantly from those in [22].

4.1. Preliminaries: arcs. First, we will recall the notation from [22]. Fix a connected Γ ⊂ G
with H1(Γ) <∞. According to [27, Lemma 3.4], we may assume without loss of generality that
Γ is compact. Fix also a 1-Lipschitz, arc-length parameterization γ : T→ Γ (where T is a circle
in R2). Such a parameterization exists according to Lemma 2.10 in [22] and Corollary 3.8 in [27].
(The proof of this depends on the Banach space structure of the ambient space, but, since any
metric space may be embedded isometrically into a Banach space via the Kuratowski embedding,
the same arguments hold in G.) Orient T so that we may discuss a particular direction of flow
along Γ. Since βΓ is scale invariant (i.e. βδλ(Γ)(δλ(B)) = βΓ(B)), we may assume without loss of
generality that diam(Γ) = 1.

An arc τ in γ is the restriction γ|Iτ where Iτ = [a(τ), b(τ)] is some interval in T compatible
with the orientation chosen above. Given two arcs τ and ζ, the notation ζ ⊂ τ means Iζ ⊂ Iτ ,
and we will write diam(τ) to represent diam(τ(Iτ )).

For any L > 0, we define a prefiltration F0 =
⋃
nF0

n to be a collection of arcs in γ satisfying
the following three conditions for any n ∈ N:

(1) For τ ∈ F0
n, we have L2−100n ≤ diam(τ) < L2−100n+3.

(2) The domains of any two distinct arcs in F0
n are disjoint in T.

(3) For any k ∈ N, if the domains of the arcs ζ ∈ F0
n+k and τ ∈ F0

n intersect non-trivially,
then ζ ⊂ τ .

According to [22, Lemma 2.13], given any prefiltration F0, one may construct a filtration F =
∪nFn generated by F0 i.e. a collection of arcs in γ satisfying the following for any n ∈ N:

(1) Given ζ ∈ Fn+1, there is a unique τ ∈ Fn such that ζ ⊂ τ .
(2) For τ ∈ Fn, we have L2−100n−10 ≤ diam(τ) < L2−100n+4.
(3) The domains of any two distinct arcs in Fn are either disjoint or intersect in (one or both

of) their endpoints.
(4)

⋃
τ∈Fn τ = T.

(5) For each arc τ0 ∈ F0
n, there is a unique arc τ ∈ Fn such that τ0 ⊂ τ . Moreover, if I0

and I are the domains of τ0 and τ respectively, then the image of each of the connected
components of I \ I0 under γ has diameter less than L2−100n−10.
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4.2. Preliminaries: balls. For each n ∈ Z, choose a 2−n separated net Xn of Γ (i.e. a set
Xn ⊂ Γ such that d(x, y) ≥ 2−n for any x, y ∈ Xn, and such that, for any z ∈ Γ, there is some
x ∈ X with d(z, x) < 2−n). Define a multiresolution of Γ as follows:

Ĝ = {B(x, 10/2n) : x ∈ Xn and n ∈ Z}.

We will use [22, Lemma 2.6] (which holds here with the same proof since G is Q-regular) to prove
the Traveling Salesman Theorem (Theorem 1.4) by establishing the bound

(4.1)
∑
B∈Ĝ

βΓ(B)2r2 diam(B) ≤ CH1(Γ)

where C depends only on G. As in [22, Lemma 2.9], it suffices to prove inequality (4.1) when the

sum is taken over the family G of balls in Ĝ with radius less than 1/100.

For a ball B = B(x, r), write αB = B(x, αr). Fix an integer κ > 3. Define B to be the
collection of balls 2B where B ∈ G. According to [22, Lemma 2.11], since G is doubling, there is
a constant D = D(κ) > 0 and a decomposition B = ∪Di=1Bi into pairwise disjoint families of balls
satisfying the following for each i:

(1) if 2B1, 2B2 ∈ Bi have the same radius 2r, then d(2B1, 2B2) > 2κr.
(2) for any 2B1, 2B2 ∈ Bi, the ratio of their radii equals 2100j for some j ∈ Z.

Fix i ∈ {1, . . . , D}. From each ball B ∈ G with 2B ∈ Bi, we may construct a set Q(B) (called a
cube) so that the family ∆(B, i) of cubes constructed from double-balls in Bi satisfies the following
(see [22, Lemma 2.12]):

(1) 2B ⊂ Q(B) ⊂ (1 + 2−98)2B.
(2) Fix 2B, 2B′ ∈ Bi. If Q(B) ∩ Q(B′) 6= ∅ and the radius of B is larger than the radius of

B′, then Q(B′) ⊂ Q(B).
(3) Fix balls 2B, 2B′ ∈ Bi of equal radius 2r. Then d(Q(B), Q(B′)) > (κ− 1)r.

Given any cube Q(B) ∈ ∆(B, i), define

Λ(Q(B)) = {τ = γ|I : I is a connected component of γ−1(Γ ∩Q(B)) and γ(I) ∩B 6= ∅}.

These are the arcs of γ inside Q(B) that meet B. According to [22, Lemma 2.17], the collection
of arcs F0,i =

⋃
Q(B)∈∆(B,i) Λ(Q(B)) is a prefiltration for some Li > 0. As discussed above, this

induces a filtration F i. In particular, for each τ0 ∈ F0,i, there is a unique τ ∈ F i with τ0 ⊂ τ .
We can therefore define the collection of extensions of arcs in Λ(Q(B)) as

Λ′(Q(B)) = {τ ∈ F i : τ ⊃ τ0 and τ0 ∈ Λ(Q(B))}

for each cube Q(B) ∈ ∆(B, i).

For any arc τ of γ with domain Iτ , write Lτ = La(τ)b(τ) and define

β(τ) = sup
t∈Iτ

d(γ(t), La(τ)b(τ))

diam(τ)
= sup

p∈τ

d(p, Lτ )

diam(τ)
.

As in [22], write G = G1 ∪ G2 where

G1 = {B ∈ G : there is τ ∈ Λ′(Q(B)) such that β(τ) ≥ 10−10βΓ(B)}

and

G2 = {B ∈ G : β(τ) < 10−10βΓ(B) for all τ ∈ Λ′(Q(B))}.
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4.3. Non-flat balls. In this section, we prove

Proposition 4.1. ∑
B∈G1

βΓ(B)2r2 diam(B) . H1(Γ).

This is half of the estimate (4.1) (and thus half of the proof of Theorem 1.4). We first need to
introduce some notation. There are D different filtrations of γ to consider, but we will treat them
individually. Fix i ∈ {1, . . . , D} and write F := F i. Recall that F =

⋃
k Fk by the definition of

a filtration. Given τ ∈ Fk and j ∈ N, write

Fτ,j = {τ ′ ∈ Fk+j : τ ′ ⊂ τ}.

This is the collection of arcs j layers lower in the filtration which are contained in τ . Define

dτ = max
τ ′∈Fτ,1

sup
z∈Lτ ′

d(z, Lτ ) for any τ ∈ F .

According to [22, Lemma 3.4], dτ ≤ 2 diam(τ). We now prove the following version of Lemma 3.5
in [22]. This is the first place in this section where our proof differs significantly from the
arguments in [22], so details are included. In particular, it is in the proof of this lemma that we
use the curvature bound from Theorem 3.1.

Lemma 4.2. For any τ ∈ F , we have

(4.2)
d2r2
τ

diam(τ)2r2−1
≤ C ′′

 ∑
τ ′∈Fτ,3

d(γ(a(τ ′)), γ(b(τ ′)))

− d(γ(a(τ)), γ(b(τ)))


for some C ′′ = C ′′(G) > 0.

Proof. Fix some τ ∈ Fk ⊂ F . As in the proof of Lemma 3.5 in [22], we have

(4.3)
d2r2
τ

diam(τ)2r2−1
≤ 22r2 diam(τ) ≤ 22r2L2−100k+4 = 22r2+217L2−100k−213.

Thus if  ∑
τ ′∈Fτ,3

d(γ(a(τ ′)), γ(b(τ ′)))

− d(γ(a(τ)), γ(b(τ)))

 ≥ L2−100k−213,

we are done. Hence we may assume that

(4.4)

 ∑
τ ′∈Fτ,3

d(γ(a(τ ′)), γ(b(τ ′)))

− d(γ(a(τ)), γ(b(τ)))

 < L2−100k−213.

Write Fτ,1 = {τi}Mi=1 arranged in order of the orientation of T. Set

P =

M−1⋃
i=1

{γ(b(τi))}.

We will prove

(4.5) d(P, {γ(a(τ)), γ(b(τ))}) ≥ L2−100k−113.

(The proof of this is nearly identical to the proof of (18) in [22].) Suppose (4.5) is not true. That
is, there is some j so that (without loss of generality) d(γ(b(τj)), γ(a(τ))) < L2−100k−113. Say ξ
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is the sub arc of τ defined on [a(τ), b(τj)]. The arc ξ must contain at least one arc in Fτ,1, so we

have diam(ξ) ≥ L2−100(k+1)−10. Thus there is some point w ∈ ξ so that

min{d(γ(a(τ)), w), d(w, γ(b(τj)))} ≥ L2−100(k+1)−12.

Note that w ∈ τ̃ for some τ̃ ∈ Fτ,2. Since diam(τ̃) ≤ L2−100(k+2)+4, the triangle inequality gives

min{d(γ(a(τ̃)), d(γ(a(τ))), d(γ(a(τ̃)), γ(b(τj)))} ≥ L2−100k−113.

Therefore, according to the triangle inequality and the negation of (4.5), we have∑
τ ′∈Fτ,3

d(γ(a(τ ′)), γ(b(τ ′))) ≥ d(γ(a(τ)), d(γ(a(τ̃))) + d(γ(a(τ̃)), γ(b(τj))) + d(γ(b(τj)), γ(b(τ)))

> L2−100k−113 + d(γ(a(τ)), d(γ(b(τj))) + d(γ(b(τj)), γ(b(τ)))

≥ L2−100k−213 + d(γ(a(τ)), γ(b(τ))).

This contradicts (4.4). A similar argument in the case of γ(b(τ)) proves (4.5).

For any i ∈ {1, . . . ,M}, we can repeat the above proof of (4.5) replacing γ(a(τ)) with γ(a(τi))
and γ(b(τj)) with γ(b(τi)) to conclude

(4.6) d(γ(a(τi)), γ(b(τi))) ≥ L2−100k−113.

Indeed, if d(γ(a(τi)), γ(b(τi))}) < L2−100k−113, we set ξ = τi and follow the previous arguments
to obtain∑
τ ′∈Fτ,3

d(γ(a(τ ′)), γ(b(τ ′)))

≥ d(γ(a(τ)), γ(a(τi))) + d(γ(a(τi)), γ(a(τ̃))) + d(γ(a(τ̃)), γ(b(τi))) + d(γ(b(τi)), γ(b(τ)))

> d(γ(a(τ)), γ(a(τi))) + L2−100k−113 + d(γ(a(τi)), γ(b(τi))) + d(γ(b(τi)), γ(b(τ)))

≥ L2−100k−213 + d(γ(a(τ)), γ(b(τ)))

which again contradicts (4.4). This proves (4.6).

Fix i ∈ {2, . . . ,M − 1}. We will first establish an estimate on the distance from Lγ(a(τ))γ(b(τi))

to Lτ . Combining (4.5) and (4.6) allows us to bound

min{d(γ(a(τ)), γ(a(τi))), d(γ(a(τ)), γ(b(τi))), d(γ(a(τi)), γ(b(τi))), d(γ(b(τi)), γ(b(τ)))}

from below by L2−100k+42−117 ≥ 2−117 diam(τ). Therefore, the assumptions of Theorem 3.1 are
satisfied with m = 2−217 and ρ = diam(τ) where

a = γ(a(τ)), z = γ(a(τi)), v = γ(b(τi)), and w = γ(b(τ)).

Theorem 3.1 then gives

d(Lγ(a(τ))γ(b(τi))(t), Lτ )2r2

diam(τ)2r2−1
=
d(Lav(t), Law)2r2

ρ2r2−1

. d(γ(a(τ)), γ(a(τi))) + d(γ(a(τi)), γ(b(τi)))(4.7)

+ d(γ(b(τi)), γ(b(τ)))− d(γ(a(τ)), γ(b(τ)))

for any t ∈ [0, 1].

We now establish an estimate on the distance from Lτi to Lγ(a(τ))γ(b(τi)). Pairing this with (4.7)
will give (4.2). Choose an arc τ̂ ∈ Fτ,2 so that τ̂ is contained in the arc defined on [a(τ), a(τi)]
and b(τ̂) 6= a(τi). Such an arc always exists because, if it did not, then the only arc in Fτ,2 would
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be the arc defined on [a(τ), a(τi)], and this violates the diameter bounds (2) in the definition of
a filtration. We may follow the proof of (4.5) to conclude that

(4.8) min{d(a(τ), b(τ̂)), d(b(τ̂), a(τi))} ≥ L2−100k−213.

Figure 3.

Indeed, assume (without loss of generality) that d(a(τ), b(τ̂)) < L2−100k−213, set ξ to be
the arc defined on [a(τ), b(τ̂)], and note that ξ must contain an arc in Fτ,2. Thus diam(ξ) ≥
L2−100(k+2)−10, and we can choose τ̃ ∈ Fτ,3 with diam(τ̃) ≤ L2−100(k+3)+4 so that

min{d(γ(a(τ̃)), d(γ(a(τ))), d(γ(a(τ̃)), γ(b(τ̂)))} ≥ L2−100k−213.

Applying the triangle inequality leads to a contradiction of (4.4) just as before. This proves (4.8).
We have therefore bounded

min{d(γ(a(τ)), γ(b(τ̂))), d(γ(a(τ)), γ(a(τi))), d(γ(b(τ̂)), γ(a(τi))), d(γ(a(τi)), γ(b(τi)))}
from below by 2−217 diam(τ) as before. The assumptions of Theorem 3.1 are satisfied with
m = 2−217 and ρ = diam(τ) where

a = γ(a(τ)), z = γ(b(τ̂)), v = γ(a(τi)), and w = γ(b(τi)).

This gives

d(Lτi(t), Lγ(a(τ))γ(b(τi)))
2r2

diam(τ)2r2−1
=
d(Lvw(t), Law)2r2

ρ2r2−1

. d(γ(a(τ)), γ(b(τ̂))) + d(γ(b(τ̂)), γ(a(τi)))(4.9)

+ d(γ(a(τi)), γ(b(τi)))− d(γ(a(τ)), γ(b(τi)))

for any t ∈ [0, 1].

Fix t ∈ [0, 1]. Choose p ∈ Lγ(a(τ))γ(b(τi)) so that

d(Lτi(t), Lγ(a(τ))γ(b(τi))) = d(Lτi(t), p)

and q ∈ Lτ so that
d(p, Lτ ) = d(p, q).

Combining (4.7) and (4.9) gives

d(Lτi(t), Lτ )2r2

ρ2r2−1
≤ d(Lτi(t), q)

2r2

ρ2r2−1
.
d(Lτi(t), p)

2r2 + d(p, q)2r2

ρ2r2−1
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=
d(Lτi(t), Lγ(a(τ))γ(b(τi)))

2r2

ρ2r2−1
+
d(p, Lτ )2r2

ρ2r2−1

. d(γ(a(τ)), γ(a(τi))) + d(γ(a(τi)), γ(b(τi)))

+ d(γ(b(τi)), γ(b(τ)))− d(γ(a(τ)), γ(b(τ)))

+ d(γ(a(τ)), γ(b(τ̂))) + d(γ(b(τ̂)), γ(a(τi)))

+ d(γ(a(τi)), γ(b(τi)))− d(γ(a(τ)), γ(b(τi)))

≤ 2[d(γ(a(τ)), γ(b(τ̂))) + d(γ(b(τ̂)), γ(a(τi))) + d(γ(a(τi)), γ(b(τi)))

+ d(γ(b(τi)), γ(b(τ)))− d(γ(a(τ)), γ(b(τ)))]

≤ 2

 ∑
τ ′∈Fτ,3

d(γ(a(τ ′)), γ(b(τ ′)))

− d(γ(a(τ)), γ(b(τ)))

 .

In the case i = 1 (similarly, i = M) where a(τ1) = a(τ) (similarly, b(τM ) = b(τ)), choose
τ̂ ∈ Fτ,2 so that τ̂ is contained in the arc defined on [a(τ), a(τ2)] (similarly, the arc defined on
[a(τ), a(τM )]) and b(τ̂) 6= a(τ2) (similarly, b(τ̂) 6= a(τM )). We may then apply Theorem 3.1 with
m = 2−217 and ρ = diam(τ) (and noting that a(τ2) = b(τ1)) to

a = γ(a(τ)), z = γ(b(τ̂)), v = γ(a(τ2)), and w = γ(b(τ))

(similarly, v = γ(a(τM ))) to get, as in the proof of (4.7) and (4.9),

d(Lγ(a(τ1))γ(b(τ1))(t), Lτ )2r2

diam(τ)2r2−1
. d(γ(a(τ)), γ(b(τ̂))) + d(γ(b(τ̂)), γ(b(τ1)))

+ d(γ(b(τ1)), γ(b(τ)))− d(γ(a(τ)), γ(b(τ)))

for any t ∈ [0, 1]. Similarly, we have the following bound for i = M :

d(Lγ(a(τM ))γ(b(τM ))(t), Lτ )2r2

diam(τ)2r2−1
. d(γ(a(τ)), γ(b(τ̂))) + d(γ(b(τ̂)), γ(a(τM )))

+ d(γ(a(τM )), γ(b(τ)))− d(γ(a(τ)), γ(b(τ))).

This gives the result. �

We conclude this subsection with the following estimate:

Proposition 4.3. ∑
τ∈F

β(τ)2r2 diam(τ) . H1(Γ).

Once this has been proven, we may argue exactly as in [22, Corollary 3.3] to prove Proposi-
tion 4.1, and this completes the subsection. (It is in that argument that the definition of G1 is
used.)

Proof of Proposition 4.3. Summing equation (4.2) over all τ ∈ F and all k gives

∑
τ∈F

d2r2
τ

diam(τ)2r2−1
≤ C ′′

∞∑
k=1

 ∑
τ∈Fk+3

d(γ(a(τ)), γ(b(τ)))

−
∑
τ∈Fk

d(γ(a(τ)), γ(b(τ)))


≤ 3C ′′ sup

k∈N

∑
τ∈Fk

d(γ(a(τ)), γ(b(τ))) ≤ 3C ′′`(γ).
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For any τ ∈ F , say {τk}∞k=0 is a sequence of subarcs with τj ∈ Fτ,j chosen so that dτj is maximal
among all subarcs in Fτ,j . Arguing as in the proof of [22, Proposition 3.1], applying [22, Lemma

3.6], using Minkowski’s integral inequality in `2r
2
, and applying property (2) from the definition

of filtrations gives(∑
τ∈F

β(τ)2r2 diam(τ)

)1/(2r2)

≤
∞∑
k=0

(∑
τ∈F

d2r2
τk

diam(τ)2r2−1

)1/(2r2)

≤
∞∑
k=0

2(−100k+14) 2r2−1

2r2

(∑
τ∈F

d2r2
τk

diam(τk)2r2−1

)1/(2r2)

≤
(
3C ′′`(γ)

)1/(2r2)
∞∑
k=0

2(−100k+14) 2r2−1

2r2

. `(γ)1/(2r2) �

4.4. Flat balls. In this section, we will prove the other half of (4.1):

Proposition 4.4. ∑
B∈G2

βΓ(B)2 diam(B) . H1(Γ).

To do so, we will follow the proof in Section 4 of [22] of a similar bound in the Heisenberg
group. As stated at the beginning of that section, most of the arguments therein may be applied
in any general metric space. The only Heisenberg-specific ingredients of the proof are Lemma 4.1
and equations (23) and (24). Therefore, in order to prove Proposition 4.4, it suffices to verify
these three facts in G.

Equation (23) in [22] requires

diam(B(p, λr)) ≤ λ diam(B(p, r))

for any r > 0, p ∈ G, and λ > 1. In G, we have

(4.10) diam(B(p, λr)) = λ diam(B(p, r))

for any r > 0, p ∈ G, and λ > 0. This follows from the fact that diam(B(p, r)) = 2r for any left
invariant, homogeneous metric in G [14, Proposition 2.4]. Moreover, equation (24) in [22] is a
result of

(4.11) d(L(t1), L(t2)) = |t1 − t2|‖π̃(p−1q)‖
for any horizontal segment L = Lpq : [0, 1]→ G between p, q ∈ G and any t1, t2 ∈ [0, 1].

It remains to prove Lemma 4.1 from [22] in the Carnot group setting. We first establish the
following:

Lemma 4.5. There is a radius 0 < r0 ≤ 1
2 such that, for any horizontal segment L which

intersects B(0, r0) non-trivially, L is never tangent to the unit sphere ∂B(0, 1) = ∂BRN (0, η).

Proof. Note that we need only consider those horizontal segments in BRn(0, 2η)×RN−n. Indeed,
the projection of the segment to Rn × {0} is a Euclidean segment traversed at constant speed,
and the restriction of a horizontal segment to a subinterval is still a horizontal segment. Hence
a horizontal segment will intersect both B(0, r0) and ∂B(0, 1) if and only if its restriction to
BRn(0, 2η)× RN−n (which is also a connected, horizontal segment) does as well.
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Suppose by way of contradiction that there is a sequence of horizontal segments Lj : [0, 1]→ G
in BRn(0, 2η) × RN−n which intersect B(0, 1/j) non-trivially and lie tangent to ∂B(0, 1). Say
Lj = Lpjqj for some pj , qj ∈ G. These horizontal segments are all 4-Lipschitz since

d(Lj(s), Lj(t)) = d(δs(π̃(p−1
j qj)), δt(π̃(p−1

j qj))) = 1
η |s− t||(qj)1 − (pj)1| ≤ 4|s− t|.

In particular, since each segment Lj meets B(0, 1/j), there is some M0 > 0 so that |pj | < M0 for
every j ∈ N. Write pj = (p1

j , p
2
j ) and qj = (q1

j , q
2
j ). By definition, we have

Lj(s) =
(
p1
j + s(q1

j − p1
j ), p

2
j + P

(
pj ,
(
s(q1

j − p1
j ), 0

)))
for any s ∈ [0, 1], j ∈ N

for some polynomial P given by the BCH formula. Therefore, by the uniform boundedness of |pj |
and |q1

j |, there is some M1 > 0 so that
∣∣di/dsi(Lj)∣∣ < M1 for every i, j ∈ N. The Arzelà-Ascoli

theorem then gives a subsequence of these horizontal segments (also called {Lj}) converging
uniformly in RN (and thus in G) to some C∞ curve L : [0, 1] → G passing through the origin
so that all derivatives of Lj converge uniformly to the corresponding derivatives of L. Note
that L itself must also be a horizontal segment. Indeed, pj = Lj(0) → p for some p ∈ G, and

π̃(p−1
j qj) = p−1

j Lj(1) → (z, 0) for some z ∈ Rn. Thus, for any q ∈ G satisfying q1 − p1 = z, we
have

L(s) = lim
j→∞

Lj(s) = lim
j→∞

pjδs(π̃(p−1
j qj)) = pδs((z, 0)) = pδs(π̃(p−1q))

for every s ∈ [0, 1]. Since L is a horizontal segment passing through the origin, it must be the
case that L is a Euclidean line segment in Rn × {0}.4 In particular, L cannot be tangent to
the Euclidean sphere ∂BRN (0, η). Since the derivatives of the segments Lj converge uniformly
to the derivatives of L, it is impossible that Lj lies tangent to the sphere for every j. This is a
contradiction and completes the proof. �

The following is the Carnot group version of Lemma 4.1 from [22]. Note that, here, we have
the constant r0 included in the inequality, while, in [22], the constant is 1. This, however, is not
a problem since the constant r0 depends only on G.

Lemma 4.6. Let τ be a connected subarc. Then

(4.12) sup
x∈Lτ

d(x, τ) ≤ r−1
0 β(τ) diam(τ).

In particular, if we write Iτ = [a, b], we have

(4.13) d(Lτ (1), γ(b)) ≤ r−1
0 β(τ) diam(τ).

Proof. Recall that β(τ) diam(τ) = supp∈τ d(p, Lτ ). By the invariance of the metric under left
translation, we may assume that 0 = γ(a) = Lτ (0). We begin by proving (4.13). Choose
t0 ∈ [0, 1] so that d(γ(b), Lτ (t0)) = d(γ(b), Lτ ) ≤ β(τ) diam(τ). Since Lτ (1) = π̃(γ(b)) and
Lτ (t0) = δt0(π̃(γ(b))) are co-linear in Rn × {0}, it follows that

d(Lτ (1), Lτ (t0)) =
∥∥δt0(π̃(γ(b)))−1π̃(γ(b))

∥∥ =
∥∥π̃[δt0(π̃(γ(b)))−1γ(b)]

∥∥ ≤ d(γ(b), Lτ (t0)).

Therefore, we have

d(Lτ (1), γ(b)) ≤ d(Lτ (1), Lτ (t0)) + d(Lτ (t0), γ(b)) ≤ 2β(τ) diam(τ) ≤ r−1
0 β(τ) diam(τ).

In order to prove (4.12), we will first show that the mapping f : τ → Lτ defined as

f(p) = Lτ (t0) where t0 = sup{t ∈ [0, 1] : d(Lτ (t), p) ≤ r−1
0 β(τ) diam(τ)}

4Divide L into two segments: the segment ending at 0 and the segment starting at 0. Since both of these must
also be horizontal, they must be Euclidean segments.
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is continuous. (Note that d(p, Lτ ) ≤ β(τ) diam(τ) for every p ∈ τ , so f is well defined.) In order
to prove that f is continuous, it suffices to prove for every p ∈ τ that Lτ does not lie tangent to
the sphere centered at p with radius r−1

0 β(τ) diam(τ).

Fix p ∈ τ . We may translate by p−1 and dilate by r0(β(τ) diam(τ))−1 to reduce to the following
problem: show that the horizontal segment L = δr0(β(τ) diam(τ))−1(p−1Lτ ) is never tangent to the
sphere ∂B(0, 1). This follows from Lemma 4.5 since

d(0, L) = d(0, δr0(β(τ) diam(τ))−1(p−1Lτ )) = r0(β(τ) diam(τ))−1d(p, Lτ ) ≤ r0

implies that the segment L intersects the ball B(0, r0) non-trivially. Therefore, f is continuous.

Since τ is connected and f(γ(b)) = Lτ (1) by (4.13), the continuous map f sends τ onto an
interval in Lτ containing [f(0), Lτ (1)] ⊂ Lτ . Say t1 ∈ [0, 1] is such that Lτ (t1) = f(0). Then,
for any t ∈ [t1, 1], we have d(Lτ (t), τ) ≤ d(Lτ (t), p) ≤ r−1

0 β(τ) diam(τ) for some p ∈ τ by the
surjectivity of f , and, for any t ∈ [0, t1], we have

d(Lτ (t), 0) = t‖π̃(γ(b))‖ ≤ t1‖π̃(γ(b))‖ = d(Lτ (t1), 0) ≤ r−1
0 β(τ) diam(τ).

This proves the lemma. �

The following lemma reproves Lemma 4.3 of [22] in a more Carnot way.

Lemma 4.7. Let B ∈ G be a ball of radius r. Let Q = Q(B) and in particular suppose 3B ⊃
Q ⊃ 2B. Suppose τ ′ ∈ Λ′(Q) and τ ′ 3 Center(B). Suppose further that

r−1
0 β(τ ′) diam(τ ′) < h < 1

10r.

Then there is an arc τ̃ ⊂ τ ′ with image in 2B such that diam(τ̃) ≥ 4r − 10h.

Proof. Without loss of generality, we may suppose Center(B) = 0. Write Iτ ′ = [a(τ ′), b(τ ′)]
as before, and set L = Lτ ′ . By definition, τ ′ is an extension of some τ ∈ Λ(Q). Note that
γ(a(τ)), γ(b(τ)) ∈ ∂Q. This says that d(γ(a(τ)), 0), d(γ(b(τ)), 0) ∈ [2r, 3r]. We also have that
τ 3 0. Indeed, if 0 /∈ τ , then there is a subarc ξ of τ ′ \ τ containing 0 and a point in ∂Q, so
diam(ξ) ≥ 2r. However, property (5) of a filtration gives diam(ξ) < 2−10 diam(τ) ≤ 2−106r since
the image of τ is contained in Q ⊂ 3B. This is impossible, so we must have τ 3 0.

Recall the definition of the continuous map f : τ ′ → Lτ ′ from the proof of the previous lemma:

f(p) = Lτ ′(t0) where t0 = sup{t ∈ [0, 1] : d(Lτ ′(t), p) ≤ r−1
0 β(τ ′) diam(τ ′)}.

Write x = f(γ(a(τ))), y = f(0), and z = f(γ(b(τ))). In particular, x, y, z ∈ L and the assump-
tions of the lemma give

(4.14) d(γ(a(τ)), x) < h, d(0, y) < h, d(γ(b(τ)), z) < h.

We then get by the triangle inequality that

d(x, y), d(z, y) ∈ [2r − 2h, 3r + 2h].(4.15)

We first claim that x, z are on opposite sides of y along L. In particular, if x = L(t1), y = L(t2),
and z = L(t3), then t1 < t2 < t3. Suppose not (e.g. t1 ≥ t2.). We remind the reader that
L(0) = γ(a(τ ′)). Define the 1-Lipschitz abelianization map π : G → Rn as π(p1, p2) = 1

ηp1,

and recall that η is the constant chosen in the definition of the HS norm. Notice that π(L) is a
Euclidean segment from π(γ(a(τ ′))) to π(γ(b(τ ′))). In fact, (4.11) implies that π is an isometry
on L. Indeed, (2.1) gives

|π(L(t))− π(L(s))| = |t− s||π(γ(a(τ ′)))− π(γ(b(τ ′)))| = |t− s|‖π̃(γ(b(τ ′))−1γ(a(τ ′)))‖
= d(L(t), L(s))
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for each s, t ∈ [0, 1]. In particular, this means that (4.15) holds for the projections π(x), π(y),
and π(z) as well. According to our assumption that t1 ≥ t2, the point π(x) lies further along
π(L) than π(y) in the following sense:

(4.16) |π(γ(a(τ ′)))− π(x)| ≥ |π(γ(a(τ ′)))− π(y)|.
Using Properties (1) and (5) of prefiltrations and filtrations, respectively, we get from the fact
that π is 1-Lipschitz that

|π(γ(a(τ ′)))− π(γ(a(τ)))| ≤ d(γ(a(τ ′)), γ(a(τ))) < 1
10r.

Also, (4.14) implies that |π(γ(a(τ)))− π(x)| < h. Putting this all together gives

|π(γ(a(τ ′)))− π(x)| < |π(γ(a(τ ′)))− π(γ(a(τ)))|+ |π(γ(a(τ)))− π(x)| ≤ 1
10r + h < 2

10r

while

|π(γ(a(τ ′)))− π(y)| ≥ |π(y)− π(x)| − |π(x)− π(γ(a(τ)))| − |π(γ(a(τ)))− π(γ(a(τ ′)))|
> 2r − 2h− h− 1

10r >
8
5r.

This contradicts (4.16), and thus t1 < t2. We may similarly show t3 > t2 by proving that π(z)
cannot lie before π(y) along π(L).

We now know that τ is a curve so that the images of the endpoints of τ under f lie on opposite
sides of y. We claim that there is a subcurve τ1 ⊂ τ which is a connected component of τ ∩2B so
that the endpoints of τ1 are mapped to opposite sides of y via f . Suppose by way of contradiction
that both endpoints of every connected component of τ ∩2B are mapped to one side of y or both
are mapped to the other. (Note that the endpoints of such a curve can never map onto y itself
since then we would have d(p, 0) ≤ d(p, y) + d(y, 0) ≤ 2h < 1

5r for such an endpoint p, but these
endpoints must lie in the boundary of 2B.) Then the above property of τ and the fact that the
endpoints of τ lie outside of the interior of 2B imply that there is at least one sub curve ξ ⊂ τ in
τ \ 2B whose endpoints are mapped to opposite sides of y. By the continuity of f , there must be
some p in the image of ξ so that f(p) = y. However, d(p, 0) ≤ d(p, y) + d(y, 0) ≤ 2h ≤ 2r, and so
p ∈ 2B which is a contradiction. Therefore, such a τ1 exists as claimed. Note that the endpoints
p, q of τ1 must lie on ∂(2B). We have d(p, f(p)) < h and d(q, f(q)) < h by assumption, and thus

d(f(p), y) ≥ d(p, 0)− d(p, f(p))− d(y, 0) ≥ 2r − 2h,

and similarly d(f(q), y) ≥ 2r − 2h. Since f(p) and f(q) lie on opposite sides of y, it follows that
d(f(p), f(q)) ≥ 4r − 4h. Thus

d(p, q) ≥ d(f(p), f(q))− d(p, f(p))− d(q, f(q)) ≥ 4r − 6h

which proves the lemma. �

With the above lemmas established, we may now argue exactly as in Section 4 of [22] (with
the constants therein adjusted appropriately to account for r0) to conclude Proposition 4.4.

We now give a brief sketch of the rest of the overall strategy of Section 4 of [22]. In Lemma
4.4, we prove that if there exists a curve τ ′ ∈ Λ′(Q) with small β(τ ′) and another point x in some
other curve ξ ∈ Λ(Q) where d(x, Lτ ′) is sufficiently large, then there is actually a subcurve ξ̌ ⊂ ξ
with

diam(ξ̌) > 20ε0r
−1
0 βΓ(B) diam(B)

so that

d(ξ̌, τ ′) > 20ε0r
−1
0 βΓ(B) diam(B)

where ε0 = 10−10r−1
0 (note that r0 = 1 in [22] which allowed ε0 to be just 10−10).
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In (the r−1
0 modification of) the proof, we said it suffices to show that

d(x, τ ′) > 40ε0r
−1
0 βΓ(B) diam(B).

The lemma then follows from an easy triangle inequality argument. Indeed, consider any maximal
length connected subcurve of ξ̌ ⊆ ξ in B(x, 20ε0r

−1
0 βΓ(B) diam(B)) that contains the center x.

This must have diameter at least 20ε0r
−1
0 βΓ(B) diam(B) as it goes from the center of the ball to

the outside. Furthermore, it must be of distance greater than

40ε0r
−1
0 βΓ(B) diam(B)− 20ε0r

−1
0 βΓ(B) diam(B) = 20ε0r

−1
0 βΓ(B) diam(B)

from τ ′, as required.

Lemma 4.5 and Proposition 4.6 of [22] say the following. Suppose we have τ, ξ ∈ Λ(Q) satisfying
the last two lemmas. That is, τ contains Center(B) and has an extension τ ′ ∈ Λ′(Q) so that β(τ ′)
is small and ξ contains a point x so that d(x, Lτ ′) is large. Then covering ξ ∪ τ with balls {Bi}
requires that the sum of the diameters of the balls must exceed 4r by some definite constant.
This follows from the last two results as τ contains a subcurve of length almost 4r whereas ξ
contains a subcurve ξ̂ that is far away from τ and has a definite length.

Note that as we are working with balls in G2, we are always in this situation. Indeed, curves
in Q have small β but βΓ(B) itself is large, which means there must exist a point x that is far
away from the curve τ going through the center of B. Now consider all the cubes Q associated
to balls in G2, which form a nested set of cubes. Proposition 4.7 builds on Proposition 4.6 and
says that for one such cube Q, the sum of the diameter of all the maximal subcubes Q′ of Q
plus the H1 measure of the remainder R = Q\

⋃
iQ
′ must be larger than the diameter of Q by a

multiplicative factor that is quantitatively greater than 1.

Proposition 4.8 is the main technical result of this section. We are still working with G2, al-
though now we further decompose these into subfamilies {BM}∞M=0 where βΓ(B) ∈ [2−M−1, 2−M ]

for each B ∈ BM . Let ∆ denote the cubes associated to balls of some BM and ∆̃ ⊂ ∆ be any finite
subset. We now perform the following construction ∆̃ (the proof in [22] applies the construction
to all of ∆, which we will remark upon below).

For each cube Q ∈ ∆̃, we decompose it into RQ ∪
⋃
iQi where Qi are maximal subcubes of ∆

in Q. Note that RQ are precisely the parts of Γ in Q that not in any other Qi. This means that
all the RQ are pairwise disjoint and so any intersection RQ ∩ RQ′ is empty if Q 6= Q′. For each
such Q, we define a weight function wQ : H → [0,∞) supported on Q so that

(1) its total mass
∫
Qw(x) dH1(x) is diam(Q),

(2) its mass is on RQ and each maximal subcube Qi (which sums up to diam(Q)) is propor-
tional to H1(RQ) and diam(Qi),

(3) wQ|RQ is proportional to a constant function,

(4) wQ|Qi is proportional to a constant function if Qi ∈ ∆\∆̃,

(5) wQ|Qi is proportional to wQi if Qi ∈ ∆̃ (which is defined in the same manner).

The main point is that if Q1 ⊃ Q2 ⊃ ... ⊃ QN is a chain of maximal subcubes and x ∈ QN , then
one can use Proposition 4.7 to show that wQi(x) ≤ qN−i, for some q ∈ (0, 1) depending only on
M (see the calculations between equations (30) and (31) of [22]). This will allow us to conclude
that

∑
Q∈∆̃wQ(x) is a geometric series bounded by a constant multiple of 2M , which will then

easily lead to a proof that
∑

Q∈∆̃ diam(Q) . 2MH1(Γ). As the summands are positive and the

bound holds for any finite partial sum, we get that
∑

Q∈∆ diam(Q) . 2MH1(Γ), which easily

leads to
∑

B∈G2 βΓ(B)2 diam(B) . H1(Γ).
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The reason we work with ∆̃ is so we can guarantee Property (1) of the wQ since all iterations
coming from Property (5) will eventually terminate. Without this truncation, one would have to
separately deal with the integral of wQ on the set of points lying in infinite chains Q1 ⊃ Q2 ⊃ ....
While this may be possible, the truncation argument allows us to sidestep this issue. We are
thankful to the anonymous referee for pointing out this missing step.

Proposition 4.4, together with Proposition 4.1, finishes the proof of (4.1), and thus the proof
of Theorem 1.4 is complete.

5. Step 2 groups

In this section, we will prove Theorem 1.5. In Theorem 1.2 (proven in [22]), the Traveling
Salesman Theorem is established in the Heisenberg group, and the exponent on the β-numbers
is 4. However, this is not the same exponent provided by Theorem 1.4. Indeed, the Heisenberg
group has step r = 2, and we have proven the TST in step 2 groups where the exponent on the
β-numbers is 2r2 = 8.

The increase from 2r to 2r2 occured when we appied Lemma 3.7 in the proof of Theorem 3.1.
To avoid this, we will prove a step 2 version of Theorem 3.1 directly without appealing to this
lemma. This allows us to replace any instance of 2r2 with 2r = 4 in all of the arguments that
follow. This will prove Theorem 1.5 and provide a true generalization of Theorem 1.2.

Theorem 5.1. Suppose a, z, v, w ∈ G satisfy

mρ ≤ min{d(a, z), d(a, v), d(z, v), d(v, w)}
and

max{d(a, z), d(a, v), d(z, v), d(v, w), d(a,w)} ≤ ρ
for some ρ > 0. Then there is a constant C0 = C0(G) > 0 so that

sup
t∈[0,1]

d(Lav(t), Law)4 + sup
t∈[0,1]

d(Lvw(t), Law)4 ≤ C0ρ
3∆

where ∆ := d(a, z) + d(z, v) + d(v, w)− d(a,w).

The hypothesis of this theorem is the same as that of Theorem 3.1. However, the exponents
in the conclusion are 4 and 3 rather than 2r2 = 8 and 2r2 − 1 = 7. Once this theorem has
been proven, the rest of the arguments in Section 4 follow in exactly the same manner with all
instances of 2r2 replaced with 4.

In the proof, we will bound d∞ distances (rather than d) which are defined on a step 2 group
G as

d∞(x, y) = N∞(y−1x) where N∞(p) = max{|p1|, |p2|1/2}
for any p = (p1, p2) ∈ G. Though d∞ is not a true metric (since a scaling constant is present in
the triangle inequality), it is homogeneous and hence bi-Lipschitz equivalent to the HS-distance
d in the sense of (2.3). This will suffice.

Proof of Theorem 5.1. As before, we may assume without loss of generality that a = 0 and ρ = 1,
and we set pv = (p1, 0) ∈ Lw to be the closest point in Lw to π̃(v) in the Euclidean norm.

Since the BCH formula reduces to X + Y + 1
2 [X,Y ] in a step 2 Carnot group, we have

δt(pv)
−1δt(π̃(v)) = (−tp1, 0)(tv1, 0) =

(
t(v1 − p1),− t2

2 [p1, v1]
)
.
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By definition and (3.6), we have |v1 − p1| = dRn(v1, `w1) . ∆1/2 . ∆1/4 (since ∆ ≤ 3). Also,

|[p1, v1]|1/2 = |[p1, v1]− [v1, v1]|1/2 = |[p1 − v1, v1]|1/2 . |p1 − v1|1/2|v1|1/2 . ∆1/4

since |v1| = |π̃(v)| . ‖v‖ ≤ 1. Therefore, for each t ∈ [0.1], we have

d(Lv(t), Lw) . d∞(δt(π̃(v)), δt(pv)) = max

{
t|v1 − p1|,

∣∣∣ t22 [p1, v1]
∣∣∣1/2} . ∆1/4.

We will now bound d(Lvw(t), Lw). To do so, we compute

vδt(π̃(v−1w)) = (v1, v2)(t(w1 − v1), 0) = (tw1 + (1− t)v1, v2 + t
2 [v1, w1])

and
pvδt(π̃(p−1

v w)) = (p1, 0)(t(w1 − p1), 0) = (tw1 + (1− t)p1,
t
2 [p1, w1])

so that

(pvδt(π̃(p−1
v w)))−1vδt(π̃(v−1w))

=
(
(1− t)(v1 − p1), v2 + t

2 [v1, w1]− t
2 [p1, w1]− 1

2 [tw1 + (1− t)p1, tw1 + (1− t)v1]
)

=
(

(1− t)(v1 − p1), v2 + t
2 [v1 − p1, w1] + t(1−t)

2 [v1 − p1, w1]− (1−t)2
2 [p1, v1]

)
.

As above, we have |[v1 − p1, w1]| . dRn(v1, `w1). Finally, note that NH(v) = (0, v2) in step 2

groups, and so |v2|1/2 = N∞(NH(v)) . ‖NH(v)‖. Hence (3.6) and (3.7) give∣∣∣v2 + t
2 [v1 − p1, w1] + t(1−t)

2 [v1 − p1, w1]− (1−t)2
2 [p1, v1]

∣∣∣2
. ‖NH(v)‖4 + dRn(v1, `w1)2

≤
[
‖NH(v)‖4 + dRn(z1, `v1)2

]
+
[
‖NH(w)‖4 + dRn(v1, `w1)2

]
. [d(0, z) + d(z, v)− d(0, v)] + [d(0, v) + d(v, w)− d(0, w)] = ∆.

Therefore, for each t ∈ [0.1], we have

d(Lvw(t), Lw) . d∞(vδt(π̃(v−1w)), pvδt(π̃(p−1
v w))) . ∆1/4. �

6. Singular integrals on 1-regular curves

Recall that if (X, d) is a metric space, an H1-measurable set E ⊂ X is 1-(Ahlfors)-regular, if
there exists a constant 1 ≤ C <∞, such that

C−1r ≤ H1(B(x, r) ∩ E) ≤ Cr
for all x ∈ E, and 0 < r ≤ diam(E). In this section we are going to prove Theorem 1.6, which
we reformulate in a more precise manner below.

Theorem 6.1. Let (G, d) be Carnot group of step r ≥ 2 equipped with a homogeneous metric d.
Let Kd : G \ {0} → [0,∞) be defined by

Kd(p) =
d(NH(p), 0)2r3 + d(NH(p−1), 0)2r3

d(p, 0)2r3+1
,

and let E be a 1-regular set which is contained in a 1-regular curve. Then the corresponding
truncated singular integrals

T εf (p) =

∫
E\Bd(p,ε)

Kd(q
−1 · p)f(q) dH1(q)

are uniformly bounded in L2(H1|E).
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Proof. The proof follows as in the proof of [3, Theorem 1.1] once we have at our disposal Theorem
1.4 and Lemma 6.2. Nevertheless we will provide an outline for the convenience of the reader. To
simplify notation we let µ = H1|E and K = Kd. Since E is 1-regular there exists some constant
cµ ∈ (0, 1] such that

cµr ≤ µ(B(x, r)) ≤ c−1
µ r, ∀x ∈ E, r > 0.

We first observe that the kernel K is a symmetric 1-dimensional Calderón-Zygmund (CZ)-kernel,
see [3, Definition 2.6 and Lemma 2.7]. We will use the T1-theorem (which we explain more in
the following) to prove that the operators T ε are uniformly bounded on L2(µ). For this reason,
we need a system of dyadic-like cubes associated to the set E. These systems were introduced
by David in [6] (see also [7]) for regular Euclidian sets and later generalized by Christ [4] to
any regular set of a geometrically doubling metric space. In particular for the set E, there is a
constant cd ∈ (0, 1] and a family of partitions ∆j of E, j ∈ Z, with the following properties;

(D1) If k ≤ j, Q ∈ ∆j and Q′ ∈ ∆k, then either Q ∩Q′ = ∅, or Q ⊂ Q′.
(D2) If Q ∈ ∆j , then diamQ ≤ 2−j .
(D3) Every set Q ∈ ∆j contains a set of the form B(pQ, cd2

−j) ∩ E for some pQ ∈ Q.

We will call the sets in ∆ := ∪∆j the dyadic cubes of E. For a cube S ∈ ∆, we define

∆(S) := {Q ∈ ∆ : Q ⊆ S}.
Given a cube Q ∈ ∆ and λ ≥ 1, we define

λQ := {x ∈ E : d(x,Q) ≤ (λ− 1) diam(Q)}.

It follows from (D2), (D3) and the 1-regularity of E that if Q ∈ ∆j ,

cd2
−j ≤ diam(Q) ≤ 2−j and cdcµ2−j ≤ µ(Q) ≤ c−1

µ 2−j .

To prove the L2(µ) boundedness of the operator T ε it suffices to verify that there exists a
uniform bound C <∞ that can depend on cµ, cd so that

‖T εχS‖2L2(S) ≤ Cµ(S), ∀S ∈ ∆, ∀ε > 0(6.1)

where L2(S) := L2(µ|S). These conditions suffice by the T1 theorem of David and Journé, applied
in the homogeneous metric measure space (E, d, µ), see [31, Theorem 3.21]. Notice that since K
is symmetric, (T ε)∗ = T ε where (T ε)∗ is the formal adjoint of T ε, see also [2, Remark 2.3]. The
statement in Tolsa’s book is formulated for Euclidean spaces, but the proof works with minor
standard changes in homogeneous metric measure spaces; the details can be found in the honors
thesis of Fernando [12]. Observe that we may suppose that E is a 1-regular rectifiable curve as
taking a subset can only decrease the L2(µ)-bound of T εχS .

We will now decompose our singular integral dyadically. This approach was used in [2] and [3]
and is inspired by [30]. Let ψ : R→ R+ be a Lipschitz function so that χB(0,1/2) ≤ ψ ≤ χB(0,2).

For any j ∈ Z we let ψj : G → R such that ψj(z) = ψ(2jd(z, 0)) and we set φj := ψj − ψj+1.
Note that φj is supported on the annulus B(0, 21−j)\B(0, 2−2−j) and for any N ∈ Z,

∑
n≤N φn =

1− ψN+1, hence

χG\B(0,2−N ) ≤
∑
n≤N

φn ≤ χG\B(0,2−N−2).(6.2)

For each j ∈ Z, we let K(j) := φj ·K and we define

T(j)f(x) =

∫
K(j)(y

−1x)f(y) dµ(y).
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for nonnegative functions f ∈ L2(µ). For N ∈ Z let SN =
∑

n≤N T(n). As the kernel K is

positive, (6.2) implies the following pointwise estimates for any nonnegative function f ∈ L2(µ)

0 ≤ T εf ≤ Snf, ∀ε ≥ 2−n.

Thus, to establish the uniform bound (6.1), it suffices to show that there exists some absolute
constant C <∞ such that

(6.3) ‖SnχS‖2L2(S) ≤ Cµ(S), ∀S ∈ ∆,∀n ∈ Z.

We now fix S ∈ ∆` for some ` ∈ Z. We will show that for any j ∈ Z and x ∈ E, we have

(6.4) T(j)1(x) .cµ βE(x, 21−j)2r2 .

In order to prove (6.4) we need the following lemma which was first proven in the case of the
Heisenberg group in [23, Lemma 3.3].

Lemma 6.2. Let (G, d) be Carnot group of step r ≥ 2 equipped with a homogeneous metric d.
Then

(6.5)
d(NH(a−1b), 0)r

d(a, b)r−1
. max{d(a, L), d(b, L)}

for any a, b ∈ G and any horizontal line L ⊂ G.

Proof. For any p ∈ G, we will write p = (p1, . . . , pr) where pk ∈ Rvk and vk = dimVk. As in the
previous section, we will utilize the homogeneous norm

‖p‖∞ = max{|pk|1/k}rk=1.

For x, y ∈ G we will denote d∞(x, y) := ‖y−1x‖∞. Note that d∞ is not a true metric since it does
not satisfy the triangle inequality. Rather, there is a sub-additive constant C∞ ≥ 1. Regardless,
it follows that d∞ is globally equivalent to d in the sense of (2.3). Fix a, b ∈ G and a horizontal
line L ⊂ G. Note that

(6.6) ‖NH(a−1b)‖∞ ≤ C∞(‖π̃(a−1b)‖∞ + ‖a−1b‖∞) ≤ 2C∞‖a−1b‖∞ = 2C∞d∞(a, b).

If d∞(a, b) < max{d∞(a, L), d∞(b, L)}, then

d∞(NH(a−1b), 0)r

d∞(a, b)r−1
≤ (2C∞)rd∞(a, b) < (2C∞)r max{d∞(a, L), d∞(b, L)}.

Thus we may assume d∞(a, b) ≥ max{d∞(a, L), d∞(b, L)}.

Write d := d∞(a, b), and choose `a, `b ∈ L so that d∞(a, L) = d∞(a, `a) and d∞(b, L) =
d∞(b, `b). Without loss of generality, we may assume that `a = 0 so that `b = (x, 0, . . . , 0). We
have

‖NH(a−1b)‖r∞
dr−1

= d

(
‖NH(a−1b)‖∞

d

)r
= d‖NH(δ1/d(a

−1b))‖r∞ . d|NH(δ1/d(a
−1b))|.

This last inequality follows from (2.2) with a constant depending only on G since (6.6) implies

NH(δ1/d(a
−1b)) ∈ B∞(0, 2C∞)

for any choice of a and b. We can write c = `−1
b b so that a−1b = a−1`bc and ‖c‖∞ = d∞(b, L).

This gives
NH(δ1/d(a

−1b)) = π̃(δ1/d(a
−1`bc))

−1δ1/d(a
−1`bc) = (0, Q)

where Q is a Lie bracket polynomial determined by the BCH formula. As in the proof of
Lemma 3.2, Q is a finite sum of constant multiples of terms of the form

(6.7) [Z1, [Z2, · · · , [Zk−2, [Zk−1, Zk]] · · · ]]
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where each Zj is either ai/d
i, ci/d

i, or x/d. (Again, we are abusing notation and identifying each
ai and ci with the associated vector in Vi ⊂ g.) The definition of ‖ · ‖∞ gives

|ai|
di
≤
(
d∞(a, `a)

d∞(a, b)

)i
=

(
d∞(a, L)

d∞(a, b)

)i
≤ d∞(a, L)

d∞(a, b)

since, by assumption, d∞(a, L) ≤ d∞(a, b). Similarly, |ci|/di ≤ d∞(b, L)/d∞(a, b). We also have

C−2
∞ |x| = C−2

∞ ‖`b‖∞ ≤ ‖a‖∞ + ‖a−1b‖∞ + ‖b−1`b‖∞ = d∞(a, L) + d∞(a, b) + d∞(b, L) ≤ 3d.

Therefore, |x|/d ≤ 3C2
∞. Now, each nested bracket of the form (6.7) with k ≥ 2 must contain

at least one term ai/d
i or ci/d

i (since, otherwise, we would have Zj = x/d for each j, so the
brackets would all vanish). Since max{d∞(a, L), d∞(b, L)}/d∞(a, b) ≤ 1, this gives

|[Z1, · · · , [Zk−1, Zk]] · · · ]| .
k∏
j=1

|Zj | .
max{d∞(a, L), d∞(b, L)}

d∞(a, b)
.

Since the sum in the BCH formula is finite, we have

d∞(NH(a−1b), 0)r

d∞(a, b)r−1
. d∞(a, b)|NH(δ1/d(a

−1b))| . max{d∞(a, L), d∞(b, L)}.

This completes the proof of the lemma. �

Let A = E ∩A(x, 2−2−j , 21−j). Since ψ is Lipschitz, we have φj(y
−1x) . 2j+2d(y, x). Hence

T(j)1(x) =

∫
E
φj(y

−1x)K(y−1x) dµ(y) . 2j+2

∫
A

d(NH(y−1x), 0)2r3 + d(NH(x−1y), 0)2r3

d(y, x)2r3
dµ(y)

. sup
y∈A

d(NH(y−1x), 0)2r3 + d(NH(x−1y), 0)2r3

d(x, y)2r3
.

Observe that, if y ∈ A, it holds that d(x, y) ≥ 2−j−2. Moreover, there exists a horizontal line L
such that

β{x,y}(x, 2
1−j) =

max{d(x, L), d(y, L)}
21−j &

max{d(x, L), d(y, L)}
d(x, y)

(6.5)

&
d(NH(y−1x), 0)2r3 + d(NH(x−1y), 0)r

d(x, y)r
.

Hence (6.4) follows as βE(B(x, 21−j)) ≥ β{x,y}(x, 21−j).

If Q ∈ ∆j for some j ∈ Z we define

βE(Q) := βE(pQ, 2
2−j).

Note that if R ∈ ∆j for some j ∈ Z then (6.4) implies that for any α > 0∫
R
T(j)1(x)α dµ(x) .cµ βE(R)2r2αµ(R).(6.8)

Using (6.4) and (6.8) and arguing exactly as in [3, pp 1416-1417] we deduce that if S ∈ ∆j for
some j ∈ Z, then

(6.9) ‖SnχS‖2L2(S) .cµ
∑

Q∈∆(S∗)

β(Q)2r2µ(Q)

where S∗ is the unique cube in ∆j−2 such that S ⊂ S∗.
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Now let P ∈ ∆j , j ∈ Z, and denote by ΣP the set of connected components of B(pP , 2
1−j)∩E

which intersect P . Note that ]ΣP .cµ 1, because each member of ΣP has length comparable to

H1(E ∩B(pP , 2
1−j)). Therefore∑

Q∈∆(P )

βE(Q)2r2µ(Q) .cµ
∑

Γ∈ΣP

∫
G

∫ ∞
0

βΓ(x, t)2r2 dt

tQ
dHQ(x) .C,cµ µ(B(pP , 2

1−j)),

where we applied Theorem 1.4 for every Γ ∈ ΣP in order to obtain the second inequality. There-
fore for any P ∈ ∆, we have ∑

Q∈∆(P )

βE(Q)2r2µ(Q) .C,cµ µ(P ).(6.10)

Now (6.3) follows by (6.9), (6.10) and the 1-regularity of µ. The proof is complete. �

Remark 6.3. If (G, d) is a Carnot group of step 2, Theorem 6.1 is valid for the simpler kernel

Kd(p) =
d(NH(p), 0)8

d(p, 0)9
.

This follows because of Theorem 1.5 and the fact that NH(p)−1 = NH(p−1) in Carnot groups
of step 2.
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