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ABSTRACT. We show that the β–numbers of intrinsic Lipschitz graphs of Heisenberg
groups Hn are locally Carleson integrable when n ≥ 2. Our main bound uses a novel
slicing argument to decompose intrinsic Lipschitz graphs into graphs of Lipschitz func-
tions. A key ingredient in our proof is a Euclidean inequality that bounds theβ–numbers
of the original graph in terms of theβ–numbers of many families of slices. This allows us
to use recent work of Fässler and Orponen [FO19] which asserts that Lipschitz functions
satisfy a Dorronsoro inequality.

1. INTRODUCTION

In [Jon90], Jones characterized subsets E ⊂ R2 that lie on finite length rectifiable
curves in the now-famous traveling salesman theorem. Given a ball B(x,r ) ⊂ R2, he
introduced the quantity

βE (x,r ) = inf
L

sup
z∈B(x,r )∩E

d(z,L)

r
,

where the infimum is over all affine lines L inR2. This quantity, known as theβ–number,
is a scale-invariant measure of how close E ∩B(x,r ) is to a line. Jones proved the follow-
ing theorem.

Theorem 1.1. A subset E ⊂R2 lies on a finite length rectifiable curve if and only if

diam(E)+
ˆ ∞

0

ˆ
R2
βE (x,r )2 dx

dr

r 2 <∞.(1)

Note that the measure dr
r 2 has a singularity at r = 0, so (1) can be viewed as saying

E is close to a line (βE (x,r ) is small) for “most” balls according to the measure dx dr
r 2 .

Thus, this can be viewed as a quantitative version of the classical Rademacher’s the-
orem, which implies that rectifiable curves are close to affine on infinitesimal scales.
Integrals against measures of the form dx dr

r n are known as Carleson integrals.
Jones, in [Jon89], used the quantitative geometric information provided by (1) to give

another proof of the L2–boundedness of the Cauchy transform on 1–dimensional Lip-
schitz graphs. Since Jones’s work, β–numbers and their variants have appeared fre-
quently in harmonic analysis, geometric measure theory, and related fields. In par-
ticular, Theorem 1.1 has been generalized to various other spaces and settings [Oki92,
Sch07, LS16a, LS16b, FFP07, CLZ19, Li19, DS17]. Moreover, the introduction of Carleson
integrals of β–numbers was a starting point for the theory of quantitative rectifiability
of David and Semmes [DS91, DS93]. Briefly, this theory provides several characteriza-
tions of Ahlfors regular sets of Rn satisfying a Carleson bound similar to (1) via a suite of
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geometric and analytic conditions. Notably, it serves as a broad geometric framework
for singular integrals acting on lower dimensional subsets of Rn .

One of the settings where generalizations of the traveling salesman theorem have
been studied is the setting of Carnot groups [LS16a, LS16b, FFP07, CLZ19, Li19]. The
Carnot groups are a class of nilpotent Lie groups whose abelian members are precisely
Euclidean spaces. Thus, they can be viewed as generalizations of Rn . The simplest ex-
amples of nonabelian Carnot groups are the Heisenberg groups Hn . Extending Theo-
rem 1.1 and other aspects of quantitative rectifiability in Carnot groups contributes to
the development of geometric measure theory on these sub-Riemannian spaces. For a
recent overview of this research program, which started about 20 years ago, we refer the
reader to the lecture notes [SC16].

An interesting challenge for researchers in sub-Riemannian geometric measure the-
ory is to develop a robust theory of sub-Riemannian rectifiability. For example, the at-
tempt to define rectifiability in the (2n+1)–dimensional Heisenberg groupHn modeled
after Federer’s classical definition using Lipschitz images is problematic; Ambrosio and
Kirchheim [AK00] proved that a Lipschitz image f (Rk ) ⊂ Hn has zero k–dimensional
Hausdorff measure for n + 1 ≤ k ≤ 2n. This indicates that the notion of rectifiability
changes drastically between the low-dimensional and the low-codimensional case.

Franchi, Serapioni and Serra-Cassano [FSSC06] introduced intrinsic Lipschitz graphs
in order to define rectifiable sets of codimension 1 inHn . These are sets satisfying a cone
condition, similar to the one satisfied by Euclidean Lipschitz graphs. The cone condi-
tion will be defined in the next section, but a notable class of examples is given by the
fact that level sets of C 1 functions are locally intrinsic Lipschitz graphs away from crit-
ical points. Furthermore, just as Rademacher’s theorem implies that Lipschitz graphs
in Rn can be approximated by planes almost everywhere, intrinsic Lipschitz graphs can
be locally approximated by vertical planes almost everywhere [FSSC11]. The approach
initiated in [FSSC06] has been quite successful, as several important subsequent con-
tributions [MSSC10, FSSC11] laid down the foundations for a meaningful theory of low-
codimensional rectifiability.

Recently, intrinsic Lipschitz graphs have also been used to study quantitative recti-
fiability. This approach was introduced independently in [CFO19b, NY18], which give
quantitative bounds on how close intrinsic Lipschitz graphs are to vertical planes and
vertical sets. See also [NY20, FOR18, Rig19] for some related recent results. One mo-
tivation for this work is that, as in the Euclidean case, the quantitative rectifiability of
intrinsic Lipschitz graphs is related to the behavior of a natural singular integral arising
in the study of removability for Lipschitz harmonic functions inHn , see [CFO19a, FO18].

In this paper, we bound the quantitative rectifiability of intrinsic Lipschitz graphs
by proving bounds on the β–numbers of intrinsic Lipschitz graphs analogous to the
bounds in Theorem 1.1. Given E ⊂Hn (typically an intrinsic Lipschitz graph) and x ∈Hn ,
we define the codimension–1 version of the β–numbers as

(2) βE (x,r ) = inf
L∈VP

[
r−2n−1

ˆ
B(x,r )∩E

(
d(y,L)

r

)2

dH 2n+1(y)

]1/2

where in the infimum, L ranges over the set of vertical planes (planes containing the
center) in Hn . This is scale-invariant in the sense that βδt (E)(δt (x), tr ) =βE (x,r ) for any
t > 0.

Codimension–1 β–numbers in the Heisenberg group were previously considered in
[CFO19b], where it was shown that a weaker qualitative analogue of (1), known as the
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weak geometric lemma, holds for intrinsic Lipschitz graphs in Hn . This result was writ-
ten only for H1 in [CFO19b], but the proof extends to all Hn . In this paper we will show
that intrinsic Lipschitz graphs inHn , for n ≥ 2, satisfy a local version of (1) known as the
(strong) geometric lemma. We note that the (strong) geometric lemma implies the weak
geometric lemma, see [DS93, Part I, 1.1.5] for a relevant discussion in Euclidean spaces.

Our main result is the following theorem.

Theorem 1.2. Let n ≥ 2 and let Γ be an intrinsic λ–Lipschitz graph in Hn . Then, for any
R > 0 and any ball B = B(y,R) ⊂Hn ,ˆ R

0

ˆ
B∩Γ

βΓ(x,r )2 dH 2n+1(x)
dr

r
.λ R2n+1.(3)

This generalizes Dorronsoro’s Theorem, which proves a similar inequality for Lips-
chitz graphs in Rn . More generally, an Ahlfors regular subset of Rn satisfies a Euclidean
analogue of (3) if and only if it is uniformly rectifiable.

We prove Theorem 1.2 using a slicing technique inspired by [NY18]. In that pa-
per, the authors decomposed intrinsic Lipschitz graphs into slices using cosets of a
codimension–1 subgroup of Hn whose intersection with the vertical plane {yn = 0} is
a subgroup P isomorphic to Hn−1. Each slice of the graph can then be viewed as the
graph of a Lipschitz function over cosets of P . This allowed the authors to use results
about functions from Hn−1 to R to study intrinsic Lipschitz graphs of Hn . Because the
authors in [NY18] were concerned with bounding vertical fluctuations of intrinsic Lips-
chitz graphs, they only needed to use one subgroup in the slicing as any codimension–1
subgroup ofHn contains the z-axis.

Unlike [NY18], we want to control the behavior of the intrinsic Lipschitz graph on the
entirety of a ball, not just the vertical fluctuations. Thus, we need to slice the graph along
cosets of multiple codimension–1 subgroups ofHn . As these slices interact nonlinearly,
we can extract information about the intrinsic Lipschitz graph in all directions via har-
monic analytic techniques. A similar slicing argument in the Euclidean setting was used
recently in [Orp18] although the methods employed there were more geometric.

Having reduced the problem to slices of the intrinsic Lipschitz graph, we are then
able to use a result of Fässler and Orponen [FO19] which proved a version of Dorronsoro’s
Theorem for Lipschitz functions on Heisenberg groups. This gives a bound analogous
to (3) for the slices.

Results of [NY20] strongly suggest that Theorem 1.2 does not generalize to the three-
dimensional Heisenberg group. Indeed, Section 3 of [NY20] constructs examples of sur-
faces Γ(α,ρ), where α and ρ are large real numbers, such thatˆ R

0

ˆ
B∩Γ(α,ρ)

βΓ(α,ρ)(x,r )p dH 3(x)
dr

r
&α4−p

for any 1 ≤ p < 4. These surfaces are not intrinsic Lipschitz, but they satisfy an intrinsic
Sobolev condition with constant independent of α and ρ, and we believe the construc-
tion can be modified to produce intrinsic Lipschitz graphs with Lipschitz constant in-
dependent of α and ρ. We will investigate the optimal exponent for (3) in H1 in future
work. More generally, the question of whether the strong geometric lemma holds for
surfaces in a general Carnot group G remains open.

Roadmap. In Section 2, we introduce some basic notation and definition for intrin-
sic Lipschitz graphs. To prove Theorem 1.2, we need some results on balls in intrin-
sic graphs and their projections and a description of codimension–1 slices of intrinsic
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graphs, which we present in Section 3. We will also need to pass between the non-
parametric β–numbers defined in (2) (which are defined in terms of a graph Γ) and
parametric β–numbers (defined in terms of a function f ). We prove the necessary lem-
mas in Section 4. Finally, in Section 5, we prove Theorem 1.2, modulo one last lemma
that bounds the β–numbers of a graph in terms of the β–numbers of its slices, and in
Section 6, we prove this last lemma.

2. PRELIMINARIES

We define the Heisenberg group Hn as the Lie group (R2n+1, ·) where elements of
R2n+1 are written as (x, y, z) for x, y ∈Rn and z ∈R. The group product is defined as

(x, y, z) · (x ′, y ′, z ′) = (x +x ′, y + y ′, z + z ′+Ω((x, y), (x ′, y ′))/2)

whereΩ((x, y), (x ′, y ′)) =∑n
i=1(xi y ′

i − x ′
i yi ) is the symplectic form on R2n . Note that two

elements (x, y, z), (x ′, y ′, z ′) ∈ Hn do not commute unless Ω((x, y), (x ′, y ′)) = 0. We will
also use the standard commutator notation [u, v] = uvu−1v−1 for u, v ∈Hn . The identity
element inHn is 0 = (0,0,0).

Let X1, . . . , Xn ,Y1, . . . ,Yn , Z be the coordinate vectors ofHn and let x1, . . . , xn , y1, . . . , yn ,
z : Hn →R be the coordinate functions. The center of the group is 〈Z 〉 = {(0,0, z) : z ∈R}.
A subgroup W ⊂Hn is vertical if it contains the center 〈Z 〉. An element w ∈Hn is said to
be a horizontal vector if z(w) = 0, and we let A be the set of horizontal vectors. Let d be
the Carnot–Carathéodory metric onHn . For any h ∈Hn we let ‖h‖ = d(0,h).

We define a family of automorphisms

δt : Hn →Hn

(x, y, z) 7→ (t x, t y, t 2z)

for t ∈R. The δt dilate the metric in that for any g ,h ∈Hn , we have

d(δt (g ),δt (h)) = |t |d(g ,h).

For any horizontal vector w ∈ Hn and α ∈ R, we define wα = δα(w); when α ∈ Z, this
agrees with the usual notion of exponentiation.

The projection

π : Hn →R2n

(x, y, z) 7→ (x, y)

is a Lipschitz homomorphism. A function f : Hn →Rk is affine if there is an affine func-
tion τ : R2n →Rk so that f = τ◦π.

A vertical plane V is a subset V =π−1(P ) ⊂Hn where P ⊂R2n is a (2n−1)–dimensional
affine plane. One particular vertical plane, which we’ll use very often is V0 = {yn = 0}. A
function f : V0 →R is vertical if it is constant on cosets of 〈Z 〉. We will denote by VF the
set of vertical functions on V0, and by Aff the set of vertical affine functions on V0; i.e.,
restrictions to V0 of affine functionHn →R. Note that these functions are of the form

f (v) =
n∑

i=1
αi xi (v)+

n−1∑
i=1

βi yi (v)+γ.

Let w ∈ A be a horizontal vector such that yn(w) = 1, we let Πw : Hn → V0 be the
map such that Πw (h) is the unique point of intersection of the coset h〈w〉 and the ver-
tical plane V0. This map projects Hn to V0 along cosets of 〈w〉, and we have Πw (h) =
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hw−yn (h). For any g ,h ∈Hn ,

(4) Πw (g h) = g h ·w−yn (g )−yn (h) = g
(
h ·w−yn (h)

)
·w−yn (g ) =Πw (gΠw (h)).

For any function f : V0 → R and any horizontal vector w with yn(w) = 1, we define
the w–intrinsic graph of f as

Γ f ,w = {v w f (v) : v ∈V0}.

For 0 <λ< 1, let Coneλ be the open double cone

Coneλ = {p ∈Hn :λd(0, p) < |yn(p)|}.

We say that a subset Γ ⊂ Hn is an intrinsic λ–Lipschitz graph if for every x ∈ Γ, (x ·
Coneλ)∩Γ=;. For any such Γ and any w ∈ Coneλ with yn(w) = 1, the restriction Πw |Γ
is injective, so we can define a function fw : Πw (Γ) → R, fw (Πw (p)) = yn(p) such that
Γ = Γ fw ,w . Conversely, if Γ f ,w is an intrinsic λ–Lipschitz graph, we say that f is an in-
trinsic (w,λ)–Lipschitz function.

We finally record that that the Hausdorff (2n+1)-measure H 2n+1 is an Ahlfors (2n+1)-
regular measure when restricted to an intrinsic λ–Lipschitz graph Γ, see e.g. [FS16, The-
orem 3.9]. That is, there exists a constant C > 1 depending only on λ so that

C−1r 2n+1 ≤H 2n+1(B(x,r )∩Γ) ≤Cr 2n+1, ∀x ∈ Γ,r > 0.

3. PROJECTIONS AND SLICES OF INTRINSIC LIPSCHITZ GRAPHS

We will sometimes need to pass between balls in Hn and their projections to V0,
which can be highly distorted. In this section, we define some quasiballs that will make
this more convenient. Moreover, we will introduce a slicing method in order to obtain
a family of decompositions of an intrinsic Lipschitz graph Γ into graphs of real valued
Lipschitz functions with domainHn−1.

We start with some notation. For any subspace S ⊂ A, let SΩ be the symplectic com-
plement of S, i.e.,

SΩ = {v ∈ A :Ω(v, s) = 0 for all s ∈ S}.

The subspace S ⊂ A is called symplectic if S ∩ SΩ = ;. In a similar manner, for any
subspace S ⊂ A we define

SΩ = {h ∈Hn :Ω(h, s) = 0 for all s ∈ S},

where Ω : Hn ×Hn → R is the the alternating form Ω(g ,h) = Ω(π(g ),π(h)). Note that
[g ,h] =Ω(g ,h)Z for all g ,h ∈Hn .

Slightly abusing notation, for a vector w ∈ A we let

vΩ = 〈w〉Ω and vΩ = 〈w〉Ω =π−1(wΩ).

Note that since Ω(w, w) = 0, we have w ∈ wΩ. It is well known that for any subspace
S ⊂ A it holds that dimS +dimSΩ = 2n, see e.g. [Ber01, Chapter 1]. Hence, for every
horizontal vector w such that yn(w) = 1, the complement wΩ is a (2n −1)–dimensional
horizontal subspace that contains w . For such w , we let Cw =V0∩wΩ; this is a (2n−2)–
dimensional horizontal subspace of V0. Note that Cw does not uniquely determine w ,
since we have Cw =Cw+t Xn for any t ∈R. Let also

Pw =V0 ∩wΩ =Cw +〈Z 〉,
and observe that this is a (2n −1)–dimensional vertical subspace of V0.
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Let w and Cw be as above and let ν ∈ A∩V0 be a horizontal unit vector orthogonal to
Cw ; this is unique up to sign. Let

Rw = {sν+p + t Z ∈V0 : p ∈ BCw (0,1), |s| ≤ 1, |t | ≤ 1},

where BCw (0,1) is the unit ball in Cw . For any g ∈Hn and any r > 0, we define

Qw (g ,r ) =Πw (gδr (Rw )).

Since Rw ⊂ V0, when g = 0, we simply have Qw (0,r ) = δr (Rw ). Note that the map x 7→
Πw (g x) preserves Lebesgue measure on V0, so if µ is Lebesgue measure, then

(5) µ(Qw (g ,r )) =µ(δr (Rw )) ≈ r 2n+1.

We now recall the definition of quasiballs. Let (X ,ρ) be a metric space and let λ≥ 1.
Recall that a λ–quasiball (or simply a quasiball if λ is understood) is any set E ⊂ X for
which there exist x ∈ X and R > 0 for which

Bρ(x,R) ⊆ E ⊆ Bρ(x,λR).

In the next lemma we’ll show that when we slice Qw (g ,r ) with cosets of Pw we obtain
quasiballs.

Lemma 3.1. Let w ∈ A with yn(w) = 1. For any g ∈ Hn , any r > 0, and any u ∈ V0, the
intersection Qw (g ,r )∩uPw is either a quasiball of radius ≈ r or empty.

Proof. Let Rw and ν be as above. We first consider the case g = 0. For a ∈ R, let Da =
Rw ∩νaPw . When |a| ≤ 1,

Da = {aν+p + t Z : p ∈ BCw (0,1), |t | ≤ 1}

is a quasiball of radius ≈ 1 in νaPw . Otherwise, when |a| > 1, Da =;.
Every coset uPw can be written νs Pw for some s ∈R, and

Qw (0,r )∩νs Pw = δr (Rw ∩ν s
r Pw ) = δr (D s

r
).

This is either a quasiball of radius ≈ r or the empty set.
Suppose g ∈Hn and s ∈R. Then

Qw (g ,r )∩ gνs Pw =Πw (gQw (0,r )∩ gνs span(Pw , w))

=Πw (gδr (D s
r

)) = δr (Πw (δr−1 (g )D s
r

)).

We claim thatΠw (δr−1 (g )D s
r

) is isometric to D s
r

. It suffices to consider the case r = 1.
Let B = Ds and let α = −yn(g ). Since B ⊂ V0, we have yn(g b) = yn(g ) for all b ∈ B ,

so Πw (g b) = g bwα. Since B ⊂ νs Pw = sν+Pw and Ω(w,Pw ) = 0, we have Ω(b, w) =
Ω(sν, w). That is, [b, w] is independent of the choice of b. Therefore,

Πw (g b) = g bwα = g [b, wα]wαb = g ZαΩ(b,w)wαb = g Z sαΩ(ν,w)wαb.

Therefore, Πw (g B) = g Z sαΩ(ν,w)wαB is a left-translate of B , so Πw (g B) is a quasiball of
radius ≈ r in gνs Pw . �

Let Γ be an intrinsic Lipschitz graph. When g ∈ Γ is large, Qw (g ,r ) can be highly dis-
torted, but the following lemma shows that Qw (g ,r ) is the projection of a quasiball with
respect to the induced metric on Γ. Using this property, we’ll show that the pushforward
measure of H 2n+1|Γ byΠw is globally equivalent to the Lebesgue measure on V0.

Lemma 3.2. Let 0 < λ < λ′ < 1. There is a c > 0 depending on λ and λ′ such that for
any intrinsic λ–Lipschitz graph Γ such that ΠYn (Γ) = V0, any g ∈ Γ, any r > 0, and any
horizontal vector w ∈ A∩Coneλ′ such that yn(w) = 1:
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(1) There is a function fw : V0 →R such that Γ= Γ fw ,w .
(2) Qw (g ,c−1r ) ⊂Πw (B(g ,r )∩Γ) ⊂Qw (g ,cr ).
(3) Let µ be Lebesgue measure on V0. Then µ≈ (Πw )∗(H 2n+1|Γ).

Proof. We start with the proof of (1). Let L = ( 1
λ − 1

λ′ )−1 > 0. Since ΠYn (Γ) = V0, the
complement H \Γ has two connected components, Γ+ and Γ−. Since 0 ∈ Γ, the double
cone Coneλ is disjoint from Γ, and we can label its two connected components Cone+

λ

and Cone−
λ

so that Cone±
λ
⊂ Γ±.

Let v ∈ V0. We claim that there is a unique t0(v) = t0 ∈ R such that v w t0 ∈ Γ and that
|t0| ≤ Ld(0, v). Suppose that t > Ld(0, v) and let h = v w t . Note that h ∈ Cone+

λ
. Indeed,

since w ∈ Coneλ′ , we have |yn(w)| >λ′d(0, w) =λ′‖w‖, i.e., ‖w‖ < (λ′)−1. By the triangle
inequality,

d(0,h)− yn(h)

λ
≤ d(0, v)+ t · ‖w‖− t

λ
≤ d(0, v)+ t

λ′ −
t

λ
= d(0, v)−Lt < 0,

so d(0,h) < yn (h)
λ and thus v w t ∈ Cone+

λ
. Likewise, v w−t ∈ Cone−

λ
. These points are on

different sides of Γ, so there is some t0 such that v w t0 ∈ Γ; in fact, we can take |t0| ≤
Ld(0, v). Since wα ∈ Coneλ for any α 6= 0, this t0 is unique. Therefore, Γ is a w–intrinsic
graph withΠw (Γ) =V0, and we define fw : V0 →R to be the function such that v w fw (v) ∈
Γ for all v ∈V0. In particular, fw (v) = t0(v).

For the proof of (2), note that by scaling, we may assume r = 1. We first prove (2) for
g = 0 (so we are assuming 0 ∈ Γ). If p ∈ B(0,1), then |yn(p)| ≤ 1, so

d(0,Πw (p)) ≤ d(0, p)+d(p,Πw (p)) ≤ 1+|yn(p)| · ‖w‖.λ′ 1.

Therefore, there is a C > 0 depending on λ′ such that Πw (B(0,1)) ⊂V0 ∩B(0,C ), and if c
is sufficiently large (depending only on λ′), thenΠw (B(0,1)) ⊂Qw (0,c). This proves one
inclusion.

We now prove the other inclusion. Note first, that

d(0, v w fw (v)) ≤ d(0, v)+‖w‖| fw (v)| ≤
(
1+ L

λ′

)
d(0, v)

and consequently v w fw (v) ∈ Γ∩B(0,Dd(0, v)) for all v ∈ V0, where D = 1+ L
λ′ . Thus, if

d(0, v) < D−1, then v ∈Πw (B(0,1)∩Γ). If c is sufficiently large (depending only on λ,λ′),
then

Qw (0,c−1) ⊂V0 ∩B(0,D−1) ⊂Πw (B(0,1)∩Γ),

as desired.
Now assume g 6= 0. Then g−1Γ is still an intrinsic Lipschitz graph which now contains

0, so

Qw (0,c−1) ⊂Πw (B(0,1)∩ g−1Γ) ⊂Qw (0,c).(6)

Let h′ ∈ B(g ,1)∩Γ. Then h′ = g h for some h ∈ B(0,1)∩ g−1Γ. Let y =Πw (h); by the
upper bound of (6), y ∈ Qw (0,c) = δc (Rw ) and y = hwα for some α ∈ R. Then g y〈w〉 =
g h〈w〉 = h′〈w〉, so Πw (h′) = Πw (g y) and thus Πw (h′) ∈ Πw (gδc (Rw )) = Qw (g ,c). This
proves the upper bound of part 2, and the lower bound follows similarly.

To prove the last part, letΨ : V0 → Γbe the mapΨ(v) = v w fw (v), so thatΨ is inverse to
Πw |Γ. By (5) and part 2, µ(Πw (B(x,r )∩Γ)) ≈ r 2n+1 for any x ∈ Γ. Thus, by Theorem 2.4.3
of [AT04],Ψ∗(µ)|Γ ≈H 2n+1|Γ and thus µ≈ (Πw )∗(H 2n+1|Γ). �



8 VASILEIOS CHOUSIONIS, SEAN LI, AND ROBERT YOUNG

For every k ≤ n, we identify Hk with span(X1, . . . , Xk ,Y1, . . . ,Yk , Z ) ⊂Hn . The vertical
subspace {yn = 0} is then the internal direct product of Hn−1 and 〈Xn〉. In fact, every
codimension–1 vertical subspace P ⊂ Hn is isomorphic to Hn−1 ×R, so the cosets of P
decompose Hn into copies of Hn−1 ×R. In the following, we will use these decompo-
sitions to construct a family of decompositions of an intrinsic Lipschitz graph Γ into a
union of graphs of Lipschitz functionsHn−1 →R.

Recall that for every w ∈ A, we defined Pw = V0 ∩wΩ; this is a codimension–1 sub-

space of V0. Then Pw ∩ 〈w〉 = {0}, Pw · 〈w〉 = wΩ, and w and Pw commute, so wΩ ∼=
〈w〉 ×Pw . Furthermore, since π(Pw ) = span(Xn , w)Ω and span(Xn , w) is a symplectic
subspace of A, π(Pw ) is a symplectic subspace and thus Pw is isomorphic toHn−1.

By Lemma 3.2, if Γ is an intrinsic Lipschitz graph, then for every horizontal vector
w ∈ A that is sufficiently close to Yn , there is a function fw such that Γ = Γ fw ,w . These
functions satisfy a Lipschitz condition on cosets of Pw .

Lemma 3.3. Let 0 <λ<λ′ < 1. There is an L > 0 such that if Γ is an intrinsic λ–Lipschitz
graph, w ∈ A ∩Coneλ′ , yn(w) = 1, and fw : V0 → R is the parametrizing function of Γ,
i.e., Γ = Γ fw ,w , then for any g ∈ V0, the restriction fw |g Pw is L–Lipschitz with respect to
dHn .

Proof. Let fw : V0 → R be the function such that Γ = Γ fw ,w , as in Lemma 3.2 and let
g ∈ Hn . We claim that fw |g Pw is Lipschitz. We may assume g = 0 as d is left-invariant.
DefineΨ : Πw (Γ) → Γ,Ψ(u) = uw fw (u).

Let u, v ∈ Pw ∩Πw (Γ). SinceΨ(u),Ψ(v) ∈ Γ, the intrinsic Lipschitz condition implies
thatΨ(u) ∉Ψ(v) ·Coneλ or

h :=Ψ(v)−1Ψ(u) ∉ Coneλ .

Since v−1u ∈ Pw is in the Ω–complement of w , it commutes with w , so we can decom-
pose h as

h = (v w fw (v))−1(uw fw (u)) = w− fw (v)v−1uw fw (u) = v−1u ·w fw (u)− fw (v).

Then, since v−1u ∈V0,

(7) |yn(h)| = |yn(w fw (u)− fw (v))| = | fw (u)− fw (v)|.
Moreover, since w ∈ Coneλ′ and yn(w) = 1,

d(h,0) ≤ d(u, v)+d(w fw (u), w fw (v))

= d(u, v)+d(0, w)| fw (v)− fw (u)|

≤ d(u, v)+ 1

λ′ | fw (v)− fw (u)|.
(8)

Since h ∉ Coneλ, we have |yn(h)| ≤λd(0,h). Then,

| fw (u)− fw (v)| (7)= |yn(h)| ≤λd(0,h)
(8)≤ λ

(
d(u, v)+ 1

λ′ | fw (v)− fw (u)|
)

and by the fact that λ′ >λ,

| fw (u)− fw (v)| ≤ λ

1− λ
λ′

d(u, v) = λλ′

λ′−λd(u, v).

�
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4. COMPARING β–NUMBERS

Since Theorem 1.2 deals with intrinsic graphs, its proof will use parametric versions
of β–numbers, i.e., quantities that measure how close a function f is to an affine func-
tion rather than how close the graph Γ f is to a plane. In Lemma 3.3, we saw that there
are many different ways of writing Γ as a graph, all of which lead to different paramet-
ric β–numbers. In this section, we prove some inequalities comparing parametric and
non-parametric β–numbers.

We first prove the following simple lemma.

Lemma 4.1. Let 0 < λ < λ′ < 1. There is a c > 0 with the following property. Let w ∈
A∩Coneλ′ be such that yn(w) = 1. Let f : V0 →R be an intrinsic (w,λ)–Lipschitz function
and let Γ := Γ f ,w be its intrinsic graph. For any r > 0 and any x ∈ Γ,

(9) βΓ(x,r ).λ,λ′ r− 2n+3
2 inf

h∈Aff
‖ f −h‖L2(Qw (x,cr )).

Proof. Let c be as in Lemma 3.2 so that Πw (B(x,r )∩Γ) ⊂ Qw (x,cr ). Let Q = Qw (x,cr ).
Let h ∈ Aff be the affine function that minimizes ‖h − f ‖L2(Q). Let S = Γh,w and let µ be
Lebesgue measure on V0. Then S is a vertical plane, so

βΓ(x,r )2 ≤ r−2n−3
ˆ

B(x,r )∩Γ f

d(y,S)2 dH 2n+1(y)

Lem. 3.2≈λ,λ′ r−2n−3
ˆ
Πw (B(x,r )∩Γ f )

d(v w f (v),S)2 dµ(v)

≤ r−2n−3
ˆ

Q
d(v w f (v), v wh(v))2 dµ(v)

.λ,λ′ r−2n−3‖ f −h‖2
L2(Q).

Taking square roots of both sides gives the desired inequality. �

Let P ⊂ V0 be a vertical subgroup. We say that a measurable function f is P–slice
affine if for every v ∈V0, the restriction of f to vP is a vertical affine function. Let SAffP

be the set of P–slice affine functions. Note that we have the following inclusion of func-
tion spaces:

Aff ⊆ SAffP ⊆VF.(10)

The second result we will need deals with different parameterizing functions for the
same graph. Suppose that Γ is an intrinsic Lipschitz graph, w and w ′ are horizontal
vectors with yn(w) = yn(w ′) = 1 and [w, w ′] = 0. Moreover, assume that f and f ′ are two
parameterizing functions for Γ, so that Γ = Γ f ,w = Γ f ′,w ′ . The relationship between f

and f ′ is nonlinear. Indeed, by Lemma 3.3, f is Lipschitz on cosets of P = Pw =V0∩wΩ,
while f ′ need not be. Regardless, we will show that if f is close to P–slice affine, then f ′
is close to P–slice affine too.

Lemma 4.2. Let 0 <λ< 1. There exist c > 0 and λ′ ∈ ( 1+λ
2 ,1) depending only on λ so that

the following holds. Let w, w ′ ∈ A∩Coneλ′ be horizontal vectors with yn(w) = yn(w ′) = 1
and [w, w ′] = 0.

Let Γ be a λ–intrinsic Lipschitz graph with parameterizing functions f , f ′ : V0 → R

such that Γ= Γ f ,w = Γ f ′,w ′ . Then, for any x ∈ Γ and r > 0,

(11) min
σ∈SAffPw

‖ f ′−σ‖L2(Qw ′ (x,r )). min
σ∈SAffPw

‖ f −σ‖L2(Qw (x,cr )).
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The key to this bound is that since [w, w ′] = 0, we have w −w ′ ∈ Pw and thus Pw +
〈w〉 = Pw +〈w ′〉. Thus, if F ∈ SAffPw satisfies a Lipschitz bound on each slice, then there
is an F ′ ∈ SAffPw such that ΓF,w = ΓF ′,w ′ .

We will need two lemmas dealing with affine functions on slices.

Lemma 4.3. Let µ > 0. There is a constant c > 1 depending only on µ and n so that if
f : Hn → R is a Lipschitz function and U ⊂Hn is a µ–quasiball, then the affine function
F : Hn →R such that

‖ f −F‖L2(U ) = inf
T∈Aff

‖ f −T ‖L2(U )

satisfies ‖F‖Lip ≤ c‖ f ‖Lip, where the infimum is taken over affine functions onHn .

Proof. Since U is a µ–quasiball, there is a u0 ∈U and an r > 0 such that

B(u0,r ) ⊂U ⊂ B(u0,µr ).

By rescaling and translation, we may suppose that r = 1 and u0 = 0. Let 〈g ,h〉U =´
U g h dH 2n+2 be the inner product on L2(U ) and let ‖ · ‖2 denote the norm in L2(U ).

Let f0 = f − f (0), and let F0 = F − f (0). Then

‖ f0 −F0‖2 = inf
T∈Aff

‖ f0 −T ‖2,

so it suffices to prove the lemma for f0 and F0.
Let

C1 = max
K∈Aff

‖K ‖Lip

‖K ‖L2(B(0,1))
= max

K∈Aff

‖K ‖Lip

‖K −fflB(0,1) K dH 2n+2‖L2(B(0,1))
.

This is finite by compactness, and if K ∈Aff, then

‖K ‖Lip ≤C1‖K ‖L2(B(0,1)) ≤C1‖K ‖2.

Let

C2 = max
‖g‖Lip<∞

g (0)=0

‖g‖2

‖g‖Lip
.

If g (0) = 0, then ‖g‖L∞(U ) ≤µ‖g‖Lip, so

C2 ≤µ
√

H 2n+2(U ).µn+2.

Since f0 −F0 is orthogonal to F0, we have ‖F0‖2 ≤ ‖ f0‖2 and thus

‖F0‖Lip ≤C1‖F0‖2 ≤C1‖ f0‖2 ≤C1C2‖ f0‖Lip.µ
n+2‖ f0‖Lip. �

Lemma 4.4. Let L > 0. There is a λ ∈ (0,1) such that if w, w ′ ∈ A ∩ Coneλ, yn(w) =
yn(w ′) = 1, [w, w ′] = 0, and T : Pw → R is an affine function with Lip(T ) < L, then there
is an affine function T ′ : Pw →R such that ΓT,w = ΓT ′,w ′ and Lip(T ′) < 2L.

Proof. Let Cw = π(Pw ), which we think of as a vector space with norm ‖ · ‖. As affine
functions do not depend on the z–coordinate, we see that T = τ◦π where τ : Cw → R is
affine and Lip(T ) = Lip(τ). Let λ ∈ (0,1) be such that if w, w ′ ∈ A ∩Coneλ and yn(w) =
yn(w ′) = 1, then ‖w −w ′‖ < (2L)−1. Let s = w −w ′.

Since [w, s] = −[w, w ′] = 0 and yn(s) = 0, we have s ∈ Pw . Let M : Pw → Pw be the
map

M(p) =Πw ′ (pwT (p)) = pwT (p)(w ′)−T (p) = psT (p) ∀p ∈ Pw .
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Since M(v + t Z ) = M(v)+ t Z for all v ∈ Pw and t ∈R, M descends to a map m : Cw →
Cw . Let m =π◦M |Cw . By our choice of λ, for all p, q ∈Cw ,

‖m(p)−m(q)‖ = ‖p −q + (τ(p)−τ(q))s‖ ≥ ‖p −q‖−Lip(τ)‖p −q‖ ·‖s‖ ≥ ‖p −q‖
2

.

Therefore m and M are invertible and Lip(m−1) ≤ 2.
Let T ′(M(p)) = T (p) for all p ∈ Pw . This is affine and by construction,

pwT (p) = M(p)(w ′)T (p) = M(p)(w ′)T ′(M(p)),

so ΓT,w = ΓT ′,w ′ . Finally, T ′ = τ◦m−1 ◦π, so Lip(T ′) = Lip(τ◦m−1) < 2L. �

Now, we prove Lemma 4.2.

Proof of Lemma 4.2. By Lemma 3.2, there is a c0 > 0 such that for every x ∈ Γ and every
r > 0, Qw ′ (x,r ) ⊂Πw ′ (B(x,c0r )∩Γ) andΠw (B(x,r )∩Γ) ⊂Qw (x,c0r ). Let c = c2

0 .
Let P = Pw . We first consider a single slice Qw (x,cr )∩ vP ; without loss of generality,

we may take v = 0. Let D := Qw (x,cr )∩P and D ′ := Qw ′ (x,r )∩P . Let T : P → R be the
affine function minimizing ‖ f −T ‖L2(D). We know from Lemma 3.3 that f is Lipschitz
on P , and if 1+λ

2 < λ′ < 1, then Lip( f |P ) is bounded by a function of λ. Therefore, by
Lemma 4.3, Lip(T ) is also bounded by a function of λ, say Lip(T ) < L = L(λ).

The intrinsic graph ΓT,w is a plane which we call R. We suppose thatλ′ ∈ (0,1) is close
enough to 1 that we may apply Lemma 4.4 to find an affine function T ′ : P →R such that
R = ΓT ′,w ′ and Lip(T ′) ≤ 2L.

Let g ∈ Γ∩ (P + 〈w〉) and u = Πw (g ). Then g = uw f (u) and thus f (u) = yn(g ). Let
h = g wT (u)− f (u); then h = uwT (u) ∈ R. Let u′ = Πw ′ (g ) and v ′ = Πw ′ (h), so that f (u) =
f ′(u′) = yn(g ) and T (u) = T ′(v ′) = yn(h). Since [w, w ′] = 0, we let s = w −w ′ and write

u′ = uw f (u)(w ′)− f (u) = us f (u)

and v ′ = usT (u).
We have

| f ′(u′)−T ′(u′)| ≤ | f (u)−T (u)|+ |T (u)−T ′(u′)|
= | f (u)−T (u)|+ |T ′(v ′)−T ′(u′)| ≤ | f (u)−T (u)|+Lip(T ′)d(u′, v ′).

Since d(u′, v ′) = ‖s‖ · | f (u)−T (u)|,

(12) | f ′(Πw ′ (g ))−T ′(Πw ′ (g ))|. | f (Πw (g ))−T (Πw (g ))|

for every g ∈ Γ∩ (P +〈w〉).
Applying the argument above to every coset of P shows that if σ ∈ SAffP minimizes

‖ f −σ‖L2(Qw (x,cr )), then there is a slice-affine function σ′ ∈ SAffP such that

(13) | f ′(Πw ′ (g ))−σ′(Πw ′ (g ))|. | f (Πw (g ))−σ(Πw (g ))|

for every g ∈ Γ.
By Lemma 3.2, if µ is Lebesgue measure on V0, then

(14) µ≈ (Πw )∗(H 2n+1|Γ) ≈ (ΠYn )∗(H 2n+1|Γ).
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Therefore,

‖ f ′−σ′‖2
L2(Qw ′ (x,r ))

(13)
.

ˆ
Γ∩B(x,

p
cr )

(
f ′(Πw ′ (g ))−σ′(Πw ′ (g ))

)2 dH 2n+1(g )

(14)
.

ˆ
Γ∩B(x,

p
cr )

(
f (Πw (g ))−σ(Πw (g ))

)2 dH 2n+1(g )

(13)
. ‖ f −σ‖2

L2(Qw (x,cr )).

Thus
‖ f ′−σ′‖L2(Qw ′ (x,r )). ‖ f −σ‖L2(Qw (x,cr )) = min

σ∈SAffP

‖ f −σ‖L2(Qw (x,cr )),

as desired.
�

5. STRONG GEOMETRIC LEMMA FOR INTRINSIC LIPSCHITZ GRAPHS

In this section, we will prove Theorem 1.2, modulo a bound that we will prove in
Section 6. Our strategy is to reduce from the intrinsic Lipschitz graph Γ to Lipschitz
graphs on cosets ofHn−1 by slicing. By the results of Section 3, there are codimension–1
vertical subgroups W ⊂ Hn such that the intersections vW ∩Γ are graphs of Lipschitz
functions defined on subgroups isomorphic toHn−1.

We start with some standard notation. Let f : Hn → R be a smooth function. The
horizontal derivatives of f in the directions Xi ,Yi , i = 1, . . . ,n, are the left invariant vector
fields:

Xi f (h) := ∂ f

∂xi
(h)− 1

2
yi (h)

∂ f

∂z
(h) and Yi f (h) := ∂ f

∂yi
(h)+ 1

2
xi (h)

∂ f

∂z
(h), h ∈Hn .

The horizontal gradient of f is defined as

∇H f (h) = (X1 f (h), . . . , Xn f (h),Y1 f (h) . . .Yn f (h)), h ∈Hn .

Fässler and Orponen proved that Lipschitz functions on Heisenberg groups satisfy
the following version of Dorronsoro’s Theorem. For any function f : Hn → R and any
x ∈Hn , r > 0, let

θ f (B(x,r )) = r−2n−4 inf
g∈Aff

‖ f − g‖2
L2(B(x,r )) ≈ inf

g∈Aff

 
B(x,r )

( f (x)− g (x))2

r 2 dx.(15)

Theorem 5.1. [FO19, Theorem 6.1] Let f ∈ L2(Hn) with ∇H f ∈ L2(Hn). Thenˆ
Hn

ˆ ∞

0
θ f (B(x,r ))

dr

r
d x . ‖∇H f ‖2

L2(Hn ).

This will let us bound how well each slice vW ∩Γ can be approximated by planes,
but even if vW ∩Γ is close to a plane for every v , the whole graph Γ may not be. We
thus prove Theorem 1.2 by considering slices of Γ parallel to several different planes Wi .
Using a bound that will be proved in Section 6, we will show that if vWi ∩Γ is close to a
plane for many different choices of Wi , then the whole graph Γ is close to a plane. We
then deduce the strong geometric lemma for Γ by applying Theorem 5.1 to each slice.

We will need a weak local version of Theorem 5.1.

Corollary 5.2. Let f : Hn →R be a Lipschitz function and B(y,R) ⊂Hn a ball. Thenˆ
B(y,R)

ˆ R

0
θ f (B(x,r ))

dr

r
dx . ‖ f ‖2

LipR2n+2.
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Proof. We translate so that y = 0 and f (0) = 0. We first construct a Lipschitz function
F : Hn →R such that F = f on B(0,2R) and ‖∇H F‖L2(Hn )2 . ‖ f ‖2

LipR2n+2.
Let S = B(0,2R)∪ (H\ B(0,4R)) and define F : S →R by

F (x) =
{

f (x), d(0, x) ≤ 2R,

0 d(0, x) ≥ 4R.

If p ∈ B(0,2R) and d(0, q) ≥ 4R, then

| f (p)− f (q)|
d(p, q)

≤ ‖ f ‖L∞(B(0,2R))

2R
≤ Lip( f ),

so Lip(F ) = Lip( f ). SinceR is an absolute 1–Lipschitz retract [BL00, Ch. 1], we can extend
F to a Lipschitz function fromH to Rwith Lip(F ) = Lip( f ). This function is supported in
B(0,4R), so

‖∇H F‖2
L2(Hn ) ≤ Lip(F )2H 2n+2(B(0,4R)). Lip( f )2R2n+2

as desired.
If x ∈ B(0,R) and r < R, then f |B(x,r ) = F |B(x,r ) and thus θF (B(x,r )) = θ f (B(x,r )).

Then ˆ
B(y,R)

ˆ R

0
θ f (B(x,r ))

dr

r
d x =

ˆ
B(y,R)

ˆ R

0
θF (B(x,r ))

dr

r
d x

≤
ˆ
Hn

ˆ ∞

0
θF (B(x,r ))

dr

r
d x

. ‖∇H F‖2
L2(Hn )

≤ ‖ f ‖2
LipR2n+2.

�

We now prove the main theorem.

Proof of Theorem 1.2. Let Q(x,r ) =QYn (x,r ). Let λ′ ∈ ( 1+λ
2 ,1) be as in Lemma 4.2.

We first construct some (2n −1)–dimensional vertical subspaces P,P1, . . . ,P2n−1. Re-

call that Pw =V0 ∩wΩ and let

P := PYn = span(X1, . . . , Xn−1,Y1, . . . ,Yn−1, Z ).

Let W0 = P +〈Yn〉 = {xn = 0} and let w1, . . . , w2n−1 ∈ A∩W0∩Coneλ′ be linearly indepen-

dent vectors such that yn(wi ) = 1. Let Pi := Pwi =V0∩wΩ
i . Each vector wi is close to Yn ,

so each plane Pi is close to P . Since the wi ’s span A∩W0, we have⋂
i

wΩ
i = (A∩W0)Ω = span(Z ,Yn),

and
⋂

i Pi =V0 ∩⋂
i wΩ

i = 〈Z 〉. For all i and all x ∈ Γ, let Qi (x,r ) :=Qwi (x,r ).
In Lemma 6.2 in Section 6, we will show that there is a c > 1 depending on λ and the

Pi ’s such that if f v : V0 →R is a vertical function, then

min
h∈Aff

‖ f v −h‖L2(Q(x,r )).
∑

i
min

σ∈SAffPi

‖ f v −σ‖L2(Q(x,cr ))

for any x ∈ Γ and r > 0. We also suppose that c is large enough to satisfy Lemma 4.2,
Lemma 3.2, and Lemma 4.1. In particular,

r n+3/2βΓ(x,r ).min
h∈Aff

‖ f −h‖L2(Q(x,cr )) = (∗)

for any x ∈ Γ.
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Now, fix some x ∈ Γ and let f v ∈VF be the vertical function such that

(16) ‖ f − f v‖L2(Q(x,cr )) = min
h∈VF

‖ f −h‖L2(Q(x,cr )).

Let fwi : V0 → R be the parameterizing functions such that Γ = Γ fwi ,wi . Then, by the
triangle inequality,

(∗) ≤ ‖ f − f v‖L2(Q(x,cr )) + min
h∈Aff

‖ f v −h‖L2(Q(x,cr ))

Lem. 6.2
. ‖ f − f v‖L2(Q(x,cr )) +

∑
i

min
σ∈SAffPi

‖ f v −σ‖L2(Q(x,c2r ))

. ‖ f − f v‖L2(Q(x,cr )) +
∑

i
min

σ∈SAffPi

(‖ f v − f ‖L2(Q(x,c2r )) +‖ f −σ‖L2(Q(x,c2r )))

Lem. 4.2
. ‖ f − f v‖L2(Q(x,c2r )) +

∑
i

min
σ∈SAffPi

‖ fwi −σ‖L2(Qi (x,c2r )).

By (16) and the inclusion SAffP ⊆VF,

r n+3/2βΓ(x,r ) ≤ ‖ f − f v‖L2(Q(x,c2r )) +
∑

i
min

σ∈SAffPi

‖ fwi −σ‖L2(Qi (x,c2r ))

≤ min
σ∈SAffP

‖ f −σ‖L2(Q(x,c2r )) +
∑

i
min

σ∈SAffPi

‖ fwi −σ‖L2(Qi (x,c2r ))(17)

Thus, in order to prove Theorem 1.2, it suffices to bound how well f and the fwi ’s can
be approximated by slice-affine functions.

Let p0 ∈ Γ, R > 0, and B = B(p0,R). After a translation, we may suppose p0 = 0. Let

γ(x,r ) = r−2n−1 min
σ∈SAffP

‖ f −σ‖2
L2(Q(x,r ))

r 2 .

We consider

I =
ˆ R

0
r−2n−1

ˆ
B∩Γ

min
σ∈SAffP

‖ f −σ‖2
L2(Q(x,c2r ))

r 2 dx
dr

r
≈
ˆ R

0

ˆ
B∩Γ

γ(x,c2r )dx
dr

r
.

We first pass from the integral above to a sum over the balls in a family of bounded-
multiplicity covers Ck of Γ.

By Lemma 3.2 and our choice of c, we have

(18) Q(x,c−1r ) ⊂Π(B(x,r )∩Γ) ⊂Q(x,cr )

for any x ∈ Γ and r > 0. For k ≥ 0, let Nk be a maximal R2−k –net in Γ∩B . Let rk =
2c3R2−k and let Ck = {Q(p,rk ) : p ∈Nk }. By the Ahlfors regularity of Γ, Ck has bounded
multiplicity, i.e., for any x ∈V0, |{Q ∈Ck : x ∈Q}|. 1. Furthermore, there is a D > 0 such
that if Q ∈Ck , then Q ⊂Q(0,DR).

For any x ∈ Γ∩B , there is an p ∈Nk such that d(x, p) ≤ R2−k , so by (18),

Q(x,R2−k ) ⊂Π(
B(x,c2R2−k )∩Γ)⊂Π(

B(p,2c2R2−k )∩Γ)⊂Q(p,2c3R2−k ),

and thus γ(x,R2−k ). γ(p,rk ). It follows that

I .
∞∑

k=0

∑
p∈Nk

H 2n+1(B(p,R2−k )∩Γ)
γ(p,rk )

.
∞∑

k=0

∑
p∈Nk

R2n+12−k(2n+1)γ(p,rk ),(19)

that is, I is bounded by a sum over the quasiballs in the Ck ’s.
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Next, we write the sum in (19) as an integral over slices. For notational convenience,
we shorten xu

n to just u. For nonempty sets S ⊂ uP , let

θu(S) = diam(S)−2n−2 inf
g∈Aff

‖ f − g‖2
L2(S),

and let θu(;) = 0. By Section 3, uP is isomorphic toHn−1.
Since V0 is a product,

γ(x,r ) = r−2n−1
ˆ
R

min
g∈Aff

‖ f − g‖2
L2(Q(x,r )∩uP )

r 2 du

= r−1
ˆ
R

diam(Q(x,r )∩uP )2n+2

r 2n+2 θu(Q(x,r )∩uP )du

≈ r−1
ˆ
R

θu(Q(x,r )∩uP )du,

where the last line follows from the fact that Q(x,r )∩uP is either empty or an r –quasiball
(Lemma 3.1). Therefore,

I .
ˆ
R

∞∑
k=0

∑
Q∈Ck

R2n2−2nkθu(Q ∩uP )du.(20)

Finally, we apply Corollary 5.2 in each slice and integrate. We can slice each cover Ck

into a family of bounded-multiplicity covers of slices. Let C u
k = {Q ∩uP : Q ∈ Ck } \ {;}.

This is a set of quasiballs in uP with bounded multiplicity, and by Fubini’s Theorem, we
can rewrite (20) as

I .
ˆ
R

∞∑
k=0

∑
S∈C u

k

R2n2−2nkθu(S)du.

Let a > 0 be such that diamS ≤ ark for any S ∈ C u
k and let Fu = f |uP . Then for any

S ∈C u
k and any s ∈ S, we have θu(S). θFu (BuP (s, ark )), where θFu is as in in (15). Since⋃

S∈C u
k

S ⊂Q(0,DR), the bounded multiplicity of C u
k implies∑

S∈C u
k

R2n2−2nkθu(S).
∑

S∈C u
k

R2n2−2nkH 2n(S)−1
ˆ

S
θFu (BuP (s, ark ))ds

.
ˆ

Q(0,DR)∩uP
θFu (BuP (s, ark ))ds.

This is zero when |u| > DR, so

I .
ˆ DR

−DR

∞∑
k=0

ˆ
Q(0,DR)∩uP

θFu (BuP (s, ark ))ds du

.
ˆ DR

−DR

ˆ 2ar0

0

ˆ
Q(0,DR)∩uP

θFu (BuP (s,r ))ds
dr

r
du.

By Lemma 3.1, there is a D ′ > 0 such that for each u ∈ [−DR,DR], there is a ball Bu ⊂ uP
of radius D ′R such that Q(p0,DR)∩uP ⊂ Bu . Thus, by Corollary 5.2,

I .
ˆ DR

−DR

ˆ ∞

0

ˆ
Bu

θu(BuP (s,r ))ds
dr

r
du

.
ˆ DR

−DR
‖Fu‖2

Lip(D ′R)2n du

.λ 2DR · (D ′R)2n ≈ R2n+1.
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That is,
ˆ R

0
r−2n−1

ˆ
B∩Γ

inf
g∈SAffP

‖ f − g‖2
L2(Q(x,c2r ))

r 2 dx
dr

r
.λ R2n+1.

Similarly, we can prove
ˆ R

0
r−2n−1

ˆ
B∩Γ

inf
g∈SAffPi

‖ fwi − g‖2
L2(Qi (x,c2r ))

r 2 dx
dr

r
.λ R2n+1.

This, together with (17) allows us to concludeˆ
B∩Γ

ˆ R

0
βΓ(x,r )2 dr

r
dx .λ R2n+1,

as desired. �

6. SLICING VERTICAL FUNCTIONS

In this section, we prove bounds on functions that are close to affine on many fami-
lies of parallel hyperplanes. The simplest version of this bound deals with functions on
the cube that are close to affine on any axis-parallel hyperplane. For V a vector space
and U ⊂ V a subspace, we define SAffU (V ) to be the set of measurable functions that
are affine on every coset of U .

Proposition 6.1. Let d ≥ 3 and let R1, . . . ,Rd ⊂ Rd be the coordinate (d − 1)–planes, so
that Ri consists of points whose i th coordinate is zero. Let I = [−1,1] and let SAffRi (Rd ) ⊂
L2(I d ) be the set of functions that are affine on each plane parallel to Ri . Then, for any
g ∈ L2(I d ),

(21) min
λ∈Aff

‖g −λ‖2 ≈d

∑
i

min
λ∈SAffRi (Rd )

‖g −λ‖2.

This proposition implies the bounds on slice-affine functions onHn used in the proof
of Theorem 1.2.

Lemma 6.2. Let n ≥ 2 and let P1, . . . ,P2n−1 ⊂ V0 be vertical hyperplanes in general posi-
tion, i.e., vertical (2n −1)–planes such that

⋂
i Pi = 〈Z 〉. There is a c > 1 such that for any

vertical function f ∈ L2(V0), any x ∈ Γ f , and any r > 0,

(22) min
g∈Aff

‖ f − g‖L2(Q(x,r )).P1,...,P2n−1

∑
i

min
g∈SAffPi (V0)

‖ f − g‖L2(Q(x,cr )),

where for convenience we define Q(x,r ) =QYn (x,r ).

Proof. After applying a translation, we may suppose that x = 0.

Let A0 = A∩V0 and let P = PYn = Y Ω
n ∩V0. Then Q(x,r ) =ΠYn (δr (K )) where

K = {sXn +a + t Z : a ∈ B A(x,1)∩P, |s| ≤ 1, |t | ≤ 1}.

Let Sr =π(Q(x,r )); this is isometric to the product of an r –ball and an interval of length
2r , so it is a quasiball of radius r in A0. Furthermore, for any p ∈ Sr , the intersection
π−1(p)∩Q(x,r ) is an interval of length 2r 2.

We identify A0 with R2n−1 by an isomorphism. The projections π(Pi ) are subspaces
of A0 in general position, so there is a linear transformation M : A0 → A0 such that
M(π(Pi )) = Ri for all i . Let D t = [−t , t ]2n−1 ⊂ A0. This is a quasiball in A0, and MSr

and M−1Sr are quasiballs with constants depending on M , so there is a b > 0 depending
only on M such that MSt ⊂ Dbt and D t ⊂ M−1Sbt for all t > 0.
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Since any g ∈Aff is a vertical function,

‖ f − g‖2
L2(Q(x,r )) = 2r 2‖ f − g‖2

L2(Sr ).

Let h : A0 → R be the function h(v) = f (M−1v); this is also a vertical function, and by a
change of variables,

min
λ∈Aff

‖ f −λ‖2
L2(Q(x,r )) = min

λ∈Aff
2r 2‖ f −λ‖2

L2(Sr )

= min
λ∈Aff

2r 2|det(M)|−1 · ‖h −λ◦M−1‖2
L2(MSr )

≤ min
λ∈Aff

2r 2|det(M)|−1‖h −λ‖2
L2(Dbr ).

By Proposition 6.1,

min
λ∈Aff

‖h −λ‖2
L2(Dbr ).

∑
i

min
λ∈SAffRi (R2n−1)

‖h −λ‖2
L2(Dbr ).

Let Ji be the determinant of the restriction M−1|Ri : Ri → π(Pi ). If λ ∈ SAffRi (R2n−1),
then λ◦M ∈ SAffπ(Pi )(A0) and λ◦M ◦π ∈ SAffPi (V0), so by another change of variables,

min
λ∈SAffRi (R2n−1)

‖h −λ‖2
L2(Dbr ) = min

λ∈SAffRi (R2n−1)
|Ji |−1‖ f −λ◦M‖2

L2(M−1Dbr )

≤ min
λ∈SAffπ(Pi )(A0)

|Ji |−1‖ f −λ‖2
L2(Sb2r )

= 2b−4r−2 min
λ∈SAffPi (V0)

|Ji |−1‖ f −λ‖2
L2(Q(x,b2r )).

Combining these calculations, we find

min
λ∈Aff

‖ f −λ‖2
L2(Q(x,r )).M min

λ∈Aff
r 2‖h −λ‖2

L2(Dbr )

.
∑

i
r 2 min

λ∈SAffRi (R2n−1)
‖h −λ‖2

L2(Dbr )

.M b−4r−2
∑

i
min

λ∈SAffPi (V0)
r 2‖ f −λ‖2

L2(Q(x,b2r ).

Since b and M depend on P1, . . . ,Pn , we conclude

min
λ∈Aff

‖ f −λ‖2
L2(Q(x,r )).P1,...,Pn

∑
i

min
λ∈SAffPi (V0)

‖ f −λ‖2
L2(Q(x,b2r ).

as desired. �

In the rest of this section, we prove Proposition 6.1 using a wavelet decomposition.
Letψ j ,k ∈ L2([−1,1]) be the Haar wavelet basis for L2([−1,1]). That is, letψ0,0(t ) = 1, and
for j > 0 and 0 ≤ k < 2i−1, let

ψ j ,k (t ) =


−1 2k ·2− j+1 −1 ≤ t < (2k +1) ·2− j+1 −1

1 (2k +1) ·2− j+1 −1 ≤ t < (2k +2) ·2− j+1 −1

0 otherwise.

When j > 0, the support of ψ j ,k (t ) is an interval of width 2− j+2.

For multi-indices j = ( j1, . . . , jd ),k = (k1, . . . ,kd ) ∈Zd with 0 ≤ ki < max{1,2 ji−1}, let

Ψj,k(t1, . . . , td ) =
d∏

i=1
ψ ji ,ki (ti ).

Let supp(j) = {i | ji 6= 0}. It is straightforward to check that theΨj,k’s are orthogonal.
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Let

cj,k = 〈g ,Ψj,k〉
〈Ψj,k,Ψj,k〉

so that
g =∑

j,k
cj,kΨj,k.

We partition this sum in two ways. For every subset S ⊂ {1, . . . ,d}, define

(23) fS = ∑
j,k

supp(j)=S

cj,kΨj,k.

For each 0 ≤ i ≤ d , let
gi =

∑
j,k

|supp(j)|=i

cj,kΨj,k = ∑
|S|=i

fS .

Note that fS (t1, . . . , td ) depends only on the ti such that i ∈ S; in particular, f; = g0 is
constant. The fS ’s are pairwise orthogonal, as are the gi ’s.

Let λ : L2([0,1]d ) → Aff be the orthogonal projection to Aff. Let SAff i = SAffRi (Rd )
and let λi be the orthogonal projection to SAff i . For every j,k with |supp j| ≥ 2, we have
Ψj,k ⊥Aff. Likewise, for every j,k with |supp j \ {i }| ≥ 2, we haveΨj,k ⊥ SAff i . Therefore,

(24) λ(g ) =λ(g0 + g1) = g0 +λ(g1),

and

(25) λi (g ) =λi (g0 + g1 + g2) = g0 +λi (g1 + g2)

for all i .
We will need two lemmas.

Lemma 6.3. Let gi and fS be as above. For any 1 ≤ l ,m ≤ d, l 6= m, we have λl ( f{l }) = f{l },
λm( f{l }) =λ( f{l }), and

λl (g1) = f{l } +
∑

m 6=l
λ( f{m}).

Proof. Since f{l }(t1, . . . , tl ) depends only on tl , it is constant on each plane parallel to Rl .
Therefore, λl ( f{l }) = f{l }.

When m 6= l , then f{l } is independent of tm , so λm( f{l }) is independent of tm and
affine on every plane parallel to Rm . Therefore, λm( f{l }) is affine and λm( f{l }) = λ( f{l }).
This implies

λl (g1) =∑
m
λl ( f{m}) =λl ( f{l })+

∑
m 6=l

λ( f{m}).

�

Lemma 6.4.

(26) ‖g −λ(g )‖2
2 = ‖g1 −λ(g1)‖2 +

∞∑
i=2

‖gi‖2,

and for any l ,

‖g −λl (g )‖2 =
∥∥∥g1 −λl (g1)+ g2 −λl (g2)+

∞∑
i=3

gi

∥∥∥2
(27)

= ∥∥g1 −λl (g1)
∥∥2 +∥∥g2 −λl (g2)

∥∥2 +
∞∑

i=3

∥∥gi
∥∥2 .
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Proof. By (24) and the orthogonality of the gi ’s,

‖g −λ(g )‖2
2 =

∥∥∥∥∥g1 −λ(g1)+
∞∑

i=2
gi

∥∥∥∥∥
2

2

= ‖g1 −λ(g1)‖2
2 +

∞∑
i=2

‖gi‖2
2 +2

∞∑
i=2

〈g1 −λ(g1), gi 〉.

For i ≥ 2, gi is orthogonal to g1 and to Aff, so 〈g1 −λ(g1), gi 〉 = 0. This implies (26).
By (25),

g −λl (g ) = (g1 −λl (g1))+ (g2 −λl (g2))+
∞∑

i=3
gi .

We claim that the terms in this sum are orthogonal. When i ≥ 3, gi is orthogonal to
g1, g2, and SAff l , so it suffices to check that 〈g1 −λl (g1), g2 −λl (g2)〉 = 0.

Since (g1 −λl (g1)) ⊥ SAff l and 〈g1, g2〉 = 0,

〈g1 −λl (g1), g2 −λl (g2)〉 = 〈g1 −λl (g1), g2〉 =−〈λl (g1), g2〉.
By Lemma 6.3,

〈λl (g1), g2〉 = 〈α, g2〉+〈 f{l }, g2〉,
where α = ∑

m 6=l λ( f{m}) is affine. Since g2 is a sum of Ψj,k’s with |supp(j)| = 2, it is or-
thogonal to any affine function. Likewise, f{l } is a sum ofΨj,k’s with |supp(j)| = 1, so f{l }

is orthogonal to g2. Therefore,

〈g1 −λl (g1), g2 −λl (g2)〉 =−〈λl (g1), g2〉 = 0,

as desired. �

Next, we use these lemmas to show that

(28) ‖g1 −λ(g1)‖2 ≈d

d∑
l=1

‖g1 −λl (g1)‖2

and

(29) ‖g2‖2 ≈d

d∑
l=1

‖g2 −λl (g2)‖2.

To prove (28), we decompose the left and right sides. For the left side, note that g1 =∑
i f{i }, so

g1 −λ(g1) =∑
i

f{i } −λ( f{i }).

Each function f{i }(t1, . . . , td )−λ( f{i })(t1, . . . , td ) depends only on ti and satisfiesˆ
[−1,1]d

f{i } −λ( f{i }) dµ= 0,

so when i 6= j ,
〈 f{i } −λ( f{i }), f{ j } −λ( f{ j })〉 = 0.

Therefore,
‖g1 −λ(g1)‖2 =∑

m
‖ f{m} −λ( f{m})‖2.

For the right side, by Lemma 6.3,

g1 −λl (g1) = ∑
m 6=l

(
f{m} −λ( f{m})

)
.

As noted above, the terms in the sum are pairwise orthogonal, so

‖g1 −λl (g1)‖2 = ∑
m 6=l

∥∥ f{m} −λ( f{m})
∥∥2 .
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Summing over l , we get∑
l
‖g1 −λl (g1)‖2 =∑

m
(d −1)

∥∥ f{m} −λ( f{m})
∥∥2 = (d −1)‖g1 −λ(g1)‖2,

which proves (28).
To prove (29), note that if |S \ {l }| ≥ 2, then fS is orthogonal to SAff l . Let

hl =
∑

S⊂{1,...,d}\{l }
|S|=2

fS

and kl = g2 −hl , so that hl is orthogonal to kl and to SAff l .
Then

‖g2 −λl (g2)‖2 = ‖hl +kl −λl (g2)‖2 = ‖hl‖2 +‖kl −λl (g2)‖2 ≥ ‖hl‖2

and ∑
l
‖g2 −λl (g2)‖2 ≥∑

l
‖hl‖2 =∑

l

∑
S⊂{1,...,d}\{l }

|S|=2

‖ fS‖2.

Each subset S of order 2 appears d −2 times in the sum on the right, so∑
l
‖g2 −λl (g2)‖2 ≥ (d −2)

∑
|S|=2

‖ fS‖2 = (d −2)‖g2‖2.

Conversely, ‖g2−λl (g2)‖ ≤ ‖g2−λ(g2)‖, so
∑

l ‖g2−λl (g2)‖2 ≤ d‖g2−λ(g2)‖2. This proves
(29).

Finally, we prove Proposition 6.1. By (26),

min
λ∈Aff

‖g −λ‖2 = ‖g −λ(g )‖2 = ‖g1 −λ(g1)‖2 +
∞∑

i=2
‖gi‖2.

By (27)–(29),∑
i

min
λ∈SAff i

‖g −λ‖2 =
∑

l
‖g −λl (g )‖2

=∑
l

(∥∥g1 −λl (g1)
∥∥2 +∥∥g2 −λl (g2)

∥∥2 +
∞∑

i=3

∥∥gi
∥∥2

)

≈d
∥∥g1 −λ(g1)

∥∥2 +∥∥g2
∥∥2 +

∞∑
i=3

∥∥gi
∥∥2

= min
λ∈Aff

‖g −λ‖2,

as desired.
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