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Abstract. We prove that the Heisenberg Riesz transform is unbounded
in L2 on a family of intrinsic Lipschitz graphs in the first Heisenberg
group H. We construct this family by combining a method from [NY20]
with a stopping time argument, and we establish the L2–unboundedness
of the Riesz transform by introducing several new techniques to analyze
singular integrals on intrinsic Lipschitz graphs. These include a formula
for the Riesz transform in terms of a singular integral on a vertical
plane and bounds on the flow of singular integrals that arises from a
perturbation of a graph. On the way, we use our construction to show
that the strong geometric lemma fails in H for all exponents in [2, 4).

Our results contrast with two fundamental results in Euclidean har-
monic analysis and geometric measure theory: Lipschitz graphs in Rn
satisfy the strong geometric lemma, and the m–Riesz transform is L2–
bounded on m–dimensional Lipschitz graphs in Rn for m ∈ (0, n).
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1. Introduction

Given a Radon measure ν in Rn, the m–dimensional Riesz transform is
formally defined by

Tmν(x) =

ˆ
Rm(x− y) dν(y),

where Rm(x) = x|x|−m−1 is the m–dimensional Riesz kernel. If Γ ⊂ Rn is
an m–dimensional Lipschitz graph and νΓ = Hm|Γ is the restriction of the
m–dimensional Hausdorff measure on Γ, then

f 7→ Tm[f dνΓ]

defines a bounded operator in L2(Γ) := L2(Hm|Γ). This fundamental re-
sult was first obtained by Calderon in [Cal77] for 1–dimensional Lipschitz
graphs in the complex plane with sufficiently small Lipschitz constant. (In
this case the 1–dimensional Riesz kernel R1 essentially coincides with the
Cauchy kernel k(z) = z−1, z ∈ C.) The restriction on the Lipschitz constant
was removed a few years later by Coifman, McIntosh and Meyer [CMM82].
Finally, Coifman, David and Meyer [CDM83] proved that Tm is bounded
in L2(Γ) for all m–dimensional Lipschitz graphs Γ by showing that the m–
dimensional case can be reduced to the 1–dimensional case via the method
of rotations.

The L2–boundedness of Riesz transforms on Lipschitz graphs has been
pivotal for the research program which started in the early 80s with the aim
of relating the analytic behavior of singular integrals on subsets of Rn to the
geometric structure of these sets. In particular, David and Semmes [DS93,
DS91] developed the theory of uniform rectifiability hoping to characterize
the m–Ahlfors regular sets E ⊂ Rn on which the Riesz transforms Tm,m ∈
(0, n), are bounded in L2(E); uniformly rectifiable sets can be built out
of Lipschitz graphs and can be approximated by Lipschitz graphs at most
locations and scales. David proved in [Dav88] that if E is m–uniformly
rectifiable then Tm is bounded in L2(E). He and Semmes [DS91] conjectured
that the converse is also true. That is, if E is an m–Ahlfors regular set such
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Tm is bounded in L2(E) then E is m–uniformly rectifiable. The conjecture
was proved by Mattila, Melnikov and Verdera in [MMV96] for m = 1 and
by Nazarov, Tolsa and Volberg [NTV14a] for m = n − 1. It remains open
for integers m ∈ (1, n− 1).

Riesz transforms have also played a crucial role in characterizing remov-
able sets for Lipschitz harmonic functions. A compact set E ⊂ Rn is re-
movable for Lipschitz harmonic functions if whenever U ⊃ E is open and
f : U → R is Lipschitz and harmonic in U \ E, then f is harmonic in
U . Uy [Uy80] showed that if Hn−1(E) = 0 then E is removable, while
dimH(E) > n− 1 implies that E is not removable.

Characterizing the removable sets E with Hn−1(E) > 0 involves the Riesz
transform Tn−1. If E is (n − 1)–upper regular and Tn−1 is bounded on
L2(E) then E is not removable for Lipschitz harmonic functions, see [MP95,
Theorem 4.4]. On the other hand, if Hn−1(E) <∞ and E is not removable
for Lipschitz harmonic functions, then there exists some Borel set F ⊂ E
with Hn−1(F ) > 0 such that Tn−1 is bounded in L2(F ), see [Vol03].

Due to important contributions from several people it is now known that a
compact set E ⊂ Rn with Hn−1(E) > 0 is removable for Lipschitz harmonic
functions if and only if E is purely (n−1)–unrectifiable, that is, E intersects
every C1 hypersurface in a set of vanishing (n − 1)–dimensional Hausdorff
measure. One of the key ingredients in the proof of the “only if” direction is
the L2(Γ)–boundedness of T

n−1 for Lipschitz graphs of codimension 1. The
harder “if” direction was proved by David and Mattila [DM00] (for n = 2),
and Nazarov, Tolsa and Volberg [NTV14a, NTV14b] for n ≥ 3. We also
mention that the L2–boundedness of the Cauchy transform/1–dimensional
Riesz transform was the key tool in geometrically characterizing removable
sets for bounded analytic functions, see [Tol14, Ver22] for the long and
interesting history of this problem.

There is a natural analogue of the codimension–1 Riesz kernel in the
Heisenberg group H. Recall that in Rn the Riesz kernel Rn−1(x) := x|x|−n is
a constant multiple of the gradient of the fundamental solution of the Lapla-
cian. Sub-Riemannian analogues of the Laplacian, known as sub-Laplacians,
have been extensively studied in Carnot groups and sub-Riemannian mani-
folds since the early 70s and the works of Stein, Folland, and others [FS82,
Fol73, Fol73]. A thorough treatment of this fully-fledged theory can be found
in [BLU07]. In particular, the (canonical) sub-Laplacian in H is defined as

∆H = X2
L + Y 2

L ,

where

XLf(h) :=
∂f

∂x
(h)− 1

2
y(h)

∂f

∂z
(h) and YLf(h) :=

∂f

∂y
(h) +

1

2
x(h)

∂f

∂z
(h)

are the left invariant vector fields which generate the horizontal distribution
in H. By a classical result of Folland [Fol73], see also [BLU07, Example
5.4.7], the fundamental solution of ∆H is ∥ · ∥−2

Kor where ∥ · ∥ is the Koranyi
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norm in H. One then defines the Heisenberg Riesz kernel in H as

R(x) :=
∇H∥x∥−2

Kor

2
=

(
x(x2 + y2)− 4yz

∥v∥6Kor

,
y(x2 + y2) + 4xz

∥v∥6Kor

)
,

where ∇Hf = (XLf, YLf) is the horizontal gradient in H. We note that R is
a smooth, (−3)–homogenous, Calderón-Zygmund kernel, see Section 2.2 for
more details.

Given a Radon measure in H, the corresponding Heisenberg Riesz trans-
form is the convolution-type singular integral formally defined by

TRν(p) =

ˆ
R(y−1p) dν(y).

It is natural to ask whether this transform is related to rectifiability and
uniform rectifiability in the same way that the Euclidean Riesz transform
is, and to describe the sets E ⊂ H such that TR is bounded in L2(E) :=
L2(H3|E), where E ⊂ H and H3 is the 3–dimensional Hausdorff measure
induced by the metric d(x, y) = ∥x−1y∥Kor.

The first difficulty in this project is defining analogues of Lipschitz graphs
in H. Unlike the Euclidean case, we cannot define Lipschitz graphs as the
images of Lipschitz maps from R2 to H or R3 to H; by a result of Am-
brosio and Kirchheim [AK00], H3(f(R3)) = 0 for all Lipschitz functions
f : R3 → H. Franchi, Serapioni and Serra Cassano [FSSC06] introduced an
intrinsic notion of Lipschitz graphs in Carnot groups which has been very
influential in the development of sub-Riemannian geometric measure theory,
see e.g. [SC16, Mat23] and the references therein. Intrinsic Lipschitz graphs
satisfy a cone condition which will be defined in Section 2.3. Moreover, they
are 3–Ahlfors regular and thus the question of the L2–boundedness of the
Heisenberg Riesz transform on intrinsic Lipschitz graphs makes sense.

Indeed, if Γ is an intrinsic Lipschitz graph of a bounded function and
νΓ = H3|Γ the double truncations

TR
r,R[f dνΓ](p) :=

ˆ
B(p,R)\B(p,r)

R(y−1p)f(y) dνΓ(y)

are well defined for f ∈ L2(Γ), x ∈ Γ and 0 < r < R < ∞. As usual, we do
not know a priori that the principal values

TR[f dνΓ](p) = pv.(p)

ˆ
R(y−1p)f(y) dνΓ(y) := lim

r→0
R→∞

TR
r,R[fνΓ](p)

exist for H3–a.e. p ∈ Γ, so we say that the Heisenberg Riesz transform TR

is bounded in L2(Γ) if the truncations T
R
r,R are uniformly bounded in L2(Γ);

that is if there exists some C > 0 such that

∥TR
r,R[f dνΓ]∥L2(Γ) ≤ C∥f∥L2(Γ)

for all f ∈ L2(Γ) and 0 < r < R <∞.
The question of the boundedness of the Heisenberg Riesz transform was

first discussed in [CM14], where it was noted that the Heisenberg Riesz
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transform is L2–bounded on the simplest examples of intrinsic Lipschitz
graphs: the vertical planes (planes in H which contain the center ⟨Z⟩ =
{(0, 0, z) : z ∈ R}). Recently, some partial results provided hope that, as in
the Euclidean case, the Heisenberg Riesz transform might be L2–bounded on
intrinsic Lipschitz graphs. First, in [CFO19a] it was shown that any H-odd,
3-dimensional Calderón-Zygmund kernel (in particular the Heisenberg Riesz
kernel) defines an L2–bounded singular integral on compactly supported in-
trinsic C1,α graphs. Later, this was generalized in [FO21] for the Heisenberg
Riesz transform, where it was shown that the Heisenberg Riesz transform is
also L2–bounded on intrinsic Lipschitz graphs which satisfy certain vertical
regularity conditions. As a corollary, it is L2–bounded on sets of the form
ΓR2 × R ⊂ H where ΓR2 is a Euclidean Lipschitz graph in R2.

In this paper we prove that, surprisingly and unlike the Euclidean case,
TR is not L2–bounded on certain intrinsic Lipschitz graphs.

Theorem 1.1. There exists a compactly supported intrinsic Lipschitz graph
Γ such that the Heisenberg Riesz transform is unbounded in L2(Γ).

We also record that if Γ is the intrinsic Lipschitz graph from Theorem
1.1 then the Heisenberg Riesz transform is unbounded in Lp(Γ) for all p ∈
(1,∞). This follows by its unboundedness in L2(Γ) combined with [NTV98,
Theorem 1.1] and the remark right after that theorem.

The need to characterize the lower-dimensional sets on which the (Eu-
clidean) Riesz transform and other singular integrals are bounded in L2 led
to the development of uniform rectifiability in Euclidean spaces. In the
Heisenberg group, intrinsic Lipschitz graphs have been used to study recti-
fiability [MSSC10, FSSC11] and quantitative rectifiability [CFO19b, NY18,
NY20, CLY22, FOR18, Rig19], and, although not explicitly stated, it has
been anticipated that intrinsic Lipschitz graphs should be the building blocks
of uniformly rectifiable sets. Theorem 1.1 suggests that in H, notions of uni-
form rectifiability based on intrinsic Lipschitz graphs and notions of uniform
rectifiability based on singular integrals may diverge, and points to deep dif-
ferences between the theory of uniform rectifiability in H and its Euclidean
counterpart.

On the way to proving Theorem 1.1 we also prove that the strong geomet-
ric lemma fails in the first Heisenberg group, thus further highlighting the di-
vergence between Euclidean and Heisenberg concepts of uniform rectifiabil-
ity. In order to make our statement precise we first introduce codimension–1
β–numbers. If E is a Borel subset of the (2n + 1)-dimensional Heisenberg
group Hn, x ∈ Hn, and r > 0 we define

(1) βE(x, r) = inf
L∈VP

r−2n−1

ˆ
B(x,r)∩E

d(y, L)

r
dH2n+1(y)

where in the infimum, VP stands for vertical planes and denotes the set of
codimension–1 planes which are parallel to the z-axis.
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In [CLY22] we proved that if Γ is an intrinsic λ–Lipschitz graph in Hn, n ≥
2, then, for any ball B = B(y,R) ⊂ Hn,ˆ R

0

ˆ
B∩Γ

βΓ(x, r)
2 dH2n+1(x)

dr

r
≲λ R

2n+1.(2)

This is called the strong geometric lemma. (We actually established (2) for
an L2 version of β–numbers, which easily implies (2) as it is stated here.)

The strong geometric lemma holds for Lipschitz graphs in Rn by a result
of Dorronsoro, obtained in [Dor85], and is one of the foundations of uniform
rectifiability in Rn. In particular, an Ahlfors regular subset of Rn satisfies
a Euclidean analogue of (2), with constants depending only on n and the
Ahlfors regularity constant of the set, if and only if it is uniformly rectifiable,
see [DS91].

However, the next theorem shows that the situation is very different in H1.
In fact, the strong geometric lemma fails in H1 for all exponents s ∈ [2, 4).

Theorem 1.2. There exist a constant λ > 0, a radius R > 0, and a sequence
of λ–intrinsic Lipschitz graphs (Γn)n∈N such that 0 ∈ Γn for all n and

lim
n→∞

ˆ R

0

ˆ
B(0,R)∩Γn

βΓn(x, r)
s dH3(x)

dr

r
= +∞

for all s ∈ [2, 4).

The intrinsic Lipschitz graphs in Theorems 1.1 and 1.2 are obtained by
modifying a process for constructing intrinsic graphs which appeared re-
cently in [NY20, Section 3.2]. The method introduced in [NY20] produces
bumpy intrinsic graphs which are far from vertical planes at many scales.
However, the intrinsic gradients of the intrinsic graphs produced in [NY20]
are L2–bounded but not bounded, so the resulting intrinsic graphs are not
intrinsic Lipschitz. We overcome this obstacle by applying a stopping time
argument leading to intrinsic Lipschtz graphs which retain key properties of
the examples from [NY20].

The intrinsic Lipschitz graphs that we construct are determined by the
following parameters:

(1) i ∈ N; the number of steps in the construction,
(2) A ∈ N; the aspect ratio of the initial bumps, and
(3) a scaling factor ρ > 1.

In particular, our intrinsic Lipschitz graphs are intrinsic graphs of functions
fi,A,ρ : V0 → R, where V0 = {y = 0} and where fi,A,ρ is supported on the
unit square [0, 1]× {0} × [0, 1].

For i ≪ A4, we show that the intrinsic Lipschitz graph Γ = Γfi,A,ρ has

many bumps at scale ri := A−1ρ−i, soˆ
B(0,R)∩Γ

βΓ(x, ri)
s dH3(x) ≈ A−s.

Since there are roughly A4 such scales, this implies Theorem 1.2.
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Theorem 1.1 takes much longer to prove and it employs several novel
arguments. We first perform a “reduction to vertical planes” by proving
that the principal value of singular integrals with smooth, orthogonal, and
(−3)–homogeneous kernels on intrinsic Lipschitz graphs can be expressed as
the principal value of a related singular integral on a vertical plane. This is
achieved in Section 5.

More precisely, let ϕ : H → R be a smooth and bounded intrinsic Lipschitz
function with intrinsic graph Γϕ. Denote by Ψϕ : H → Γϕ the projection of
H to Γϕ along cosets of ⟨Y ⟩. The projection restricts to a homeomorphism
from V0 to Γϕ (but not a biLipschitz map), and we let ηϕ := (Ψϕ)∗L|V0 be
the pushforward of the Lebebegue measure L|V0 to Γϕ. Then ηϕ is bounded
above and below by multiples of H3|Γϕ , see Section 2.3. It follows from our
results in Section 5 that if g : H → R is a Borel function which is constant
on cosets of ⟨Y ⟩ then

(3) Rszϕg = TR[g dηϕ],

where Rszϕ(g) is the parametric Riesz transform of g defined for p ∈ H by

(4) Rszϕg(p) = pv.(Ψϕ(p))

ˆ
Ψϕ(p)V0

R(Ψϕ(v)
−1Ψϕ(p))g(v) dv.

We then obtain L2 bounds on the parametric Riesz transform of the
identity function on the intrinsic Lipschitz graphs fi,A,ρ produced by our
construction. More precisely, we obtain the following proposition.

Proposition 1.3. There is a δ > 0 such that for all sufficiently large A > 1,
there is a ρA > 1 such that if N = ⌊δA4⌋, ϕA = fN,A,ρA is the function
produced in the construction of Section 3 and U is the unit square [0, 1] ×
{0} × [0, 1] ⊂ V0, then

∥RszϕA1∥L2(U) ≳ A,

where 1 is the function equal to 1 on all of H.

Proposition 1.3 is the most crucial part in the proof of Theorem 1.1 and
combined with (3) leads relatively quickly to the proof of Theorem 1.1; see
Section 12.

We prove Proposition 1.3 by analyzing the family of singular integrals
Rszα+tγ that arises from a perturbation of an intrinsic Lipschitz function α
by a smooth function γ. This requires new methods to handle the noncom-
mutativity of H. That is, for functions a, b : Rn−1 → R, let RszEuca denote the
Euclidean parametric Riesz transform, defined as in (4). The translation-
invariance of the Riesz transform implies that RszEuca 1 = RszEuca+c1 for any
c ∈ R, so

RszEuca+tb1 = RszEuca0+tb01,

where a0 = a− a(0) and b0 = b− b(0) both vanish at 0.
This identity does not hold in H. In H, translation-invariance implies

that if Γα1 is a left-translate of Γα2 , then Rszα11 is a left-translate of Rszα21.
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Unfortunately, Γα+c is a right-translate of Γα, so there is typically no rela-
tionship between Rszα1 and Rszα+c1.

We solve this problem by writing Rszα+tγ1 in two ways: first, the direct
calculation (4), and second, Rszα+tγ1 = Rszαt1 ◦ λt, where each λt is a left-
translation and αt is a family of functions such that αt(0) = 0 for all t and
Γαt = λt(Γα+tγ). Though these expressions represent the same function,
one is easier to estimate at large scales and one is easier to estimate at small
scales, and many of the bounds used in the proof of Proposition 1.3 will use
one expression at large scales and the other expression at small scales.

Our results lead naturally to several new questions. For example, it is
well known [Mat95, Theorem 20.15], that if Γ ⊂ Rn is an m–dimensional
Lipschitz graph and f ∈ L1(Γ) then the principal values of the Riesz trans-
form Tm[f dνm](p), exist for Hm–a.e. x ∈ Γ. The proof uses that Tm is
L2–bounded and in light of Theorem 1.1, it is quite unclear if the same
result holds in H, although it is known to hold for surfaces of the form
ΓR2 × R ⊂ H where ΓR2 is a Euclidean Lipschitz graph in R2, see [OV20,
Theorem 3.2]. We do anticipate that a modification of the construction in
the current paper might be used to produce an intrinsic Lipschitz graph
Γ such that principal values of TR[f dνΓ] fail to exist νΓ–a.e. for (certain)
functions f ∈ L1, but we will not consider this problem here.

Another interesting problem is the following. Theorem 1.1 asserts that
intrinsic Lipschitz regularity is not sufficient for the L2–boundedness of the
Heisenberg Riesz transform. On the other hand, according to [CFO19a], in-
trinsic C1,α regularity is indeed sufficient. Therefore, one could look for “in-
termediate” geometric regularity conditions on intrinsic graphs that would
imply the L2–boundedness of the Heisenberg Riesz transform. In particular,
and in light of Theorem 1.2, it would be interesting to answer the following
questions:

Question 1.4. Let Γ ⊂ H be an intrinsic Lipschitz graph which satisfies the
Carleson condition (2). Is it true that TR is bounded in L2(Γ)?

Question 1.5. What natural classes of surfaces satisfy (2)?

The bounds in Section 6 suggest possible connections between the norm
of TR and the sum of the squares of the β–numbers in (2); see Question 6.4.

Finally, we note that Theorem 1.1 is related to the problem of geometri-
cally characterizing removable sets for Lipschitz harmonic functions (RLH
sets) in H. The definition of an RLH set in H is completely analogous to its
Euclidean counterpart, except that, in H, a function is called harmonic if it is
a solution to the sub-Laplacian equation ∆Hu = 0. RLH sets in Heisenberg
groups were introduced in [CM14] and it was shown there that if E ⊂ H is
compact, then it is RLH if H3(E) = 0, while it is not RLH if dimH(E) > 3.
Moreover, totally disconnected RLH sets with positive 3-dimensional Haus-
dorff measure were produced in [CM14, CMT15]. On the other hand, it was
proved in [CFO19a] that if µ is a non-trivial compactly supported Radon
measure in H with 3-upper growth, such that TR is bounded in L2(µ) then
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sptµ is not RLH. An analogous result holds in Rn, see [MP95, Theorem 4.4],
and combined with the L2–boundedness of Riesz transforms on Lipschitz
graphs implies that compact subsets of 1-codimensional Lipschitz graphs
with positive (n− 1)-Hausdorff measure are not RLH. This can be used to
show that if a compact set E ⊂ Rn with Hn−1(E) < ∞ is RLH then it is
purely (n−1)–unrectifiable. To our knowledge, this is the only known proof
for this implication.

Theorem 1.1 shows that such a scheme cannot be used in the Heisenberg
group, and naturally leads to the following fascinating question:

Question 1.6. Does there exist a compact subset of an intrinsic Lipschitz
graph in H with positive 3–dimensional Hausdorff measure which is remov-
able for Lipschitz harmonic functions?

If the answer to Question 1.6 is positive it will imply that the geometric
characterization of RLH sets in H varies significantly from the analogous
characterization in Rn. On the other hand, a negative answer to Question
1.6 would require a completely new proof method.

1.1. Roadmap. In Section 2, we establish some definitions and notation for
the Heisenberg group and for intrinsic Lipschitz graphs. Even if the reader
has seen these notions before, we introduce some new notation for intrinsic
Lipschitz graphs in Section 2.3, so we suggest that readers look through this
section.

After these preliminaries, the paper can be broken into three rough parts:
constructing the family of functions f = fi,A,ρ and graphs Γ = Γi,A,ρ that we
will use in Theorems 1.1 and 1.2, proving lower bounds on the β–numbers
of these surfaces, and estimating the Riesz transform on these surfaces. In
Section 3, we construct a family of intrinsic Lipschitz graphs based on the
construction in [NY20]. These graphs have bumps at many different scales,
and in Section 4, we calculate the effect of these bumps on the β–numbers
and prove Theorem 1.2.

In Section 5, we start to study the Riesz transform on Γ and other intrinsic
Lipschitz graphs. Specifically, for an intrinsic Lipschitz function ϕ, we define
ηϕ as the pushforward of L|V0 as above and study the function Tηϕ. In
general, Tηϕ need not be defined everywhere on Γϕ, but in Section 5, we
show that if ϕ is smooth, bounded, and has bounded derivatives, then Tηϕ
is defined everywhere on Γϕ. We also introduce a singular integral operator

T̃ϕ which is defined as a singular integral on a vertical plane and satisfies

T̃ϕ1 = Tηϕ. Let Fϕ := T̃ϕ1.
Our main goal in these sections is to prove Proposition 1.3. We prove

Proposition 1.3 by considering the construction of fi = fi,A,ρ as a sequence
of perturbations, starting with f0 = 0, so that for each i ≥ 0, we obtain
fi+1 by adding bumps of scale ri := A−1ρ−i to fi. Let νi = fi+1 − fi. Then
we can prove Proposition 1.3 by bounding the derivatives d

dt [Ffi+tνi ] and
d2

dt2
[Ffi+tνi ] and using Taylor’s theorem.
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We state bounds on the derivatives of Gfi,νi(t) := Ffi+tνi in Section 6.
Because of the scale-invariance of the Riesz transform, we can rescale fi and
νi by a factor ri to obtain functions α and γ such that α varies on scale
roughly ρ and γ varies on scale roughly 1 (Section 3.1). The derivatives of
α and γ are bounded (Lemma 3.12 and Appendix A), and in fact we prove
bounds on derivatives of Gζ,ψ(t) for any functions that satisfy the same
bounds.

In the remaining sections, we prove the bounds in Section 6. First, in
Section 7, we write G′

ζ,ψ(0) as an integral in two ways, one which is easier to

control for large scales and one for small scales (Lemma 7.2 and Lemma 7.3).
In Euclidean space, these two formulas would be the same; the difference
between them comes from the noncommutativity of the Heisenberg group.
We use these formulas to prove an upper bound on G′

fi,νi
(0) (Lemma 7.1).

In Section 7, we define translation-invariant approximations of G′
ζ,ψ by

showing that when λ is a linear function approximating ζ to first order at
p, then G′

ζ,ψ(0) is close to G′
λ,ψ(0) on a neighborhood of p. We use this

approximation to prove lower bounds on G′
fi,νi

(0) in Section 9 and to bound

inner products of the form ⟨G′
fi,νi

(0), G′
fj ,νj

(0)⟩ in Section 10.

In Section 11, we use the formulas from Section 7 again to bound G′′
fi,νi

.
By Taylor’s theorem,

FfN =
N−1∑
i=0

G′
fi,νi

(0) +
N−1∑
i=0

O(∥G′′
fi,νi

∥∞).

Our bounds on G′
fi,νi

(0) and ⟨G′
fi,νi

(0), G′
fj ,νj

(0)⟩ lead to a lower bound on

the first term, and our bounds on G′′
fi,νi

bound the error term. This proves

Proposition 1.3 (see Section 6 for details).
Finally, in Section 12, we use Proposition 1.3 to prove Theorem 1.1. We

first show that when ϕA is as in Proposition 1.3, the L2 norm of the Riesz
transform on L2(ΓϕA) is large. We then combine scaled copies of the ΓϕA ’s
to obtain a single compactly supported intrinsic Lipschitz graph Γ such that
the Riesz transform is unbounded on L2(Γ), as desired.

2. Preliminaries

Throughout this paper, we will use the notation f ≲ g to denote that there
is a universal constant C > 0 such that f ≤ Cg and f ≲a1,a2,... g to denote
that there is a function C(a1, a2, . . . ) > 0 such that f ≤ C(a1, a2, . . . )g.
The notation f ≈ g is equivalent to f ≲ g and g ≲ f . We will also use the
big–O notation O(f) to denote an error term which is at most Cf for some
constant C > 0 and Oa(f) for an error term which is at most C(a)f .
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2.1. Heisenberg group. The three dimensional Heisenberg group H is the
Lie group on R3 defined by the multiplication

(x, y, z)(x′, y′, z′) =

(
x+ x′, y + y′, z + z′ +

xy′ − x′y

2

)
(5)

The identity element in H is 0 := (0, 0, 0) and the inverse of v = (x, y, z) ∈ H
is v−1 := (−x,−y,−z). We denote by X = (1, 0, 0), Y = (0, 1, 0), Z =
(0, 0, 1), the coordinate vectors of H and we let x, y, z : H → R be the coor-
dinate functions. The center of the group is ⟨Z⟩ = {(0, 0, z) : z ∈ R}. An
element v ∈ H is called a horizontal vector if z(v) = 0, and we denote by A
the set of horizontal vectors.

Since H is a torsion-free nilpotent Lie group, the exponential map is a
bijection between H and the nilpotent Lie algebra h = ⟨X,Y, Z | [X,Y ] =
Z⟩; namely, exp(xX + yY + zZ) = (x, y, z). Then (5) is a consequence of
the Baker–Campbell–Hausdorff formula

exp(V ) exp(W ) = exp

(
V +W +

[V,W ]

2
+ . . .

)
.

We will frequently identify H and h and use the same notation for generators
of H and of h. In particular, for Vi ∈ h, we write the linear span of the Vi
as ⟨V1, V2, . . . ⟩, so that the set of horizontal vectors is

A = ⟨X,Y ⟩ = {xX + yY | x, y ∈ R}.

Since (5) is based on the Baker–Campbell–Hausdorff formula, for any
v ∈ H, the span ⟨v⟩ is the one-parameter subgroup containing v. Since
we typically write the group operation in H as multiplication, we will often
write wt = tw for w ∈ H and t ∈ R.

Given an open interval I ⊂ R, we say that γ : I → H is a horizontal curve
if the functions x ◦ γ, y ◦ γ, z ◦ γ : I → R are Lipschitz (hence γ′ is defined
almost everywhere on I) and

d

ds

[
γ(t)−1γ(s)

] ∣∣
s=t

∈ A,

for almost every t ∈ I. Notice that left translations of horizontal curves are
also horizontal.

Given (a, b) ∈ R2\{(0, 0)} and v ∈ H we will call the coset L = v⟨aX+bY ⟩
a horizontal line. We define the slope of L as slopeL = b

a when a ̸= 0 and
slopeL = ∞ when a = 0. This is the slope of the projection of L to the
xy–plane. Note that for t ∈ R, (X + σY )t is a point in the horizontal line
through the origin with slope σ.

Let XL, YL be the left-invariant vector fields

XL(v) =

(
1, 0,−y(v)

2

)
and YL(v) =

(
0, 1,

x(v)

2

)
,
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and let XR, YR be the right-invariant vector fields

XR(v) =

(
1, 0,

y(v)

2

)
and YR(v) =

(
0, 1,−x(v)

2

)
.

Note that XL and XR commute, as do YL and YR. We let ∂x, ∂y, ∂z :=
Z be the usual partial derivatives in R3. Given any vector field V =
(Vx,Vy,Vz) : R3 → R3 and any smooth function f : R3 → R we let

Vf(v) = V · ∇f(v) := Vx(v)∂xf(v) + Vy(v)∂yf(v) + Vz(v)∂zf(v).

So for example,

XLf(v) =
d

dt
f(vXt)

∣∣
t=0

= ∂xf(v)−
y(v)

2
Zf(v), v ∈ H.

We also define the horizontal gradient of f as∇Hf = (XLf, YLf). For clarity,
we will typically use square brackets for the object of a differential operator
and use · as a low-precedence multiplication operator, so that Vf · Wg is
equal to V[f ]W[g], not V[fWg].

The Korányi metric on H is the left-invariant metric defined by

dKor(v, v
′) := ∥v−1v′∥Kor,

where
∥(x, y, z)∥Kor :=

4
√

(x2 + y2)2 + 16z2.

Note that ∥aX + bY ∥Kor =
√
a2 + b2, so the Korányi length of a horizontal

line segment is equal to the Euclidean length of its projection to the xy–
plane.

We also define a family of automorphisms st : H → H, t ∈ R,
st(x, y, z) = (tx, ty, t2z).

The mappings st dilate the metric; for t ≥ 0 and p, p′ ∈ H,

dKor(st(p), st(p
′)) = tdKor(p, p

′).

When w ∈ A is a horizontal vector, the one-parameter subgroup generated
by w can be written in terms of st, i.e., st(w) = wt, but this is not true
when w is not horizontal.

We can also define the reflection through the z–axis θ : H → H by

θ(x, y, z) = (−x,−y, z).
Note that θ = s−1.

A vertical plane V is a plane that is parallel to the z–axis. For any such
plane, the intersection V ∩A is a horizontal line v⟨aX+bY ⟩, and we can write
V = v⟨aX + bY, Z⟩. We define the slope of V as slopeV := slope(V ∩A).

We will frequently refer to the vertical plane V0 = {y = 0}. We will
also use the following projections. First, we define the natural (nonlinear)

projection Π: H → V0 along cosets of ⟨Y ⟩ by Π(v) = vY −y(v), v ∈ H. Equiv-
alently,

Π(x, y, z) =

(
x, 0, z − 1

2
xy

)
.
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Note that Π is not a homomorphism, but it commutes with scaling because
st sends cosets of ⟨Y ⟩ to cosets of ⟨Y ⟩, i.e.,

Π(st(v)) = st(v)Y
−y(st(v)) = st(v)Y

−ty(v) = st(vY
−y(v)) = st(Π(v))

for all v ∈ H and t ∈ R.
Moreover, if V is a vertical plane which is not a coset of the yz–plane we

define the projection ΠV : H → V along cosets of ⟨Y ⟩ by setting ΠV (v) to be
the unique point of intersection of the coset v⟨Y ⟩ and V . In particular, given

p ∈ H the projection ΠpV0 : H → pV0 is given by ΠpV0(v) = vY y(p)−y(v), v ∈
H. When 0 ∈ V , this likewise commutes with st.

2.2. Kernels and symmetries. In this paper, we will consider kernels on
H which are either R– or R2–valued continuous functions on H\{0}. Given

a kernel K, let K̂ denote the kernel K̂(v) = K(v−1) for all v ∈ H. Given a
Borel measure ν on H, we formally define the singular integral operator TK

by letting TKν(p) be the principal value

TKν(p) := pv.(p)

ˆ
K̂(p−1w) dν(w),

where

(6) pv.(p)

ˆ
g(w) dν(w) := lim

r→0
R→∞

ˆ
B(p,R)\B(p,r)

g(w) dν(w).

For a Borel set A ⊂ H we denote

pv.(p)

ˆ
A
g(w) dν(w) := pv.(p)

ˆ
g(w)1A(w) dν(w);

when p is not specified, we take it to be 0.
This definition gives rise to several operators. For 0 < r < R, we define

truncated convolution operators TKr and TKr,R by

TKr ν(p) :=

ˆ
H\B(p,r)

K(w−1p) dν(w),

TKr,Rν(p) :=

ˆ
B(p,R)\B(p,r)

K(w−1p) dν(w),

for any Borel measure ν on H and any p ∈ H such that these integrals
are defined. Likewise we define operators TKν;r,Rf = TKr,R[f dν] and T

K
ν f =

TK [f dν]. When K is understood, we will write T = TK .
For α ∈ Z, a kernel is said to be α–homogeneous or of degree α if

K(st(p)) = tαK(p), ∀t ∈ R, p ∈ H.

A function f : H → Rn is H–odd if f(θ(p)) = −f(p) for all p; it is H–even if
f(θ(p)) = f(p) for all p, and since θ = s−1, a homogeneous kernel is H–odd
or H–even if it is homogeneous for an odd or even power, respectively.
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Lemma 2.1. Let W be a left-invariant vector field corresponding to a hor-
izontal element of H and let K be α–homogeneous. Then WK is (α − 1)–
homogeneous.

Proof. Suppose that K is α–homogeneous. Let u ∈ H be an element of norm
1 and let t ∈ R. Then

WK(u) = lim
h→0

K(uW h)−K(u)

h

= t−α lim
h→0

K(st(u)W
th)−K(st(u))

h

= t−α+1 lim
h→0

K(st(u)W
th)−K(st(u))

th

= t−α+1WK(st(u)).

We now get that WK is (α− 1)–homogeneous. □

Likewise, derivatives of H–odd kernels are H–even and vice versa.
Given an orthogonal matrix M ∈ O(2), M acts on H as an isometry

M̃(x, y, z) = (M(x, y),det(M)z).

Given an R2–valued kernel, we say that it is orthogonal if

K(M̃(p)) =M(K(p))

for all p ∈ H and all M ∈ O(2).
We now define a specific kernel that is the main object of our study. Let

Ψ: H → R, Ψ(v) = ∥v∥−2
Kor. By a celebrated result of Folland, see [Fol73]

and [CDPT07, Theorem 5.15], we know that the fundamental solution of
the sub-Laplacian equation

X2
L + Y 2

L = 0,

is (8π)−1Ψ. Analogously to the Euclidean case, the Riesz kernel R is defined
as

R(v) := −∇HΨ = − (XLΨ, YLΨ)

=

(
2x(x2 + y2)− 8yz

∥v∥6Kor

,
2y(x2 + y2) + 8xz

∥v∥6Kor

)
.(7)

Since Ψ is symmetric around the origin and homogeneous of degree −2, its
gradient R(v) is an H–odd orthogonal kernel of degree −3. The smoothness
and the −3–homogeneity of R easily imply that it is a 3–dimensional stan-
dard Calderón–Zygmund kernel, see e.g. [Chr90, Chapter 6]. Therefore, if ν
is a Borel measure on H such that

ν(B(x, r)) ≤ Cr3,∀x ∈ H, r > 0,

then |TR
r (f dν)| < ∞ for f ∈ Lp(ν), p ∈ [1,∞) and |TR

r,R(f dν)| < ∞ for

f ∈ Lp(ν), p ∈ [1,∞]. In fact, truncated singular integrals (with respect to
ν) are finite for any Borel kernel which satisfies |K(v)| ≲ ∥v∥−3, v ∈ H\{0}.
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2.3. Intrinsic graphs and intrinsic Lipschitz graphs. In previous pa-
pers, intrinsic graphs have been defined as graphs of functions from the
vertical plane V0 = ⟨X,Z⟩ to R. In this paper, we introduce new notation
that defines them in terms of functions from H to R that are constant along
cosets of ⟨Y ⟩. Any function from V0 to R can be extended to a function
that is constant along cosets of ⟨Y ⟩, so the two definitions give the same
class of graphs, but this definition streamlines some notation. Di Donato
and Le Donne have used similar techniques to define intrinsically Lipschitz
sections in [DDLD22].

For any function f : H → R which is constant on cosets of ⟨Y ⟩, we define
the intrinsic graph of f as

Γf = {vY f(v) | v ∈ V0} = {p ∈ H | f(p) = y(p)}.

We define Ψf : H → Γf by Ψf (p) = pY f(p)−y(p) for all p. This map projects
H to Γf along cosets of ⟨Y ⟩. It is constant along cosets of ⟨Y ⟩ and satisfies

(8) y(Ψf (p)) = f(p) for all p ∈ H.
Left-translations and scalings of intrinsic graphs are also intrinsic graphs,
and we can use (8) to determine the corresponding functions.

Lemma 2.2. Let f : H → R be a function which is constant on cosets of
⟨Y ⟩ and let g ∈ H. Let h : H → R,

h(p) = y(g) + f(g−1p).

Then h is constant on cosets of ⟨Y ⟩ and satisfies Γh = gΓf and Ψh(p) =
gΨf (g

−1p) for any p ∈ H.

Proof. Since Ψf is the unique map from H to Γf that satisfies Ψf (p)⟨Y ⟩ =
p⟨Y ⟩ for all p ∈ H, the map Ψ̂(p) = gΨf (g

−1p) sends H to gΓf and satisfies

Ψ̂(p)⟨Y ⟩ = gΨf (g
−1p)⟨Y ⟩ = gg−1p⟨Y ⟩ = p⟨Y ⟩

for all p ∈ H. Therefore, Ψ̂ = Ψh where

h(p) = y(Ψ̂(p)) = y(gΨf (g
−1p)) = y(g) + f(g−1p)

and gΓf = Γh. □

Lemma 2.3. Let f : H → R be a function which is constant on cosets of
⟨Y ⟩. Let t ̸= 0 and let h : H → R,

h(p) = tf(s−1
t (p)).

Then Γh = st(Γf ) and Ψh(p) = st(Ψf (s
−1
t (p))) for any p ∈ H.

Proof. As above, Ψ̂(p) = st(Ψf (s
−1
t (p))) has image st(Γf ) and satisfies

Ψ̂(p)⟨Y ⟩ = st(Ψf (s
−1
t (p)))⟨Y ⟩ = st(s

−1
t (p)⟨Y ⟩) = p⟨Y ⟩

for all p ∈ H. Therefore, Ψ̂ = Ψh where

h(p) = y(Ψ̂(p)) = tf(s−1
t (p))

and st(Γf ) = Γh. □
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Let XL = X and XR = XL − yZ be the left-invariant and right-invariant
vector fields defined in Section 2.1. For a smooth function f : H → R, we
have XL[f ](v) =

d
dtf(vX

t)|t=0 and XR[f ](v) =
d
dtf(X

tv)|t=0. If ϕ : H → R
is constant on cosets of ⟨Y ⟩, we define the intrinsic gradient ∇ϕ as the vector
field

(9) ∇ϕ(p) = XR(p)− ϕ(p)Z(p) = XL(p) + (y(p)− ϕ(p))Z.

When v ∈ V0, this agrees with the usual definition of the intrinsic gradient
∇ϕ(v) = XL(v)−ϕ(v)Z(v); equation (9) is the extension of ∇ϕ that is right-
invariant with respect to the action of ⟨Y ⟩. If ϕ and β are smooth and
constant on cosets of ⟨Y ⟩, then for all p ∈ H and t ∈ R,

∇ϕβ(pY
t) =

d

du
β((X − ϕ(pY t)Z)upY t)

∣∣
u=0

=
d

du
β((X − ϕ(p)Z)up)

∣∣
u=0

= ∇ϕβ(p),

so ∇ϕβ is constant on cosets of ⟨Y ⟩.
The intrinsic gradient∇ϕ can also be interpreted in terms of the horizontal

curves that foliate Γϕ. When ϕ is smooth, the restriction of ∇ϕ to V0 is the
smooth vector field ∇ϕ(v) = XL − ϕ(v)Z. It follows that V0 is foliated
by integral curves of ∇ϕ; we call these the characteristic curves of Γϕ. If
g : R → V0 is such a curve then γ = Ψϕ ◦ g is a horizontal curve in Γϕ with

(10) γ′(t) = XL +∇ϕϕ(γ(t))YL,

and the following lemma holds.

Lemma 2.4. Let ϕ,m : H → R be smooth functions which are constant
on cosets of ⟨Y ⟩, let g : R → V0 be a characteristic curve of Γϕ, and let
γ = Ψϕ ◦ g. For any t ∈ R and any k ≥ 1,

∇k
ϕm(γ(t)) = ∇k

ϕm(g(t)) =
dk

dtk
[m ◦ γ(t)] = dk

dtk
[m ◦ g(t)].

Proof. Since g is an integral curve of ∇ϕ, we have

∇k
ϕm(g(t)) =

dk

dtk
[m ◦ g(t)]

for any k ≥ 1. Since m and ∇km are constant on cosets of ⟨Y ⟩, we have
∇k
ϕm(γ(t)) = ∇k

ϕm(g(t)) and m ◦ g = m ◦ γ, which implies the lemma. □

In particular, if γ is as above, then ∇ϕϕ(γ(0)) is the slope of the tangent
line to γ at γ(0). This implies that the intrinsic gradient is invariant under

translations and scalings. That is, if Γϕ̂ = gst(Γϕ), then ∇ϕ̂ϕ̂(gst(p)) =

∇ϕϕ(p).
For 0 < λ < 1, we define the open double cone

Coneλ = {p ∈ H | λdKor(0, p) < |y(p)|}.
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This is a scale-invariant cone, and when λ is close to 1, it is a small neigh-
borhood of ⟨Y ⟩ \ {0}. An intrinsic graph Γϕ is a λ–intrinsic Lipschitz graph
if pConeλ ∩Γϕ = ∅ for all p ∈ Γϕ. Equivalently, Γϕ is λ–intrinsic Lipschitz
if and only if Lip(y|Γϕ) ≤ λ. If ϕ : H → R is constant on cosets of ⟨Y ⟩ and
Γϕ is a λ–intrinsic Lipschitz graph, we say that ϕ is a λ–intrinsic Lipschitz
function.

Lemma 2.5. Let λ ∈ (0, 1) and let Γf be a λ–intrinsic Lipschitz graph.
Then

|y(v)− f(v)| ≈λ dKor(v,Γf ), ∀v ∈ H.

Proof. On one hand, dKor(v,Γf ) ≤ dKor(v,Ψf (v)) = |y(v) − f(v)|, so it
suffices to show that dKor(v,Γf ) ≳ |y(v) − f(v)|. It suffices to show that
there is some C > 0 depending only on λ such that dKor(pY

α,Γf ) ≥ C|α|
for all p ∈ Γf and α ∈ R; the lemma then follows by taking p = Ψf (v) and
α = y(v)− f(v).

Let C = 1−λ
1+λ , so that λ = 1−C

1+C . Let B(Y,C) be the open ball of radius C

around Y . If q ∈ B(Y,C), then

λdKor(0, q) < λ(1 + C) = 1− C < |y(q)|,

so q ∈ Coneλ. Since Coneλ is scale-invariant, this implies thatB(Y α, C|α|) ⊂
Coneλ.

By the intrinsic Lipschitz condition, Γf ∩ pConeλ = ∅, so

Γf ∩ pB(Y α, C|α|) = Γf ∩B(pY α, C|α|) = ∅.

Therefore, dKor(pY
α,Γf ) ≥ C|α|, as desired. □

By [CMPSC14], if Γϕ is λ–intrinsic Lipschitz, then ∥∇ϕϕ∥∞ is bounded
by a function of λ. Indeed,

(11) ∥∇ϕϕ∥∞ ≤ λ√
1− λ2

,

see [NY20, Sec. 2.2]. Conversely, if ϕ is defined on all of H and ∇ϕϕ is
bounded, then ϕ is λ–intrinsic Lipschitz for some 0 < λ < 1 depending on
∥∇ϕϕ∥∞ [CMPSC14].

When ϕ is smooth and p ∈ Γϕ, we define the tangent plane to Γϕ at
p to be the vertical plane Pp = p⟨X + ∇ϕϕ(p)Y, Z⟩ with slope ∇ϕϕ(p).
For t > 0, pst(p

−1Γϕ) is the scaling of Γϕ centered at p, and as t → ∞,
pst(p

−1Γϕ) converges to Pp. More generally, when ϕ is intrinsic Lipschitz, a
Rademacher-type theorem holds for almost every p ∈ Γϕ, so the definition
of ∇ϕϕ(p) can be extended so that pst(p

−1Γϕ) converges to Pp for almost
every p ∈ Γϕ [FSSC01].

The following lemma, based on Lemma 2.3 of [NY20], is helpful for bound-
ing intrinsic Lipschitz functions.
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Lemma 2.6. Let 0 ≤ λ ≤ 1 and let ψ : H → R be a λ–intrinsic Lipschitz
function. Let Γ = Γψ. Let g ∈ Γ. For any h ∈ H,

(12) |ψ(g)− ψ(h)| ≤ 2

1− λ
dKor(g, h⟨Y ⟩) ≤ 2

1− λ
dKor(g, h).

Furthermore, for any t ∈ R and any p ∈ H,

|ψ(p)− ψ(pZt)| ≤
4
√

|t|
1− λ

.

Proof. Since ψ is constant on cosets of ⟨Y ⟩, it suffices to prove (12) when
h ∈ Γ. Let m = dKor(g, h⟨Y ⟩). Let c ∈ h⟨Y ⟩ be such that dKor(g, c) = m.
By the intrinsic Lipschitz condition,

|y(h)−y(c)| ≤ |y(h)−y(g)|+m ≤ λdKor(g, h)+m ≤ λ(m+|y(h)−y(c)|)+m.
This simplifies to give

|y(h)− y(c)| ≤ 1 + λ

1− λ
m,

and thus

|ψ(g)− ψ(h)| = |y(g)− y(h)| ≤ |y(g)− y(c)|+ |y(c)− y(h)| ≤ 2m

1− λ
.

For any t ∈ R and any p ∈ H,

|ψ(p)− ψ(pZt)| = |ψ(Ψψ(p))− ψ(Ψψ(p)Z
t)| ≤ 2

1− λ
∥Zt∥Kor =

4
√

|t|
1− λ

.

□

This implies the following lemma, whose proof we omit; see also [FS16].

Lemma 2.7. Let ϕ be a λ–intrinsic Lipschitz function, let p ∈ Γϕ, and let
r > 0. There is a c > 0 depending on λ such that

Π(B(p, cr)) ⊂ Π(B(p, r) ∩ Γϕ) ⊂ Π(B(p, r)).

In particular, H3(Π(B(p, r))) ≈ L(Π(B(p, r))) ≈ r3, where L is Lebesgue
measure on V0.

Lemma 2.8. There is a left-invariant Borel measure µ on H such that
µ(S) = L(Π(S)) for any intrinsic Lipschitz graph Γ and any Borel set S ⊂ Γ.
Further, if m : H → R is a Borel function which is constant on cosets of ⟨Y ⟩
and S ⊂ Γ is Borel, then

(13)

ˆ
S
m(v) dµ(v) =

ˆ
Π(S)

m(v) dL(v)

if the integrals exist. If λ ∈ (0, 1) and Γ is λ–intrinsic Lipschitz, then
H3(S) ≈λ µ(S). In particular, µ|Γ is Ahlfors 3–regular with constants only
depending on λ.

This will be our “default” measure on intrinsic Lipschitz graphs, and we
will abbreviate dµ(v) by dv.
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Proof. For S ⊂ H, let

(14) µ(S) = lim
ϵ→0

inf
Cϵ(S)

∑
U∈Cϵ(S)

L(Π(U))

where Cϵ(S) is the set of covers of S by sets of diameter at most ϵ. This is
a Borel measure on H by [Mat95, Theorem 4.2], and the restriction of µ to
any intrinsic Lipschitz graph is the pullback of L|V0 , i.e., µ(S) = L(Π(S))
for any intrinsic Lipschitz graph Γ and any Borel set S ⊂ Γ. Consequently,
µ satisfies (13).

By the area formula, [CMPSC14, Theorem 1.6], if ϕ is a λ–intrinsic Lip-
schitz function and S ⊂ Γϕ is Borel, then

H3(S) ≈
ˆ
Π(S)

√
1 + (∇ϕϕ(v))2 dv =

ˆ
S

√
1 + (∇ϕϕ(v))2 dv ≈λ µ(S).

Since, by [FS16, Theorem 3.9], H3|Γϕ is an Ahlfors 3–regular measure this
implies that µ|Γϕ is also Ahlfors 3–regular with constants only depending on
λ.

Now we check that µ is left-invariant. It suffices to show that L(Π(gU)) =
L(Π(U)) for any g ∈ H and any Borel set U ⊂ H. First, for any g, h ∈ H,

Π(gh) = ghY −y(g)−y(h) = g
(
h · Y −y(h)

)
Y −y(g) = Π(gΠ(h)).

Let βg : V0 → V0, βg(v) = Π(gv), so that Π(gU) = βg(Π(U)). Let g =
(x, y, z) ∈ H and v = (x′, 0, z′) ∈ V0. Then

βg(v) = Π(gv) = gvY −y =

(
x+ x′, 0, z + z′ − yx′ − 1

2
xy

)
.

That is, βg is an affine transformation of V0 with determinant 1. Thus
L(Π(gU)) = L(βg(Π(U))) = L(Π(U)). By (14), µ is a left-invariant mea-
sure. □

2.4. Taylor series estimates. In this section, we prove a Taylor-type es-
timate for functions on intrinsic Lipschitz graphs, which we will use exten-
sively in the rest of the paper. Let a be a smooth intrinsic Lipschitz function
and let m be a smooth function which is constant on cosets of ⟨Y ⟩. (In par-
ticular, we can take m = a.) We will show that m is close to a constant
function or an affine function when the derivatives ∇am, ∇2

am, and Zm are
small.

Lemma 2.9. Let 0 < λ < 1 and let a : H → R be a smooth λ–intrinsic
Lipschitz function. Let m : H → R be a smooth function. Suppose that
a and m are constant on cosets of ⟨Y ⟩. Let p ∈ Γa and let q ∈ H. Let
r = dKor(p, q), L = λ√

1−λ2 , and B = B(p, 2(L+ 1)r)). Then

m(q) = m(p) +Oλ
(
r∥∇am∥L∞(B) + r2∥∂zm∥L∞(B)

)
and

m(q) = m(p)+(x(q)−x(p))∇am(p)+Oλ
(
r2
[
∥∇2

am∥L∞(B) + ∥∂zm∥L∞(B)

])
.
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In particular, if 0 ∈ Γa and p = 0, then a(0) = 0, so

|a(q) + a(θ(q))| = Oλ
(
r2(∥∇2

aa∥L∞(B) + ∥∂za∥L∞(B))
)
,

where θ(x, y, z) = (−x,−y, z).

Proof. By (11), we have ∥∇aa∥∞ ≤ L. Let γ : R → Γa be a horizontal curve
through p. We parametrize γ so that x(γ(t)) = t for all t ∈ R. In particular
γ(x(p)) = p. By (10), ∥γ′(t)∥ ≤ L + 1 for all t, so Lip(γ) ≤ L + 1. In
particular, γ(x(q)) ∈ B(p, (L+ 1)r).

Recall that ΠpV0 : H → pV0 is the projection ΠpV0(s) = sY y(p)−y(s); for
any s ∈ H, we have

dKor(p,ΠpV0(s)) ≤ dKor(p, s) + |y(p)− y(s)| ≤ 2dKor(p, s).

Then g′ := ΠpV0(γ(x(q))) and q
′ := ΠpV0(q) are two points in B ∩ pV0 with

the same x–coordinate, so g′ = q′Zz0 for some z0 ∈ R such that |z0| ≲λ r
2.

Since m(q) = m(q′) and m(γ(x(q))) = m(g′),

m(q) = m(γ(x(q))) +Oλ(r
2∥∂zm∥L∞(B)).

Since (m ◦ γ)′(t) = ∇am(γ(t)) and (m ◦ γ)′′(t) = ∇2
am(γ(t)), the Mean

Value Theorem implies that

m(γ(x(q))) = m(p) +O(r∥∇am∥L∞(B)),

so
m(q) = m(p) +Oλ

(
r∥∇am∥L∞(B) + r2∥∂zm∥L∞(B)

)
.

Taylor’s theorem implies

m(γ(x(q))) = m(p) + (x(q)− x(p))∇am(p) +Oλ(r
2∥∇2

am∥L∞(B)),

so

m(q) = m(p)+(x(q)−x(p))∇am(p)+Oλ
(
r2(∥∇2

am∥L∞(B) + ∥∂zm∥L∞(B))
)
,

as desired. □

3. Construction

In this section, we construct the family of graphs that we will study in the
rest of this paper. Our construction is based on the construction in Section
3.2 of [NY20]. The authors of [NY20] introduced a process to construct an
intrinsic graph Γψ that is far from a vertical plane at many scales (see Propo-
sition 3.4 of [NY20]). Unfortunately for our purposes, the intrinsic gradient
∇ψψ is L2–bounded but not bounded, so Γϕ is not intrinsic Lipschitz. In this
section, we will modify that construction via a stopping time argument so
that it produces an intrinsic Lipschitz function with similar properties. To
keep this paper self-contained, we will reproduce the construction of [NY20]
in parallel with our modification.

The construction depends on three parameters: an integer aspect ratio
A > 1, an integer scale factor ρ > 1, and a number of steps i. In [NY20],
one starts with a function ψ0 = 0 and constructs ψi+1 by perturbing ψi.
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The difference ψi+1 − ψi is a sum of bump functions supported on regions
in V0 with aspect ratio A, and the scale of the perturbations decreases by a
factor of ρ at each step.

Recall that if ψ : V0 → R is a smooth function, then it induces a smooth
vector field ∇ψ = ∂x − ψ∂z on V0, and we call integral curves of ∇ψ char-
acteristic curves. Since ψ is smooth, there is a unique characteristic curve
of Γψ through each point of V0. A pseudoquad Q ⊂ V0 for Γψ is a region of
the form

Q = {(x, 0, z) ∈ V0 | x ∈ [a, b], z ∈ [g1(x), g2(x)]}

where g1, g2 : [a, b] → R are functions whose graphs are characteristic curves,
i.e., g′i(x) = −ψ(x, 0, gi(x)) for all x. In particular, gi ∈ C1([a, b]). We
define the width of Q to be δx(Q) = b − a and we define the height to
be δz(Q) = g2(a) − g1(a). Since the distance between the top and bottom
boundary varies, there is no single canonical height, but this choice is enough

for many applications. The aspect ratio of Q is the ratio δx(Q)√
δz(Q)

; the square

root in the denominator makes this ratio scale-invariant.
We say that two pseudoquads are disjoint if and only if their interiors are

disjoint. We say that U = Q1 ∪ · · · ∪ Qn is a partition of U if the Qi’s are
disjoint.

Let U = [0, 1]×{0}× [0, 1] and let κ : [0, 1]2 → R be a nonnegative smooth
function with suppκ ⊂ (0, 1)2. We require that ∥κ∥∞ ≤ 1, κ(s, t) > 0 for
s, t ∈ [15 ,

4
5 ], and that the partial derivatives of κ of order at most 2 are all

in the interval [−1, 1]. (The assumption on partial derivatives is used in
[NY20] to bound certain derivatives when ρ ≥ 8; it can be dropped at the
cost of changing some constants.)

We will use induction to construct functions fi and ψi supported on U .
We start with f0 = 0 and ψ0 = 0, and for each i ≥ 0, we let ri := A−1ρ−i

and construct:

• a partition U = Qi,1∪· · ·∪Qi,ki such that each Qi,j is a pseudoquad
for Γψi with width δx(Qi,j) = Ari, height δz(Qi,j) = r2i , and aspect
ratio A,

• a collection of bump functions κi,j such that κi,j is supported on Qi,j
and ∥κi,j∥∞ ≈ A−1ri,

• a set Ji ⊂ {1, . . . , ki} such that |∇fifi| ≤ 1
2 on Qi,j for every j ∈ Ji.

Furthermore, we let Si :=
⋃
j∈{1,...,ki}\Ji Qi,j and require that Si ⊃

Si−1 (where S−1 = ∅).

We then define κi :=
∑ki

j=1 κi,j ,

νi :=
∑
j∈Ji

κi,j = 1Sci κi,

ψi+1 := ψi + κi and fi+1 := fi + νi. The ψi’s are the functions constructed
in [NY20], and the fi’s are a “stopped” version of the ψi’s. That is, when
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|∇fifi| gets too large on a pseudoquad, that pseudoquad is added to Si, and
the construction ensures that fk|Si = fi|Si for all k > i.

We first construct the Qi,j ’s. Suppose that we have already defined fi.
Let

Gi :=
{(
mAri, 0, nr

2
i

)
: m,n ∈ Z

}
,

let ki = A−1r3i , and let vi,1, vi,2, . . . , vi,ki be an enumeration of Gi ∩
(
[0, 1)×

{0}×[0, 1)
)
. Let Φ(ψi)s be the flow map of ∇ψi on V0; so that Φ(ψi)0(v) = v

for all v ∈ V0 and the map s 7→ Φ(ψi)s(v), s ∈ R is a characteristic curve of
Γψi . In particular, x(Φ(ψi)s(v)) = x(v) + s. Let

Ri,j(s, t) := Φ(ψi)s(vi,jZ
t)

and let

Qi,j := Ri,j([0, Ari]× [0, r2i ]).

This is a pseudoquad of width Ari and height r2i . Because the top and
bottom edges of U are characteristic curves of ψi, we have Qi,j ⊂ U for all
j. Indeed, U = Qi,1 ∪ · · · ∪ Qi,ki is a locally finite partition of U . (Local
finiteness follows for instance from Lemma 3.8.) Let Qi = {Qi,1, . . . , Qi,ki}.

For each Qi,j , we define

κi,j(Ri,j(s, t)) := A−1riκ(A
−1r−1

i s, r−2
i t),(15)

and let κi :=
∑

j κi,j . Note that κi is smooth and that it is zero in a
neighborhood of ∂Qi,j for each j.

To define Si and νi, we will need some notation. For every k, we say
that a pseudoquad Q′ ∈ Qk+1 is a child of Q ∈ Qk if int(Q′) ∩ int(Q) ̸= ∅.
Note that this does not necessarily mean that Q′ ⊂ Q; the pseudoquads in
Qk+1 do not subdivide the pseudoquads in Qk. Nonetheless, by the local
finiteness of Qk+1, every Q ∈ Qk has only finitely many children.

Let C(Q) be the set of children of Q and define Cn(Q) inductively so
that C0(Q) = {Q} and Cn(Q) =

⋃
Q′∈Cn−1(Q) C(Q′). For any set M of

pseudoquads, we let ⋃
(M) :=

⋃
Q∈M

Q.

For Q ∈ Qk and l > k, let Q(l) =
⋃
(Cl−k(Q)). Let D(Q) =

⋃∞
n=0 Cn(Q) be

the set of descendants of Q.
If Q ∈ Qk and v ∈ int(Q), then any neighborhood of v intersects the

interior of some child of Q. It follows that v lies in the closure of
⋃
(C(Q)),

and since C(Q) is finite, v ∈
⋃
(C(Q)). Since the closure of int(Q) is Q, we

have Q ⊂
⋃
(C(Q)); in fact,

⋃
(Cn(Q)) ⊂

⋃
(Cn+1(Q)) for all n.

Let Si ⊂ Qi be the set

Si =
⋃

Q∈Si−1

C(Q) ∪
{
Q ∈ Qi : max

x∈Qi,j
|∇fifi(x)| ≥

1

2

}
,
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where S−1 = ∅. Let Si =
⋃
(Si) and let Ji = {j : Qi,j ̸∈ Si}. Then Si+1 ⊃ Si

for all i. Let νi :=
∑

j∈Ji κi,j = 1Sci κi Since κi,j is zero on a neighborhood
of ∂Qi,j , this is smooth. We define fi+1 = fi + νi and ψi+1 = ψi + κi.

Note that Si ⊂ Sj for all i < j, so νi is zero on a neighborhood of Si.
Therefore,

fj |Si = fi|Si ∇fjfj |Si = ∇fifi|Si .(16)

Conversely, if v ̸∈ Si−1, then for all k ≤ i− 1, v ̸∈ Sk and κk(v) = νk(v), so

(17) fi|Sci−1
=

i−1∑
k=0

νk|Sci−1
=

i−1∑
k=0

κk|Sci−1
= ψi|Sci−1

.

The functions ψi are exactly the same as those defined in Section 3.2 of
[NY20] and our κi correspond to their νi. We will show that if ρ is sufficiently
large, ϵ > 0 is sufficiently small, and i < ϵN4, then fi is intrinsic Lipschitz
and the set on which fi and ψi differ is small.

Proposition 3.1. Let A > 1 be sufficiently large. If ρ is sufficiently large
(depending on A), then for each i, fi is a smooth function supported in U
such that ∥∇fifi∥∞ ≤ 1. In particular, fi is intrinsic Lipschitz. Further-
more, fi|Sci−1

= ψi|Sci−1
and µ(Si) ≲ iA−4.

By (17), it suffices to show that ∥∇fifi∥∞ ≤ 1 and µ(Si−1) ≲ iA−4.
We will need some bounds from [NY20]. As in [NY20], let

Di = ∇ψi+1
ψi+1 −∇ψiψi D̃i = ∇fi+1

fi+1 −∇fifi.

By (16) and (17), we have fi+1|Sci = ψi+1|Sci and fi+1|Si = fi|Si . Therefore,
D̃i = 1SciDi. In particular, ∥D̃i∥∞ ≤ ∥Di∥∞.

The following bounds on D̃i are based on the bounds on Di proved in
[NY20].

Lemma 3.2. Let j ≤ i and x, y ∈ Qi,k. Then

|D̃j(x)− D̃j(y)| ≲ A−2ρj−i.

Proof. The Dj–version of this inequality is Lemma 3.12 of [NY20]. The

proof only uses the L∞ bounds of Dj and derivatives of Dj . As D̃j satisfy

those same bounds, the proof also works for D̃j . □

Lemma 3.3. For every ρ ≥ 8 and A ≥ 1, we have

∥D̃i∥∞ ≲ A−2, ∀i ≥ 0,

|⟨D̃i, D̃j⟩| ≲ A−4ρj−i, ∀0 ≤ i ≤ j.(18)

Proof. The corresponding Di version of the inequalities is Lemma 3.9 from
[NY20]. The first inequality now follows from the bound ∥D̃i∥∞ ≤ ∥Di∥∞.
The proof of the second bound in [NY20] uses the bound∣∣∣∣∣

ˆ
Qn,k

Dm(w)Dn(w) dw

∣∣∣∣∣ ≲ A−4ρm−nH3(Qn,k)
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for n ≥ m.
Let 0 ≤ i ≤ j. For each 1 ≤ k ≤ kj , we consider two cases. If Qj,k ∈ Sj ,

then D̃j = 0 on Qj,k, so
´
Qj,k

D̃iD̃j dw = 0. Otherwise, if Qj,k ̸∈ Sj , then
intQj,k∩Si = intQj,k∩Sj = ∅, so D̃i = Di and D̃j = Dj on Qj,k. Therefore,∣∣∣∣∣

ˆ
Qj,k

D̃i(w)D̃j(w) dw

∣∣∣∣∣ ≲ A−4ρj−iH3(Qj,k).

Since the Qj,k’s partition U , we sum this inequality over k to obtain (18). □

Now we use these bounds to show that ∥∇fifi∥∞ ≤ 1.

Lemma 3.4. If A is sufficiently large, then for all i, ∥∇fifi∥∞ ≤ 1.

Proof. We suppose that A is large enough that ∥D̃i∥∞ ≤ 1
4 for all i and

proceed by induction on i. Since f0 = 0, the lemma is clear for i = 0.
Suppose that i ≥ 0 and ∥∇fifi∥∞ ≤ 1. On one hand, if v ̸∈ Si, then

|∇fifi(v)| ≤ 1
2 , and

|∇fi+1
fi+1(v)| ≤ |∇fifi(v)|+ ∥D̃i∥∞ < 1.

On the other hand, if v ∈ Si, then |∇fi+1
fi+1(v)| = |∇fifi(v)| ≤ 1 by

(16). □

It remains to bound µ(Si). Let i ≥ 0. Recall that Si =
⋃
(Si) and that

any pseudoquad Q ∈ Si either satisfies ∥∇fifi∥L∞(Q) ≥ 1
2 or is a child of

some pseudoquad of Si−1. Let

Mi = Si \
⋃

Q∈Si−1

C(Q).

Then if M ∈ Mi, then ∥∇fi−1
fi−1(x)∥L∞(M) ≥ 1

2 . If Q ∈ Si \Mi, then Q
is a child of an element of Si−1. By induction, any Q ∈ Si is a descendant
of an element of Sj for some j ≤ i, i.e., Q is a descendant of an element of

Bi :=
⋃i
j=0Mj . Furthermore, if M,M ′ ∈ Bi, M ̸= M ′, then neither is a

descendant of the other, so M and M ′ are disjoint.
We will thus bound µ(Si) by bounding the size of Bi, then bounding the

size of the set of descendants of pseudoquads in Bi. We bound Bi by showing
that ∇fifi is large on the pseudoquads in Bi.

Lemma 3.5. Suppose ρ is sufficiently large. Let Q ∈ Bi. Then |∇fifi(v)| ≥
1
4 for all v ∈ Q.

Proof. If Q ∈ Bi, then Q ∈ Mj for some j ≤ i, so ∥∇fjfj∥L∞(Q) ≥ 1
2 .

Furthermore, since Q ⊂ Sj , (16) implies that ∇fjfj = ∇fifi on Q.



THE RIESZ TRANSFORM ON INTRINSIC LIPSCHITZ GRAPHS 25

Let y ∈ Q be such that |∇fjfj(y)| ≥ 1/2, and let x ∈ Q. By Lemma 3.2,

|∇fifi(x)−∇fifi(y)| = |∇fjfj(x)−∇fjfj(y)|

≤
j−1∑
k=0

|D̃k(x)− D̃k(y)| ≲
j−1∑
k=0

A−2ρk−j ≤ 2A−2ρ−1.

If ρ is sufficiently large, this gives |∇fifi(x)−∇fifi(y)| and thus |∇fifi(x)| ≥
1
4 , as desired. □

Thus, we can bound the size of Mk using the following bound on ∇fkfk.

Lemma 3.6. For all k,

∥∇fkfk∥2 ≲ A−2
√
k.

Proof. By Lemma 3.3,

ˆ
V0

|∇fkfk(x)|
2 dx =

ˆ
V0

k−1∑
j=0

D̃j

2

dx

=

k−1∑
j=0

∥D̃j∥2L2
+ 2

∑
0≤i<j≤k−1

⟨D̃i, D̃j⟩ ≲ kA−4 +

k−1∑
i=0

∞∑
k=1

A−4ρ−k ≲ kA−4,

so ∥∇fkfk∥2 ≲ A−2
√
k. □

Now we bound the size of the set of descendants of a pseudoquad. We
will need the following lemma, which is part of Lemma 3.10 of [NY20].

Lemma 3.7. Let Rz be the z-coordinate of any of the maps Ri,j. If ρ > 8,
then for all (s, t) ∈ [0, Ari]× [0, r2i ],

3

4
≤ ∂Rz

∂t
(s, t) ≤ 4

3
.

The following bound on the heights of pseudoquads follows immediately.

Lemma 3.8. Let i ≥ 0 and let 1 ≤ j ≤ ki. Let I ⊂ R and g1, g2 : I → R be
such that

Qi,j = {(x, 0, z) | x ∈ I, z ∈ [g1(x), g2(x)]}.
Then

3

4
r2i ≤ g2(x)− g1(x) ≤

4

3
r2i , ∀x ∈ I.(19)

Proof. Let x0 = min(I). Then Qi,j is the image of a map Ri,j : [0, Ari] ×
[0, r2i ] → V0 such that Ri,j(s, t) = (x0 + s, 0, Rz(s, t)). In particular, g1(x) =
Rz(x − x0, 0) and g2(x) = Rz(x − x0, r

2
i ). The Mean Value Theorem along

with Lemma 3.7 then gives the desired bound. □

As each Qi,j has width Ari, we immediately get the following corollary.

Corollary 3.9. For any i, j ≥ 0, we have that 3
4Ar

3
i ≤ |Qi,j | ≤ 4

3Ar
3
i .
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For each pseudoquad Q, let Q̃ =
⋃
(D(Q)) so that

(20) Si ⊂
⋃
Q∈Bi

Q̃.

Our next lemma bounds µ(Q̃).

Lemma 3.10. For any i and any Q ∈ Qi, µ(Q̃) ≲ µ(Q).

Proof. Let I ⊂ R and g1, g2 : I → R be such that I is an interval of length
Ari and

Q = {(x, 0, z) ∈ V0 | x ∈ I, z ∈ [g1(x), g2(x)]} .
We consider

⋃
(C(Q)). If Q′ is a child of Q, then

Q′ =
{
(x, 0, z) ∈ V0 | x ∈ I ′, z ∈ [g′1(x), g

′
2(x)]

}
for some I ′, g′1, and g

′
2 such that I ′ ⊂ I.

By our choice of Q and Q′, the top and bottom curves of Q are charac-
teristic curves of ψi and the top and bottom curves of Q′ are characteristic
curves of ψi+1. Since κi is 0 on a neighborhood of ∂Q, we have ψi = ψi+1

on ∂Q, so the top and bottom curves of Q are also characteristic curves
of ψi+1. Since ψi+1 is smooth, its characteristic curves don’t intersect, so
the top and bottom edges of Q′ don’t cross ∂Q. Thus, since there is some
x ∈ I ′ such that [g1(x), g2(x)] intersects [g′1(x), g

′
2(x)], it must be true that

[g1(x), g2(x)] intersects [g′1(x), g
′
2(x)] for all x ∈ I ′. By Lemma 3.8, this

implies [g′1(x), g
′
2(x)] ⊂ [g1(x)− 4

3r
2
i+1, g2(x) +

4
3r

2
i+1] and thus⋃

(C(Q)) ⊂
{
(x, 0, z) ∈ V0 : x ∈ I, z ∈

[
g1(x)−

4

3
r2i+1, g2(x) +

4

3
r2i+1

]}
.

By induction,

Q̃ ⊂

(x, 0, z) ∈ V0 : x ∈ I, z ∈

g1(x)− ∞∑
j=i

4

3
r2j+1, g2(x) +

∞∑
j=i

4

3
r2j+1

 .

The upper and lower bounds are geometric series, so by Corollary 3.9,

µ(Q̃) ≤ µ(Q) +
16

3
r2i+1 ·Ari ≤ µ(Q) +

16

3
ρ−2Ar3i ≤ 4µ(Q).

□

Finally, we prove the proposition.

Proof of Proposition 3.1. Let i ≥ 0. By Lemma 3.4, we have ∥∇fifi∥∞ ≤ 1.
It remains to bound the measure of Si.

By (20), we have Si ⊂
⋃
Q∈Bi Q̃, where Bi is a collection of disjoint

pseudoquads. Furthermore, by Lemma 3.5, we have |∇fifi(v)| ≥ 1
4 for

all v ∈
⋃
(Bi). By Lemma 3.10,

µ(Si) ≤
∑
Q∈Bi

µ(Q̃) ≲
∑
Q∈Bi

µ(Q) = µ
(⋃

(Bi)
)
.



THE RIESZ TRANSFORM ON INTRINSIC LIPSCHITZ GRAPHS 27

By Chebyshev’s Inequality and Lemma 3.6,

µ
(⋃

(Bi)
)
≤ 16∥∇fifi∥

2
2 ≲ iA−4,

so µ(Si) ≲ iA−4, as desired. □

In addition to the intrinsic Lipschitz condition, fi satisfies a higher-order
Sobolev condition. We state this condition in terms of a family of differential
operators on smooth functions V0 → R. Let Z be the operator Z = ∂

∂z . The

pseudoquads in Qi have width Ari and height r2i , and we define rescaled
operators

Ẑi = r2iZ ∂̂i = Ari∇fi .

For i ≥ 0 and n ≥ 1, we let {Ẑi, ∂̂i}n denote the differential operators E

that can be expressed as E = E1 · · ·En where Ej ∈ {Ẑi, ∂̂i} for all 1 ≤ j ≤ n.

We call these words of length n in the alphabet {Ẑi, ∂̂i}. As a special case,

{Ẑi, ∂̂i}0 = {id}.
The following lemma bounds Efi when E ∈ {Ẑi, ∂̂i}k. This generalizes

the bounds in [NY20, Lemma 3.10].

Lemma 3.11. Given d ≥ 2, there exists ρ0 > 0 so that if ρ ≥ ρ0, i ≥ 0,
k ≤ d, and E ∈ {Ẑi, ∂̂i}k, then

∥Eνi∥∞ ≲d A
−1ri.

Furthermore, if E ̸∈ {id, ∂̂i}, then
∥Efi∥∞ ≲d A

−1riρ
−1.

In particular,

∥∇2
fi
fi∥∞ ≲ A−3r−1

i ρ−1 ∥Zfi∥∞ ≲ A−1r−1
i ρ−1.(21)

The coefficients in this lemma are related to the dimensions of the pseu-
doquads in Qi. As noted above, these pseudoquads have width and height
corresponding to ∂̂i and Ẑi. The coefficient A−1ri comes from the fact that
∥νi∥∞ = A−1ri∥κ∥∞ ≈ A−1ri. Thus, when ρ is large, fi is close to affine on
any of the pseudoquads in Qi.

The proof of Lemma 3.11 is rather technical, and we leave it to Appendix
A.

3.1. Rescaling. Let Σi = Γfi . Because the singular integrals we consider
are scale-invariant and translation-invariant, it will be convenient to define
rescaled and translated versions of fi and νi. Let i ≥ 0 and let p0 ∈ Σi.

Let si := sr−1
i
. Let α = αp0,i : H → R,

α(p) = r−1
i

(
−y(p0) + fi(p0s

−1
i (p))

)
.

By Lemmas 2.2 and 2.3, we have Γα = si(p
−1
0 Σi) and

Ψα(p) = si
(
p−1
0 Ψfi(p0s

−1
i (p))

)
.
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In particular, we have 0 ∈ Γα and α(0) = 0.
Let γ = γp0,i : H → R, γ(p) = r−1

i νi(p0s
−1
i (p)). Then for any t ∈ R, we

have
α(p) + tγ(p) = r−1

i (−y(p0) + (fi + tνi)(p0s
−1
i (p)))

and
Γα+tγ = si(p

−1
0 Γfi+tνi).

These functions satisfy the following consequence of Lemma 3.11.

Lemma 3.12. There exists ρ0 > 0 and c > 0 such that if ρ ≥ ρ0, i ≥ 0,
k ≤ 3, and α and γ are defined as above for some p0 ∈ Σi, then ∥γ∥∞ ≤
cA−1, ∥∇αα∥∞ ≤ 1, and

(22) ∥Fγ∥∞ ≤ cA−#∇α(F )−1, ∀F ∈ {∇α, Z}k,
where #∇α(F ) is the number of occurrences of ∇α in F . Moreover, if
F /∈ {id,∇α}, then

(23) ∥Fα∥∞ ≤ cA−#∇α(F )−1ρ−1.

Proof. In fact, we will show that for any d ≥ 2, there is a ρ0 such that if
ρ ≥ ρ0, i ≥ 0, then (22) and (23) hold for all k ≤ d. Let ∂̂ = A∇α. It
suffices to show that if ρ is sufficiently large, then ∥Fγ∥∞ ≲d A

−1 for all

F ∈ {∂̂, Z}k and, if F /∈ {id, ∂̂}, ∥Fα∥∞ ≲d ρ
−1.

Let r = ri and s = sr−1 . Let L(g) = s(p−1
0 g) so that Γα = L(Σi) and

α(p) = r−1
(
−y(p0) + (fi ◦ L−1)(p)

)
,

γ(p) = r−1νi ◦ L−1(p).

Since L sends horizontal curves in Σi to horizontal curves in Γα, it sends
integral curves of ∇fi to integral curves of ∇α. Therefore, L∗∇fi = r−1∇α,
and

L∗∂̂i = L∗(Ar∇fi) = Arr−1∇α = ∂̂.(24)

Likewise, L∗Ẑi = L∗(r
2Z) = Z.

Let F = F (∂̂, Z) be a word of length at most d in the letters ∂̂ and Z

and let F ′ = F (∂̂i, Ẑi) be F with ∂̂ replaced by ∂̂i and Z by Ẑi. Then
L∗(F

′) = F , so

Fγ = F [r−1(νi ◦ L−1)] = r−1F ′[νi] ◦ L−1.

Lemma 3.11 implies that if ρ is sufficiently large, then

∥Fγ∥∞ = r−1∥F ′[νi]∥∞ ≲d A
−1.

This proves (22).
Similarly, if F ̸= id, then

Fα = r−1F [−y(p0) + fi ◦ L−1] = r−1F ′[fi] ◦ L−1.

If F = ∂̂, this implies that

∇αα = A−1∂̂α = A−1r−1∂̂ifi ◦ L−1 = ∇fifi ◦ L
−1,
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so ∥∇αα∥∞ = ∥∇fifi∥∞ ≤ 1. Otherwise, if F ̸∈ {id, ∂̂}, Lemma 3.11 implies
that ∥Fα∥∞ ≲d A

−1ρ−1 ≤ ρ−1. This proves (23). □

4. Lower bounds on β–numbers

In this section, we prove Theorem 1.2. In fact, Theorem 1.2 is an imme-
diate consequence of the following bound.

Proposition 4.1. There is a δ0 > 0 with the following property. Let 0 <
δ < δ0, A > 1, and p > 0. If ρ > 1 is sufficiently large, N = ⌊δA4⌋, fi is
constructed as in Section 3, Γ = ΓfN , and U = [0, 1]× {0} × [0, 1], then

ˆ R

0

ˆ
ΨfN (U)

βΓ(v, r)
p dv

dr

r
≳ NA−p ≳ δA4−p.

We prove this by introducing a parametric version of βΓ(v, r). For any
measurable function ψ : H → R which is constant on cosets of ⟨Y ⟩, we define
V (v, r) = Π(B(v, r)) and

γψ(v, r) = r−4 inf
h∈Aff

∥ψ − h∥L1(V (v,r)),

where Aff denotes the set of functions of the form α(v) = ax(v)+b, a, b ∈ R.
Note that all vertical planes that are not parallel to the yz–plane are graphs
of functions in Aff.

When ψ is intrinsic Lipschitz, βΓψ and γψ are comparable.

Lemma 4.2. Let λ ∈ (0, 1). There is a c > 1 such that for any λ–intrinsic
Lipschitz function ψ : H → R, any x ∈ Γψ, and any r > 0,

βΓψ(x, c
−1r) ≲λ γψ(x, r) ≲λ βΓψ(x, cr).

The proof of this lemma uses the fact that if h(v) = ax(v)+b is affine and
P = Γh is the corresponding vertical plane, then dKor(w,P ) ≈a |y(w)−h(w)|
for all w ∈ H. Since the constant in this inequality depends on a, we will
need the following lemma.

Lemma 4.3. Let λ ∈ (0, 1). There exist m > 0 and ϵ > 0 such that for any
λ–intrinsic Lipschitz graph Γψ, any u ∈ Γψ and any vertical plane P , if

(25)

ˆ
B(u,r)∩Γψ

dKor(w,P ) dµ(w) < ϵr4,

then | slopeP | < m.

Proof. Since Γψ is Ahlfors 3–regular, there is a c = c(λ) > 0 such that
µ(Γψ ∩B(w, s)) ≥ cs3 for all w ∈ Γψ and s > 0.

Let ϵ = cδ4, let δ = 1−λ
100 , let m = (4δ)−1, and let P be a vertical plane

satisfying (25). We claim that if v ∈ Γψ ∩ B(u, r2), then dKor(v, P ) < 2δr.
Suppose not. Then B(v, δr) ⊂ B(u, r) and

dKor(Γψ ∩B(v, δr), P ) ≥ δr,
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so ˆ
B(u,r)∩Γψ

dKor(w,P ) dµ(w) ≥ µ(Γψ ∩B(v, δr))δr ≥ cδ4r4 = ϵr4.

This is a contradiction, so dKor(v, P ) < 2δr.
It follows that dKor(u, P ) < 2δr. By Lemma 2.6, |ψ(uXx)−ψ(u)| ≤ 2

1−λ |x|
for any x ∈ R, so if v := Ψψ(uX

8δr), then

dKor(u, v) ≤ 8δr + |ψ(uX8δr)− ψ(u)| ≤ 8

100
r +

16

100
r ≤ r

4
.

That is, v ∈ Γψ ∩B(u, r2), so dKor(v, P ) < 2δr.
Let u′ ∈ P ∩B(u, 2δr) and let v′ ∈ P ∩B(v, 2δr). Then

|x(v′)− x(u′)| ≥ |x(v)− x(u)| − 4δr = 4δr

and

|y(v′)− y(u′)| ≤ |y(v)− y(u)|+ 4δr ≤ r

4
+ 4δr ≤ r.

Thus

| slope(P )| = |y(v′)− y(u′)|
|x(v′)− x(u′)|

≤ (4δ)−1 = m,

as desired. □

We now prove Lemma 4.2.

Proof of Lemma 4.2. Let Γ = Γψ, let x ∈ Γ, and r > 0. Let c = c(λ) > 0 be
as in Lemma 2.7, so that V (p, s) ⊂ Π(B(p, cs) ∩ Γ) for all p ∈ Γ and s > 0.
Note that by the area formula, we have

H3(S) ≈
ˆ
Π(S)

√
1 +∇ψψ(v) dv =

ˆ
S

√
1 +∇ψψ(v) dv ≈λ µ(S)

for any Borel set S ⊂ Γ.
We first prove that βΓ(x, c

−1r) ≲λ γψ(x, r). Let h : V0 → R be an affine
function so that r−4∥ψ − h∥L1(V (x,r)) ≤ 2γψ(x, r) and let P = Γh. Then

dKor(v, P ) ≤ |ψ(v)− h(v)| for all y ∈ Γ and Π(B(x, c−1r) ∩ Γ) ⊂ V (x, r), so

β(x, c−1r) ≲λ r
−4

ˆ
B(x,c−1r)∩Γ

dKor(v, P ) dµ(v)

≤ r−4

ˆ
V (x,r)

|ψ(v)− h(v)|dµ(v)

≤ 2γψ(x, r).

Next, we show that γψ(x, r) ≲λ βΓ(x, cr). Let m = m(λ), ϵ = ϵ(λ) be as
in Lemma 4.3. Suppose first that βΓ(x, cr) <

ϵ
2 . Then there is a vertical

plane P that satisfies (25) and thus | slope(P )| < m. Let g be the affine
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function such that Γg = P ; then dKor(v, P ) ≈m |g(v) − ψ(v)| for all v ∈ Γ
(Lemma 2.5). Therefore, since V (x, r) ⊂ Π(B(p, cr) ∩ Γ),

γψ(x, r) ≤ r−4

ˆ
V (x,r)

|g(v)− ψ(v)| dµ(v)

≲λ r
−4

ˆ
B(x,cr)∩Γ

dKor(v, P ) dµ(v)

≲λ βΓ(x, cr).

Now suppose βΓ(x, cr) ≥ ϵ
2 ≳λ 1. Let h be the constant (affine) function

h(v) = ψ(x). By Lemma 2.6, for y ∈ B(x, r), we have

|h(Π(y))− ψ(Π(y))| = |ψ(x)− ψ(y)| ≤ 2

1− λ
r,

so |h(v)− ψ(v)| ≲λ r for all v ∈ V (x, r). Therefore,

γψ(x, r) ≤ r−4∥f − h∥L1(V (x,r)) ≲λ r
−4 · rµ(V (x, r)) ≲ 1 ≲λ βΓ(x, r),

as desired. □

We can thus prove Proposition 4.1 by bounding γνi and γfi . We will prove
the following.

Lemma 4.4. For any A > 1, the following properties hold for all sufficiently
large ρ. Let i < k. Let v ∈ Γfk and let b > 0. Then

(26) γfi(v, bri) ≲b A
−1ρ−1.

Let Ji be as in Section 3, let j ∈ Ji, and let s0 ∈ [13Ari,
2
3Ari], t0 ∈ [0, r2i ],

and w = Ψfk(Ri,j(s0, t0)). Then

(27) γνi(w, 8ri) ≳ A−1.

Proof. First, we prove (26). Let L : H → R be the affine function L(p) =
fi(v)+(x(p)−x(v))∇fifi(v) and let v′ = Ψfi(v). Lemma 2.9 and Lemma 3.11
applied to fi imply that for all u ∈ H,

|fi(u)− L(u)| ≲λ dKor(v
′, u)2(∥∇2

fi
fi∥∞ + ∥Zfi∥∞)

(21)

≲ dKor(v
′, u)2A−1ρ−1r−1

i .

Since

dKor(v
′, v) ≤ |fi(v)− fk(v)| ≤

k−1∑
m=i

∥νm∥∞ ≤ 2A−1ri∥κ∥∞ ≤ 2ri,

if u ∈ B(v, bri), then dKor(u, v
′) ≤ (b+ 2)ri and

|fi(u)− L(u)| ≤ (b+ 2)2A−1ρ−1ri ≲b A
−1ρ−1ri.
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Therefore,

γfi(v, bri) ≤ (bri)
−4∥fi − L∥L1(V (v,bri))

≲b r
−1
i ∥fi − L∥L∞(B(v,bri)) ≲b A

−1ρ−1,

as desired.
Now we prove (27). First, let w′ = Ψfi(w). Then, as above, dKor(w,w

′) ≤
2ri, so V (w′, 6ri) ⊂ V (w, 8ri). Then γνi(w, 8ri) ≳ γνi(w

′, 6ri), so it suffices
to prove that γνi(w

′, 6ri) ≳ A−1.
We first apply a change of coordinates. Let j ∈ Ji and let R = Ri,j , so

that w′ = Ψfi(R(s0, t0)). Let D = R([s0 − 1
12ri, s0 +

1
12ri] × [0, r2i ]). We

claim that if ρ is large enough, then D ⊂ V (w′, 6ri).
Let t ∈ [0, r2i ]. Lemma 3.7 implies that |z(R(s0, t))− z(R(s0, t0))| ≤ 4

3r
2
i ,

so by (21),

|fi(R(s0, t))− fi(w
′)| ≤ ∥Zfi∥∞|z(R(s0, t))− z(R(s0, t0))| ≲ A−1ρ−1ri.

We suppose that ρ is large enough that |fi(R(s0, t))− fi(w
′)| ≤ ri; then

dKor(Ψfi(R(s0, t)), w
′)

≤ 2
√
|z(R(s0, t))− z(R(s0, t0))|+ |fi(R(s0, t))− fi(w

′)|

≤ 2

√
4

3
r2i + ri ≤ 4ri.

For t ∈ [0, r2i ], the curve λt(s) = Ψfi(R(s, t)) is a horizontal curve on Γfi
with velocity λ′t(s) = X +∇fifi(λt(s))Y . Since ∥∇fifi∥∞ ≤ 1, we have

dKor(λt(s), λt(s
′)) ≤

√
2|s− s′|.

If |s− s0| ≤ ri, then

dKor(w
′,Ψfi(R(s, t))) ≤ dKor(w

′,Ψfi(R(s0, t))) + dKor(λt(s0), λt(s)) ≤ 6ri,

so R(s, t) ∈ Π(B(w′, 6ri)). Thus D ⊂ V (w′, 6ri).
For any h ∈ Aff,

∥νi − h∥L1(V (w′,6ri)) ≥
ˆ
D
|νi(v)− h(v)|dv

≥ 3

4

ˆ s0+
1
12
ri

s0− 1
12
ri

ˆ r2i

0
|νi(R(s, t))− h(R(s, t))|dt ds,

where we used Lemma 3.7 to bound the Jacobian of R.
Since h ∈ Aff is constant on vertical lines, there is an affine function

h0 : R → R such that h(R(s, t)) = h0(s). Since j ∈ Ji,

νi(R(s, t)) = κi,j(R(s, t))
(15)
= A−1riκ(ŝ, t̂),

where ŝ = A−1r−1
i s and t̂ = r−2

i t.
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Let

M = min
c∈R

û∈[ 1
4
, 3
4
]

ˆ 1

0
|κ(û, v̂)− c|dv̂.

We chose κ so that κ is zero on ∂[0, 1]2 and positive on [15 ,
4
5 ]

2, so M > 0 by
compactness.

Since s0 ∈ [13 ,
2
3 ], if s ∈ [s0 − 1

12ri, s0 +
1
12ri], then ŝ ∈ [14 ,

3
4 ]. Therefore,

substituting t̂ = r−2
i t, we find

∥νi − h∥L1(V (w′,6ri)) ≳ r2i

ˆ s0+
1
12
ri

s0− 1
12
ri

ˆ 1

0
|A−1riκ(ŝ, t̂)− h0(s)| dt̂ds

≥ A−1r3i

ˆ s0+
1
12
ri

s0− 1
12
ri

M ds ≥ 1

6
A−1r4iM.

This holds for all h ∈ Aff, so γνi(w
′, 6ri) ≳ A−1. □

Finally, we prove Proposition 4.1 and Theorem 1.2.

Proof of Proposition 4.1 and Theorem 1.2. By Proposition 3.1, there is a
δ > 0 such that if 0 ≤ i ≤ δA4, then

∑
j∈Ji |Qi,j | >

1
2 . Let N = ⌊δA4⌋, let

f = fN , and let Γ = Γf .

Let c be as in Lemma 4.2. Let 0 ≤ i < N and j ∈ Ji. Let s ∈ [13Ari,
2
3Ari]

and t ∈ [0, r2i ] and let w = Ψf (Ri,j(s, t)). For any ψ, ϕ : H → R, γ satisfies
the reverse triangle inequality

γψ+ϕ(w, r) ≥ γψ(w, r)− γϕ(w, r),

so since f = fi + νi +
∑N−1

m=i+1 νm,

(28) γf (w, 8ri) ≥ γνi(w, 8ri)− γfi(w, 8ri)−
∞∑

m=i+1

γνm(w, 8ri).

Lemma 4.4 implies that when ρ is sufficiently large, γνi(w, 8ri) ≳ A−1 and
γfi(w, 8ri) ≲ A−1ρ−1. Furthermore, for m ≥ 1, ∥νm∥∞ ≲ A−1rm, so

γνm(w, 8ri) ≤ (8ri)
−4|V (w, 8ri)| · ∥νm∥∞ ≲ r−1

i A−1rm ≲ A−1ρi−m.

Therefore,

γfi(w, 8ri) +
∞∑

m=i+1

γνm(w, 8ri) ≲ A−1ρ−1.

When ρ is large, this is small compared to γνi(w, 8ri), so

γf (w, 8ri) ≥
1

2
γνi(w, 8ri) ≳ A−1

and βΓf (w, 8cri) ≳ γf (w, 8ri) ≳ A−1. In fact, for r ∈ [8cri, 16cri],

βΓ(w, r) ≳ βΓ(w, 8cri) ≳ A−1.
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Therefore, by Lemma 3.7,
ˆ
Qi,j

βΓ(Ψf (v), r)
p dv ≥ 3

4

ˆ 2
3
Ari

1
3
Ari

ˆ r2i

0
βΓ(Ψf (Ri,j(s, t)), r)

p dtds

≳ Ar3i ·A−p ≳ |Qi,j |A−p,

andˆ
Ψf (U)

βΓ(v, r)
p dv ≥

∑
i∈Ji

ˆ
Ψf (Qi,j)

βΓ(v, r)
p dv ≳

∑
i∈Ji

A−p|Qi,j | ≳ A−p.

We suppose that ρ > 4 so that the intervals [8cri, 16cri] are disjoint and
let R > 16c, so that R > 16cr0 and Ψf (U) ⊂ B(0, R). Then

ˆ R

0

ˆ
Γ∩B(0,R)

βΓ(v, r)
p dv

dr

r
≥

N−1∑
i=0

ˆ 16cri

8cri

ˆ
Ψf (U)

βΓ(v, r)
p dv

dr

r

≳
N−1∑
i=0

ˆ 16cri

8cri

A−p dr

r
≥ N log 2 ·A−p ≳ δA4−p.

This proves Proposition 4.1. By Lemma 2.8, dv ≈ dH3(v), soˆ R

0

ˆ
Γ∩B(0,R)

βΓ(v, r)
p dH3(v)

dr

r
≈
ˆ R

0

ˆ
Γ∩B(0,R)

βΓ(v, r)
p dv

dr

r
≳ δA4−p.

When p < 4, this integral goes to infinity as A→ ∞, proving Theorem 1.2.
□

5. Reduction to vertical planes

Now we begin the proof of Theorem 1.1, which will take up the rest of
this paper. In this section and the rest of the paper, K : H \ {0} → R2 will
denote a smooth orthogonal kernel which is homogeneous of degree −3 and

K̂ will denote the (also orthogonal) kernel K̂(v) = K(v−1). Many of our
bounds will depend on K, so we omit K in subscripts like ≲K .

Let ϕ : H → R be an intrinsic Lipschitz function. We define ηϕ = µ|Γϕ ,
where µ is the measure defined in Section 2.3. Then Tηϕ(p) = TKηϕ(p) is
given by

Tηϕ(p) := pv.(p)

ˆ
Γϕ

K̂(p−1w) dw

for all p ∈ H such that the principal value on the right exists, i.e., for all
p ∈ H such that

(29) lim
r→0
R→∞

ˆ
Γϕ∩(B(p,R)\B(p,r))

K̂(p−1w) dw

converges. Let 1 be the function equal to 1 on all of H; then, using the
operator notation in Section 2.2, we can write Tηϕ = Tηϕ1.
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In this section, we will show that when ϕ is a bounded smooth function
and p ∈ Γϕ, then Tηϕ(p) is the principal value of a singular integral on a
vertical plane. For any 0 < r < s, any p ∈ H, and any vertical plane Q
through p, let

AQr,s(p) = Q ∩ (B(p, s) \B(p, r)) ⊂ Q

and let AQr,s = AQr,s(0). When Q = V0 we will suppress the superscripts.
For a point p ∈ H, a vertical plane Q through 0 with finite slope, a

function f : H → R which is constant on cosets of ⟨Y ⟩, an intrinsic Lipschitz
function ϕ, and 0 < r < R we let

(30) T̃K;Q
ϕ;r,Rf(p) = T̃Qϕ;r,Rf(p) :=

ˆ
Ψϕ(p)A

Q
r,R

K̂(Ψϕ(p)
−1Ψϕ(v))f(v) dv,

and

T̃Qϕ f(p) := lim
r→0
R→∞

T̃Qϕ;r,Rf(p),

if this limit exists. Note that T̃Qϕ f and T̃Qϕ;r,Rf are constant on cosets of ⟨Y ⟩.
When p ∈ Γϕ and f = 1 is a constant function, we can substitute w =

Ψϕ(v) to write T̃Qϕ 1 like the right side of (29):

(31)

T̃Qϕ 1(p) = lim
r→0
R→∞

ˆ
pAQr,R

K̂(p−1Ψϕ(v)) dv = lim
r→0
R→∞

ˆ
Ψϕ

(
pAQr,R

) K̂(p−1w) dw.

In this section, we will compare the integrals in (29) and (31) and prove
the following proposition.

Proposition 5.1. Let ϕ : H → R be a smooth function which is constant on
cosets of ⟨Y ⟩ and let Q be a vertical plane through 0. Let

C = max
{
∥ϕ∥∞, ∥∇ϕϕ∥∞, ∥∇2

ϕϕ∥∞, ∥∂zϕ∥∞, | slopeQ|
}

and suppose that C < ∞. Then for any p ∈ Γϕ, the limits Tηϕ(p) and

T̃Qϕ 1(p) exist and

(32) Tηϕ(p) = T̃Qϕ 1(p).

In fact, ∣∣∣Tηϕ(p)− T̃Qϕ;r,R1(p)
∣∣∣ ≲C r +R−1.

In particular, under these conditions, T̃Qϕ 1(p) is independent of Q, so we

write T̃ϕ = T̃ V0ϕ .

The implicit constants in the proofs in this section almost all depend on
C, so we will omit the dependence on C from our notation.

We first establish bounds on T̃Qϕ;s,t1(p).
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Lemma 5.2. Let ϕ, Q, and C be as in Proposition 5.1. Then for any
0 < r′ < r < 1 < R < R′ and p ∈ Γϕ,∣∣∣T̃Qϕ;r′,r1(p)∣∣∣ ≲ r

and ∣∣∣T̃Qϕ;R,R′1(p)
∣∣∣ ≲ R−1.

In particular, the principal value T̃Qϕ 1(p) exists for all p ∈ Γϕ.

Furthermore, for any bounded function f : H → R which is constant on
cosets of ⟨Y ⟩ and any 0 < s < t,∣∣∣T̃Qϕ;s,tf(p)∣∣∣ ≲ ∥f∥∞ log

t

s
.

LetQ be a vertical plane through 0 with finite slope. Then, by Lemma 2.8,
µ|Q is a 3–regular left-invariant measure on Q. The uniqueness (up to scal-
ing) of the Haar measure on Q implies that µ|Q is a constant multiple of
L|Q, i.e. µ|Q is a 3–uniform measure. Hence, the following useful lemma
follows easily, see e.g. [Mer22] for the details.

Lemma 5.3. Let Q be a vertical plane with finite slope. There exists a
c > 0, depending on the slope of Q, so that for any v ∈ Q, 0 ≤ r1 ≤ r2 ≤ ∞,
and any Borel integrable function f : R → R,ˆ

AQr1,r2 (v)
f(dKor(v, w)) dw = c

ˆ r2

r1

f(r)r2 dr.

For r > 0, let Br = B(0, r) ⊂ H.

Proof of Lemma 5.2. By translation, we may assume without loss of gener-
ality that 0 ∈ Γϕ and p = 0. For arbitrary s < t, we define

Is,t = T̃Qϕ;s,t1(p) =

ˆ
AQs,t

K̂(Ψϕ(v)) dv.

We will bound |Ir′,r| ≲ r and |IR,R′ | ≲ R−1.
We will use the following symmetrization argument. Let θ(x, y, z) =

(−x,−y, z). Then θ(AQs,t) = AQs,t and K is H–odd, so

|Is,t|
(57)
=

1

2

∣∣∣∣∣
ˆ
AQs,t

K̂(Ψϕ(v)) + K̂(Ψϕ(θ(v))) dv

∣∣∣∣∣
=

1

2

∣∣∣∣∣
ˆ
AQs,t

−K̂(θ(Ψϕ(v))) + K̂(Ψϕ(θ(v))) dv

∣∣∣∣∣ .
Since Ψϕ(v) = vY ϕ(v)−y(v) and

Ψϕ(θ(v)) = θ(v)Y ϕ(θ(v))−y(θ(v)) = θ(v)Y ϕ(θ(v))+y(v),

we have

θ(Ψϕ(v)) = θ(v)Y −ϕ(v)+y(v) = Ψϕ(θ(v))Y
−ϕ(v)−ϕ(θ(v)),
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and by the mean value theorem,∣∣∣K̂(Ψϕ(θ(v)))− K̂(θ(Ψϕ(v)))
∣∣∣ = ∣∣∣YLK̂(m(v))

∣∣∣ · |ϕ(v) + ϕ(θ(v))|,

where m(v) is a point on the horizontal line segment between θ(Ψϕ(v)) and
Ψϕ(θ(v)). That is,

|Is,t| ≤
1

2

ˆ
AQs,t

∣∣∣YLK̂(m(v))
∣∣∣ · |ϕ(v) + ϕ(θ(v))| dv.(33)

Since m(v) ∈ θ(v)⟨Y ⟩ and Q has bounded slope, we have ∥m(v)∥Kor ≳
∥v∥Kor for all v ∈ Q. Since m(v) is between θ(Ψϕ(v)) and Ψϕ(θ(v)),

∥m(v)∥Kor ≲ max{∥Ψϕ(v)∥Kor, ∥Ψϕ(θ(v))∥Kor} ≲ ∥v∥Kor.

That is, for all v ∈ Q,

(34) ∥m(v)∥Kor ≈ ∥v∥Kor.

Furthermore, the bounds on ϕ and its derivatives give bounds on ϕ(v) +
ϕ(θ(v)). On one hand,

|ϕ(v) + ϕ(θ(v))| ≤ 2∥ϕ∥∞ ≤ 2C ≲ 1.

On the other hand, by Lemma 2.9, |ϕ(v) + ϕ(θ(v))| ≲ ∥v∥2Kor, so for all
v ∈ Q,

(35) |ϕ(v) + ϕ(θ(v))| ≲ min{1, ∥v∥2Kor}.

These bounds, the (−4)–homogeneity of YLK̂, and Lemma 5.3 imply

|Is,t| ≲
ˆ
AQs,t

∣∣∣YLK̂(m(v))
∣∣∣min{1, ∥v∥2Kor} dv

≲
ˆ
AQs,t

min{∥v∥−4
Kor, ∥v∥

−2
Kor} dv

≲
ˆ t

s
min{ρ−4, ρ−2} · ρ2 dρ ≲ min{s−1 − t−1, t− s}.

(36)

In particular, for any 0 < r′ < r < 1 < R < R′ < ∞, |Ir′,r| ≲ r and
|IR,R′ | ≲ R−1. Thus∣∣∣T̃Qϕ;r′,R′1(p)− T̃Qϕ;r,R1(p)

∣∣∣ ≤ |Ir′,r|+ |IR,R′ | ≲ r +R−1.

That is, T̃Qϕ;r,R1(p) converges as r → 0 and R → ∞, so the principal value

T̃Qϕ 1(p) exists.

Finally, if f is constant on cosets of ⟨Y ⟩ and 0 < s < t,∣∣∣T̃Qϕ;s,tf(p)∣∣∣ ≤ ˆ
AQs,t

∣∣∣K̂(Ψϕ(v))f(v)
∣∣∣ dv ≲

ˆ
AQs,t

∥v∥−3
Kor∥f∥∞ dv

≲ ∥f∥∞
ˆ t

s
ρ−3 · ρ2 dρ = ∥f∥∞ log

t

s
,

as desired. □
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The next lemma lets us compare Γϕ ∩B(p, r) and Ψϕ(V ∩B(p, r)) when
V is a vertical plane. Let ΠV : H → V be the projection from H to V along
cosets of ⟨Y ⟩, as in Section 2.1. Let Br = B(0, r).

Lemma 5.4. Let ϕ and C be as in Proposition 5.1. Let Γ = Γϕ and p ∈ Γ.
Let W be the vertical tangent plane to Γ at p, so that slopeW = ∇ϕϕ(p).
Then there is a c > 0 depending only on C such that for r > 0,

W ∩B(p, r − cr2) ⊂ ΠW (Γ ∩B(p, r)) ⊂W ∩B(p, r + cr2)

and for R > 0,

pV0 ∩B(p,R− c) ⊂ ΠpV0(Γ ∩B(p,R)) ⊂ pV0 ∩B(p,R+ c).

Though the inclusions hold for all r and R, they are most useful when r
is small and R is large.

Proof. Without loss of generality, we may suppose that p = 0 so that ΠpV0 =
Π. Let σ = ∇ϕϕ(p). By Lemma 2.9, we have ϕ(q) = σx(q) +O(∥q∥2Kor) for
any q ∈ H. Then there is a c > C such that

dKor(Ψϕ(q),ΠW (q)) = dKor(qY
ϕ(q)−y(q), qY σx(q)−y(q))

= |ϕ(q)− σx(q)| ≤ c∥q∥2Kor.

In particular, for r > 0, if q ∈W∩Br−cr2 , then dKor(Ψϕ(q), q) ≤ c∥q∥2Kor ≤
cr2. Therefore, Ψϕ(q) ∈ Br and

q = ΠW (Ψϕ(q)) ∈ ΠW (Γ ∩Br),

so W ∩Br−cr2 ⊂ ΠW (Γ ∩Br).
Conversely, if q′ ∈ Γ ∩ Br, then ΠW (q′) ∈ W ∩ Br+cr2 , so ΠW (Γ ∩ Br) ⊂

W ∩Br+cr2 . This proves the first part of the lemma.
Similarly, since ∥ϕ∥∞ ≤ C, we have

dKor(Ψϕ(q),Π(q)) = dKor(qY
ϕ(q)−y(q), qY −y(q)) = |ϕ(q)| ≤ C

for all q. Therefore,

V0 ∩BR−c ⊂ Π(Γ ∩BR) ⊂ V0 ∩BR+c,

as desired. □

This lets us write Tηϕ(p) in terms of an integral on pV0.

Lemma 5.5. Let Γ = Γϕ, p ∈ Γ, and W be as in Lemma 5.4. For 0 < r <
R, let

Er,R = (pV0 ∩B(p,R)) \ΠpV0(W ∩B(p, r)).

Then Tηϕ(0) exists and

(37) Tηϕ(0) = lim
r→0
R→∞

ˆ
Er,R

K̂(Ψϕ(v)) dv.
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Proof. Again, we suppose that p = 0, so that Er,R = (V0∩BR)\Π(W ∩Br).
We first note that the limit on the right side of (37) exists. If r is suf-

ficiently small and R is sufficiently large, then Π(W ∩ Br) ⊂ V0 ∩ BR. If
in addition 0 < r′ < r < R < R′, then Er,R ⊂ Er′,R′ and Er′,R′ \ Er,R =

Π(AWr′,r) ∪AR,R′ , so by Lemma 5.2,∣∣∣∣∣
ˆ
Er′,R′

K̂(Ψϕ(v)) dv −
ˆ
Er,R

K̂(Ψϕ(v)) dv

∣∣∣∣∣ ≲ r +R−1.

As r → 0 and R→ ∞, this goes to zero, so the limit in (37) exists.
Now we compare this limit with Tηϕ. For any r > 0 and any vertical

plane P through 0, let

FPr = (P ∩Br)△ΠP (Γ ∩Br)

where A△B is the symmetric difference (A \B)∪ (B \A). Comparing Er,R
to Π(Γ ∩ (BR \Br)), we find that

(V0 ∩BR)△Π(Γ ∩BR) = F V0R ,

and

Π(W ∩Br)△Π(Γ ∩Br) = Π((W ∩Br)△ΠW (Γ ∩Br)) = Π(FWr ),

so

Er,R △Π(Γ ∩ (BR \Br)) ⊂ F V0R ∪Π(FWr ).

Therefore, as in (29) and (31),∣∣∣∣∣Tr,Rηϕ(p)−
ˆ
Er,R

K̂(Ψϕ(v)) dv

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
Γ∩(BR\Br)

K̂(w) dw −
ˆ
Er,R

K̂(Ψϕ(w)) dw

∣∣∣∣∣
≤
ˆ
F
V0
R ∪Π(FWr )

∣∣∣K̂(Ψϕ(w))
∣∣∣ dw.

Let c be as in Lemma 5.4. Then for 0 < r < R <∞,

FWr ⊂W ∩ (Br+cr2 \Br−cr2) = AWr−cr2,r+cr2 ,

and

F V0R ⊂ AR−c,R+c.
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By Lemma 5.3, and using that Ψϕ is constant on cosets of ⟨Y ⟩, we get∣∣∣∣∣Tr,Rηϕ(p)−
ˆ
Er,R

K̂(Ψϕ(v)) dv

∣∣∣∣∣
≤
ˆ
AR−c,R+c

∣∣∣K̂(Ψϕ(w))
∣∣∣ dw +

ˆ
Π(AW

r−cr2,r+cr2
)

∣∣∣K̂(Ψϕ(w))
∣∣∣ dw

(13)
=

ˆ
AR−c,R+c

∣∣∣K̂(Ψϕ(w))
∣∣∣ dw +

ˆ
AW
r−cr2,r+cr2

∣∣∣K̂(Ψϕ(w))
∣∣∣ dw

≲
ˆ R+c

R−c
ρ−3 · ρ2 dρ+

ˆ r+cr2

r−cr2
ρ−3 · ρ2 dρ

= log
R+ c

R− c
+ log

r + cr2

r − cr2
.

This goes to zero as r → 0 and R→ ∞, so it implies (37), as desired. □

Finally, we prove Proposition 5.1.

Proof of Proposition 5.1. Again, we suppose that p = 0. Let W and Er,R =
(V0 ∩ BR) \ Π(W ∩ Br) be as in Lemma 5.5. We may suppose that R is
large enough and r is small enough that Π(W ∩Br) ⊂ V0 ∩BR. Let P be a
vertical plane through 0 with | slopeP | < C and let

Jr,R :=

∣∣∣∣∣
ˆ
Er,R

K̂(Ψϕ(v)) dv − T̃Pϕ;r,R1(0)

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
Er,R

K̂(Ψϕ(v)) dv −
ˆ
APr,R

K̂(Ψϕ(v)) dv

∣∣∣∣∣ .
We claim that Jr,R ≲ r +R−1.

Since Π ◦ θ = θ ◦ Π, it follows that Er,R and APr,R are symmetric around

the z–axis, i.e., θ(Er,R) = Er,R and θ(APr,R) = APr,R. Let D ⊂ V0 be a Borel

set such that D ⊂ Aϵ,ϵ−1 for some ϵ > 0. We claim that if θ(D) = D, then
for any t > 0, ˆ

st(D)
K̂(Ψϕ(v)) dv ≲ϵ min{t, t−1}.

Let It =
´
st(D) K̂(Ψϕ(v)) dv. As in the proof of Lemma 5.2, theH–oddness

of K and the mean value theorem imply that

|It| =
1

2

∣∣∣∣∣
ˆ
st(D)

−K̂(θ(Ψϕ(v))) + K̂(Ψϕ(θ(v))) dv

∣∣∣∣∣
≤ 1

2

ˆ
Atϵ,tϵ−1

|YLK̂(m(v))| · |ϕ(v) + ϕ(θ(v))| dv,
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where for every v, m(v) is a point on the horizontal line segment between
θ(Ψϕ(v)) and Ψϕ(θ(v)) with ∥m(v)∥Kor ≈ ∥v∥Kor. As in (36), by (35), the

(−4)–homogeneity of YLK̂, and Lemma 5.3,

|It| ≲
ˆ
Atϵ,tϵ−1

min{∥v∥−4
Kor, ∥v∥

−2
Kor}dv ≲

ˆ tϵ−1

tϵ
min{ρ−4, ρ−2} · ρ2 dρ

≲ min{t−1ϵ−1, tϵ−1} ≲ϵ min{t−1, t}.

It follows that if g is an H–even bounded Borel function supported on
Aϵ,ϵ−1 and t > 0, then

(38)

∣∣∣∣ˆ
V0

K̂(Ψϕ(v))g(st(v)) dv

∣∣∣∣ ≲ ∥g∥∞min{t−1, t}.

Now we apply this to Jr,R. The supports of 1Er,R and 1Π(APr,R)
are too

large to apply (38) directly, but we can write

1Er,R = 1V0∩BR − 1Π(W∩Br)

1Π(APr,R)
= 1Π(P∩BR) − 1Π(P∩Br).

Let g = 1V0∩B1 − 1Π(P∩B1) and h = 1Π(P∩B1) − 1Π(W∩B1) so that

1Er,R − 1Π(APr,R)
= (1V0∩BR − 1Π(P∩BR)) + (1Π(P∩Br) − 1Π(W∩Br))

= g ◦ sR−1 + h ◦ sr−1 .

Then g and h are H–even, and there is an ϵ > 0 such that both are supported
in Aϵ,ϵ−1 . Therefore,

Jr,R =

∣∣∣∣ˆ
V0

K̂(Ψϕ(v))1Er,R dv −
ˆ
P
K̂(Ψϕ(v))1APr,R

dv

∣∣∣∣
(13)
=

∣∣∣∣ˆ
V0

K̂(Ψϕ(v))(1Er,R − 1Π(APr,R)
) dv

∣∣∣∣
=

∣∣∣∣ˆ
V0

K̂(Ψϕ(v))(g(sR−1(v)) + h(sr−1(v))) dv

∣∣∣∣
(38)

≲ r +R−1.

This implies

T̃Pϕ 1(0) = lim
r→0
R→∞

ˆ
APr,R

K̂(Ψϕ(v)) dv = lim
r→0
R→∞

ˆ
Er,R

K̂(Ψϕ(v)) dv,

so by Lemma 5.5, T̃Pϕ 1(0) = Tηϕ(0), as desired. □
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6. Singular integrals on perturbed surfaces and the proof of
Proposition 1.3

In Section 3, we constructed intrinsic Lipschitz functions fi that depend
on parameters A, ρ, and i. In that section, A and ρ were fixed while i varies;
in this section, we will need to vary A and ρ, so we will write fi as fi,A,ρ
when we need to specify A and ρ.

Each surface Γfn,A,ρ can be constructed by starting with the vertical plane
V0, then repeatedly perturbing it at smaller and smaller scales. In this
section, we will state bounds on the change in the singular integral T̃ζ1
when ζ is perturbed and use these bounds to prove Proposition 1.3.

For any intrinsic Lipschitz function ζ : H → R, we let Fζ : H → R,

(39) Fζ(p) := T̃ζ1(p) = pv.(Ψζ(p))

ˆ
Ψζ(p)V0

K̂(Ψζ(p)
−1Ψζ(v)) dv.

For any ψ : H → R which is constant on cosets of ⟨Y ⟩ and t ∈ R, let
Gζ,ψ(t) := Fζ+tψ. We can then bound Fζ+ψ − Fζ = Gζ,ψ(1) − Gζ,ψ(0) by
bounding the derivatives of Gζ,ψ. In our applications, ζ and ψ will satisfy
bounds like those in Lemma 3.12, so that the length scale of ψ is much
smaller than the length scale of ζ.

We denote G′
ζ,ψ(t)(p) = ∂t[Gζ,ψ(t)(p)] and G′′

ζ,ψ(t)(p) = ∂2t [Gζ,ψ(t)(p)].

(This is a slight abuse of notation because the limits in the partial derivatives
may only converge pointwise and not uniformly.) For r ≤ R, we define
truncations

(40) F r,Rζ (p) := T̃ r,Rζ 1(p) =

ˆ
Ψζ(p)Ar,R

K̂(Ψζ(p)
−1Ψζ(v)) dv

and Gr,Rζ,ψ(t) := F r,Rζ+tψ. We will prove the following formula for G′
ζ,ψ.

Proposition 6.1. Let ζ, ψ : H → R be smooth functions that are constant
on cosets of ⟨Y ⟩. Suppose that ∥ψ∥∞ <∞ and that ζ is intrinsic Lipschitz.
Then, for any p ∈ Γζ ,

lim
r→0
R→∞

(Gr,Rζ,ψ)
′(0)(p) = G′

ζ,ψ(0)(p).

Furthermore, there is a Sobolev-type norm ∥ψ∥Wζ
depending on ψ and its

derivatives of order at most 2 such that

|G′
ζ,ψ(0)(0)| ≲ζ ∥ψ∥Wζ

.

If α and γ satisfy the bounds in Lemma 3.12 for some c > 0, then

∥G′
α,γ(0)∥∞ ≲c A

−1.

We refer the reader to Lemma 7.1 for the definition of ∥ψ∥Wζ
.

To use this to bound Fζ+ψ = Gζ,ψ(1), we need the following proposition,
which likewise bounds G′′

ζ,ψ in terms of a Sobolev-type norm on ζ and ψ.

Let A > 1 and let ∂̂ = A∇ζ . As in Section 3, we let {Z, ∂̂}n denote the
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set of differential operators that can be written as words of length n. Let
{Z, ∂̂}∗ denote the set of all words.

Proposition 6.2. For any A > 1 and any C > 0, if ρ is sufficiently large,
then the following bounds hold. Let ζ, ψ : H → R be constant on cosets of
⟨Y ⟩. Suppose that for any word E ∈ {Z, ∂̂}∗ of length at most 3,

(41) ∥Eψ∥∞ ≤ CA−1

and if E ̸∈ {id, ∂̂},

(42) ∥Eζ∥∞ ≤ Cρ−1.

Then, for any p ∈ H, the function t 7→ Gζ,ψ(t)(p) is C
2 and satisfies∥∥G′′

ζ,ψ(t)
∥∥
∞ ≲C A

−3

for all t ∈ [0, 1]. If α and γ satisfy the bounds in Lemma 3.12 for some
c > 0, then

∥G′′
α,γ(0)∥∞ ≲c A

−3.

We will use Proposition 6.1 and Proposition 6.2 to prove the following
bounds on Ffi .

Lemma 6.3. Let A > 0 and suppose that ρ > 0 is sufficiently large, de-
pending on A. Let i ≥ 0 and let fi and νi be as in Section 3. Then there is
an ϵ > 0 such that:

(1) ∥G′
fi,νi

(0)∥∞ ≲ A−1.

(2) For each v ∈ H, the function t 7→ Gfi,νi(t)(v) is C2, and for all
t ∈ [0, 1], ∥G′′

fi,νi
(t)∥∞ ≲ A−3.

(3) For all 0 ≤ i < j,

(43) |⟨G′
fi,νi

(0), G′
fj ,νj

(0)⟩| ≲ ρ−ϵ.

(4) If K is the Riesz kernel R and i < ϵA4, then ∥G′
fi,νi

(0)∥L2(U) ≳ A−1.

This lemma implies Proposition 1.3.

Proof of Proposition 1.3. In this proof, we use ∥·∥U to denote ∥·∥L2(U). Let
gi = Gfi,νi . By Taylor’s theorem,

∥Ffi+1
− (Ffi + g′i(0))∥U ≲ sup

0≤t≤1
∥g′′i (t)∥U .

Therefore, for any n,

(44)

∥∥∥∥∥Ffn −
n−1∑
i=0

g′i(0)

∥∥∥∥∥
U

≲
n−1∑
i=0

sup
0≤t≤1

∥g′′i (t)∥U .
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Furthermore,∥∥∥∥∥
n−1∑
i=0

g′i(0)

∥∥∥∥∥
2

U

=
∑

i=0,...,n−1
j=0,...,n−1

⟨g′i(0), g′j(0)⟩

=
n−1∑
i=0

∥g′i(0)∥2U + 2
∑

0≤i<j<n
⟨g′i(0), g′j(0)⟩.

Let ϵ be as in Lemma 6.3 and suppose that n < ϵA4. Then on one hand,

n−1∑
i=0

∥∥g′i(0)∥∥2U ≈ nA−2.

On the other hand, ∑
0≤i<j<n

|⟨g′i(0), g′j(0)⟩| ≲ n2ρ−ϵ,

so if ρ is sufficiently large, then

(45)

∥∥∥∥∥
n−1∑
i=0

g′i(0)

∥∥∥∥∥
U

≳
√
nA−1,

while

(46)
n−1∑
i=0

sup
0≤t≤1

∥g′′i (t)∥U ≲ nA−3.

Combining these estimates with (44), we see that there is some c > 1 such
that

∥Ffn∥U ≥ c−1√nA−1 − cnA−3.

Let δ = min{ϵ, c−4/16} and take N = ⌊δA4⌋. When A is sufficiently large,

∥FfN ∥U ≥ c−3

5
A− c−3

15
A ≳ A,

as desired. □

These bounds point to a possible link between the norm of Ffn and the
β–numbers studied in Section 4. The bounds in Section 4 show that there
is a δ > 0 such that if ρ is sufficiently large and n < δA4, then

(47)

ˆ R

0

ˆ
Ψfn (U)

βΓfn (v, r)
2 dv

dr

r
≳ nA−2.

Each layer of bumps with aspect ratio A contributes roughly A−2 to the
integral.

Similarly, the proof of Proposition 1.3 shows that if ρ is sufficiently large
and n < δA4, then ∥Ffn∥2U ≈ nA−2. Indeed, the proof shows that ∥Ffn∥2U ≈∑n

i=1 ∥g′i(0)∥2U when n
A4 is small. Since ∥g′i(0)∥2U ≈ A−2 when i < ϵA4, each

step in the construction of fn contributes roughly A−2 to ∥Ffn∥2U .
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This suggests the following question.

Question 6.4. How is the integral (47) for an intrinsic Lipschitz graph Γ
related to the L2–norm of the Riesz transform for functions on Γ?

In the rest of this paper, we will prove Propositions 6.1 and 6.2 and
Lemma 6.3.

We prove Proposition 6.1 in Section 7. The key step is to write Gr,Rζ,ψ(t)

in two ways, (52) and (53). The Euclidean analogues of these expressions
are identical, but since H is noncommutative, they differ in H. In practice,
(52) is easier to bound when r and R are large and (53) is easier when r

and R are small, so the two expressions together let us bound Gr,Rζ,ψ and its

derivatives at all scales.
By Section 3.1, we can rescale fi and νi to obtain functions α and γ that

satisfy the bounds in Lemma 3.12. By the scale-invariance of the Riesz
transform, ∥G′

fi,νi
(0)∥∞ = ∥G′

α,γ(0)∥∞, so part (1) of Lemma 6.3 follows
from Proposition 6.1.

Similarly, in Section 11, we use (52) and (53) again to prove Proposi-
tion 6.2. As before, ∥G′′

fi,νi
(0)∥∞ = ∥G′′

α,γ(0)∥∞, so part (2) of Lemma 6.3
follows from Proposition 6.2.

To prove parts (3) and (4) of Lemma 6.3, we approximate G′
α,γ(0) by a

translation-invariant singular integral operator on a plane. For any vertical
plane P ⊂ H, let λP : H → R be the affine function such that ΓλP = P , and
let HP,γ : P → R be the function

HP,γ(q) := G′
λP ,γ

(0)(q)

for all q ∈ P . The map γ 7→ HP,γ is then a translation-invariant operator
from functions on P to functions on P .

Given v ∈ Γα, we let Pv be the vertical tangent plane to Γα at v. By
Lemma 2.9 and Lemma 3.12, Pv is close to Γα on a ball around v whose
radius grows with ρ. In Section 8, we show that HPv ,γ approximates G′

α,γ(0)
on a ball around v whose radius also grows with ρ. We use this approxima-
tion to prove the lower bound ∥G′

fi,νi
(0)∥L2(U) ≳ A−1 (Section 9), to prove

that G′
fi,νi

(0) is continuous as a function from V0 to R (Lemma 8.2), and to

prove the orthogonality bound (43) (Section 10). This completes the proof
of Lemma 6.3.

7. First-order estimates for T̃ζ+ψ

Let ζ, ψ : H → R be smooth functions that are constant on cosets of ⟨Y ⟩
and suppose that ζ(0) = 0. Let Gζ,ψ(t) = Fζ+tψ = T̃ζ+tψ1 and Gr,Rζ,ψ = F r,Rζ+tψ
be as in Section 6.

In this section, we will derive expressions for (Gr,Rζ,ψ)
′(t) and prove the

following lemma, which is a quantitative version of Proposition 6.1.
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Lemma 7.1. Let ζ, ψ : H → R be smooth functions that are constant on
cosets of ⟨Y ⟩. Suppose that ∥ψ∥∞ < ∞ and that ζ is intrinsic Lipschitz.
Then, for any p ∈ Γζ ,

lim
r→0
R→∞

(Gr,Rζ,ψ)
′(0)(p) = G′

ζ,ψ(0)(p).

Furthermore, let 0 < r < 1. Let L = ∥∇ζζ∥∞ and let B = B(p, (2L+1)r).
For a smooth function g : H → R, define

∥g∥Wζ(B) := max
E∈{∂z ,∇ζ}∗
ℓ(E)≤2

∥Eψ∥L∞(B),

and
∥g∥W ′

ζ(B) := max
E∈{∂z ,∇ζ}∗\{id,∇ζ}

ℓ(E)≤2

∥Eψ∥L∞(B).

Then for any C > 0 and any s and S such that 0 < s ≤ r ≤ S, if
∥ζ∥W ′

ζ(B) ≤ C, then∣∣∣G′
ζ,ψ(0)(p)−

(
Gs,Sζ,ψ

)′
(0)(p)

∣∣∣ ≲L,C ∥ψ∥Wζ(B)s+ ∥ψ∥∞S−1.

In particular, since Gr,rζ,ψ(t)(p) = 0 for all t and p,

|G′
ζ,ψ(0)(p)| = |G′

ζ,ψ(0)(p)− (Gr,rζ,ψ)
′(0)(p)| ≲L,C (r + r−1)∥ψ∥Wζ(B).

Proposition 6.1 follows immediately.

Proof of Proposition 6.1. Suppose that α and γ are as in Lemma 3.12. Then
∥∇αα∥∞ ≤ 1, ∥α∥W ′

α(H) ≲ A−1ρ−1, and ∥γ∥Wα(H) ≲ A−1 when ρ is suffi-
ciently large. Therefore, letting r = 1,

|G′
α,γ(0)(p)| ≲ A−1.

□

We prove Lemma 7.1 by writing two formulas for Gr,Rζ,ψ(t). By left-

invariance, it suffices to consider the case that ζ(0) = 0 and p = 0. Then
on one hand, by (40),

Gr,Rζ,ψ(t)(0) =

ˆ
Y tψ(0)Ar,R

K̂(Ψζ+tψ(0)
−1Ψζ+tψ(v)) dv.

The domain of integration depends on t, but since the integrand is constant
on cosets of ⟨Y ⟩, we can replace Y tψ(0)Ar,R by

Atr,R := Π(Y tψ(0)Ar,R) = Y tψ(0)Ar,RY
−tψ(0).

This is a copy of Ar,R, sheared in the z–direction, and

(48) Gr,Rζ,ψ(t)(0) =

ˆ
Atr,R

K̂(Y −tψ(0)Ψζ(v)Y
tψ(v)) dv.

In Lemma 7.2 below, we will differentiate (48) to find an expression for

(Gr,Rζ,ψ)
′. The changing domain of integration will lead to boundary terms in
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the derivative, but we will see that when r and R are large, this derivative
is small.

On the other hand, just as we translated ζ so that the graph of ζ goes
through 0, we can translate ζ + τψ so that its graph goes through 0. By
Lemma 2.2, there is a function ζτ such that Γζτ = Y −τψ(0)Γζ+τψ, which can
be written as follows. For any τ ∈ R and w ∈ V0, let

(49) wτ := Y τψ(0)wY −τψ(0) = w − τψ(0)x(w)Z

and

(50) ζτ (w) := (ζ + τψ)(wτ )− (ζ + τψ)(0).

Then ζ0 = ζ, ζτ (0) = 0, and Γζτ = Y −τψ(0)Γζ+τψ. By the left-invariance of

T̃ , for any w ∈ V0 and τ ∈ R, we have

Gr,Rζ,ψ(τ)(w) = F r,Rζ+τψ(w) = F r,Rζτ (Y −τψ(0)w) = F r,Rζτ (wτ ),

where the last equality uses the fact that F r,Rζτ is constant on cosets of ⟨Y ⟩.
In particular,
(51)

Gr,Rζ,ψ(τ)(0) = F r,Rζτ (0) =

ˆ
Ar,R

K̂(Ψζτ (0)
−1Ψζτ (v)) dv =

ˆ
Ar,R

K̂(Ψζτ (v)) dv,

so we can compute (Gr,Rζ,ψ)
′ by differentiating (51) (see Lemma 7.3 below).

This avoids the boundary terms in Lemma 7.2. We will see that when r and
R are small, the derivative of (51) is small.

We first consider the derivative of (48). For any R > 0, let MR(x) =
1
4

√
R4 − x4 so that B(0, R) ∩ V0 = {(x, 0, z) | |x| ≤ R, |z| ≤MR(x)}. Recall

that YL is the left-invariant vector field YL(x, y, z) := (0, 1, x2 ) and YR is the
right-invariant vector field YR(x, y, z) := (0, 1,−x

2 ).
For the rest of this section, we suppose that ζ and ψ are as in Lemma 7.1

and that ζ(0) = 0 so that 0 ∈ Γζ . We let 0 < r < 1, L = ∥∇ζζ∥∞, and
B = B(0, (2L+1)r), and we suppose that ∥ζ∥W ′

ζ(B) ≤ C. For q ∈ H, we let

q = Ψζ(q).

Lemma 7.2. Let R′ > R > 0. Then

(GR,R
′

ζ,ψ )′(0)(0) =

ˆ
AR,R′

ψ(w)YLK̂(w)− ψ(0)YRK̂(w) dq(52)

− ψ(0)

ˆ R

−R
x · K̂(Ψζ(x, 0, z))

∣∣∣∣MR(x)

z=−MR(x)

dx

+ ψ(0)

ˆ r

−r
x · K̂(Ψζ(x, 0, z))

∣∣∣∣Mr(x)

z=−Mr(x)

dx.

where f(z)
∣∣b
z=a

denotes f(b)− f(a). Further,∣∣∣(GR,R′

ζ,ψ )′(0)(0)
∣∣∣ ≲ ∥ψ∥∞R−1.
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Proof. We proceed by differentiating (48). By the definition ofMR, we have

AR,R′ = {(x, 0, z) | z ∈ [−MR′(x),MR′(x)] \ (−MR(x),MR(x))}.

Let AR,R′(x, t) := {z | (x, 0, z) ∈ AtR,R′}. Since Y y(x, 0, z)Y −y = (x, 0, z −
yx), we have

AR,R′(x, t) = [−MR′(x)− tψ(0)x,MR′(x)− tψ(0)x]

\ (−MR(x)− tψ(0)x,MR(x)− tψ(0)x).

Let w = (x, 0, z) and λt(w) = Y −tψ(0)wY tψ(w). Then by (48),

GR,R
′

ζ,ψ (t) =

ˆ R′

−R′

ˆ
AR,R′ (x,t)

K̂(λt(x, 0, z)) dz dx

(GR,R
′

ζ,ψ )′(t) =

ˆ
At
R,R′

d

dt
[K̂(λt(q))] dq

−
ˆ R′

−R′
ψ(0)x · K̂(λt(x, 0, z))

∣∣∣∣MR′ (x)−tψ(0)x

z=−MR′ (x)−tψ(0)x
dx

+

ˆ R

−R
ψ(0)x · K̂(λt(x, 0, z))

∣∣∣∣MR(x)−tψ(0)x

z=−MR(x)−tψ(0)x
dx.

When t = 0,

(GR,R
′

ζ,ψ )′(0)(0) =

ˆ
AR,R′

ψ(q)YLK̂(q)− ψ(0)YRK̂(q) dq

− ψ(0)

ˆ R′

−R′
xK̂(Ψζ(x, 0, z))

∣∣∣∣MR′ (x)

z=−MR′ (x)

dx

+ ψ(0)

ˆ R

−R
xK̂(Ψζ(x, 0, z))

∣∣∣∣MR(x)

z=−MR(x)

dx

=: I1 − IR
′

2 + IR2 .

This proves (52).

We thus consider I1, I
R′
2 , and IR2 . Since YLK̂ and YRK̂ are homogeneous

of degree −4, ∣∣∣ψ(w)YLK̂(w)− ψ(0)YRK̂(w)
∣∣∣ ≲ ∥ψ∥∞∥w∥−4

Kor.

By Lemma 5.3,

|I1| ≲
ˆ
AR,R′

∥ψ∥∞∥w∥−4
Kor dw ≲

ˆ R′

R
∥ψ∥∞κ−4 · κ2 dκ ≤ ∥ψ∥∞R−1.

Let s ∈ [R,R′]. Since ∥(x, 0,Ms(x))∥Kor = s, we have

|K̂(Ψζ(x, 0,Ms(x)))| ≲ s−3
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and

|Is2(t)| ≲ ψ(0)

ˆ s

−s
|x|s−3 dx ≲ ∥ψ∥∞s−1.

Putting these bounds together,

|(GR,R
′

ζ,ψ )′(0)(0)| ≲ ∥ψ∥∞R−1 + ∥ψ∥∞(R′)−1 + ∥ψ∥∞R−1 ≲ ∥ψ∥∞R−1,

as desired. □

Now we differentiate (51).

Lemma 7.3. Let 0 < s′ < s ≤ r. Then

(53) (Gs
′,s
ζ,ψ)

′(0)(0) =

ˆ
As′,s

(ψ(w)− ψ(0)− ψ(0)x∂zζ(w))YLK̂(w) dw.

Furthermore,

(54) |(Gs
′,s
ζ,ψ)

′(0)(0)| ≲C ∥ψ∥Wζ(B)s.

To prove this lemma, we will need the following bound, which will also be
used in Section 11. Recall that θ(x, y, z) = (−x,−y, z) is rotation around
the z–axis.

Lemma 7.4. Let j ≥ 0 and let M be a smooth (−j)–homogeneous kernel.
Then for all w ∈ B(0, r),

|M(Ψa(w))− (−1)jM(Ψa(θ(w)))| ≲M,L ∥ζ∥W ′
ζ(B)∥w∥

1−j
Kor .

Proof. SinceM is (−j)–homogeneous, we note thatM(θ(p)) =M(s−1(p)) =
(−1)jM(p) for all p. As in the proof of Lemma 5.2, for all w ∈ V0, the points

θ(Ψζ(w)) = θ(w)Y −ζ(w) and Ψζ(θ(w)) = θ(w)Y ζ(θ(w)) lie in the same coset
of ⟨Y ⟩. Furthermore, by Lemma 2.9, if w ∈ B(0, r), then

ζ(w) = x(w)∇ζζ(0) +OL(C∥w∥2Kor),

so the distance between these points satisfies

|ζ(w) + ζ(θ(w))| = (x(w)− x(w))∇ζζ(0) +OL(C∥w∥2Kor) ≲L C∥w∥2Kor.

(55)

By the Mean Value Theorem, there is a point k(w) lying on the horizontal
line between θ(Ψζ(w)) and Ψζ(θ(w)) such that

|M(Ψζ(w))− (−1)jM(Ψζ(θ(w)))| = |M(θ(Ψζ(w)))−M(Ψζ(θ(w)))|
= |YLM(k(w))||ζ(w) + ζ(θ(w))| ≲L C∥w∥2Kor|YLM(k(w))|.

Since ζ is intrinsic Lipschitz with constant depending on L, we have

∥k(w)∥Kor ≈L ∥Π(w)∥Kor ≤ 2∥w∥Kor.

By Lemma 2.1, YLM is (−j − 1)–homogeneous, so

|M(Ψa(w))− (−1)jM(Ψa(θ(w)))| ≲L,M C∥w∥2Kor∥k(w)∥
−j−1
Kor ≲L C∥w∥1−jKor

as desired. □



50 VASILEIOS CHOUSIONIS, SEAN LI, AND ROBERT YOUNG

Now we prove Lemma 7.3. We take advantage of the symmetry of As′,s by
decomposing functions into odd and even parts. For any function f : H → R,
we have the following even-odd decomposition:

f(w) =
1

2
(f(w) + f(θ(w))) +

1

2
(f(w)− f(θ(w))) =: f e(w) + fo(w).(56)

Let E ⊆ H be a subset for which θ(E) = E. As
´
E f(w) dw =

´
E f(θ(w)) dw,

we get that
´
E f

o(w) dw = 0 and so if f is integrable on E, thenˆ
E
f(w) dw =

ˆ
E
f e(w) dw.(57)

Moreover, if g : H → R and fg is integrable on E, then

(58)

ˆ
E
fg dw =

ˆ
E
(f e + fo)(ge + go) dw =

ˆ
E
f ege + fogo dw.

Proof of Lemma 7.3. By (51),

(59) (Gs
′,s
ζ,ψ)

′(0)(0) =
d

dτ

[ˆ
As′,s

K̂(Ψζτ (w)) dw

]
τ=0

=

ˆ
As′,s

∂τ [ζτ (w)](0) · YLK̂(w) dw.

We differentiate (50) to get

∂τ [ζτ (w)] = −ψ(0)x(w)∂z[ζ + τψ](wτ ) + ψ(wτ )− ψ(0)

where wτ = w − τψ(0)x(w)Z is as in (49). Let

m(w) = ∂τ [ζτ (w)](0) = ψ(w)− ψ(0)− ψ(0)x(w)∂zζ(w),

so that

(Gs
′,s
ζ,ψ)

′(0)(0) =

ˆ
As′,s

m(w)YLK̂(w) dw;

this is (53).

For w ∈ V0, let NYLK̂
(w) := YLK̂(w). We will estimate I := (Gs

′,s
ζ,ψ)

′(0)(0)

by decomposing m and N
YLK̂

into odd and even parts.

By (58),

I =

ˆ
As′,s

me(w)N e
YLK̂

(w) +mo(w)No
YLK̂

(w) dw.

Let w ∈ B(0, r) and let κ = ∥w∥Kor. Note that 0 ≤ κ ≤ r ≤ 1. By
Lemma 2.9,

ψ(w)− ψ(0) = x(w)∇ζψ(0) +O(∥ψ∥Wζ(B)κ
2),

and

∂zζ(w) = ∂zζ(0) +O
(
∥∂2zζ∥L∞(B)κ

2 + ∥∇ζ∂zζ∥L∞(B)κ
)
= ∂zζ(0) +O(Cκ).
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Therefore,

(60)

m(w) = x(w)∇ζψ(0)− ψ(0)x(w)∂zζ(0) +O
(
∥ψ∥Wζ(B)κ

2 + ψ(0)x(w)Cκ
)

= x(w)∇ζψ(0)− ψ(0)x(w)∂zζ(0) +O
(
∥ψ∥Wζ(B)(1 + C)κ2

)
.

Thus |me(w)| ≲C ∥ψ∥Wζ(B)κ
2.

Similarly, ψ(w)− ψ(0) = O(∥ψ∥Wζ(B)κ) and ∂zζ = O(∥ζ∥W ′
ζ(B)), so

(61) m(w) = O(∥ψ∥Wζ(B)κ)+O(ψ(0)κ∥ζ∥W ′
ζ(B)) = O(∥ψ∥Wζ(B)(1+C)κ),

and |mo(w)| ≲C ∥ψ∥Wζ(B)κ. Since YLK̂ is −4–homogeneous, |N e
YLK̂

(w)| ≲
κ−4. By Lemma 7.4, |No

YLK̂
(w)| ≲C κ

−3.

Therefore,

|me(w)N e
YLK̂

(w) +mo(w)No
YLK̂

(w)| ≲C ∥ψ∥Wζ(B)κ
−2.

By Lemma 5.3,

|I| ≲C

ˆ s

s′
∥ψ∥Wζ(B)κ

−2 · κ2 dκ ≤ ∥ψ∥Wζ(B)s,

as desired. □

Finally, we prove Lemma 7.1.

Proof of Lemma 7.1. For w ∈ V0 and τ ∈ R, let ψτ (w) := ψ(wτ ), where wτ
is as in (49). Let t ∈ R. Then by (50),

ζτ+t(w) = (ζ+τψ+tψ)(wτ+t)−(ζ+τψ+tψ)(0) = (ζτ+tψτ )(Y
tψ(0)w)−tψ(0),

so by Lemma 2.2,

Γζτ+t = Y −tψ(0)Γζτ+tψτ .

Therefore, for s < S,

Gs,Sζ,ψ(τ + t)(0) = Gs,Sζτ ,ψτ (t)(0).

Differentiating with respect to t gives

(Gs,Sζ,ψ)
′(τ)(0) = (Gs,Sζτ ,ψτ )

′(0)(0).

Let 0 < s′ < s ≤ r and let r ≤ S < S′. Let B′ = B(0, (2L + 3)r). If
τ is sufficiently small, then ∥∇ζτ ζτ∥∞ < L + 1, ∥ζτ∥W ′

ζτ
(B′) ≤ C + 1, and

∥ψτ∥Wζτ (B
′) ≤ 2∥ψ∥Wζ(B). Then Lemma 7.2 and Lemma 7.3 imply that

(62)∣∣∣(Gs′,S′

ζτ ,ψτ
)′(0)(0)− (Gs,Sζτ ,ψτ )

′(0)(0)
∣∣∣ = ∣∣∣(Gs′,sζτ ,ψτ

)′(0)(0) + (GS,S
′

ζτ ,ψτ
)′(0)(0)

∣∣∣
≲L,C ∥ψ∥∞s+ ∥ψ∥Wζ(B)S

−1.

That is, (Gs,Sζ,ψ)
′(τ)(0) = (Gs,Sζτ ,ψτ )

′(0)(0) is Cauchy as s → 0 and S → ∞,

with bounds independent of τ . Thus, (Gs,Sζ,ψ)
′(τ) converges uniformly as
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s → 0 and S → ∞. This lets us pass the derivative under the limit, so by
Lemma 5.2,

G′
ζ,ψ(τ) =

d

dτ
lim
s→0
S→∞

Gs,Sζ,ψ(τ) = lim
s→0
S→∞

(Gs,Sζ,ψ)
′(τ).

Finally, (62) implies that

|G′
ζ,ψ(0)(p)− (Gs,Sζ,ψ)

′(0)(p)| ≲L,C ∥ψ∥∞s+ ∥ψ∥Wζ(B),

as desired. □

This implies Proposition 6.1 and thus part (1) of Lemma 6.3.

8. Approximating by a planar singular integral

For any vertical plane P ⊂ H with nonzero slope, let λP : H → R be
the affine function such that ΓλP = P . For any bounded smooth function
ϕ : H → R which is constant on cosets of ⟨Y ⟩, let HP,ϕ : P → R be the
function

HP,ϕ(p) := G′
λP ,ϕ

(0)(p)

for any p ∈ P . By Lemma 7.1 and Lemma 7.3, HP,ϕ(p) exists and

HP,ϕ(p) = lim
r→0
R→∞

(Gr,RλP ,ϕ)
′(0)(p) = lim

r→0
R→∞

ˆ
pAr,R

(ϕ(q)−ϕ(p))YLK̂(p−1ΠP (q)) dq;

recall that we denote this limit by

(63) HP,ϕ(p) = pv.(p)

ˆ
pV0

(ϕ(q)− ϕ(p))YLK̂(p−1ΠP (q)) dq.

The functions which are constant on cosets of ⟨Y ⟩ are naturally identified
with functions on P , so we can view ϕ 7→ HP,ϕ as a singular integral operator
acting on functions from P to R. It is translation-invariant in the sense that
if P0 goes through 0, v0 ∈ P0, and ϕ̂(v) = ϕ(v + v0) for all v ∈ P0, then

HP0,ϕ̂
(v) = HP0,ϕ(v + v0)

for all v ∈ P0.
In this section, we will show that when P is tangent to Γfi at p, then

HP,νi approximates G′
fi,νi

(0) in a neighborhood of p. We will use this to

bound how quickly G′
fi,νi

(0) can vary, and in the next section, we will use

this approximation to bound the correlation between G′
fi,νi

(0) and G′
fj ,νj

(0)

when i ̸= j.
After rescaling fi and νi as in Section 3.1, it suffices to consider functions

α and γ that satisfy the conclusion of Lemma 3.12, i.e., satisfy (22) and (23)
for some c > 0. Many of the constants in the following bounds will depend
on the value of c, so we omit c from the subscripts for the rest of this section.
We will prove the following lemmas.
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Lemma 8.1 (H approximates G′). Let α and γ satisfy Lemma 3.12 for
some sufficiently large ρ. Let ϵ = 1

10 . Let p ∈ Γα and let P be the tangent
plane to Γα at p. For any q ∈ P such that dKor(p, q) ≤ ρϵ,∣∣G′

α,γ(0)(q)−HP,γ(q)
∣∣ ≲ ρ−ϵ.

Furthermore, for any 0 < r ≤ 1 ≤ R,

(64)
∣∣∣HP,γ(q)− (Gr,RλP ,γ)

′(0)(q)
∣∣∣ ≲ A−1(R−1 + r).

Lemma 8.2 (Hölder bounds on G′
α,γ). Let ϵ = 1

10 . For all p, q ∈ Γα,

(65)
∣∣G′

α,γ(0)(p)−G′
α,γ(0)(q)

∣∣ ≲ dKor(p, q)
ϵ + ρ−

1
2 .

We apply Lemma 8.2 to G′
fi,νi

by rescaling.

Corollary 8.3 (Hölder bounds on G′
fi,νi

). Let ϵ > 0 be as above. Let i ≥ 0,

let ri = A−1ρ−i, and let p, q ∈ Γfi. Then

(66)
∣∣G′

fi,νi
(0)(p)−G′

fi,νi
(0)(q)

∣∣ ≲ (r−1
i dKor(p, q))

ϵ + ρ−
1
2 .

Proof. Let g = G′
fi,νi

(0). Let si = s−1
ri . Let α(p) = r−1

i fi(s
−1
i (p)) and

γ(p) = r−1
i νi(s

−1
i (p)). These satisfy Lemma 3.12 and g(p) = G′

α,γ(0)(si(p)).
If p, q ∈ Γfi , then si(p), si(q) ∈ Γα, so, by Lemma 8.2,

|g(p)− g(q)| =
∣∣G′

α,γ(0)(si(p))−G′
α,γ(0)(si(q))

∣∣ ≲ (r−1
i dKor(p, q))

ϵ + ρ−
1
2 .

□

The proofs of Lemmas 8.1 and 8.2 are based on the following bounds.

Lemma 8.4. Let α and γ satisfy Lemma 3.12. Let C > 0 and let P be a
vertical plane with | slope(P )| ≤ C. Let W = X + slope(P )Y . Let ∇P =
∇λP . Let i, j ≥ 0 and i+ j ≤ 3. Then for any p ∈ P ,

(67) |W iZjγ(p)| = |∇i
PZ

jγ(p)| ≲C A
−1(1 + dKor(p,Γα))

i.

Lemma 8.5. Let α and γ satisfy Lemma 3.12. Let p ∈ Γα and let P be the
tangent plane to Γα at p. When ρ is sufficiently large,

G′
α,γ(0)(p) = HP,γ(p) +O(ρ−

1
2 ).

Lemma 8.6. Let α and γ satisfy Lemma 3.12. Let p ∈ Γα and let C > 0.
Then for any two planes P and Q through p with slopes at most C,

|HP,γ(p)−HQ,γ(p)| ≲C | slopeP − slopeQ|

Lemma 8.7. Let α and γ satisfy Lemma 3.12. Let p ∈ Γα and q ∈ H. Let
P be a plane through 0 with | slopeP | ≤ 1, and suppose that dKor(p, q) ≤ 1.
Then

|HpP,γ(p)−HqP,γ(q)| ≲ dKor(p, q)
1
5 .

Given these lemmas, we prove Lemmas 8.1 and 8.2 as follows.
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Proof of Lemma 8.1. Let p ∈ Γα and let Pp be the tangent plane to Γα at
p. Let λ be the affine function such that Γλ = Pp, and let q ∈ Pp be such
that dKor(p, q) ≤ ρϵ.

Let κ = dKor(p, q). By Lemma 2.9 and Lemma 3.12, q = qY t, where
t = α(q)− λ(q) = O(ρ−1κ2). We choose ρ large enough that |t| < 1. Let Pq
be the tangent plane to Γα at q and let Q = Y −tPq be the plane through q
parallel to Pq. Then by the triangle inequality,∣∣G′

α,γ(0)(q)−HPp,γ(q)
∣∣ ≤ ∣∣G′

α,γ(0)(q)−HPq ,γ(q)
∣∣

+
∣∣HPq ,γ(q)−HQ,γ(q)

∣∣+ ∣∣HQ,γ(q)−HPp,γ(q)
∣∣.

By Lemma 8.5, ∣∣G′
α,γ(0)(q)−HPq ,γ(q)

∣∣ ≲ ρ−
1
2 .

Since Pq and Q are parallel and dKor(q, q) ≤ t < 1, Lemma 8.7 implies that∣∣HPq ,γ(q)−HQ,γ(q)
∣∣ ≲ dKor(q, q)

1
5 ≲ (ρ−1κ2)

1
5 .

Finally, by Lemma 8.6 and Lemma 2.9,∣∣HQ,γ(q)−HPp,γ(q)
∣∣ ≲ |∇αα(q)−∇αα(p)| ≲ κρ−1 + κ2ρ−1.

Since κ ≤ ρ
1
10 , these bounds imply that∣∣G′

α,γ(0)(q)−HPp,γ(q)
∣∣ ≲ ρ−

1
2 + (ρ−1κ2)

1
5 + κρ−1 + κ2ρ−1 ≲ ρ−

1
10 ,

as desired.
To prove (64), we apply Lemma 7.1 with ζ = λ, ψ = γ, and r = 1. Let

q ∈ Pp such that κ = dKor(p, q) ≤ ρϵ as above. Note that

dKor(q,Γα) ≤ dKor(q, q) ≲ ρ−1κ2 ≲ 1.

Since | slope(Pp)| ≤ 1, we take B = B(q, 3). Since λ is affine, ∥λ∥W ′
λ(B) =

0. For any v ∈ B, we have dKor(v,Γα) ≲ 3 + dKor(q,Γα) ≲ 1, so Lemma 8.4
implies that ∥γ∥Wλ(B) ≲ A−1. By Lemma 7.1 and Lemma 7.3,∣∣HPp,γ(q)− (Gr,Rλ,γ)

′(0)(q)
∣∣ ≲ ∥γ∥Wλ(B)r + ∥γ∥∞R−1 ≲ A−1(r +R−1),

as desired. □

Proof of Lemma 8.2. We claim that there is an ϵ > 0 such that for all p, q ∈
Γα, ∣∣G′

α,γ(0)(p)−G′
α,γ(0)(q)

∣∣ ≲ dKor(p, q)
ϵ + ρ−

1
2 .

Let r = dKor(p, q). By Proposition 6.1, ∥G′
α,γ(0)∥∞ ≲ 1, so it suffices to

consider the case that r ≤ 1.
By Lemma 8.5, we have

(68)
∣∣G′

α,γ(0)(p)−G′
α,γ(0)(q)

∣∣ ≲ ∣∣HPp,γ(0)(p)−HPq ,γ(0)(q)
∣∣+ ρ−

1
2 .
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Let Q be the plane parallel to Pp that goes through q. Lemma 8.6 and
Lemma 8.7 imply that there is an ϵ > 0 such that∣∣HPp,γ(0)(p)−HPq ,γ(0)(q)

∣∣
≤
∣∣HPp,γ(0)(p)−HQ,γ(0)(q)

∣∣+ ∣∣HQ,γ(0)(q)−HPq ,γ(0)(q)
∣∣

≲ rϵ + | slopeQ− slopePq|
= rϵ + |∇αα(p)−∇αα(q)|.(69)

By Lemma 2.9 with a = α and m = ∇α and by Lemma 3.12,

|∇αα(p)−∇αα(q)| ≲ r∥∇2
αα∥∞ + r2∥∂z∇αα∥∞ ≲ rρ−1 ≲ r.

Combining this with (68) and (69), we see that∣∣G′
α,γ(0)(p)−G′

α,γ(0)(q)
∣∣ ≲ rϵ + r + ρ−

1
2 ≲ rϵ + ρ−

1
2 ,

as desired. □

8.1. Proofs of Lemmas 8.4–8.7. Now we prove the lemmas that we used
in the proofs of Lemmas 8.1 and 8.2. First, we prove Lemma 8.4, which
bounds derivatives of γ near Γα.

Proof of Lemma 8.4. Recall that ΠP = ΠλP is the projection to P and that
∇P (v) = ∇λP (v) = X(v) + (y(v) − λP (v))Z(v). Since ∇P is constant on
vertical lines, we have [∇P , Z] = 0.

Since W = X +slope(P )Y is horizontal, for any u ∈ P , the curve g(w) =
uWw is a horizontal curve in P , so its projection Π ◦ g is an integral curve
of ∇P . For any function a which is constant on cosets of ⟨Y ⟩,

W ia(u) = (a ◦ g)(i)(0) = (a ◦Π ◦ g)(i)(0) = ∇i
Pa(Π(u)) = ∇i

Pa(u).

Therefore, for any i and j and any p ∈ P ,

W iZj [γ](p) = ∇i
PZ

j [γ](p).

This proves the first equality in (67).
We claim that for any p ∈ H and any i ≥ 0, j ≥ 0 with i+ j ≤ 3, we have

(70) |∇i
PZ

jγ(p)| ≲ (1 + |λP (p)− α(p)|)i.
Since α is intrinsic Lipschitz, |λP (p) − α(p)| ≲ dKor(p,Γα) for all p ∈ P , so
this will imply the lemma.

Let h : H → R be a smooth function that is constant on cosets of ⟨Y ⟩.
Let Λ(v) = 1 + |λP (v) − α(v)|. For c > 0, d ≥ 0 and n ≥ 0, we say that
h has (c, d, n)–derivative growth if for any word E ∈ {Z,∇α}∗ of length at
most d and any q ∈ H, we have

|Eh(q)| ≤ cA−1Λ(q)n.

In particular, |h(q)| ≲ A−1Λ(q)n. We claim that ∇j
PZ

iγ has (cj , 3−i−j, j)–
derivative growth when i+ j ≤ 3. This will imply (70).

When j = 0, Lemma 3.12 implies that γ has (c0, 3, 0)–derivative growth
and Ziγ has (c0, 3− i, 0)–derivative growth for some c0 ≲ A−1.
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We thus proceed by induction. Suppose that h has (cn, d, n)–derivative
growth for some d ≤ 3 and consider ∇Ph. Note that

∇Ph = ∇αh+ (α− λP )Zh.

For any 0 ≤ l ≤ d− 1, any E = E1 . . . El ∈ {Z,∇α}∗, and any q ∈ H,

|E∇Ph(q)| ≤ |E∇αh(q)|+ |E[(α− λP )Zh](q)|

≤ cnΛ(q)
n +

∑
S⊂{1,...,l}

|ES [α− λP ](q) · EScZh(q)|,

where ES =
∏
i∈S Ei. By Lemma 3.12, |ES [α − λP ](v)| ≲C 1 unless S =

∅ and ES = id. Furthermore, EScZ is a word of length at most d, so
|EScZh(q)| ≤ cnΛ(q)

n. Therefore,

|E∇Ph(q)| ≲C cnΛ(q)
n+2lcnΛ(q)

n+|λP (q)−α(q)|·cnΛ(q)n ≲C,d cnΛ(q)
n+1.

That is, ∇Ph has (cn+1, d−1, n+1)–derivative growth for some cn+1 ≲C,d cn.
For 0 ≤ i ≤ 3, Ziγ has (c0, 3− i, 0)–derivative growth for some c0 ≲ A−1,

so for 0 ≤ j ≤ 3−i, there are cj ≲C A
−1 such that∇j

PZ
iγ has (cj , 3−i−j, j)–

derivative growth. In particular, for all p ∈ P ,∣∣∇j
PZ

iγ(p)
∣∣ ≤ cjΛ(p)

j ≲C A
−1(1 + |λP (p)− α(p)|)j ,

as desired. □

Proof of Lemma 8.5. Let p ∈ Γα and let P be the vertical tangent plane to
Γα at p. We claim that

G′
α,γ(0)(p) =

d

dt
Fα+tγ(p)

∣∣
t=0

= HP,γ(p) +O(ρ−
1
2 ).

After translating, we may suppose that p = 0. Let γ0(w) = γ(w)− γ(0) for
all w ∈ H. By Proposition 6.1 and (63), we can write∣∣G′

α,γ(0)(0)−HP,γ(0)
∣∣

≤ lim sup
r→0

∣∣∣∣∣(Gr,√ρα,γ

)′
(0)(0)−

ˆ
Ar,√ρ

γ0(w)YLK̂(ΠP (w)) dw

∣∣∣∣∣
+ lim sup

R→∞

∣∣∣∣∣(G√
ρ,R

α,γ

)′
(0)(0)−

ˆ
A√

ρ,R

γ0(w)YLK̂(ΠP (w)) dw

∣∣∣∣∣ .(71)

We start by bounding the R → ∞ term. Since P has bounded slope, we

have ∥ΠP (w)∥Kor ≈ ∥w∥Kor. By the homogeneity of YLK̂ and the bounded-
ness of γ,∣∣∣∣∣
ˆ
A√

ρ,R

γ0(w)YLK̂(ΠP (w)) dw

∣∣∣∣∣ ≲
∣∣∣∣∣
ˆ
A√

ρ,R

∥w∥−4
Kor dw

∣∣∣∣∣ ≈
ˆ ∞

√
ρ
κ−2 dκ = ρ−

1
2 ,



THE RIESZ TRANSFORM ON INTRINSIC LIPSCHITZ GRAPHS 57

using Lemma 5.3 to change variables from w to κ. By Lemma 7.2, for all
R >

√
ρ,

(72)

∣∣∣∣∣(G√
ρ,R

α,γ )′(0)(0)−
ˆ
A√

ρ,R

γ0(w)YLK̂(ΠP (w)) dw

∣∣∣∣∣ ≲ ρ−
1
2 +ρ−

1
2 ≈ ρ−

1
2 .

Now we consider the r → 0 term. By (53), letting w = (x, 0, z), for any
0 < r <

√
ρ,

(G
r,
√
ρ

α,γ )′(0)(0)−
ˆ
Ar,√ρ

γ0(w)YLK̂(ΠP (w)) dw

=

ˆ
Ar,√ρ

γ0(w)
(
YLK̂(Ψα(w))− YLK̂(ΠP (w))

)
dw(73)

−
ˆ
Ar,√ρ

γ(0)x∂zα(w)YLK̂(Ψα(w)) dw,

and we will bound each integral separately.
We start with the first integral in (73). Let w ∈ V0 and let κ = ∥w∥Kor.

Let λ = λP , so that Γλ = P . By Lemma 2.9,

|α(w)− λ(w)| ≲ ρ−1κ2(74)

By the Mean Value Theorem, there is some t between λP (w) and α(w) such
that ∣∣∣YLK̂(wY α(w))− YLK̂(wY λP (w))

∣∣∣ = |α(w)− λP (w)| · |Y 2
L K̂(wY t)|.

Furthermore, ∥wY t∥Kor ≈ ∥w∥Kor, so by the (−5)–homogeneity of Y 2
L K̂,

(75)
∣∣∣YLK̂(wY α(w))− YLK̂(wY λP (w))

∣∣∣ (74)≲ ρ−1κ2 · κ−5 = ρ−1κ−3.

We apply Lemma 2.9 to γ0 to get

|γ0(w)| ≲ κ∥∇αγ0∥∞ + κ2∥∂zγ0∥∞ ≲ κ+ κ2

by Lemma 3.12. Since ∥γ0∥∞ ≲ 1, we have |γ0(w)| ≲ min{κ + κ2, 1} ≲ κ.
Therefore,

(76)

∣∣∣∣∣
ˆ
Ar,√ρ

γ0(w)(YLK̂(Ψα(w))− YLK̂(ΠP (w))) dw

∣∣∣∣∣
≲
ˆ
Ar,√ρ

∥w∥Kor · ρ−1∥w∥−3
Kor dw ≲

ˆ √
ρ

r
κ−2ρ−1κ2 dκ ≤ ρ−

1
2 ,

using Lemma 5.3 in the penultimate inequality.
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It remains to bound the second integral in (73). We writeˆ
Ar,√ρ

x∂zα(w)YLK̂(Ψα(w)) dw

=

ˆ
Ar,√ρ

x(∂zα(w)− ∂zα(0))YLK̂(Ψα(w)) dw

+

ˆ
Ar,√ρ

x∂zα(0)(YLK̂(Ψα(w))− YLK̂(ΠP (w))) dw

+

ˆ
Ar,√ρ

x∂zα(0) · YLK̂(ΠP (w)) dw

=: I1 + I2 + I3.

To bound I1, let m = ∂zα. By Lemma 3.12, we have ∥m∥∞ ≲ ρ−1,
∥∇αm∥∞ ≲ ρ−1, and ∥∂zm∥∞ ≲ ρ−1, so by Lemma 2.9, letting κ = ∥w∥Kor

as above,

|m(w)−m(0)| ≲ min{ρ−1, ρ−1(κ+ κ2)} ≲ ρ−1κ.

Therefore, using Lemma 5.3,

|I1| ≲
ˆ
Ar,√ρ

∣∣∣xρ−1∥w∥KorYLK̂(Ψα(w))
∣∣∣ dw

≲ ρ−1

ˆ
Ar,√ρ

∥w∥−2
Kor dw ≲ ρ−1

ˆ √
ρ

r
κ−2κ2 dκ ≤ ρ−

1
2 .

By (75)

|I2| ≲
ˆ
Ar,√ρ

∣∣x∂zα(0)ρ−1∥w∥−3
Kor

∣∣ dw
≲
ˆ
Ar,√ρ

ρ−2∥w∥−2
Kor dw ≲ ρ−2

ˆ √
ρ

r
dκ ≤ ρ−

3
2 .

Finally, recall that θ(x, y, z) = (−x,−y, z) and let h(w) = x(w)∂zα(0) ·
YLK̂(ΠP (w)). The symmetry of YLK̂ implies that h(θ(w)) = −h(w). Since
θ(Ar,√ρ) = Ar,√ρ,

I3 =

ˆ
Ar,√ρ

x∂zα(0)YLK̂(ΠP (w)) dw = 0,

and

(77)

ˆ
Ar,√ρ

x∂zα(w)YLK̂(Ψα(w)) dw = I1 + I2 + I3 = O(ρ−
1
2 ).

Combining these inequalities, we find that∣∣G′
α,γ(0)(0)−HP,γ(0)

∣∣ ≲ ρ−
1
2 ,

as desired. □
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Proof of Lemma 8.6. Without loss of generality, we may suppose that p = 0.
We claim that∣∣∣∣pv. ˆ

V0

(γ(q)− γ(0))
(
YLK̂(ΠP (q))− YLK̂(ΠQ(q))

)
dq

∣∣∣∣
≲C | slopeP − slopeQ|.

LetM(q) = YLK̂(ΠP (q))−YLK̂(ΠQ(q)). By the smoothness and homogene-

ity of YLK̂, for all q ∈ V0, we have

|M(q)| ≲C | slopeP − slopeQ|∥q∥−4
Kor

and M(θ(q)) = M(q). Let γ0(q) = γ(q) − γ(0), and let γe0(q) =
1
2(γ0(q) +

γ0(θ(q))) so thatˆ
Ar,R

(γ(q)− γ(0))M(q) dq =

ˆ
Ar,R

γe0(q)M(q) dq.

On one hand, since ∥γ∥∞ ≲ 1, Lemma 5.3 implies that for any R > 1,∣∣∣∣∣
ˆ
A1,R

γe0(q)M(q) dq

∣∣∣∣∣ ≲ | slopeP − slopeQ|∥γ∥∞
ˆ R

1
κ−4κ2 dκ

≲ | slopeP − slopeQ|.
On the other hand, by Lemma 3.12 and Lemma 2.9,

γ0(q) = x(q)∇αγ(q) +O(∥q∥2Kor),

so |γe0(q)| ≲ ∥q∥2Kor. Therefore, for any r < 1,∣∣∣∣∣
ˆ
Ar,1

γe0(q)M(q) dq

∣∣∣∣∣ ≲ | slopeP−slopeQ|
ˆ 1

r
κ−2κ2 dκ ≲ | slopeP−slopeQ|.

Combining these two inequalities, we have∣∣∣∣pv. ˆ
V0

γe0(q)M(q) dq

∣∣∣∣ = lim
r→0
R→∞

∣∣∣∣∣
ˆ
Ar,R

γe0(q)M(q) dq

∣∣∣∣∣
≲C | slopeP − slopeQ|.

□

Finally, we prove Lemma 8.7. We will need the following bound.

Lemma 8.8. Let C > 0, let P be a plane through 0 with | slope(P )| ≤ C
and let ψ : H → R be a bounded smooth function such that ψ(0) = 0 and ψ
is constant on cosets of ⟨Y ⟩. Let r > 0, and let

ϵ = ∥∂zψ∥L∞(B(0,r)) + ∥X2ψ∥L∞(V0∩B(0,r)).

Then ∣∣∣∣pv. ˆ
V0

ψ(v)YLK̂(ΠP (v)) dv

∣∣∣∣ ≲C ϵr + ∥ψ∥∞r−1.
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Proof. Let v ∈ V0 ∩ B(0, r) and let κ = ∥v∥Kor. By Taylor approximation,
there is a c > 0 such that

|ψ(v)−Xψ(0)x(v)| ≤ cϵκ2.

Let D = V0 ∩B(0, r). Then∣∣∣∣pv. ˆ
D
ψ(v)YLK̂(ΠP (v)) dv

∣∣∣∣
≤
∣∣∣∣pv.ˆ

D
Xψ(0)x(v)YLK̂(ΠP (v)) dv

∣∣∣∣
+ pv.

ˆ
D

∣∣∣cϵ∥v∥2KorYLK̂(ΠP (v))
∣∣∣ dv.

The first term is 0 by symmetry. Since ∥v∥2KorYLK̂(v) is (−2)–homogeneous,
Lemma 5.3 implies that∣∣∣∣pv. ˆ

D
ψ(v)YLK̂(ΠP (v)) dv

∣∣∣∣ ≲C cϵ

ˆ r

0
κ−2κ2 dκ ≲ ϵr.

Additionally, by the homogeneity of YRK and Lemma 5.3,∣∣∣∣∣pv.
ˆ
V0\D

ψ(v)YLK̂(ΠP (v)) dv

∣∣∣∣∣ ≲
ˆ ∞

r
∥ψ∥∞κ−4κ2 dκ ≲ ∥ψ∥∞r−1.

Summing these two inequalities proves the lemma. □

We now prove Lemma 8.7.

Proof of Lemma 8.7. Recall that p ∈ Γα, q ∈ H, and dKor(p, q) ≤ 1. After a
translation, we may suppose that p = 0. Then for any h ∈ H,

HhP,γ(h) = pv.(0)

ˆ
V0

(γ(h)− γ(hv))YLK̂(ΠP (v)) dµ,

so, letting

ν(v) = γ(0)− γ(v)− γ(q) + γ(qv),

HP,γ(0)−HqP,γ(q) = pv.(0)

ˆ
V0

ν(v)YLK̂(ΠP (v)) dµ.

Then ∥ν∥∞ ≤ 4∥γ∥∞ ≲ 1. We abbreviate partial derivatives of ν(x, y, z)
and γ(x, y, z) as γx = ∂xγ, γxz = ∂x∂zγ, etc.

Let κ = dKor(0, q) ≤ 1 and let r = κ−
1
5 . We claim that |νz(v)| ≲ κ

4
5 and

|νxx(v)| ≲ κ
2
5 for all v ∈ V0 ∩ B(0, r). This will let us apply Lemma 8.8 to

ν.
We write q = Xx0Zz0Y t; note that |x0| ≤ κ, |t| ≤ κ, and |z0| ≤ κ2. Since

γ is constant on cosets of ⟨Y ⟩,

ν(x, 0, z) = ν(XxZz) = γ(0)−γ(XxZz)−γ(qY −t)+γ(qY −t ·Y tXxY −tZz)

= γ(0, 0, 0)− γ(x, 0, z)− γ(x0, 0, z0) + γ(x0 + x, 0, z0 − tx+ z).
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Suppose that v = (x, 0, z) ∈ V0 ∩B(0, r). Then

νz(v) = γz(v
′)− γz(v)

νxx(v) = γxx(v
′)− 2tγxz(v

′) + t2γzz(v
′)− γxx(v),

where v′ = (x0 + x, 0, z0 − tx+ z).
Note that |x(v′)| ≤ r + κ ≲ r and |z(v′)| ≤ κ2 + r2 + κr ≲ r2, so there is

a c > 0 such that v, v′ ∈ B(0, cr). Let S = V0 ∩ B(0, cr). By Lemma 8.4,
for i+ j ≤ 3,

(78) ∥∂ix∂jzγ∥L∞(S) ≲ 1 + ri.

In particular, |tγxz(v′)| ≲ κ(1 + r) ≲ κ
4
5 and |t2γzz(v′)| ≲ κ2.

It remains to bound |γxx(v′)− γxx(v)| and |γz(v′)− γz(v)|. Since v−1v′ =
(x0, 0, z0 − tx), the Mean Value Theorem and (78) imply that

|γxx(v′)− γxx(v)| ≤ |x0|∥γxxx∥L∞(S) + |z0 − tx|∥γxxz∥L∞(S)

≲ κ(1 + r3) + (κ2 + κr)(1 + r2) ≲ κr3 = κ
2
5 .

Likewise,

|γz(v′)− γz(v)| ≤ |x0|∥γxz∥L∞(S) + |z0 − tx|∥γzz∥L∞(S)

≲ κ(1 + r) + (κ2 + κr) ≲ κr = κ
4
5 .

Combining these inequalities, we obtain |νz(v)| ≲ κ
4
5 and |νxx(v)| ≲ κ

2
5

for all v ∈ V0 ∩B(0, r). By Lemma 8.8, this implies

|HP,γ(0)−HqP,γ(q)| =
∣∣∣∣pv.(0) ˆ

P
ν(v)YLK̂(ΠP (v)) dµ

∣∣∣∣
≲C r(κ

4
5 + κ

2
5 ) + r−1∥ν∥∞ ≲ κ

1
5 = dKor(0, q)

1
5 ,

as desired. □

9. Lower bounds on the first derivative

Now we use the approximations in the previous section to prove lower
bounds on G′

α,γ(0). Our main estimate is the following lemma, which shows
that we can estimate G′

α,γ(0)(p) in terms of the restriction of γ to the vertical
line p⟨Z⟩.

Specifically, let P be the vertical tangent plane to Γα at p, i.e., P =
p⟨W,Z⟩, where W = X + ∇αα(p)Y . Let ΠP : H → P , ΠP (pW

wZzY y) =
pWwZz be the projection to P along cosets of Y . Let πp : H → p⟨Z⟩,
πp(pW

wZzY y) = pZz. This map is constant along cosets of ⟨Y ⟩ and projects
P to p⟨Z⟩ along cosets of ⟨W ⟩. We will show the following bound.

Lemma 9.1. Let A > 1. When ρ is sufficiently large (depending only on
A), the following holds. Let α and γ be functions satisfying Lemma 3.12.
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Let p ∈ Γα and let P be the vertical tangent plane to Γα at p. Let πp be as
above. Then

(79) G′
α,γ(0)(p) = HP,γ◦πp(p) +O(A−2)

= pv.(p)

ˆ
pV0

(γ(πp(q))− γ(p))YLK̂(p−1ΠP (q)) dq +O(A−2).

Proof. The second equality in (79) is (63), so it suffices to prove the first
equality. After a left-translation, we may suppose that p = 0.

By Lemma 8.5,

(80)

|G′
α,γ(0)(0)−HP,γ◦πp(0)| ≤ |G′

α,γ(0)(0)−HP,γ(0)|+|HP,γ(0)−HP,γ◦πp(0)|

≲ ρ−
1
2 + |HP,γ−γ◦πp(0)|.

We thus consider HP,γ−γ◦πp(0). Recall that by (63),

HP,γ−γ◦πp(0) = pv.(0)

ˆ
V0

(γ(q)− γ ◦ πp(q))YLK̂(ΠP (q)) dq.

Since ∥γ∥∞ ≲ A−1, Lemma 5.3 implies that
(81)ˆ

V0\B(0,A)
|(γ(q)− γ ◦ πp(q))YLK̂(ΠP (q))|dq ≲

ˆ ∞

A
A−1κ−4κ2 dκ ≲ A−2.

Let D = P ∩B(0, 3A). We claim that if v =WwZz ∈ D, then

γ(v) = γ(Zz) + w ·Wγ(Zz) +O(A−3w2).

Let σ = ∇αα(0) and let λ : H → R, λ(x, y, z) = σx so that Γλ = P .
Recall that for all q ∈ H, we have (∇α)q = Xq + (y(q)− α(q))Zq. If v ∈ P ,
then y(v) = λ(v), so

Wv = (∇α)v − (λ(v)− α(v))Zv + σYv.

Let m : H → R be a smooth function which is constant on cosets of ⟨Y ⟩.
Then Y m = 0, so for v ∈ P ,

Wm(v) = Xm(v) = ∇αm(v)−(λ(v)−α(v))Zm(v) = (∇α−(λ−α)Z)[m](v).

We can apply this identity to α, γ, and their derivatives with respect to ∇α

and Z, which are all constant on cosets of ⟨Y ⟩.
Note that by Lemma 3.12 and Lemma 2.9,

(82) lim
ρ→∞

max{∥λ− α∥L∞(D), ∥∇αα−∇αα(0)∥L∞(D), ∥Zα∥∞} = 0.

One consequence of (82) is that for all v ∈ D,

Wγ(v) = ∇αγ(v) +O
(
∥λ− α∥L∞(D)∥Zγ∥∞

) (82)
= ∇αγ(v) + oρ(1),

where oρ(1) is little–o notation denoting an error term bounded by a function
of ρ that goes to zero as ρ→ ∞.
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We can bound the second derivative similarly. Evaluating all functions at
v ∈ D,

W 2γ =W (∇α − (λ− α)Z)[γ]

= ∇2
αγ − (λ− α)Z∇αγ −W [λ− α] · Zγ − (λ− α)WZγ.

By Lemma 3.12, ∥Z∇αγ∥∞ ≲ A−2, so by (82), (λ − α)Z∇αγ = oρ(1).
Likewise, ∥Zγ∥∞ ≲ A−1. Since ∇αλ(v) = ∇αα(0),

W [λ− α](v) = ∇αα(0)−∇αα(v)− (λ(v)− α(v)) · Zα (82)
= oρ(1).

Finally,

(λ(v)− α(v))WZγ(v) = (λ(v)− α(v))∇αZγ(v)− (λ(v)− α(v))2Z2γ(v)

(82)
= oρ(1),

so W 2γ(v) = ∇2
αγ(v) + oρ(1). Thus, by Lemma 3.12, we can choose ρ large

enough that |Wγ(v)| ≲ A−2 and |W 2γ(v)| ≲ A−3 for all v ∈ D.
By Taylor’s theorem, if v =WwZz ∈ D, then

γ(v) = γ(Zz) + wWγ(Zz) +O(A−3w2).

Let θ(x, y, z) = (−x,−y, z) and let γe(v) = 1
2(γ(v) + γ(θ(v))). Then

γe(v) = γ(Zz) +O(A−3w2).

If q ∈ B(0, A), then ΠP (q) = πp(q)W
x(q) and ΠP (q) ∈ D, so γe(q) =

γ(πp(q)) +O(A−3x(q)2). By (81),

HP,γ−γ◦πp(0) = pv.(0)

ˆ
V0∩B(0,A)

(γ(q)−γ(πp(q)))YLK̂(ΠP (q)) dq+O(A−2).

Let 0 < r < A and let U = V0 ∩ (B(0, A) \B(0, r)). Then by symmetry and

the (−4)–homogeneity of YLK̂,∣∣∣∣ˆ
U
(γ(q)− γ(πp(q)))YLK̂(ΠP (q)) dq

∣∣∣∣
=

∣∣∣∣ˆ
U
(γe(q)− γ(πp(q)))YLK̂(ΠP (q)) dq

∣∣∣∣
≲
ˆ
U
A−3x(q)2∥q∥−4

Kor dq ≲ A−3

ˆ A

r
κ2κ−4κ2 dκ ≤ A−2,

where we use Lemma 5.3 to change variables from q to κ.
This holds for any r, so |HP,γ−γ◦πp(0)| ≲ A−2. The lemma then follows

from (80). □

Furthermore, we can write HP,γ◦πp(p) as a one-dimensional singular inte-
gral.
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Lemma 9.2. With notation as above, for z ̸= 0 and a ∈ R, let

(83) L(z) = La(z) :=

ˆ ∞

−∞
YLK̂((X + aY )xZz) dx.

For p ∈ Γα and a = ∇αα(p),

(84) HP,γ◦πp(p) = lim
r→0

ˆ
R\(−r,r)

(γ(pZz)− γ(0))La(z) dz.

Proof. After a left translation, we may suppose that p = 0. LetW = X+aY

so that P = ⟨W,Z⟩. Since YLK̂ is (−4)–homogeneous, the integral in (83)
converges absolutely. Note that for any z ∈ R and any t > 0,

(85) L(t2z) =

ˆ ∞

−∞
YLK̂(WwZt

2z) dw =

ˆ ∞

−∞
tYLK̂(W twZt

2z) dw

=

ˆ ∞

−∞
t−3YLK̂(WwZz) dw = t−3L(z).

We first write both sides of (84) in terms of integrals over subsets of P .
On one hand, for r > 0, let

Ir :=

ˆ
R\(−r2,r2)

(γ(Zz)− γ(0))L(z) dz.

By (85), since γ is bounded, this integral converges absolutely. The right
side of (84) is equal to limr→0 Ir. For q = WwZz ∈ P , we have πp(q) =

Zz = Zz(q), and we define γ0 : P → R,

γ0(q) = γ(πp(q))− γ(0) = γ(Zz(q))− γ(0).

Then by Fubini’s Theorem,

Ir =

ˆ
R\(−r2,r2)

γ0(Z
z)

ˆ ∞

−∞
YLK̂(WwZz) dw dz =

ˆ
Er

γ0(q)YLK̂(q) dq,

where Er = {WwZz ∈ P | |z| ≥ r2}.
On the other hand, let

Jr :=

ˆ
V0\B(0,r)

(γ(πp(q))− γ(0))YLK̂(ΠP (q)) dq

=

ˆ
V0\B(0,r)

γ0(ΠP (q))YLK̂(ΠP (q)) dq =

ˆ
ΠP (V0\B(0,r))

γ0(q)YLK̂(q) dq.

This integral likewise converges absolutely, and limr→0 Jr is equal to the left
side of (84). Let Fr = ΠP (V0 \B(0, r)) ⊂ P .

Since | slopeP | ≤ 1, we have ∥v∥Kor ≈ ∥ΠP (v)∥Kor for all v ∈ V0. In
particular, if v ∈ V0 ∩ B(0, r), then ∥ΠP (v)∥Kor ≤ 2∥v∥Kor ≤ 2r and
|z(ΠP (v))| ≤ r2. Therefore, Er ⊂ Fr. We thus consider the difference

Jr − Ir =

ˆ
Fr\Er

γ0(q)YLK̂(q) dq.
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For 0 < s < S, let As,S = V0 ∩ (B(0, S) \B(0, s)), and for i ≥ 0, let

Di = ΠP (A2ir,2i+1r) \ Er,

so that up to a measure-zero set, Fr \ Er =
⋃∞
i=0Di. For q ∈ Di, we have

|z(q)| ≤ r2, |x(q)| ≤ 2i+1r, and |YLK̂(q)| ≲ (2ir)−4. Furthermore, by the
Mean Value Theorem

|γ0(q)| = |γ(Zz(q))− γ(0)| ≤ ∥∂zγ∥∞r2 ≲ r2.

Therefore,

|Jr − Ir| ≲
∞∑
i=0

µ(Di) · r2 · (2ir)−4 ≲
∞∑
i=0

2ir5(2ir)−4 =

∞∑
i=0

2−3ir ≤ 2r.

It follows that limr→0 Jr = limr→0 Ir, which implies (84). □

For g : R → R, we write

pv.

ˆ
R
g(t) dt = lim

r→0

ˆ
R\(−r,r)

g(t) dt,

as long as the limit on the right exists.
For the rest of this section, we restrict to the special case that K is the

Riesz kernel

K(x, y, z) :=

(
2x(x2 + y2)− 8yz

((x2 + y2)2 + 16z2)3/2
,

2y(x2 + y2) + 8xz

((x2 + y2)2 + 16z2)3/2

)
= r−6

(
2x(x2 + y2)− 8yz, 2y(x2 + y2) + 8xz

)
,

where r = ∥(x, y, z)∥Kor. One can calculate that

YLK̂(XxZz) = r−10
(
64z3 − 20x4z, 80x2z2 − x6

)
.

Integrating this using Mathematica, we find that

L0(1) =

ˆ ∞

−∞

(
64− 20x4, 80x2 − x6

)
(x4 + 16)

5
2

dx =

(
0,

Γ(34)Γ(
7
4)

3
√
π

)
≈ (0, 0.212 . . . ),

where Γ is the Euler gamma function. By the symmetry of K̂, we have

L0(1) = L0(−1). Let ξ = y(L0(1)). By (85), L0(z) = (0, |z|−
3
2 ξ) for all

z ≥ 0.
A similar calculation shows

XLK̂(XxZz) = r−10
(
48x2z2 − 3x6, 20x4z − 64z3

)
M0(±1) :=

ˆ ∞

−∞
XLK̂(XxZ±1) dx

=

ˆ ∞

−∞

(
48x2 − 3x6,±(20x4 − 64)

)
(x4 + 16)

5
2

dx = (0, 0).
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These calculations imply that for any left-invariant horizontal vector field
F = aXL + bYL and any z ̸= 0, the integralˆ ∞

−∞
FK̂(XxZz) dx = aM0(z) + bL0(z)

is normal to V0 and is zero only if F is a multiple of X. The orthogonal
symmetry of K implies thatˆ ∞

−∞
FK̂(WwZz) dw

is likewise normal to P and is zero only if F is a multiple ofW . In particular,

La(z) = |z|−
3
2La(1) is nonzero and normal to X + aY .

We use this formula to prove a lower bound for G′
fi,νi

(0). Let κ : V0 → R
be as in Section 3. That is, κ is a bump function supported on U = [0, 1]×
{0} × [0, 1]. Let m > 0 be such that κ(x, 0, z) ≥ m whenever x, z ∈ [14 ,

3
4 ].

Recall that ri = A−1ρ−i and that we defined a set of pseudoquads Qi =
{Qi,1, . . . , Qi,ki} that partition U , parametrizations Ri,j : [0, Ari]× [0, r2i ] →
Qi,j , bump functions κi,j

κi,j(Ri,j(s, t)) = A−1riκ(A
−1r−1

i s, r−2
i t),

and a set Ji ⊂ {1, . . . , ki} such that νi =
∑

j∈Ji κi,j .
By Lemma 3.7, there are functions gi,j such that

(86) Ri,j(s, t) = Ri,j(0, 0) + (s, gi,j(s, t)),

where ∂tgi,j(s, t) ∈ [34 ,
4
3 ] for all s and t.

As in Section 3.1, we can rescale fi and νi by a factor of r−1
i to get

functions α and γ that satisfy Lemma 3.12. By Lemmas 9.1 and 9.2 and
the scale invariance of the Riesz transform, for any p ∈ Γfi ,

(87) G′
fi,νi

(0)(p) = pv.

ˆ
R
(νi(pZ

z)− νi(p))La(z) dz +O(A−2)

= La(1) · pv.
ˆ
R
(νi(pZ

z)− νi(p))|z|−
3
2 dz +O(A−2),

where a = ∇fifi(p).
This lets us prove the following bound.

Lemma 9.3. Suppose that j ∈ Ji and s ∈ [14Ari,
3
4Ari] and let p = Ri,j(s, 0).

There is a c > 0 such that if A is sufficiently large, then |G′
fi,νi

(0)(p)| ≥
cA−1.

Proof. Since j ∈ Ji, we have

νi(Ri,j(s, t)) = κi,j(Ri,j(s, t)) = A−1riκ(A
−1r−1

i s, r−2
i t)

for all t. In particular, νi(p) = 0. Since νi is nonnegative,

pv.

ˆ
R
(νi(pZ

z)− νi(p))|z|−
3
2 dz =

ˆ
R
νi(pZ

z)|z|−
3
2 dz ≥ 0.
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Let z0 = z(p) = gi,j(s, 0). Then for t ∈ [0, r2i ], we have Ri,j(s, t) =

pZgi,j(s,t)−z0 . We thus substitute z = gi,j(s, t)− z0. Since ∂zgi,j ∈ [34 ,
4
3 ], we

have dz ≈ dt and z ≈ t, so

ˆ
R
νi(pZ

z)|z|−
3
2 dz ≥

ˆ gi,j(s,r
2
i )−z0

0
νi(pZ

z)|z|−
3
2 dz

≈
ˆ r2i

0
νi(Ri,j(s, t))|t|−

3
2 dt ≈

ˆ r2i

0
A−1riκ(A

−1r−1
i s, r2i t)t

− 3
2 dt.

Let ŝ = A−1r−1
i s and note that ŝ ∈ [14 ,

3
4 ]. We substitute u = r2i t and use

the fact that κ(ŝ, u) ≥ m for all u ∈ [14 ,
3
4 ] to obtain

ˆ
R
νi(pZ

z)|z|−
3
2 dz ≳ A−1

ˆ 1

0
riκ(ŝ, u)(r

−2
i u)−

3
2 r−2
i du

≥ A−1

ˆ 3
4

1
4

mu−
3
2 du ≳

A−1

2
.

By (87), there is a c0 > 0 such that |G′
fi,νi

(0)(p)| ≳ c0A
−1|La(1)|+O(A−2).

Let c = c0
2 mina∈[−1,1] |La(1)|. When A is sufficiently large, |G′

fi,νi
(0)(p)| ≥

cA−1, as desired. □

Now we use Lemma 8.2 to prove part (4) of Lemma 6.3.

Proof of part (4) of Lemma 6.3. Recall that Si =
⋃
j ̸∈Ji Qi,j . By Proposi-

tion 3.1, there is an ϵ > 0 such that if i ≤ ϵA4, then |Si| ≤ 1
2 and thus

(88)
∑
j∈Ji

|Qi,j | = 1− |Si| ≥
1

2
.

Let c be as in Lemma 9.3, so that

|G′
fi,νi

(0)(Ri,j(s, 0))| ≥ cA−1

for all j ∈ Ji and s ∈ [14Ari,
3
4Ari]. Let t ∈ [0, r2i ], let p = Ri,j(s, 0), and let

q = Ri,j(s, t). Since ∂tgi,j(s, t) ∈ [34 ,
4
3 ] for all s and t, we have

dKor(p, q) ≈
√
gi,j(s, t)− gi,j(s, 0) ≈

√
t.

By Corollary 8.3, there is an a > 0 such that∣∣G′
fi,νi

(0)(p)−G′
fi,νi

(0)(q)
∣∣ ≲ (r−1

i

√
t)a + ρ−

1
2 .

We can thus choose ρ0, δ > 0 depending only on κ such that if ρ > ρ0 and
t ∈ [0, δr2i ], then

|G′
fi,νi

(0)(Ri,j(s, t))| ≥
c

2
A−1.
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Then

ˆ
Qi,j

|G′
fi,νi

(0)(q)| dq =
ˆ r2i

0

ˆ Ari

0
|G′

fi,νi
(0)(Ri,j(s, t))|∂zgi,j(s, t) ds dt

≳
ˆ δr2i

0

ˆ 3
4
Ari

1
4
Ari

|G′
fi,νi

(0)(Ri,j(s, t))| ds dt ≳ δA−1|Qi,j | ≳ A−1|Qi,j |.

By (88),ˆ
U
|G′

fi,νi
(0)(q)| dq ≳

∑
j∈Ji

ˆ
Qi,j

|G′
fi,νi

(0)(q)|dq ≳
∑
j∈Ji

A−1|Qi,j | ≥
1

2
A−1,

as desired. □

10. Quasi-orthogonality

In this section, we prove part (3) of Lemma 6.3, which claims that there
is an ϵ > 0 such that |⟨F ′

i (0), F
′
j(0)⟩| ≲ ρ−ϵ for all 0 ≤ i < j.

Recall that νi oscillates with wavelength roughly ri = A−1ρ−i, so we
expect that F ′

i (0) also oscillates with wavelength roughly ri. Since rj <
ρ−1ri, F

′
j(0) has higher frequency than F ′

i (0). We thus bound ⟨F ′
i (0), F

′
j(0)⟩

by partitioning Ψfj (U) ⊂ Γfj into sets of diameter on the order of rjρ
δ for

some small δ > 0. Let Q be such a set. Since j > i, Lemma 8.2 implies that
F ′
i (0) is nearly constant on Q. We claim that the average of F ′

j(0) on Q is

small and thus
´
Q F

′
i (0)(q)F

′
j(0)(q) dq is small.

We start by bounding the average of F ′
j(0) on rectangles (Section 10.1).

We will then bound the average of F ′
j(0) on pseudoquads (Section 10.2)

and complete the proof of Lemma 6.3.(3) by tiling U by pseudoquads (Sec-
tion 10.3).

10.1. Averaging over rectangles. We begin the proof of Lemma 6.3.(3)
by bounding the average of F ′

j(0) on rectangles of scale roughly riρ
ϵ.

Let P ⊂ H be a vertical plane of slope a and let W = X + aY so that
P = ⟨W,Z⟩. For v ∈ P and r > 0, we define

E(v, r;P ) := {vWwZz | |w| ≤ r, |z| ≤ r2}.

We call E(v, r;P ) a rectangle in P . In this section, we prove the following
lemma.

Lemma 10.1. There is an ϵ > 0 such that when ρ is sufficiently large,
the following property holds. Let fi, νi, and Σi = Γfi be as in Section 3.
Let i ≥ 0, let p0 ∈ Σi, and let P be the tangent plane to Σi at p0. Let
p ∈ P ∩B(p0, ρ

ϵri) and 2ri < R < ρϵri. Then

(89)
1

R3

∣∣∣∣∣
ˆ
E(p,R;P )

F ′
i (0)(q) dq

∣∣∣∣∣ ≲ ρ−ϵ +
log(Rr−1

i )

Rr−1
i

.
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After a rescaling and translation, it suffices to consider the case that α
and γ satisfy Lemma 3.12 and p0 = 0 ∈ Γα. Let P be the tangent plane to
Γα at p0 and W = X+∇αα(p0)Y . Let ϵ > 0 be as in Lemma 8.1. It suffices

to show that for p ∈ B(p0, ρ
ϵ
2 ;P ) and 2 < R < ρ

ϵ
2 ,

(90)
1

R3

∣∣∣∣∣
ˆ
E(p,R;P )

G′
α,γ(0)(q) dq

∣∣∣∣∣ ≲ ρ−ϵ +
log(R)

R
.

By Lemma 8.1, when ρ is sufficiently large,

(91)
1

R3

∣∣∣∣∣
ˆ
E(p,R;P )

G′
α,γ(0)(q) dq −

ˆ
E(p,R;P )

HP,γ(q) dq

∣∣∣∣∣ ≲ ρ−ϵ.

Then Lemma 10.1 is a consequence of the following bound.

Lemma 10.2. Let P and γ be as above. Let p ∈ P ∩ B(p0,
√
ρ) and let

2 < R <
√
ρ. Then

1

R3

∣∣∣∣∣
ˆ
E(p,R;P )

HP,γ(q) dq

∣∣∣∣∣ ≲ log(R)

R
.

We first reduce Lemma 10.2 to a question about a singular integral on
P × P . For r > 0, let

∆r = {(v, w) ∈ P × P | dKor(v, w) < r}
and for U ⊂ P × P , define

pv.

ˆ
U
M(v, w) d(v, w) := lim

r→0

ˆ
U\∆r

M(v, w) d(v, w).

Recall that for v ∈ P , we defined

HP,ϕ(v) = pv.(v)

ˆ
pV0

(ϕ(w)− ϕ(v))YLK̂(v−1ΠP (w)) dw.

Lemma 10.3. Let λ be a bounded smooth function which is constant on
cosets of ⟨Y ⟩. Let p ∈ H and let P be a vertical plane through p with finite
slope. Then

(92) HP,λ(p) = pv.(p)

ˆ
P
(λ(q)− λ(p))YLK̂(p−1q) dq

and
(93)̂

E(p,R;P )
HP,λ(q) dq = pv.

ˆ
E(p,R;P )×P

(λ(w)− λ(v))YLK̂(v−1w) d(v, w).

Proof. Without loss of generality, we suppose that p = 0. Let Dr := V0 ∩
B(0, r) andDP

r := P∩B(0, r), and let Ar,R := DR\Dr and A
P
r,R := DP

R\DP
r .

Let λ0(q) = λ(q)− λ(0) so that HP,λ(0) = lim r→0
R→∞

Lr,R, where

Lr,R :=

ˆ
DR\Dr

λ0(q)YLK̂(ΠP (q)) dq.
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Likewise, since λ is constant on cosets of ⟨Y ⟩, we can write the right side of
(92) as lim r→0

R→∞
Mr,R, where

Mr,R :=

ˆ
DPR\DPr

λ0(q)YLK̂(q) dq =

ˆ
Π(DPR)\Π(DPr )

λ0(q)YLK̂(ΠP (q)) dq.

Then

Lr,R −Mr,R =

ˆ
V0

(
1DPR

− 1DPr − 1Π(DPR) + 1Π(DPr )

)
(q)λ0(q)YLK̂(ΠP (q)) dq

=

ˆ
V0

(1DR − 1Π(DPR))(q)λ0(q)YLK̂(ΠP (q)) dq

−
ˆ
V0

(1Dr − 1Π(DPr ))(q)λ0(q)YLK̂(ΠP (q)) dq

=: IR − Ir.

Note that there is a c > 1 depending on the slope of P such that

supp(1Ds − 1Π(DPs )) ⊂ Ac−1s,cs

for all s > 0.
Since λ is bounded and YLK̂ is (−4)–homogeneous,

|IR| ≲ |Ac−1R,cR| · ∥λ∥∞(c−1R)−4 ≲λ,P R
−1,

so |IR| → 0 as R→ ∞.
Let θ(x, y, z) = (−x,−y, z) and let λe0(q) = 1

2(λ0(q) + λ0(θ(q))) be the
even part of λ0. Then 1Dr − 1Π(DPr ) is even, so

Ir =

ˆ
V0

(1Dr(q)− 1Π(DVr )(q))λ
e
0(q)YLK̂(ΠP (q)) dq.

Since λ0 is smooth and λ0(0) = 0, we have |λe0(q)| ≲λ ∥q∥2Kor when ∥q∥Kor

is sufficiently small, so when r is sufficiently small,

|Ir| ≲λ |Ac−1r,cr| · r2r−4 ≲λ,P r.

Therefore, |Lr,R −Mr,R| ≲λ,P r +R−1, which implies (92).

Now let E = E(p,R;P ). Since YLK̂ is (−4)–homogeneous and λ is
bounded, for any r > 0 and v ∈ P ,ˆ

vAPr,∞

(λ(w)− λ(v))YLK̂(v−1w) dw

converges absolutely. Furthermore, by the bounds above and Lemma 7.1,
there is a c > 0 depending only on λ and P such that for v ∈ E,∣∣∣∣∣HP,λ(v)−

ˆ
vAPr,∞

(λ(w)− λ(v))YLK̂(v−1w) dw

∣∣∣∣∣ ≲ cr.
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Therefore, using uniform convergence to exchange the integral and the limit,ˆ
E
HP,λ(q) dq =

ˆ
E
lim
r→0

ˆ
vAPr,∞

(λ(w)− λ(v))YLK̂(v−1w) dw dv

= lim
r→0

ˆ
E

ˆ
vAPr,∞

(λ(w)− λ(v))YLK̂(v−1w) dw dv

= pv.

ˆ
E×P

(λ(w)− λ(v))YLK̂(v−1w) d(v, w).

This proves (93). □

Now we prove Lemma 10.2.

Proof of Lemma 10.2. Let E = E(p,R;P ). By Lemma 10.3

ˆ
E
HP,γ(v) dv = pv.

ˆ
E×P\E

(γ(w)− γ(v))YLK̂(v−1w) d(v, w)

+ pv.

ˆ
E×E

(γ(w)− γ(v))YLK̂(v−1w) d(v, w) =: J1 + J2.

We claim that |J1| ≲ R2 logR and |J2| ≲ R2.
We first consider J1. First, we claim that |γ(u) − γ(v)| ≲ A−1dKor(u, v)

for all v ∈ E and u ∈ P . Let κ := dKor(u, v). On one hand, if κ ≥ 1, then

|γ(u)− γ(v)| ≲ ∥γ∥∞ ≲ A−1 ≤ A−1κ,

so we consider the case that κ ≤ 1. Then dKor(u, p0) ≤ dKor(u, v) +
dKor(v, p0) ≤ 2R. Let W = X + slope(P )Y and write u = vWwZz for
some |w| ≤ κ and |z| ≤ κ2. Since P is tangent to Γα at p0, Lemma 2.9 and
Lemma 3.12 imply that for all q ∈ P ∩B(p0, 2R),

dKor(q,Γα) ≲ ρ−1dKor(q, p0)
2 ≲ 1.

Lemma 8.4 implies that |Wγ(q)| ≲ A−1 and |Zγ(q)| ≲ A−1. By the Mean
Value Theorem, |γ(u)− γ(v)| ≲ (κ+ κ2)A−1 ≲ κA−1, as desired.

Now let v ∈ E and ϵ = dKor(v, ∂E); suppose ϵ > 0. Let

j1(v) =

ˆ
P\E

∣∣∣(γ(w)− γ(v))YLK̂(v−1w)
∣∣∣ dw.

Since YLK̂ is (−4)–homogeneous, by Lemma 5.3,

j1(v) ≲
ˆ
P\B(v,ϵ)

|γ(v)− γ(w)|dKor(v, w)
−4 dw

≲
ˆ
P\B(v,ϵ)

min{∥γ∥∞, A−1dKor(v, w)}dKor(v, w)
−4 dw

≲
ˆ ∞

ϵ
min{r−4, r−3} · r2 dr,
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so there is a C > 0 such that

j1(v) ≤

{
C| log ϵ|+ C 0 < ϵ < 1

Cϵ−1 ϵ ≥ 1.

For any ϵ0 > 0,∣∣{v ∈ E | dKor(v, ∂E) < ϵ0}
∣∣ ≲ min{R3, R2ϵ0},

so for any t > 0,

∣∣{v ∈ E | j1(v) > t}
∣∣ ≲


R3 0 ≤ t < C

R
C
t R

2 C
R ≤ t < C

R2 exp
(
C−t
C

)
C ≤ t.

Therefore,
ˆ
E
j1(v) dv ≲

C

R
R3 +

ˆ C

CR−1

C

t
R2 dt+

ˆ ∞

C
R2 exp

(
1− t

C

)
dt

≤ CR2 + CR2 logR+ CR2 ≲ R2 logR.

By Fubini’s Theorem and dominated convergence,

|J1| =

∣∣∣∣∣limr→0

ˆ
E

ˆ
P\(E∪B(v,r))

(γ(w)− γ(v))YLK̂(v−1w) d(v, w)

∣∣∣∣∣
≤
ˆ
E
j1(v) dv ≲ R2 logR.

Now we consider J2. We have

J2 = pv.

ˆ
E×E

(γ(w)− γ(v))YLK̂(v−1w) d(v, w)

= pv.

ˆ
E×E

γ(w)YLK̂(v−1w) d(v, w)− pv.

ˆ
E×E

γ(v)YLK̂(v−1w) d(v, w).

Exchanging v and w in the first term, we get

J2 = pv.

ˆ
E×E

γ(v)(YLK̂(w−1v)− YLK̂(v−1w)) d(v, w)

= pv.

ˆ
E×E

γ(v)M(v−1w) d(v, w),

where M(p) = YLK̂(p−1) − YLK̂(p). We use the following lemma to show
that M is vertically antisymmetric, i.e., M(WwZz) = −M(WwZ−z) for all
w, z ∈ R.

Lemma 10.4. Let N : H → R2 be an orthogonal kernel. For any horizon-
tal vector W , let WL be the corresponding left-invariant vector field. Let
θ(x, y, z) = (−x,−y, z) be the homomorphism that rotates H around the
z–axis by π. Then for any g ∈ H and any horizontal vector W ,

qW (g) :=WLN(g)−WLN(g−1)−WLN(θ(g)) +WLN(θ(g−1)) = 0.
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We defer the proof until after the proof of Lemma 10.2. Let h : H → H,

h(x, y, z) = (x, y,−z), so that h(q) = θ(q−1) for any q ∈ H. Then K̂ is an
orthogonal kernel, so for q =WwZz ∈ P ,

M(WwZz) +M(WwZ−z)

= YLK̂(q−1)− YLK̂(q) + YLK̂(θ(q))− YLK̂(θ(q−1)) = 0.

By Fubini’s theorem,

J2 = lim
r→0

ˆ
E×E\∆r

γ(v)M(v−1w) d(v, w)

= lim
r→0

ˆ
E
γ(v)

ˆ
E\B(v,r)

M(v−1w) dw dv

= lim
r→0

ˆ
E
γ(v)

ˆ
v−1E\B(0,r)

M(w) dw dv.

For S ⊂ P and r > 0, let kr(S) =
´
S\B(0,r)M(w) dw. Then

S = (S \ h(S)) ⊔ (S ∩ h(S)).
The symmetry of M implies that kr(S ∩ h(S)) = 0 and thus kr(S) = kr(S \
h(S)).

Let w0 ∈ (−R,R) and z0 ∈ [0, R2), so that v = Ww0Zz0 lies in the top
half of E. Let δ = R2 − z0 ∈ (0, R2). Then

v−1E = {WwZz : |w + w0| ≤ R, z ∈ (δ − 2R2, δ)}
and

v−1E \ h(v−1E) = {WwZz : |w + w0| ≤ R, z ∈ (δ − 2R2,−δ]}.
That is, v−1E \ h(v−1E) ⊂ AP

2
√
δ,∞. Therefore, for all r > 0, we can use

Lemma 5.3 and (−4)–homogeneity of M to show that

|kr(v−1E)| = |kr(v−1E \ h(v−1E)| ≤
ˆ
AP

2
√
δ,∞

|M(w)|dw

≲
ˆ ∞

2
√
δ
ρ−2 dρ ≲ δ−

1
2 .

More generally, letting δ(v) =
∣∣R2−|z(v)|

∣∣, we have |kr(v−1E)| ≲ δ(v)−
1
2

for all r > 0 and all v ∈ E. By dominated convergence,

|J2| =
∣∣∣∣limr→0

ˆ
E
γ(v)kr(v

−1E) dv

∣∣∣∣ ≲ ∥γ∥∞
ˆ
E
δ(v)−

1
2 dv

≲ 2R

ˆ R2

−R2

∣∣R2 − |z|
∣∣− 1

2 dz = 4R

ˆ R2

0
z−

1
2 dz = 8R2.

Therefore, ∣∣∣∣ˆ
E
HP,γ(v) dv

∣∣∣∣ ≤ |J1|+ |J2| ≲ R2 logR,
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as desired. □

We used Lemma 10.4 in the proof of Lemma 10.2, and we prove it now.

Proof of Lemma 10.4. We first consider the case that g = (x, 0, z) ∈ V0.
Any left-invariant horizontal field can be written as a linear combination of
XL and YL, so it suffices to consider W = X or W = Y .

Let I : H → H be an involutory linear isometry of H that fixes 0. Then
N(I(h)) = I(N(h)) for all h ∈ H, so by the chain rule,

WLN(I(g)) = I∗(WL)[N ◦ I](g) = I∗(WL)[I ◦N ](g) = I(I∗(WL)N(g)).

Let ϕ(x, y, z) = (x,−y,−z) and ψ(x, y, z) = (−x, y,−z) so that

qW (g) =WLN(g)−WLN(ψ(g))−WLN(θ(g)) +WLN(ϕ(g)).

Let XLN(g) = (a, b). Since ϕ, ψ, and θ are involutory isometries of H,

qX(g) = XLNg)− ψ(ψ∗(XL)N(g))− θ(θ∗(XL)N(g)) + ϕ(ϕ∗(XL)N(g))

= XLN(g) + ψ(XLN(g)) + θ(XLN(g)) + ϕ(XLN(g))

= (a, b) + (−a, b) + (−a,−b) + (a,−b) = 0.

Let YLN(g) = (c, d). Then

qY (g) = YLN(g)− ψ(ψ∗(YL)N(g))− θ(θ∗(YL)N(g)) + ϕ(ϕ∗(YL)N(g))

= YLN(g)− ψ(YLN(g)) + θ(YLN(g))− ϕ(YLN(g))

= (c, d)− (−c, d) + (−c,−d)− (c,−d) = 0.

Thus the lemma holds for g ∈ V0.
Let g ∈ V0 and let R : H → H be a rotation around the z–axis. Let

W ′ = R(W ) so that R∗(WL) = W ′
L. Then, as above, WLN(R(g)) =

R(R∗(WL)N(g)), and since R commutes with θ,

qW (R(g)) =WLN(R(g))−WLN(R(g−1))

−WLN(R(θ(g))) +WLN(R(θ(g−1)))

= R
(
W ′

LN(g)−W ′
LN(g−1)−W ′

LN(θ(g)) +W ′
LN(θ(g−1))

)
= R(qW ′(g)) = 0.

Any point in H can be written as R(g) for some rotation R and some g ∈ V0,
so qW (h) = 0 for all h ∈ H. □

10.2. Averaging over pseudoquads. In the previous section, we bounded
the average of F ′

i (0) on rectangles of the form E(p, r;P ), where P is tangent
to Σi at p0 and dKor(p0, p) ≤ riρ

ϵ. The projections of these rectangles do
not tile V0, because P depends on p0, so in this section, we will bound the
average of F ′

i (0) on pseudoquads for Σi.
We will need the following bound on the size of a pseudoquad of given

height and width.
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Lemma 10.5. Let ψ be a λ–intrinsic Lipschitz function for some λ ∈ (0, 1).
Let δx, δz ≥ 0 and let g1, g2 ∈ C1(R) be functions such that for all x, g1(x) ≤
g2(x), g

′
i(x) = −ψ(x, 0, gi(x)), and δz = g2(0)− g1(0). Then for any x ∈ R,

|g1(x)− g2(x)| ≲λ δz + x2.

Let
Q = {(x, 0, z) | x ∈ [0, δx], z ∈ [g1(x), g2(x)]}.

Then
diamΨψ(Q) ≲λ δx +

√
δz

and
|Q| ≲λ δxδz + δ3x.

Proof. By (11), since ψ is λ–intrinsic Lipschitz, the gi satisfy

(94) |g′i(x)− g′i(x
′)| = |ψ(x, 0, gi(x))− ψ(x′, 0, gi(x

′))|
≤ ∥∇ψψ∥∞|x− x′| ≤ L|x− x′|,

for all x, x′ ∈ R, where L = λ(1− λ2)−
1
2 . By Lemma 2.6,

(95)

|ψ(0, 0, z1)−ψ(0, 0, z2)| ≤
2

1− λ
dKor((0, 0, z1), (0, 0, z2)) =

4

1− λ

√
|z2 − z1|.

Then |g′1(0)− g′2(0)| = |ψ(0, 0, g1(0))− ψ(0, 0, g2(0))| ≤ 4
1−λ

√
δz, and

|g′1(x)− g′2(x)| ≤
4

1− λ

√
δz + 2L|x|

for all x. Integrating this inequality and using the definition of δz, we find

|g1(x)− g2(x)| ≤ δz +
4

1− λ
|x|
√
δz + Lx2 ≲λ δz + x2.

In particular,

|Q| =
ˆ δx

0
|g2(x)− g1(x)|dx ≤ δx ·

(
δz +

4

1− λ
δx
√
δz + Lδ2x

)
≲λ δxδz + δ3x.

Finally, let
E = {Ψψ(0, 0, z) | z ∈ [g1(0), g2(0)]}

be the left edge of Ψψ(Q). By (95), diam(E) ≲
√
δz. Every point p ∈ Ψψ(Q)

lies on a horizontal curve in Ψψ(Q) that intersects E, and we can parametrize
this curve as γ = (γx, γy, γz) : [0, δx] → Q where x(γ(t)) = t. By (94),
|γ′y(t)| ≤ L, so

ℓ(γ) =

ˆ δx

0

√
1 + γ′y(t)

2 dt ≤ δx
√

1 + L2,

and
dKor(Ψψ(0, 0, g1(0)), p) ≤ diamE + ℓ(γ) ≲λ

√
δz + δx,

as desired. □

Now we bound the integral of F ′
i (0) on a pseudoquad.
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Lemma 10.6. Let ri = A−1ρ−i and let fi, νi, and Σi = Γfi be as in
Section 3. There is a δ > 0 such that if ρ is sufficiently large, then for any
pseudoquad Q for Σi with δx(Q) ≤ riρ

δ and δz(Q) ≤ r2i ρ
2δ, we have∣∣∣∣ˆ

Q
F ′
i (0)(q) dq

∣∣∣∣ ≲ r3i ρ
3δ− δ

3 .

Proof. Let ϵ > 0 be as in Lemma 10.1 and let δ = ϵ
2 . After a left-translation,

we may suppose that fi(0) = 0 and that the lower left corner of Ψfi(Q) is
0. That is,

Q = {(x, 0, z) | x ∈ [0, δx(Q)], z ∈ [g1(x), g2(x)]}
where g1, g2 : [0, δx(Q)] → R are functions with characteristic graphs such
that g1(0) = 0, g2(0) = δz(Q). By Lemma 10.5, |g2(x) − g1(x)| ≲ r2i ρ

2δ for
all x ∈ [0, δx(Q)], diam(Ψfi(Q)) ≲ riρ

δ, and |Q| ≲ r3i ρ
3δ. In particular, for

any q ∈ Q, the intrinsic Lipschitz condition implies

(96) |fi(q)| ≲ |fi(0)|+ diam(Q) ≲ riρ
δ.

Let P be the tangent plane to Σi at 0, and let σ = ∇fifi(0) be the slope
of P . Note that |σ| ≤ 1. Let W = X + σY so that P = ⟨W,Z⟩. We will
cover ΠP (Q) by rectangles. Recall that

ΠP (x, 0, z) = (x, 0, z) · Y σx =
(
x, σx, z +

σ

2
x2
)
=W xZz+

σ
2
x2 .

Let ḡj(x) = gj(x) +
σ
2x

2, so that

ΠP (X
xZgj(x)) = XxZgj(x)Y σx =W xZ ḡj(x)

and
ΠP (Q) = {WwZz | w ∈ [0, δx(Q)], z ∈ [ḡ1(w), ḡ2(w)]} .

Note that dKor(q,ΠP (q)) ≤ |x(q)|, so diam(ΠP (Q)) ≲ diam(Q) ≲ riρ
δ.

Since gj has a characteristic graph, it satisfies

g′j(x) = −fi(x, 0, gj(x)) = −fi(XxZgj(x));

it follows that ḡj satisfies

(97) ḡ′j(x) = −fi(XxZgj(x)) + σx = σx− fi(W
xZ ḡj(x)).

In particular, for x ∈ [0, δx(Q)],

(98) |ḡ′j(x)| ≤ |σ|δx +
∣∣∣fi(W xZ ḡ

′
j(x))

∣∣∣ ≲ riρ
δ.

Let R = riρ
δ
2 and let

D = {WwZz | w ∈ [0, 2R], z ∈ [0, 2R2]}
This is a translate of E(0, R;P ). Let

T = {W 2jRZ2kR2
D | j, k ∈ Z}

be a tiling of P by translates of D, let

S0 = {E ∈ T | intE ⊂ ΠP (Q)},
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and let

S1 = {E ∈ T | intE ∩ ∂ΠP (Q) ̸= ∅}.
The rectangles in S0 and S1 cover ΠP (Q), and

(99)

∣∣∣∣ˆ
Q
F ′
i (0)(q) dq

∣∣∣∣ ≤ ∑
E∈S0

∣∣∣∣ˆ
E
F ′
i (0)(q) dq

∣∣∣∣+ ∑
E∈S1

ˆ
E
|F ′
i (0)(q)|dq.

Since each rectangle in S0 has measure 4R3, we have 4R3 ·#S0 ≤ |Q| ≲
r3i ρ

3δ. When ρ is sufficiently large, we have E ⊂ B(0, riρ
ϵ) for every E ∈

S0 ∪ S1, so Lemma 10.1 implies that∣∣∣∣ˆ
E
F ′
i (0)(q) dq

∣∣∣∣ ≲ R3ρ−ϵ +R3 log(Rr
−1
i )

Rr−1
i

= R3ρ−ϵ +R3 log ρ
δ
2

ρ
δ
2

≲ R3ρ−
δ
3

for any E ∈ S0. Then

(100)
∑
E∈S0

∣∣∣∣ˆ
E
F ′
i (0)(q) dq

∣∣∣∣ ≲ #S0 ·R3ρ−
δ
3 ≲ r3i ρ

3δ− δ
3 .

Now we consider the S1 term. We first bound the number of elements of
S1. If E ∈ S1, then E intersects one of the edges of ΠP (Q). Let S lr

1 ⊂ S1 be
the set of rectangles that intersect the left or right edge and let Stb

1 ⊂ S1 be
the set that intersect the top or bottom edge.

By Lemma 10.5, there is a C > 1 such that the left and right edges of
ΠP (Q) are vertical segments of height at most Cr2i ρ

2δ. Since each E ∈ T is
a rectangle of height 2R2,

#S lr
1 ≤ Cr2i ρ

2δ

R2
+ 2 ≲ Cρδ.

The top and bottom edges of ΠP (Q) are the curves

γj = {WwZ ḡj(w) | w ∈ [0, δx(Q)]}.

We can partition T into strips of rectangles with the same x–coordinates,
i.e.

Tk = {E ∈ T | x(E) = [2kR, 2(k + 1)R]}.

Then for each 0 ≤ k ≤ δx(Q)
2R ,

|{E ∈ Tk | E ∩ γj ̸= ∅}| ≤ 1

2R2

ˆ 2(k+1)R

2kR
|ḡ′j(x)|dx+ 2

(98)

≲
1

R
riρ

δ + 2 ≤ ρ
δ
2

and

#Stb
1 ≲

δx(Q)

R
ρ
δ
2 ≤ ρδ.

Therefore, #S1 ≲ ρδ. By part (1) of Lemma 6.3, ∥F ′
i (0)∥∞ ≲ A−1, so

(101)
∑
E∈S1

ˆ
E
|F ′
i (0)(q)|dq ≲ ρδR3A−1 ≤ r3i ρ

5
2
δ.
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By (99), (100), and (101),∣∣∣∣ˆ
Q
F ′
i (0)(q) dq

∣∣∣∣ ≲ r3i ρ
3δ− δ

3 + r3i ρ
3δ− δ

2 ≲ r3i ρ
3δ− δ

3 ,

as desired. □

10.3. Proof of Lemma 6.3.(3). Let 0 ≤ i < j ≤ N . Let δ > 0 be as in
Lemma 10.6; note that we can take δ < 1

2 . Let ϵ > 0 be as in Lemma 8.2;
we take ϵ < 1. We claim that

|⟨F ′
i (0), F

′
j(0)⟩| ≲ ρ−min{ ϵ

4
, δ
3
}.

Recall that fj is supported on the unit square U = [0, 1]×{0}× [0, 1], so
that the top and bottom boundaries of U are characteristic curves of Σj .

Let w ∈ [12rjρ
δ, rjρ

δ] and h ∈ [12r
2
jρ

2δ, r2jρ
2δ] be such that Nx := w−1

and Nz := h−1 are integers. For m = 0, . . . , Nx and k = 0, . . . , Nz, let
vm,k = (mw, 0, kh) ∈ V0 and let gm,k : [mw, (m+ 1)w] → R be the function
such that the graph z = gm,k(x) is a segment of the characteristic curve of
Σj through vm,k. For m = 0, . . . , Nx − 1 and k = 0, . . . , Nz − 1, let Qm,k be
the pseudoquad

Qm,k := {(x, 0, z) | x ∈ [mw, (m+ 1)w], z ∈ [gm,k(x), gm,k+1(x)]};
this is the pseudoquad of Σj with lower-left corner vm,k, δx(Qm,k) = w, and
δz(Qm,k) = h. The pseudoquads Qm,k then have disjoint interiors and cover
U .

By Lemma 10.6, for every m and k,

(102)

∣∣∣∣∣
ˆ
Qm,k

F ′
j(0)(q) dq

∣∣∣∣∣ ≲ r3jρ
3δ− δ

3 .

Suppose that p, q ∈ Qm,k. We claim that Ψfi(p) is close to Ψfi(q) and
thus |F ′

i (0)(p) − F ′
i (0)(q)| is small. Let pn = Ψfn(p) and qn = Ψfn(q). By

Lemma 10.5,
dKor(pj , qj) ≤ diamΨfj (Qm,k) ≲ rjρ

δ.

Since i < j,

∥fj − fi∥∞ ≤
j−1∑
n=i

∥νn∥∞ ≲
j−1∑
n=i

A−1rn ≲ ri.

Let a = fi(p)− fj(p) and let b = x(q)− x(p). Then pi = pjY
a, and

dKor(pi, qi⟨Y ⟩) ≤ dKor(pi, qjY
a) = ∥Y −ap−1

j qjY
a∥Kor

= ∥p−1
j qjZ

ab∥Kor ≲ dKor(pj , qj) +
√
ab ≲ rjρ

δ +
√
rirjρδ.

Since j > i, we have rj ≤ ρ−1ri, so

dKor(pi, qi⟨Y ⟩) ≲ riρ
−1+δ + riρ

−1+δ
2 ≲ riρ

− 1
4 .

Let m = dKor(pi, qi⟨Y ⟩) and let c ∈ qi⟨Y ⟩ satisfy dKor(pi, c) = m. Note
that pi = Ψfi(pi) and so y(pi) = fi(pi). As the y function is 1-Lipschitz we
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get that |fi(pi)−y(c)| ≲ m. By Lemma 2.6, |fi(pi)−fi(qi)| ≲ dKor(pi, qi⟨Y ⟩).
Thus,

dKor(pi, qi) ≤ dKor(pi, c) + |y(c)− fi(pi)|+ |fi(pi)− fi(qi)| ≲ m ≲ riρ
− 1

4 .

Therefore, by Corollary 8.3,

(103) |F ′
i (0)(p)− F ′

i (0)(q)| = |F ′
i (0)(pi)− F ′

i (0)(qi)| ≲ ρ−
ϵ
4 .

Then∣∣∣∣∣
ˆ
U
F ′
i (0)(q)F

′
j(0)(q) dq

∣∣∣∣∣ ≤∑
m,k

∣∣∣∣∣
ˆ
Qm,k

F ′
i (0)(q)F

′
j(0)(q) dq

∣∣∣∣∣
≤
∑
m,k

∣∣∣∣∣
ˆ
Qm,k

F ′
j(0)(q)

[(
F ′
i (0)(q)− F ′

i (0)(vm,k)
)
+ F ′

i (0)(vm,k)
]
dq

∣∣∣∣∣
≤
∑
m,k

ˆ
Qm,k

∣∣F ′
i (0)(q)− F ′

i (0)(vm,k)
∣∣ |F ′

j(0)(q)| dq

+
∑
m,k

|F ′
i (0)(vm,k)|

∣∣∣∣∣
ˆ
Qm,k

F ′
j(0)(q) dq

∣∣∣∣∣ ,
where the sums are all taken over 0 ≤ m < Nx and 0 ≤ k < Nz. Part (1) of
Lemma 6.3 implies that ∥F ′

n(0)∥∞ ≲ A−1 ≲ 1, so by (103),∑
m,k

ˆ
Qm,k

∣∣F ′
i (0)(q)− F ′

i (0)(vm,k)
∣∣ |F ′

j(0)(q)| dq ≲ |U |ρ−
ϵ
4 ∥F ′

j(0)∥∞ ≲ ρ−
ϵ
4 .

Likewise, by (102),∑
m,k

|F ′
i (0)(vm,k)|

∣∣∣∣∣
ˆ
Qm,k

F ′
j(0)(q) dq

∣∣∣∣∣ ≲ NxNzr
3
jρ

3δ− δ
3 ≲ ρ−

δ
3 .

Therefore, ∣∣⟨F ′
i (0), F

′
j(0)⟩

∣∣ ≲ ρ−
δ
3 + ρ−

ϵ
4 ,

as desired.

11. Second derivative bounds

In this section, we will prove the following lemma.

Lemma 11.1. For any A > 1 and any C > 0, if ρ is sufficiently large,
then the following bounds hold. Let α, γ : H → R be functions that satisfy
Lemma 3.12. Then ∥∥G′′

α,γ(t)
∥∥
∞ ≲C A

−3

for all t ∈ [0, 1].
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We first set some notation that we will use in the rest of this section.
Similarly to Section 7, given functions α and γ that satisfy Lemma 3.12, for
τ ∈ R, we define

aτ (w) := (α+ τγ)(Y (α+τγ)(0)w)− (α+ τγ)(0)

(as in (50)) and

bτ (w) := γ(Y (α+τγ)(0)w).

By Lemma 2.2, these are translates of α and γ in the sense that aτ (0) = 0,

Γaτ = Y −(α+τγ)(0)Γα+τγ ,

and

Γaτ+tbτ = Y −(α+τγ)(0)Γα+(τ+t)γ .

By the left-invariance of the Riesz transform, for any τ, t ∈ R,
(104)

Gα,γ(τ + t)(0) = Gaτ ,bτ (t)(0) = Faτ+t(0) = pv.(0)

ˆ
V0

K̂(Ψaτ+t(v)) dv.

We will use (104) to decompose Gα,γ(τ)(0) and differentiate the decom-
position. We fix some τ ∈ [0, 1] and abbreviate a = aτ and b = bτ . For

w ∈ H, let w = Ψa(w) and wt = Y tb(0)wY −tb(0) = wZ−b(0)x(w). Then

(105) Ψaτ+t(w) = Y −tb(0)Ψa+tb(wt) = Y −tb(0)wtY
tb(wt).

For 0 < r < R, let Dr = B(0, r) ∩ V0 and Ar,R = DR \ Dr. Then we can
decompose Gα,γ(τ + t)(0) = Ga,b(t)(0) as follows:

Ga,b(t)(0) = pv.

ˆ
D1

K̂(Ψaτ+t(v)) dv + pv.

ˆ
V0\D1

K̂(Ψaτ+t(v)) dv

= pv.

ˆ
D1

K̂(Ψaτ+t(v)) dv + pv.

ˆ
V0\D1

K̂(Y −tb(0)wtY
tb(wt)) dw

= pv.

ˆ
D1

K̂(Ψaτ+t(v)) dv + lim
R→∞

ˆ
At1,R

K̂(Y −tb(0)wY tb(w)) dw

=: Gsm
τ (t) +Glg

τ (t),

where all principal values are taken around 0 and

At1,R := Y tb(0)A1,RY
−tb(0).

For 0 < r < 1 < R, let

Gsm
τ,r(t) :=

ˆ
Ar,1

K̂(Ψaτ+t(v)) dv

Glg
τ,R(t) :=

ˆ
At1,R

K̂(Y −tb(0)wY tb(w)) dw.

We will show the following bounds.
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Lemma 11.2. For any τ ∈ [0, 1] and any 1 ≤ R < R′,

(106)
∣∣∣(Glg

τ,R′)
′′(0)− (Glg

τ,R)
′′(0)

∣∣∣ ≲ A−3R−1.

Lemma 11.3. For any τ ∈ [0, 1] and any 0 < r′ < r ≤ 1∣∣(Gsm
τ,r)

′′(0)− (Gsm
τ,r′)

′′(0)
∣∣ ≲ A−3r.

Proof of Lemma 11.1. These lemmas show that the functions τ 7→ (Gsm
τ,r)

′′(0)

and τ 7→ (Glg
τ,R)

′′(0) are uniformly Cauchy on the interval τ ∈ [0, 1] as r → 0
and R→ ∞. Let

f sm(τ) = lim
r→0

(Gsm
τ,r)

′′(0) f lg(τ) = lim
R→∞

(Glg
τ,R)

′′(0).

Then (Gsm
τ )′′(0) = f sm(τ) and (Glg

τ )′′(0) = f lg(τ). Moreover, as (Gsm
τ,1)

′′(0) =

0 = (Glg
τ,1)

′′(0) for all τ ,

|(Gsm
τ )′′(0)| = lim

r→0
|(Gsm

τ,r)
′′(0)− (Gsm

τ,1)
′′(0)| ≲ A−3,

|(Glg
τ )

′′(0)| = lim
R→∞

|(Glg
τ,R)

′′(0)− (Glg
τ,1)

′′(0)| ≲ A−3.

Thus ∣∣G′′
a,b(τ)(0)

∣∣ = ∣∣∣(Glg
τ )

′′(0) + (Gsm
τ )′′(0)

∣∣∣ ≲ A−3,

as desired. □

Before we prove Lemmas 11.2 and 11.3, we will need some lemmas.
The first proves bounds on the derivatives of a and b which follow from
Lemma 3.12.

Lemma 11.4. There is a c > 0 such that for any k ≤ 3 and any word
F ∈ {∇a, Z}k

(107) ∥Fb∥∞ ≤ cA−#∇a(F )−1,

If F /∈ {id,∇α}, then

(108) ∥Fa∥∞ ≤ cA−#∇a(F )−1.

Proof. Let m = α(0) + τγ(0) and let λ : H → H, λ(p) = Y mp. Then
∇a = λ∗(∇α+τγ), and by the Chain Rule, if F ∈ {∇a, Z}k, then

Fa(p) = F ′[α+ τγ −m](λ(p)),

where F ′ is obtained from F by replacing ∇a by ∇α+τγ .

Let ∇̂ = A∇α+τγ . It suffices to prove that for any k ≤ 3 and any E ∈
{∇̂, Z}k,

∥Eγ∥∞ ≤ cA−1

and that if E /∈ {id, ∇̂},
∥Eα∥∞ ≤ cA−1.
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Let g = −Aτγ and ∇ = A∇α so that ∇̂ = ∇+ gZ. Suppose by induction
that for any k ≤ d, we can write any E ∈ {∇̂, Z}k as

(109) E =
∑
i

Di,1[g] . . . Di,ki [g] · Ci

where Ci, Di,j ∈ {∇, Z}∗ and ℓ(Ci) +
∑

j ℓ(Di,j) = k. We call the Ci’s the

monomials of E. For instance, Z is trivially of the form (109), we can write

∇̂ = ∇+ gZ, and

∇̂2 = ∇2 +∇g · Z + g · ∇Z + g · Z∇+ g · Zg · Z + g2 · Z2.

By the product rule, if E can be written in this form, then so can ZE and
∇̂E, and each monomial of ZE or ∇̂E is a monomial of E or a monomial
of E with one additional letter.

If E ̸∈ {id, ∇̂}, then E ends in either Z, ∇̂2, or Z∇̂. Since id and ∇ are

not monomials of Z, ∇̂2, or Z∇̂, they cannot be monomials of E.
By Lemma 3.12, if k ≤ 3 and C ∈ {∇, Z}k, then ∥Cγ∥∞ ≲ A−1, and if

C ̸∈ {id,∇}, then ∥Cα∥∞ ≲ A−1. If E ∈ {∇̂, Z}k is as in (109), then

∥Eγ∥∞ ≲
∑
i

∥Di,1[Aγ]∥∞ · · · ∥Di,ki [Aγ]∥∞∥Ciγ∥∞ ≲ A−1.

Moreover, if E ̸∈ {id, ∇̂}, then C ̸∈ {id,∇} for all i, so

∥Eα∥∞ ≲
∑
i

∥Di,1[Aγ]∥∞ · · · ∥Di,ki [Aγ]∥∞∥Ciα∥∞ ≲ A−1

as well. □

As a consequence, Za, b, and Zb are close to even. Recall that for a
function f : H → R, we define the even and odd parts of f by

f e(v) =
f(v) + f(θ(v))

2
fo(v) =

f(v)− f(θ(v))

2

so that f = f e + fo. Furthermore, if g : H → R, then

(fg)e = [(f e + fo)(ge + go)]e = f ege + fogo(110)

(fg)o = f ego + foge.

Lemma 11.5. Let a be as above and let m : H → R be a smooth function
that is constant on cosets of ⟨Y ⟩. Let v ∈ B(0,

√
ρ). Then

|m(v)−m(θ(v))| ≲ ∥v∥Kor∥∇am∥∞ +A−1∥v∥Kor∥Zm∥∞.

If ρ > A2 and m = Za, m = b, or m = Zb, then for any v ∈ H, we have
|me(v)| ≤ A−1 and

|mo(v)| = 1

2
|m(v)−m(θ(v))| ≲ A−2∥v∥Kor.
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Proof. Let p = Ψα(0) and let σ = ∇αα(0). Let W = X + σY and P =
⟨W,Z⟩. We first bound the distance from Γa to P . By Lemma 2.9 and
Lemma 3.12, for q ∈ H,

|α(q)− α(0)− σx(q)| ≲ A−1ρ−1dKor(p, q)
2.

Let u ∈ B(0, 3
√
ρ) and let u′ = Y (α+τγ)(0)u. Then

dKor(p, u
′) = dKor(Y

α(0), Y (α+τγ)(0)u) ≤ |τγ(0)|+∥u∥Kor ≲ A−1+
√
ρ ≲

√
ρ.

We have

a(u) = α(u′)− α(0) + τ(γ(u′)− γ(0)),

so

(111) |a(u)− σx(u)| = |α(u′)− α(0)− σx(u)|+ 2|τ |∥γ∥∞
≲ A−1ρ−1dKor(p, u

′)2 +A−1 ≲ A−1.

Recall that for all q ∈ H, we have (∇a)q = Xq+(y(q)−a(q))Zq. If u ∈ P ,
then y(u) = σx(u), so

Wu = (∇a)u − (σx(u)− a(u))Zu + σYu.

Let m : H → R be a smooth function which is constant on cosets of ⟨Y ⟩.
Then Y m = 0, so for u ∈ P ,

Wm(u) = ∇am(u)− (σx(u)− a(u))Zm(u).

By (111),

(112) |Wm(u)| ≲ ∥∇am∥∞ +A−1∥Zm∥∞.

Let w, z be such that ΠP (v) =WwZz; note that |w| ≤ ∥v∥Kor ≤
√
ρ, so

∥ΠP (v)∥Kor ≤ ∥v∥Kor + |y(v)− σw| ≤ 3
√
ρ.

Then, by the Mean Value Theorem and (112),

|m(v)−m(θ(v))| = |m(WwZz)−m(W−wZz)|
≲ ∥v∥Kor(∥∇am∥∞ +A−1∥Zm∥∞),

as desired.
Finally, if m = Za, m = b, or m = Zb and ρ > A2 then ∥m∥∞ ≲ A−1

and ∥∇am∥∞ +A−1∥Zm∥∞ ≲ A−2. Therefore,

|m(v)−m(θ(v))| ≲ A−2∥v∥Kor

for all v ∈ B(0, A) and

|m(v)−m(θ(v))| ≲ ∥m∥∞ ≲ A−2∥v∥Kor

for all v ̸∈ B(0, A). □

Finally, we bound functions of the form NT (v) := T (v) when T is a
homogeneous kernel.
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Lemma 11.6. Let v ∈ H, v ̸= 0. Let T be a smooth k–homogeneous kernel
on H. Then |NT (v)| ≲T ∥v∥kKor and

|NT (θ(v))− (−1)kNT (v)| ≲T A
−1∥v∥k+1

Kor .

Proof. Let λ(v) = ∇aa(0) · x(v) be the function whose graph is the vertical
plane tangent to Γa at 0. By Lemma 11.4 and Lemma 2.9, a(v) = λ(v) +
O(A−1∥v∥2Kor), and |a(v) + a(θ(v))| ≲ A−1∥v∥2Kor.

As in the proof of Lemma 5.2,

θ(v) = θ(v)Y −a(v)−a(θ(v)),

and any point w on the segment from θ(v) to θ(v) satisfies ∥w∥Kor ≈ ∥v∥Kor.
The mean value theorem and the (k − 1)–homogeneity of YLT imply that

|NT (θ(v))− (−1)kNT (v)| =
∣∣T (θ(v))− T (θ(v))

∣∣
≲T |a(v) + a(θ(v))|∥v∥k−1

Kor ≲ A−1∥v∥k+1
Kor ,

as desired. □

Now we prove Lemma 11.2.

Proof of Lemma 11.2. As above, we let a = aτ and b = bτ . Let

ϕt(w) = Y −tb(0)wY tb(w),

so that Glg
τ,R(t) =

´
At1,R

K̂(ϕt(w)) dw.

As in the proof of Lemma 7.2, we define Mr(x) =
1
4

√
r4 − x4 and

Ar,R(x, t) = [−MR(x)− tb(0)x,MR(x)− tb(0)x]

\ (−Mr(x)− tb(0)x,Mr(x)− tb(0)x)

so that Atr,R = {(x, 0, z) : z ∈ Ar,R(x, t)} and

Glg
τ,R(t) =

ˆ R

−R

ˆ
A1,R(x,0,t)

K̂(ϕt(x, 0, z)) dz dx.

Taking the derivative with respect to t gives(
Glg
τ,R

)′
(t) =

ˆ R

−R

ˆ
A1,R(x,t)

∂t

[
K̂(ϕt(x, 0, z))

]
dz dx

−
ˆ R

−R
b(0)xK̂(ϕt(x, 0, u))

∣∣MR(x)−b(0)tx
u=−MR(x)−b(0)tx

dx

+

ˆ 1

−1
b(0)xK̂(ϕt(x, 0, u))

∣∣M1(x)−b(0)tx
u=−M1(x)−b(0)tx dx

=: JR1 − JR2 + J1
2 ,
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where f(u)
∣∣b
u=a

or [f(u)]bu=a denotes f(b)− f(a). We have

∂JR1
∂t

∣∣∣∣
t=0

=

ˆ
A1,R

∂2t

[
K̂(ϕt(w))

]
t=0

dw

−
[ˆ r

−r
b(0)x∂t

[
K̂(ϕt(x, 0, u))

]
t=0

∣∣Mr(x)

u=−Mr(x)
dx

]R
r=1

=: IR1 − IR2 + I12 .

By (105), if w = (x, 0,M) ∈ V0, then

ϕt(x, 0,M − b(0)tx) = ϕt(wt) = Ψaτ+t(w),

so

Jr2 =

ˆ r

−r
b(0)xK̂(Ψaτ+t(x, 0, z))

∣∣Mr(x)

z=−Mr(x)
dx,

and

∂Jr2
∂t

∣∣∣∣
t=0

=

ˆ r

−r
b(0)x∂t

[
K̂(Ψaτ+t(x, 0, z))

]
t=0

∣∣Mr(x)

z=−Mr(x)
dx =: Ir3 .

Then (
Glg
τ,R

)′′
(0) = IR1 − IR2 + I12 + IR3 − I13 .

To prove (106), it suffices to show that |IRj − IR′
j | ≲ A−3R−1 for all 1 ≤ R <

R′.
The following calculations will be helpful. Let w ∈ V0. We have ϕt(w) =

Y −tb(0)wY a(w)+tb(w) and ϕ0(w) = w, so

∂t[K̂(ϕt(w))] = −b(0)YRK̂(ϕt(w)) + b(w)YLK̂(ϕt(w)).(113)

Taking a second derivative gives

(114) ∂2t [K̂(ϕt(w))]t=0 = b(0)2Y 2
R K̂(w)− b(0)b(w)(YRYL + YLYR)K̂(w)

+ b(w)2Y 2
L K̂(w).

By (105),

aτ+t(w) = a(wt) + tb(wt)− tb(0),

so

(115) ∂t[aτ+t(w)] = −b(0)x∂z[a+ tb](wt) + b(wt)− b(0)

and

(116) ∂t[K̂(Ψaτ+t(w)]]t=0 = YLK̂(w)(b(w)− b(0)− b(0)x∂za(w)).
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Bounding IR1 : By (114), we have that

IR1 =

ˆ
A1,R

b(0)2Y 2
R K̂(w) dw +

ˆ
A1,R

b(w)2Y 2
L K̂(w) dw

−
ˆ
A1,R

b(0)b(w)(YRYL + YLYR)K̂(w) dw

=
∑
i

ˆ
A1,R

bi(w)NTi(w) dw,

where b1(w) = b(0)2, b2(w) = b(w)2, b3(w) = b(0)b(w), and the Ti’s are
smooth (−5)–homogeneous kernels. By (110) and Lemma 11.5, for any
w ∈ H, we have

|be(w)| ≤ ∥b∥∞ ≲ A−1 |bo(w)| ≲ A−2∥w∥Kor

|bei (w)| ≤ ∥b∥2∞ ≲ A−2 |boi (w)| ≲ ∥b∥∞|bo(w)| ≲ A−3∥w∥Kor.

By Lemma 11.6,

|N e
Ti(w)| ≤ A−1∥w∥−4

Kor |No
Ti(w)| ≲ ∥w∥−5

Kor.

Therefore, by the symmetry of A1,R and Lemma 5.3,

|I1,R| ≤
∑
i

∣∣∣∣∣
ˆ
A1,R

(biNTi)
e dw

∣∣∣∣∣ =∑
i

∣∣∣∣∣
ˆ
A1,R

beiN
e
Ti + boiN

o
Ti dw

∣∣∣∣∣
≲
ˆ
A1,R

A−3∥w∥−4
Kor dw ≲

ˆ R

1
A−3κ−2 dκ ≲ A−3R−1.

Bounding Ir2 : Let w+(x) = (x, 0,Mr(x)) and w−(x) = (x, 0,Mr(x)). By
(113), we have Ir2 =

´ r
−r h+(x)− h−(x) dx, where

h±(x) = b(0)x
(
bN

YLK̂
− b(0)N

YRK̂

)
(w±(x))

h±(x) = b(0)x
(
b(w±(x))NYLK̂

(w±(x))− b(0)N
YRK̂

(w±(x))
)

Let he±(x) =
1
2(h±(x) + h±(−x)), so that Ir2 =

´ r
−r h

e(x) dx.

Since ∥w±(x)∥Kor = r,

|he±(x)| =
∣∣∣b(0)x(bNYLK̂

− b(0)N
YRK̂

)o
(w±(x))

∣∣∣
=
∣∣∣b(0)x(beNo

YLK̂
+ boN e

YLK̂
− b(0)No

YRK̂

)
(w±(x))

∣∣∣
≲ A−1r

(
A−1 ·A−1r−3 +A−2r · r−4 +A−1 ·A−1r−3

)
≲ A−3r−2,

and |Ir2 | ≲ A−3r−1.

Bounding Ir3 : By (116), Ir3 =
´ r
−r k+(x)−k−(x)+l+(x)−l−(x) dx, where

k±(x) = b(0)xN
YLK̂

(w±(x))
(
b(w±(x))− b(0)

)
l±(x) = b(0)2x2∂za(w±(x))NYLK̂

(w±(x))
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Since ∥w±(x)∥Kor = r ≥ 1 and YLK̂ is (−4)–homogeneous,

|l±(x)| ≲ A−2r2A−1r−4 = A−3r−2.

By Lemma 11.5, for any w ∈ H, we have |(∂za)e(w)| ≲ A−1 and |∂zao(w)| ≲
A−2∥w∥Kor. Therefore,

ke±(x) = b(0)x
(
N e
YLK̂

(w±(x))b
o(w±(x)) +No

YLK̂
(w±(x))

(
be(w±(x))− b(0)

))
and

|ko±(x)| ≲ A−1r · r−4 ·A−2r +A−1r ·A−1r−3 ·A−1 ≲ A−3r−2.

Therefore,

|Ir3 | =
∣∣∣∣ˆ r

−r
ke+(x)− ke−(x) + l+(x)− l−(x) dx

∣∣∣∣ ≲ A−3r−1.

Thus, for any R′ > R ≥ 1, we have∣∣∣∣(Glg
τ,R′

)′′
(0)−

(
Glg
τ,R

)′′
(0)

∣∣∣∣ ≤ ∣∣∣IR′
1 − IR1

∣∣∣+ ∣∣∣IR′
2 − IR2

∣∣∣+ ∣∣∣IR′
3 − IR3

∣∣∣
≲ A−3R−1.

This proves the lemma. □

Proof of Lemma 11.3. Let 0 < r < 1 and recall that

Gsm
τ,r(t) :=

ˆ
Ar,1

K̂(Ψaτ+t(v)) dv.

We claim that ∣∣(Gsm
τ,r)

′′(0)− (Gsm
τ,r′)

′′(0)
∣∣ ≲ A−3r

for all 0 < r′ < r < 1.
As above, we abbreviate a = aτ and b = bτ . Recall that a(0) = 0. For

v = (x, y, z), let

q1(v) := ∂t[aτ+t(v)]t=0
(115)
= −b(0)x∂za(v) + b(v)− b(0)

and
q2(v) := ∂2t [aτ+t(v)]t=0 = b(0)2x2∂2za(v)− 2b(0)x∂zb(v).

Then

d2

dt2
K̂(vY aτ+t(v))

∣∣∣
t=0

=
d

dt
∂t[aτ+t(v)]YLK̂(vY aτ+t(v))

∣∣∣
t=0

= ∂2t [aτ+t(v)]t=0YLK̂(v) +
(
∂t[aτ+t(v)]t=0

)2
Y 2
L K̂(v),

and

(Gsm
τ,r)

′′(0) =

ˆ
Ar,1

q2(v)NYLK̂
(v) + q21(v)NY 2

L K̂
(v) dv.

As above, we decompose these into odd and even terms. Let b0(v) =
b(v)− b(0) and let κ = ∥v∥Kor. By Lemma 11.4 and Lemma 2.9,

(117) b0(v) = x(v)∇ab(0) +O(A−1κ2) = O(A−2κ+A−1κ2) = O(A−1κ),
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so |be0(v)| ≲ A−1κ2 and |bo0(v)| ≲ A−1κ. Therefore, by Lemma 11.5,

|qe1(v)| ≤ b(0)x|∂zao(v)|+ |be0(v)| ≲ A−1κ ·A−2κ+A−1κ2 ≲ A−1κ2

and

|qo1(v)| ≤ b(0)x|∂zae(v)|+ |bo0(v)| ≲ A−1κ ·A−1 +A−2κ ≲ A−2κ.

Therefore, |(q21)o(v)| = 2|qe1(v)qo1(v)| ≲ A−3κ3 and

|(q21)e(v)| = |qe1(v)2 + qo1(v)
2| ≲ A−2κ2.

For q2, on one hand,

|q2(v)| ≤ b(0)2x2 · ∥∂2za∥∞+2|b(0)x| · ∥∂zb∥∞ ≲ A−2κ2 ·A−1+A−1κ ·A−1

≲ A−2κ,

so |qo2(v)| ≲ A−2κ. On the other hand, by Lemma 11.5,

|qe2(v)| ≤ b(0)2x2∥∂2za∥∞ + |2b(0)x(∂zb)o(v)|
≲ A−2κ2 ·A−1 +A−1κ ·A−2κ ≲ A−3κ2.

Since YLK̂ is (−4)–homogeneous and Y 2
L K̂ is (−5)–homogeneous, we can

use Lemma 11.6 to bound N
YLK̂

and N
Y 2
L K̂

. Thus

|(Gsm
τ,r)

′′(0)− (Gsm
τ,r′)

′′(0)| =

∣∣∣∣∣
ˆ
Ar′,r

(q2NYLK̂
)e + (q21NY 2

L K̂
)e dv

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ
Ar′,r

qe2N
e
YLK̂

+ qo2N
o
YLK̂

+ (q21)
eN e

Y 2
L K̂

+ (q21)
oNo

Y 2
L K̂

dv

∣∣∣∣∣
≤
ˆ
Ar′,r

A−3κ−2 +A−3κ−2 +A−3κ−2 +A−3κ−2 dv

≈
ˆ r

r′
A−3κ−2 · κ2 dκ ≤ A−3r,

where we used Lemma 5.3 to replace dv by κ2 dκ. This proves the lemma.
□

12. Proof of Theorem 1.1

In this section we will finally finish the proof of Theorem 1.1. First,
recall that for any intrinsic Lipschitz function ϕ : H → R and any function
g : H → R which is constant on cosets of ⟨Y ⟩, we have defined a parametric
version of the Riesz transform by

Rszϕg(p) := T̃R
ϕ g(p) = pv.(Ψϕ(p))

ˆ
Ψϕ(p)V0

R̂(Ψϕ(p)
−1Ψϕ(v))g(v) dv.

Note that when ϕ is smooth and bounded and p ∈ Γϕ, Proposition 5.1
implies that

Rszϕg = TR[g dηϕ].
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In order to bound the L2 norm of Rsz on ΓϕA (where ϕA is as in Proposi-
tion 1.3) we will need the following lemma, which allows us to replace 1 by
an L2 function.

Lemma 12.1. Let ϕ satisfy the hypotheses of Proposition 5.1. Let E ⊂ F
be two bounded subsets of V0 so that d(E,F c) > 0. Then there is a C > 0
depending only on ϕ, E, and F such that for every p ∈ Ψϕ(E), the principal

value T̃ϕ1F ⟨Y ⟩(p) exists and satisfies∣∣∣T̃ϕ1F ⟨Y ⟩(p)− T̃ϕ1(p)
∣∣∣ < C.

Proof. Since we know T̃ϕ1(p) exists by Lemma 5.2, it suffices to show that

there is a C > 0 such that for all p ∈ E, T̃ϕ[1F ⟨Y ⟩ − 1](p) exists and∣∣∣T̃ϕ [1− 1F ⟨Y ⟩
]
(p)
∣∣∣ = ∣∣∣T̃ϕ1H\F ⟨Y ⟩(p)

∣∣∣ < C.

Let χ = 1H\F ⟨Y ⟩. By compactness and the boundedness of F , there is an
0 < ϵ < 1 such that for all p ∈ E we have

Π(Bϵ(p) ∩ pV0) ⊂ Π(F ) ⊂ Π(Bϵ−1(p) ∩ pV0).
Therefore, for r < ϵ and R > ϵ−1, we have χ = 0 on Ar,ϵ(p) and χ = 1 on
Aϵ−1,R(p), so

T̃ϕ[χ](p) = lim
r→0
R→∞

T̃ϕ;r,R[χ](p) = T̃ϕ;ϵ,ϵ−1 [χ](p) + lim
R→∞

T̃ϕ;ϵ−1,R[1](p).

By Lemma 5.2, this limit exists and satisfies |T̃ϕ[χ](p)| ≲ log ϵ+ ϵ for all
p ∈ E. This proves the lemma. □

Given a set E ⊆ H, we define the L2 norm ∥ · ∥E := ∥ · ∥L2(µ|E).

Let W = [−1, 2] × {0} × [−1, 2] ⊂ V0 and let W = W ⟨Y ⟩. Then U and
W satisfy Lemma 12.1, so Proposition 1.3 implies that

(118) ∥RszϕA1W ∥U ≥ ∥RszϕA1∥U − ∥RszϕA1− RszϕA1W ∥U ≥ cA− C ≳ A

when A is sufficiently large, and thus that

∥RszϕA1W ∥L2(ηϕA ) ≥ ∥RszϕA1W ∥U ≳ A.

Since 1W ∈ L2(ηϕA), the operator norm of RszϕA on L2(ηϕ) goes to infinity
with A. By gluing together graphs with different values of A, we can con-
struct a single intrinsic Lipschitz function ϕ such that Rszϕ is unbounded on
L2(ηϕ).

Proof of Theorem 1.1. For x ∈ V0, r > 0, let τx,r : H → H be the affine
transform τx,r(v) = xsr(v). Note that τx,r(V0) = V0. Let x1, x2, · · · ∈ V0
and let r1, r2, · · · > 0 so that the subsetsWn = τxn,rn(W ) are disjoint subsets

of W . Let Un = τxn,rn(U) and let Wn =Wn⟨Y ⟩.
Let ϕn be as in Proposition 1.3 and let

ϕ̂n(u) = rnϕn(τ
−1
xn,rn(u))
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so that Γϕ̂n = τxn,rn(Γϕn). Note that ϕ̂n(v) = 0 for v ̸∈ Un⟨Y ⟩. Let

f : V0 → R be the function

f(v) =

{
ϕ̂n(v) v ∈ Un⟨Y ⟩
0 otherwise.

Then f is an intrinsic Lipschitz function supported in W .
Since f |Wn

= ϕ̂n|Wn
, we have Rszf1Wn

(v) = Rszϕ̂n1Wn
(v) for all v ∈Wn.

By the translation- and scale-invariance of the Riesz kernel, for all v ∈ V0,

Rszϕ̂n1Wn
(v) = Rszϕn1W (τ−1

xn,rn(v)).(119)

Since (τx,r)∗(µ) = r−3
n µ, this implies

∥Rszf1Wn
(v)∥L2(ηf ) ≥ ∥Rszf1Wn

(v)∥Un = r
− 3

2
n ∥Rszϕn1W (v)∥U

(118)

≳ r
− 3

2
n n ≈ n∥1Wn

(v)∥L2(ηf )

for all sufficiently large n. Thus, Rszf is unbounded on L2(ηf ). □
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Appendix A. Intrinsic Sobolev spaces and derivative bounds on
Γfi

In this section, we bound the derivatives of the functions constructed in
Section 3. We first introduce some Sobolev spacesWi,d andW

′
i,d that consist

of functions on H.
Recall that for vector fields V1, . . . , Vk, we let {V1, . . . , Vk}l denote the set

of words of length l and let {V1, . . . , Vk}∗ denote the set of words of any
length. We let #Vi(D) denote the number of occurrences of Vi in D. For
i ≥ 0, let ri = A−1ρ−i, and let fi and ηi be as in Section 3. Let ∂i = ∇fi
and let

Ẑi = r2iZ ∂̂i = Ari∂i ν̂i = Ar−1
i νi f̂i = Ar−1

i fi.(120)

The first two scaling factors correspond to the width and height of the
pseudoquads in the construction of νi; the third and fourth normalize νi so
that ∥ν̂i∥∞ ≈ 1.

For any smooth function g : H → R which is constant on cosets of ⟨Y ⟩,
let

∥g∥Wi,d
= max

D∈{∂̂i,Ẑ}∗
ℓ(D)≤d

∥Dg∥∞

and

∥g∥W ′
i,d

= max
D∈{∂̂i,Ẑ}∗
ℓ(D)≤d
D ̸∈{id,∂̂i}

∥Dg∥∞.

In this section, we will prove the following proposition, which is equivalent
to Lemma 3.11.

Proposition A.1. For any d > 0, if ρ > 1 is sufficiently large, then for all
i,

∥νi∥Wi,d
≲d A

−1ri

and

∥fi∥W ′
i,d

≲d A
−1ρ−1ri.

Equivalently, ∥ν̂i∥Wi,d
≲d 1 and ∥f̂i∥Wi,d

≲d ρ
−1.

The proof of Proposition A.1 can be broken into two parts. In the first

part, we bound Dνi in the case that D = Ẑki ∂̂
j
i .

Lemma A.2. Given d ≥ 2, there exists ρ0 > 0 so that if ρ ≥ ρ0, then

∥Ẑki f̂i∥∞ ≤ 2ρ−1 ∀i ≥ 0, 1 ≤ k ≤ d(121)

∥Ẑki ∂̂
j
i ν̂i∥∞ ≲j 1 ∀i ≥ 0, 0 ≤ j ≤ d, 0 ≤ k ≤ d.(122)

In the second part, we use Lemma A.2 as part of an inductive argument.
First, we bound ν̂i in terms of ∥f̂i∥W ′

i,d
.
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Lemma A.3. For any d > 0, there is a c1 > 1 such that for any i ≥ 0, if
ρ > 1 is sufficiently large and ∥f̂i∥W ′

i,d
< 1, then

(123) ∥ν̂i∥Wi,d
≤ c1.

To bound ∥f̂i+1∥W ′
i+1,d

, we compare ∥ · ∥W ′
i+1,d

and ∥ · ∥Wi,d
.

Lemma A.4. For any d > 0, if ρ is sufficiently large, then for any i and
any g ∈W ′

i,d,

(124) ∥g∥W ′
i+1,d

≲d (1 + ∥ν̂i∥Wi,d
)dρ−2∥g∥W ′

i,d
.

In particular, if ν̂i satisfies (123), then there is a c2 > 0 depending only on
d such that ∥g∥W ′

i+1,d
≤ c2ρ

−2∥g∥W ′
i,d
.

Given these lemmas, we prove Proposition A.1 by induction on i.

Proof of Proposition A.1. Let c1 > 1 and c2 be as in Lemmas A.3 and A.4.
Let c3 = 2c1c2. We claim that if ρ is sufficiently large, then ∥ν̂i∥Wi,d

≤ c1

and ∥f̂i∥W ′
i,d

≤ c3ρ
−1 for all i ≥ 0. We suppose that ρ > c3 so that this

bound implies ∥f̂i∥W ′
i,d
< 1.

We proceed by induction on i. When i = 0, we have f0 = 0, so ∥f̂0∥W ′
0,d

=

0. Suppose that i ≥ 0 and ∥f̂i∥W ′
i,d

≤ c3ρ
−1 < 1. Lemma A.3 implies that

∥ν̂i∥Wi,d
≤ c1. By Lemma A.4,

∥f̂i+1∥W ′
i+1,d

≤ Ar−1
i+1c2ρ

−2∥fi + νi∥W ′
i,d

≤ c2ρ
−1(∥f̂i∥W ′

i,d
+ ∥ν̂i∥Wi,d

) ≤ c2c3ρ
−2 + c1c2ρ

−1 ≤ 2c1c2ρ
−1.

That is, ∥f̂i+1∥W ′
i+1,d

≤ c3ρ
−1. By induction, ∥ν̂i∥Wi,d

≤ c1 and ∥f̂i∥W ′
i,d

≤
c3ρ

−1 for all i ≥ 0. □

In the following subsections, we will prove these lemmas.

A.1. Proof of Lemma A.2. Recall that in Section 3, we defined νi using
maps Ri,j : [0, Ari]× [0, r2i ] → Qi,j for j = 1, . . . , A−1r−3

i and a subset Ji ⊂
{1, . . . , A−1r−3

i }. For each j ∈ Ji, Qi,j is a pseudoquad for Γfi and Ri,j is the
parametrization of Qi,j that satisfies ∂s[Ri,j(s, t)] = ∇fi and ∂t[Ri,j(0, t)] =
Z. The Qi,j ’s have disjoint interiors and their union is the unit square
U = [0, 1]× {0} × [0, 1].

We then define νi and fi by letting κ : [0, 1]2 → R be a bump function,

(125) κi,j(Ri,j(s, t)) = A−1riκ(A
−1ris, r

−2
i t),

νi =
∑

j∈Ji κi,j , and fi+1 = fi + νi. Let Si =
⋃
j ̸∈Ji Qi,j , so that fi|Si =

fi+1|Si . Recall that S0 = ∅ and that Si ⊂ Si+1 for all i.
We prove Lemma A.2 by induction on i. We will show that if (121) holds

for some i ≥ 0, then (122) holds for i and (121) holds for i+1. Since νi = 0
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and fi+1 = fi on Si, it suffices to prove that (122) and (121) hold on Qi,j
for all j ∈ Ji.

First, we restate (122) and (121) in terms of flow coordinates on Qi,j . Let

j ∈ Ji and define coordinates (s, t) on Qi,j by letting (s(v), t(v)) = R−1
i,j (v)

for all v ∈ Qi,j . Then
∂
∂s = ∇fi = ∂i on Qi,j . We define rescaled coordinate

systems on Qi,j by (ŝ, t̂) = (A−1r−1
i s, r−2

i t) and (x̂i, ẑi) = (A−1r−1
i x, r−2

i z),

so that 0 ≤ ŝ ≤ 1 and 0 ≤ t̂ ≤ 1 on Qi,j . Let f̂i = Ar−1
i fi and ν̂i = Ar−1

i νi
as in (120). Let Ŝ := ∂

∂ŝ = ∂̂i and T̂ := ∂
∂t̂
. By (125), we have

ν̂i(Ri,j(Ariŝ, r
2
i t̂)) = Ar−1

i κi,j0(Ri,j(s, t)) = κ(ŝ, t̂),

so ∥T̂ kŜlν̂i∥∞ = ∥∂lkκ∥∞ ≲k,l 1, where ∂lkκ is the appropriate partial de-
rivative of κ. With this notation, (122) and (121) can be stated as

∥Ẑki f̂i∥L∞(Qi,j) ≤ 2ρ−1 for any j ∈ Ji and 1 ≤ k ≤ d,(Fi)

∥Ẑki Ŝmν̂i∥L∞(Qi,j) ≲k,m 1 for any j ∈ Ji, 0 ≤ k ≤ d, and 0 ≤ m ≤ d.

(Hi)

To prove (Fi) and (Hi), we will need some bounds from [NY20]. The
bounds in [NY20] apply to ψi rather than fi, but for each v ∈ U , there is
an i′ ≤ i such that fi and ψi′ agree on a neighborhood of v. Therefore, by
Lemma 3.10 of [NY20],∥∥∥∥∂fi∂z

∥∥∥∥
∞

≤ max
i′≤i

∥∥∥∥∂ψi′∂z

∥∥∥∥
∞

≤ max
i′≤i

2ρi
′−1 ≤ 2ρi−1,

and

(126)
∂ẑi

∂t̂
=

(
∂t̂

∂ẑi

)−1

=
∂z

∂t
∈
[
3

4
,
4

3

]
.

Thus

(127)
∥∥∥Ẑif̂i∥∥∥

∞
=
Ar−1

i

r−2
i

∥∥∥∥∂fi∂z
∥∥∥∥
∞

≤ 2riAρ
i−1 = 2ρ−1.

Suppose by induction on i that (Fi) holds for some i ≥ 0. Note that
f0 = 0, so (F0) holds. For i ≥ 0 and 1 ≤ d0 ≤ d, let (Pi,d0) be the statement

(Pi,d0)

∥∥∥∥∂kẑi∂t̂k

∥∥∥∥
∞

≲ ρ−1 for 2 ≤ k ≤ d0.

We will show that (Fi) implies (Pi,d) and use (Pi,d) to prove (Hi) and (Fi+1).
We must be careful to ensure that the implicit constants in (Pi,d) and (Hi)
are independent of i.

Suppose that (Pi,d0) holds for some 1 ≤ d0 < d; note that (Pi,1) is vacuous.
In [NY20, Lemma 3.10], it was calculated that

(128)
∂z

∂t
= exp

(
−
ˆ s

0

∂fi
∂z

(
Ri,j(σ, t)

)
dσ

)
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and

(129)
∂2z

∂t2
= −∂z

∂t

ˆ s

0

∂

∂t

[
∂fi
∂zi

]
dσ,

where the integrand is evaluated at Ri,j(σ, t). Thus
(130)

∂2ẑi

∂t̂2
= −r2i

∂ẑi

∂t̂

ˆ ŝ

0
r−2
i

∂

∂t̂

[
A−1ri
r2i

∂f̂i
∂ẑi

]
Ari dσ̂ = −∂ẑi

∂t̂

ˆ ŝ

0

∂

∂t̂

[
∂f̂i
∂ẑi

]
dσ̂,

where the integrand is evaluated at Ri,j(Ariσ̂, t). By the product rule, for
k ≥ 2,

∂kẑi

∂t̂k
= −

k−1∑
j=1

(
k − 2

j − 1

)
∂j ẑi

∂t̂j

ˆ ŝ

0

∂k−j

∂t̂k−j

[
∂f̂i
∂ẑi

]
dσ̂.(131)

Since ∂
∂t̂

= ∂ẑi
∂t̂

∂
∂ẑi

, an inductive argument (or the Faà di Bruno formula)
shows that there are constants ca,n such that

∂n

∂t̂n
=

(
∂ẑi

∂t̂

)n ∂n

∂ẑni
+

n−1∑
j=1

∑
a∈Nj ,
∥a∥1=n

ca,n

(
j∏
ℓ=1

∂aℓ ẑi

∂t̂aℓ

)
∂j

∂ẑji
.

Suppose that n ≤ d0. By (Pi,d0) and (126), ∂
mẑi
∂t̂m

≲ 1 if m = 1 and ∂mẑi
∂t̂m

≲

ρ−1 if 2 ≤ m ≤ d0. For each a in the sum, the coefficients of a are between

1 and d0, and not all of them are 1. Therefore,
∏j
ℓ=1

∂aℓ ẑi
∂t̂aℓ

≲d0 ρ
−1, and

(132)
∂n

∂t̂n
=

(
∂ẑi

∂t̂

)n ∂n

∂ẑni
+

n−1∑
j=1

Od0(ρ
−1)

∂j

∂ẑji
.

We apply this to (131). By (Fi), when 1 ≤ n ≤ d0,

(133)

∣∣∣∣∣ ∂n∂t̂n
[
∂f̂i
∂ẑi

]∣∣∣∣∣ ≤
∣∣∣∣∣
(
∂ẑi

∂t̂

)n ∂n+1f̂i

∂ẑn+1
i

∣∣∣∣∣+
n−1∑
j=1

Od0(ρ
−1)

∣∣∣∣∣∂j+1f̂i

∂ẑj+1
i

∣∣∣∣∣ ≲d0 ρ
−1.

By (Pi,d0), (131), and (133),∣∣∣∣∂d0+1ẑi

∂t̂d0+1

∣∣∣∣ ≲d0

d0∑
j=1

∣∣∣∣∂j ẑi∂t̂j

∣∣∣∣ˆ ŝ

0

∣∣∣∣∣ ∂d0+1−j

∂t̂d0+1−j

[
∂f̂i
∂ẑi

]∣∣∣∣∣ dσ̂ ≲d0

d0∑
j=1

|ŝ|ρ−1 ≲d0 ρ
−1.

That is, (Fi) and (Pi,d0) imply (Pi,d0+1). By induction, this implies (Pi,d).
Furthermore, the implicit constant in (Pi,d0+1) depends only on d and the
implicit constant in (Pi,d0), so the implicit constant in (Pi,d) depends only
on d.
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Consequently, (132) holds for all 1 ≤ n ≤ d. Solving the resulting system
of equations for ∂n

∂ẑni
, we obtain

∂n

∂ẑni
=

(
∂t̂

∂ẑi

)n
∂n

∂t̂n
+

n−1∑
ℓ=1

Od(ρ
−1)

∂ℓ

∂t̂ℓ
.

In particular, for m, k ∈ {1, . . . , d},

∣∣∣Ẑki Ŝmν̂i∣∣∣ ≤
∣∣∣∣∣
(
∂t̂

∂ẑi

)k
T̂ kŜmν̂i

∣∣∣∣∣+
k−1∑
ℓ=1

Od(ρ
−1)

∣∣∣T̂ ℓŜmν̂i∣∣∣
≲d

∥∥∥∥ ∂t̂∂ẑi
∥∥∥∥k
∞
∥∂mkκ∥∞ +

k−1∑
ℓ=1

ρ−1∥∂mℓκ∥∞ ≲d 1.

This proves (Hi), with implicit constant depending only on d.
It remains to prove (Fi+1). Suppose that ρ > 2. By (127), we have

∥Ẑi+1f̂i+1∥∞ ≤ 2ρ−1. Since

f̂i+1 = Ar−1
i+1

i∑
j=0

νj = Ar−1
i+1

i∑
j=0

A−1rj ν̂j =
i∑

j=0

ρi+1−j ν̂j =
i+1∑
m=1

ρmν̂i+1−m,

and Ẑi+1 = ρ−2mẐi+1−m, for 2 ≤ k ≤ d,∥∥∥Ẑki+1f̂i+1

∥∥∥
∞

≤
i+1∑
m=1

∥∥∥ρ−2kmẐki+1−m[ρ
mν̂i+1−m]

∥∥∥
∞

≲d

i+1∑
m=1

ρ(1−2k)m ≤ 2ρ1−2k.

That is, there is a c > 0 depending only on d such that ∥Ẑki+1f̂i+1∥∞ ≤ cρ−3.

We take ρ >
√
c, so that ∥Ẑki+1f̂i+1∥∞ ≤ cρ−3 ≤ 2ρ−1 for all 2 ≤ k ≤ d.

This proves (Fi+1). By induction, (Fi) and (Hi) hold for all i.

A.2. Proof of Lemmas A.3 and A.4. First, we prove Lemma A.3 by

rewriting words D ∈ {∂̂i, Ẑi} as sums of operators of the form Ẑki ∂̂
j
i .

Lemma A.5. Let d > 0. Suppose that ∥fi∥W ′
i,d
< A−1ri.

For any 0 ≤ l < d, there is a cl > 0 such that any word D ∈ {∂̂i, Ẑi}l can
be written as

(134) D =
∑
j+k≤l

gj,k(D)Ẑki ∂̂
j
i ,

where for all j and k, gj,k(D) is smooth and ∥gj,k(D)∥Wi,d−l ≤ cl.

We call the right side of (134) the standard form of D and we call the
gj,k(D)’s the coefficients of D.
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The following lemma will be helpful in proving Lemma A.5. Let ∥·∥K→K′

denote the operator norm with respect to the norms K and K ′.

Lemma A.6. For any d ≥ 0, ∥Ẑi∥W ′
i,d→Wi,d−1

≤ 1 and ∥∂̂i∥Wi,d→Wi,d−1
≤ 1.

For g, h ∈Wi,d, ∥gh∥Wi,d
≲d ∥g∥Wi,d

∥h∥Wi,d
.

Proof. The operator bounds on Ẑi and ∂̂i follow from the definitions of Wi,d

and W ′
i,d. Let D ∈ {Ẑi, ∂̂i}l with 0 ≤ l ≤ d and suppose that D = D1 · · ·Dl

where Di ∈ {Ẑi, ∂̂i}. Given a subset A ⊆ {1, ..., l}, we let

DA = Di1 · · ·Dij

where i1 < ... < ij are the elements of A. By the product rule,

∥D(gh)∥∞ =

∥∥∥∥∥∥
∑

A⊆{1,...,l}

DA(g)DAc(h)

∥∥∥∥∥∥
∞

≤ 2d∥g∥Wi,d
∥h∥Wi,d

.

□

We prove Lemma A.5 by induction on l.

Proof of Lemma A.5. If l = 0, then D = id, so we can take g0,0(D) = 1
and cl = 1. Let 0 ≤ l < d and suppose that the lemma holds for words of
length l. Let D ∈ {∂̂i, Ẑi}l+1. Then D = δD0 for some δ ∈ {∂̂i, Ẑi} and

D0 ∈ {∂̂i, Ẑi}l, and there are coefficients gj,k = gj,k(D0) : H → R such that

D0 =
∑
j+k≤l

gj,kẐ
k
i ∂̂

j
i ,

where ∥gj,k∥Wi,d−l ≤ cl for all j and k.

First, we consider the case that δ = Ẑi. Then

D = ẐiD0 =
∑
j+k≤l

Ẑigj,k · Ẑki ∂̂
j
i +

∑
j+k≤l

gj,kẐ
k+1
i ∂̂ji .(135)

This sum is in standard form, and by Lemma A.6,

∥Ẑigj,k∥Wi,d−l−1
≤ ∥gj,k∥Wi,d−l ≤ cl.

Moreover, ∥gj,k∥Wi,d−l−1
≤ ∥gj,k∥Wi,d−l ≤ cl. Thus, the lemma holds for

words of length l + 1 that start with Ẑi.
Second, we consider the case that D = ∂̂iD0. We have

D = ∂̂iD0 =
∑
j+k≤l

∂̂igj,k · Ẑki ∂̂
j
i +

∑
j+k≤l

gj,k∂̂iẐ
k
i ∂̂

j
i =: I + II.(136)

Then I is already in standard form, and its coefficients satisfy

∥∂̂igj,k∥Wi,d−l−1
≤ ∥gj,k∥Wi,d−l ≤ cl.

To write II in standard form, we use the identity

∂̂iẐi − Ẑi∂̂i = Ar3i [∂i, Z] = Ar3i [X + (y − fi)Z,Z] = Ar3iZfi · Z = Ẑif̂i · Ẑi.
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Since ∥fi∥W ′
i,d

≤ A−1ri,

(137) ∥Ẑif̂i∥Wi,d−1
≤ ∥f̂i∥W ′

i,d
≤ Ar−1

i ∥fi∥W ′
i,d

≤ 1.

Suppose that E = gj,k · ∂̂iẐki ∂̂
j
i is a summand of II. If k = 0, there is

nothing to do. Otherwise, if k > 0, then

E = gj,k · Ẑi∂̂iẐk−1
i ∂̂ji + gj,k · Ẑif̂i · Ẑki ∂̂

j
i .

The first term is a multiple of a word of length at most l + 1 that starts
with Ẑi. By the argument above it can be written in standard form, and
by Lemma A.6, the norms of its coefficients are bounded by a function of
cl. The second term is already in standard form, and by Lemma A.6 and
(137), its coefficient gj,k · Ẑif̂i is bounded by a function of cl.

Thus, II can be written as a sum of terms in standard form. The coeffi-
cients of each term are bounded by a function of cl and there are at most
(l+1)2 terms, so D = I+II can be written in standard form, with coefficients
bounded by some cl+1 that depends only on l. □

Lemma A.3 follows directly.

Proof of Lemma A.3. Let D ∈ {Ẑi, ∂̂i}l for l ≤ d. By Lemma A.5, we can
write D in standard form as

D =
∑
j+k≤l

gj,kẐ
k
i ∂̂

j
i ,

where ∥gj,k∥∞ ≲d 1. Then, by Lemma A.2,

∥Dνi∥∞ =

∥∥∥∥∥∥
∑
j+k≤l

gj,kẐ
k
i ∂̂

j
i νi

∥∥∥∥∥∥
∞

≤
∑
j+k≤l

∥gj,k∥∞∥Ẑki ∂̂
j
i νi∥∞

(122)

≲d

∑
j+k≤l

A−iri ≲d A
−1ri.

□

Finally, we prove Lemma A.4.

Proof of Lemma A.4. Note that

(138) Ẑi+1 = r2i+1Z = ρ−2r2iZ = ρ−2Ẑi

and

(139) ∂̂i+1 = Ari+1∂i+1 = ρ−1Ari(∂i − νiZ) = ρ−1(∂̂i − ν̂iẐi).

Let 0 ≤ l ≤ d and let D ∈ {∂̂i+1, Ẑi+1}l be a word of length l such that

D ̸∈ {id, ∂̂i+1}. Let n = 2#Ẑi+1(D) + #∂̂i+1(D) and note that n ≥ 2.

We replace Ẑi+1 by ρ−2Ẑi and ∂̂i+1 by ρ−1(∂̂i − ν̂iẐi) and distribute to

get an expression D = ρ−n
∑m

j=1±Dj , where Dj ∈ {∂̂i, ν̂i, Ẑi}∗ for each

j = 1, . . . ,m and m ≤ 2l. Furthermore, l ≤ ℓ(Dj) ≤ 2l for all j.
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If ℓ(D) = 1, then D = Ẑi+1, so m = 1 and D1 = Ẑi. Otherwise, ℓ(D) ≥ 2

and ℓ(Dj) ≥ 2. Since every ν̂i in Dj is followed by Ẑi, if Dj ends in ∂̂i, then

the previous letter is either ∂̂i or Ẑi. That is, we can write Dj = D′
jEj ,

where Ej = Ẑi, Ej = ∂̂2i , or Ej = Ẑi∂̂i.

Since Ej ̸∈ {id, ∂̂i}, we have ∥Ej∥W ′
i,d→Wi,d−ℓ(Ej)

≤ 1. By Lemma A.6,

for any 0 ≤ k ≤ d, we have ∥∂̂i∥Wi,k→Wi,k−1
≤ 1, ∥Ẑi∥Wi,k→Wi,k−1

≤ 1, and
∥ν̂i∥Wi,k→Wi,k

≲d ∥ν̂i∥Wi,d
. Let L ≲d 1 + ∥ν̂i∥Wi,d

be such that each letter of
Dj has operator norm at most L. Then

∥Dj∥W ′
i,d→L∞ ≤ ∥Ej∥W ′

i,d→Wi,d−ℓ(Ej)
∥Dj∥Wi,d−ℓ(Ej)→Wi,d−l ≲d L

d.

Therefore,

∥Dg∥∞ ≤ ρ−n
m∑
j=1

∥Dj∥W ′
i,d→L∞∥g∥W ′

i,d
≲ ρ−2Ld∥g∥W ′

i,d
.

Since this holds for all D ∈ {∂̂i+1, Ẑi+1}∗ such that ℓ(D) ≤ d and D ̸∈
{id, ∂̂i+1},

∥g∥W ′
i+1,d

≲ ρ−2Ld∥g∥W ′
i,d

≲d (1 + ∥ν̂i∥Wi,d
)dρ−2∥g∥W ′

i,d
,

as desired. □
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