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ABSTRACT. We prove that the Heisenberg Riesz transform is unbounded
in Ly on a family of intrinsic Lipschitz graphs in the first Heisenberg
group H. We construct this family by combining a method from [NY20]
with a stopping time argument, and we establish the Lo—unboundedness
of the Riesz transform by introducing several new techniques to analyze
singular integrals on intrinsic Lipschitz graphs. These include a formula
for the Riesz transform in terms of a singular integral on a vertical
plane and bounds on the flow of singular integrals that arises from a
perturbation of a graph. On the way, we use our construction to show
that the strong geometric lemma fails in H for all exponents in [2,4).
Our results contrast with two fundamental results in Euclidean har-
monic analysis and geometric measure theory: Lipschitz graphs in R™
satisfy the strong geometric lemma, and the m—Riesz transform is Lo—
bounded on m—dimensional Lipschitz graphs in R™ for m € (0,n).
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1. INTRODUCTION

Given a Radon measure v in R”, the m—dimensional Riesz transform is
formally defined by

T70(2) = [ Bl — 9) ),
where R,,(z) = x|z|~™"! is the m-dimensional Riesz kernel. If I' C R" is
an m-—dimensional Lipschitz graph and vp = H™|p is the restriction of the
m~—dimensional Hausdorff measure on I'; then

f=Tm[fdvr]

defines a bounded operator in Lo(I") := Lo(H™|r). This fundamental re-
sult was first obtained by Calderon in [Cal77] for 1-dimensional Lipschitz
graphs in the complex plane with sufficiently small Lipschitz constant. (In
this case the 1-dimensional Riesz kernel R; essentially coincides with the
Cauchy kernel k(z) = 27!,z € C.) The restriction on the Lipschitz constant
was removed a few years later by Coifman, McIntosh and Meyer [CMMS82].
Finally, Coifman, David and Meyer [CDM83] proved that 7" is bounded
in Lo(T") for all m—dimensional Lipschitz graphs I" by showing that the m—
dimensional case can be reduced to the 1-dimensional case via the method
of rotations.

The Ls—boundedness of Riesz transforms on Lipschitz graphs has been
pivotal for the research program which started in the early 80s with the aim
of relating the analytic behavior of singular integrals on subsets of R to the
geometric structure of these sets. In particular, David and Semmes [DS93,
DS91] developed the theory of uniform rectifiability hoping to characterize
the m—Ahlfors regular sets £ C R™ on which the Riesz transforms T, m €
(0,n), are bounded in Ly(E); uniformly rectifiable sets can be built out
of Lipschitz graphs and can be approximated by Lipschitz graphs at most
locations and scales. David proved in [Dav88] that if £ is m-uniformly
rectifiable then 7™ is bounded in L?(E). He and Semmes [DS91] conjectured
that the converse is also true. That is, if E is an m—Ahlfors regular set such
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T™ is bounded in L?(F) then E is m-uniformly rectifiable. The conjecture
was proved by Mattila, Melnikov and Verdera in [MMV96] for m = 1 and
by Nazarov, Tolsa and Volberg [NTV14a] for m = n — 1. It remains open
for integers m € (1,n — 1).

Riesz transforms have also played a crucial role in characterizing remov-
able sets for Lipschitz harmonic functions. A compact set £ C R" is re-
movable for Lipschitz harmonic functions if whenever U D E is open and
f: U — R is Lipschitz and harmonic in U \ E, then f is harmonic in
U. Uy [Uy80] showed that if H" *(E) = 0 then E is removable, while
dimpy (E) > n — 1 implies that F is not removable.

Characterizing the removable sets E with H"~1(E) > 0 involves the Riesz
transform 7"~ 1. If E is (n — 1)-upper regular and 7" ! is bounded on
Ly(FE) then E is not removable for Lipschitz harmonic functions, see [MP95,
Theorem 4.4]. On the other hand, if H" !(E) < co and E is not removable
for Lipschitz harmonic functions, then there exists some Borel set F' C F
with H"~1(F) > 0 such that T7"! is bounded in Lo(F), see [Vol03].

Due to important contributions from several people it is now known that a
compact set E C R"™ with #"~}(E) > 0 is removable for Lipschitz harmonic
functions if and only if E is purely (n— 1)—unrectifiable, that is, E intersects
every C! hypersurface in a set of vanishing (n — 1)-dimensional Hausdorff
measure. One of the key ingredients in the proof of the “only if” direction is
the Lo(I')-boundedness of 7"~ ! for Lipschitz graphs of codimension 1. The
harder “if” direction was proved by David and Mattila [DMO00] (for n = 2),
and Nazarov, Tolsa and Volberg [NTV14a, NTV14b] for n > 3. We also
mention that the Lo—boundedness of the Cauchy transform/1-dimensional
Riesz transform was the key tool in geometrically characterizing removable
sets for bounded analytic functions, see [Toll4, Ver22] for the long and
interesting history of this problem.

There is a natural analogue of the codimension—1 Riesz kernel in the
Heisenberg group H. Recall that in R™ the Riesz kernel R,,_1(z) := x|z|™" is
a constant multiple of the gradient of the fundamental solution of the Lapla-
cian. Sub-Riemannian analogues of the Laplacian, known as sub-Laplacians,
have been extensively studied in Carnot groups and sub-Riemannian mani-
folds since the early 70s and the works of Stein, Folland, and others [FS82,
Fol73, Fol73]. A thorough treatment of this fully-fledged theory can be found
in [BLUO7]. In particular, the (canonical) sub-Laplacian in H is defined as

AH = XE + YL27
where
0 o 9 P
Hf(h) = a%“” B %y(h)a%(h) and YL f (h) := ai(h) + %a:(h)a—‘ﬁ(h)

are the left invariant vector fields which generate the horizontal distribution
in H. By a classical result of Folland [Fol73], see also [BLU07, Example
5.4.7], the fundamental solution of Ay is || - |2, where || - || is the Koranyi
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norm in H. One then defines the Heisenberg Riesz kernel in H as

Vilolge _ (2@ +y°) —dyz y(a® +°) +4az
R(z) := = 5 ) 3 ;
2 [0l Kor [0l Kor

where Vi f = (X f, YL f) is the horizontal gradient in H. We note that R is
a smooth, (—3)-homogenous, Calderén-Zygmund kernel, see Section 2.2 for
more details.

Given a Radon measure in H, the corresponding Heisenberg Riesz trans-
form is the convolution-type singular integral formally defined by

TRu(p) = / R(y~'p) dv(y).

It is natural to ask whether this transform is related to rectifiability and
uniform rectifiability in the same way that the Euclidean Riesz transform
is, and to describe the sets F C H such that TR is bounded in Ly(E) :=
Lo(H3|g), where E C H and H3 is the 3-dimensional Hausdorff measure
induced by the metric d(z,y) = |27 y||kor-

The first difficulty in this project is defining analogues of Lipschitz graphs
in H. Unlike the Euclidean case, we cannot define Lipschitz graphs as the
images of Lipschitz maps from R? to H or R3 to H; by a result of Am-
brosio and Kirchheim [AK00], H3(f(R?)) = 0 for all Lipschitz functions
f: R?® — H. Franchi, Serapioni and Serra Cassano [FSSC06] introduced an
intrinsic notion of Lipschitz graphs in Carnot groups which has been very
influential in the development of sub-Riemannian geometric measure theory,
see e.g. [SC16, Mat23] and the references therein. Intrinsic Lipschitz graphs
satisfy a cone condition which will be defined in Section 2.3. Moreover, they
are 3—Ahlfors regular and thus the question of the Lo—boundedness of the
Heisenberg Riesz transform on intrinsic Lipschitz graphs makes sense.

Indeed, if T' is an intrinsic Lipschitz graph of a bounded function and
vr = H3|r the double truncations

151 dorp) o= | Ry ™'p)J (y) dvr(y)
B(p,R)\B(p;r)

are well defined for f € Lo(I"), z € I' and 0 < r < R < 0o0. As usual, we do
not know a priori that the principal values

T8 dur)(p) = pv.(0) [ ROy~ p)f(w) o) = i Tl o))

R—o0

exist for H3-a.e. p € T, so we say that the Heisenberg Riesz transform TR
is bounded in Lo(I') if the truncations TRy, are uniformly bounded in Lo(T);
that is if there exists some C' > 0 such that

ITRR1f vl Loy < ClEF Il Lo

forall f € La(T') and 0 < r < R < 0.
The question of the boundedness of the Heisenberg Riesz transform was
first discussed in [CM14], where it was noted that the Heisenberg Riesz
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transform is Lso—bounded on the simplest examples of intrinsic Lipschitz
graphs: the vertical planes (planes in H which contain the center (Z) =
{(0,0,2) : z € R}). Recently, some partial results provided hope that, as in
the Euclidean case, the Heisenberg Riesz transform might be Lo—bounded on
intrinsic Lipschitz graphs. First, in [CFO19a] it was shown that any H-odd,
3-dimensional Calderén-Zygmund kernel (in particular the Heisenberg Riesz
kernel) defines an Lo—bounded singular integral on compactly supported in-
trinsic O graphs. Later, this was generalized in [FO21] for the Heisenberg
Riesz transform, where it was shown that the Heisenberg Riesz transform is
also Lo—bounded on intrinsic Lipschitz graphs which satisfy certain vertical
regularity conditions. As a corollary, it is Lo—bounded on sets of the form
I'gz x R C H where I'g2 is a Euclidean Lipschitz graph in R2.

In this paper we prove that, surprisingly and unlike the Euclidean case,
TR is not Lo-bounded on certain intrinsic Lipschitz graphs.

Theorem 1.1. There exists a compactly supported intrinsic Lipschitz graph
I' such that the Heisenberg Riesz transform is unbounded in Lo(I").

We also record that if I' is the intrinsic Lipschitz graph from Theorem
1.1 then the Heisenberg Riesz transform is unbounded in L,(I") for all p €
(1,00). This follows by its unboundedness in Lo(T") combined with [NTV98,
Theorem 1.1] and the remark right after that theorem.

The need to characterize the lower-dimensional sets on which the (Eu-
clidean) Riesz transform and other singular integrals are bounded in Lo led
to the development of uniform rectifiability in Euclidean spaces. In the
Heisenberg group, intrinsic Lipschitz graphs have been used to study recti-
fiability [MSSC10, FSSC11] and quantitative rectifiability [CFO19b, NY18,
NY20, CLY22, FOR18, Rigl9], and, although not explicitly stated, it has
been anticipated that intrinsic Lipschitz graphs should be the building blocks
of uniformly rectifiable sets. Theorem 1.1 suggests that in H, notions of uni-
form rectifiability based on intrinsic Lipschitz graphs and notions of uniform
rectifiability based on singular integrals may diverge, and points to deep dif-
ferences between the theory of uniform rectifiability in H and its Euclidean
counterpart.

On the way to proving Theorem 1.1 we also prove that the strong geomet-
ric lemma fails in the first Heisenberg group, thus further highlighting the di-
vergence between Euclidean and Heisenberg concepts of uniform rectifiabil-
ity. In order to make our statement precise we first introduce codimension—1
B—numbers. If E is a Borel subset of the (2n 4 1)-dimensional Heisenberg
group H,,, « € H,, and r > 0 we define

e on d(y, L)
1 — f 2n 1/ ’ d 2n+1
1) peter) = g [ SRS )

where in the infimum, VP stands for vertical planes and denotes the set of
codimension—1 planes which are parallel to the z-axis.
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In [CLY22] we proved that if I" is an intrinsic A-Lipschitz graph in H,,, n >
2, then, for any ball B = B(y, R) C H,,

R dr
2 qas2n+1, .y 47
(2) /0 . Br(x,r)*dH () "

This is called the strong geometric lemma. (We actually established (2) for
an Lo version of f—numbers, which easily implies (2) as it is stated here.)

The strong geometric lemma holds for Lipschitz graphs in R™ by a result
of Dorronsoro, obtained in [Dor85], and is one of the foundations of uniform
rectifiability in R™. In particular, an Ahlfors regular subset of R" satisfies
a Euclidean analogue of (2), with constants depending only on n and the
Ahlfors regularity constant of the set, if and only if it is uniformly rectifiable,
see [DS91].

However, the next theorem shows that the situation is very different in Hj .
In fact, the strong geometric lemma fails in H; for all exponents s € [2,4).

5)\ R2n+1‘

Theorem 1.2. There exist a constant A > 0, a radius R > 0, and a sequence
of A=intrinsic Lipschitz graphs (I'y)nen such that 0 € Ty, for all n and

. R s 3 dr
lim Br,, (x,r)*dH*(z)— = +oo
n—=o Jo JB(0,R)N, r

for all s € [2,4).

The intrinsic Lipschitz graphs in Theorems 1.1 and 1.2 are obtained by
modifying a process for constructing intrinsic graphs which appeared re-
cently in [NY20, Section 3.2]. The method introduced in [NY20] produces
bumpy intrinsic graphs which are far from vertical planes at many scales.
However, the intrinsic gradients of the intrinsic graphs produced in [NY20]
are Lo—bounded but not bounded, so the resulting intrinsic graphs are not
intrinsic Lipschitz. We overcome this obstacle by applying a stopping time
argument leading to intrinsic Lipschtz graphs which retain key properties of
the examples from [NY20].

The intrinsic Lipschitz graphs that we construct are determined by the
following parameters:

(1) i € N; the number of steps in the construction,
(2) A € N; the aspect ratio of the initial bumps, and
(3) a scaling factor p > 1.

In particular, our intrinsic Lipschitz graphs are intrinsic graphs of functions
fi,ap: Vo = R, where Vo = {y = 0} and where f; 4, is supported on the
unit square [0, 1] x {0} x [0, 1].

For i < A*, we show that the intrinsic Lipschitz graph I' = T fia, has
many bumps at scale r; := A71p~?, so

/ Br(z,r;)* dH3(z) ~ A5
B(0,R)NT

Since there are roughly A* such scales, this implies Theorem 1.2.
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Theorem 1.1 takes much longer to prove and it employs several novel
arguments. We first perform a “reduction to vertical planes” by proving
that the principal value of singular integrals with smooth, orthogonal, and
(—3)-homogeneous kernels on intrinsic Lipschitz graphs can be expressed as
the principal value of a related singular integral on a vertical plane. This is
achieved in Section 5.

More precisely, let ¢: H — R be a smooth and bounded intrinsic Lipschitz
function with intrinsic graph I'y. Denote by W4 : H — I'y the projection of
H to I'y along cosets of (Y'). The projection restricts to a homeomorphism
from Vp to I'y, (but not a biLipschitz map), and we let 7y := (¥g).L|y;, be
the pushforward of the Lebebegue measure L|y;, to I'y. Then 7 is bounded
above and below by multiples of H?|r +» see Section 2.3. It follows from our
results in Section 5 that if g: H — R is a Borel function which is constant
on cosets of (Y) then

(3) Rszsg = T [g g,
where Rsz4(g) is the parametric Riesz transform of g defined for p € H by
(@) Rezaglp) =pe(Tep) [ RE(0)Tylp)lg(0) o

Uy (p)Vo

We then obtain Ls bounds on the parametric Riesz transform of the
identity function on the intrinsic Lipschitz graphs f; 4, produced by our
construction. More precisely, we obtain the following proposition.

Proposition 1.3. There is a § > 0 such that for all sufficiently large A > 1,
there is a pa > 1 such that if N = |5A*|, ¢4 = fnap, is the function
produced in the construction of Section 3 and U is the unit square [0,1] X
{0} x [0,1] C Vb, then

IRszg, 1l o) 2 A,

~

where 1 is the function equal to 1 on all of H.

Proposition 1.3 is the most crucial part in the proof of Theorem 1.1 and
combined with (3) leads relatively quickly to the proof of Theorem 1.1; see
Section 12.

We prove Proposition 1.3 by analyzing the family of singular integrals
Rsz,+4~ that arises from a perturbation of an intrinsic Lipschitz function «
by a smooth function . This requires new methods to handle the noncom-
mutativity of H. That is, for functions a,b: R*™1 — R, let RszaEuC denote the
Euclidean parametric Riesz transform, defined as in (4). The translation-
invariance of the Riesz transform implies that Rsz2"¢1 = RszaEfcl for any
c €R, so

Rszl%,1 = Rsz,, 1,
where ag = a — a(0) and by = b — b(0) both vanish at 0.

This identity does not hold in H. In H, translation-invariance implies

that if I'y, is a left-translate of I',,, then Rsz,, 1 is a left-translate of Rsz,, 1.
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Unfortunately, 'y, is a right-translate of I, so there is typically no rela-
tionship between Rsz,1 and Rszy 1.

We solve this problem by writing Rsz,;¢,1 in two ways: first, the direct
calculation (4), and second, Rszn4y1 = Rsz,,1 0 A, where each )\; is a left-
translation and a4 is a family of functions such that «;(0) = 0 for all ¢ and
e, = M(Tagty). Though these expressions represent the same function,
one is easier to estimate at large scales and one is easier to estimate at small
scales, and many of the bounds used in the proof of Proposition 1.3 will use
one expression at large scales and the other expression at small scales.

Our results lead naturally to several new questions. For example, it is
well known [Mat95, Theorem 20.15], that if I' € R™ is an m—dimensional
Lipschitz graph and f € L;(I") then the principal values of the Riesz trans-
form T™[f dvy,](p), exist for H™—a.e. = € T'. The proof uses that T is
Lo—bounded and in light of Theorem 1.1, it is quite unclear if the same
result holds in H, although it is known to hold for surfaces of the form
I'gz x R C H where I'gz is a Euclidean Lipschitz graph in R2, see [OV20,
Theorem 3.2]. We do anticipate that a modification of the construction in
the current paper might be used to produce an intrinsic Lipschitz graph
I such that principal values of TR[f dur] fail to exist vp—a.e. for (certain)
functions f € L1, but we will not consider this problem here.

Another interesting problem is the following. Theorem 1.1 asserts that
intrinsic Lipschitz regularity is not sufficient for the Lo—boundedness of the
Heisenberg Riesz transform. On the other hand, according to [CFO19a], in-
trinsic C1® regularity is indeed sufficient. Therefore, one could look for “in-
termediate” geometric regularity conditions on intrinsic graphs that would
imply the L?-boundedness of the Heisenberg Riesz transform. In particular,
and in light of Theorem 1.2, it would be interesting to answer the following
questions:

Question 1.4. Let I' C H be an intrinsic Lipschitz graph which satisfies the
Carleson condition (2). Is it true that TR is bounded in Lo(T")?

Question 1.5. What natural classes of surfaces satisfy (2)?

The bounds in Section 6 suggest possible connections between the norm
of TR and the sum of the squares of the S~numbers in (2); see Question 6.4.

Finally, we note that Theorem 1.1 is related to the problem of geometri-
cally characterizing removable sets for Lipschitz harmonic functions (RLH
sets) in H. The definition of an RLH set in H is completely analogous to its
Euclidean counterpart, except that, in H, a function is called harmonic if it is
a solution to the sub-Laplacian equation Agu = 0. RLH sets in Heisenberg
groups were introduced in [CM14] and it was shown there that if £ C H is
compact, then it is RLH if H3(E) = 0, while it is not RLH if dimy (E) > 3.
Moreover, totally disconnected RLH sets with positive 3-dimensional Haus-
dorff measure were produced in [CM14, CMT15]. On the other hand, it was
proved in [CFO19a] that if p is a non-trivial compactly supported Radon
measure in H with 3-upper growth, such that TR is bounded in Ly (p) then
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spt v is not RLH. An analogous result holds in R", see [MP95, Theorem 4.4],
and combined with the Lo—boundedness of Riesz transforms on Lipschitz
graphs implies that compact subsets of 1-codimensional Lipschitz graphs
with positive (n — 1)-Hausdorff measure are not RLH. This can be used to
show that if a compact set E C R™ with H" }(E) < oo is RLH then it is
purely (n — 1)—unrectifiable. To our knowledge, this is the only known proof
for this implication.

Theorem 1.1 shows that such a scheme cannot be used in the Heisenberg
group, and naturally leads to the following fascinating question:

Question 1.6. Does there exist a compact subset of an intrinsic Lipschitz
graph in H with positive 3—dimensional Hausdorff measure which is remov-
able for Lipschitz harmonic functions?

If the answer to Question 1.6 is positive it will imply that the geometric
characterization of RLH sets in H varies significantly from the analogous
characterization in R™. On the other hand, a negative answer to Question
1.6 would require a completely new proof method.

1.1. Roadmap. In Section 2, we establish some definitions and notation for
the Heisenberg group and for intrinsic Lipschitz graphs. Even if the reader
has seen these notions before, we introduce some new notation for intrinsic
Lipschitz graphs in Section 2.3, so we suggest that readers look through this
section.

After these preliminaries, the paper can be broken into three rough parts:
constructing the family of functions f = f; 4, and graphs I' = I'; 4 , that we
will use in Theorems 1.1 and 1.2, proving lower bounds on the f—numbers
of these surfaces, and estimating the Riesz transform on these surfaces. In
Section 3, we construct a family of intrinsic Lipschitz graphs based on the
construction in [NY20]. These graphs have bumps at many different scales,
and in Section 4, we calculate the effect of these bumps on the S—numbers
and prove Theorem 1.2.

In Section 5, we start to study the Riesz transform on I" and other intrinsic
Lipschitz graphs. Specifically, for an intrinsic Lipschitz function ¢, we define
ne as the pushforward of L|y, as above and study the function Tny. In
general, T4 need not be defined everywhere on I'y, but in Section 5, we
show that if ¢ is smooth, bounded, and has bounded derivatives, then T4
is defined everywhere on I'y. We also introduce a singular integral operator
T¢ which is defined as a singular integral on a vertical plane and satisfies
T¢1 = T’I7¢. Let F¢ = T¢1.

Our main goal in these sections is to prove Proposition 1.3. We prove
Proposition 1.3 by considering the construction of f; = f; 4, as a sequence
of perturbations, starting with fo = 0, so that for each ¢ > 0, we obtain
fir1 by adding bumps of scale r; := A~ p~% to f;. Let v; = f;41 — f;. Then
we can prove Proposition 1.3 by bounding the derivatives %[F Y+, and

%;[Ffﬁt,,i] and using Taylor’s theorem.
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We state bounds on the derivatives of Gy, ,,(t) := Ff44, in Section 6.
Because of the scale-invariance of the Riesz transform, we can rescale f; and
v; by a factor r; to obtain functions a and  such that a varies on scale
roughly p and ~ varies on scale roughly 1 (Section 3.1). The derivatives of
a and 7 are bounded (Lemma 3.12 and Appendix A), and in fact we prove
bounds on derivatives of G (t) for any functions that satisfy the same
bounds.

In the remaining sections, we prove the bounds in Section 6. First, in
Section 7, we write G/ ,(0) as an integral in two ways, one which is easier to
control for large scales and one for small scales (Lemma 7.2 and Lemma 7.3).
In Euclidean space, these two formulas would be the same; the difference
between them comes from the noncommutativity of the Heisenberg group.
We use these formulas to prove an upper bound on G’; | (0) (Lemma 7.1).

In Section 7, we define translation-invariant approx1mat10ns of G’ by
showing that when A is a linear function approximating ( to first order at
p, then G¢ ,(0) is close to G\ ,(0) on a neighborhood of p. We use this
approximation to prove lower bounds on G/fi,Vi (0) in Section 9 and to bound
inner products of the form (G’ , (0), 'f »,;(0)) in Section 10.

In Section 11, we use the formulas from Section 7 again to bound f »
By Taylor’s theorem,

N-1 N-1
Fry =3 G}, 00+ > O(IG]. . lls0)-
=0 =0

Our bounds on G, , (0) and (G, ,, (0), ’fj’yj (0)) lead to a lower bound on
the first term, and our bounds on G, , bound the error term. This proves
Proposition 1.3 (see Section 6 for details).

Finally, in Section 12, we use Proposition 1.3 to prove Theorem 1.1. We
first show that when ¢4 is as in Proposition 1.3, the Lo norm of the Riesz
transform on Ly(I'y, ) is large. We then combine scaled copies of the I'y,’s
to obtain a single compactly supported intrinsic Lipschitz graph I" such that
the Riesz transform is unbounded on Lo(T"), as desired.

2. PRELIMINARIES

Throughout this paper, we will use the notation f < g to denote that there
is a universal constant C' > 0 such that f < Cg and f S4,4.,.. g to denote
that there is a function C(aj,az,...) > 0 such that f < C’(al,ag,...)g.
The notation f & g is equivalent to f < g and g < f. We will also use the
big—-O notation O(f) to denote an error term which is at most C'f for some
constant C' > 0 and O,(f) for an error term which is at most C(a)f.
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2.1. Heisenberg group. The three dimensional Heisenberg group H is the
Lie group on R? defined by the multiplication

xy — :c’y)

(5) (x,y,2)(2 .y, 2) = <x+m’,y+y',z+z’+ 5

The identity element in H is 0 := (0,0, 0) and the inverse of v = (z,y,2) € H
is v7! == (—x,—y,—2). We denote by X = (1,0,0),Y = (0,1,0),7Z =
(0,0, 1), the coordinate vectors of H and we let x,y, z: H — R be the coor-
dinate functions. The center of the group is (Z) = {(0,0,2) : z € R}. An
element v € H is called a horizontal vector if z(v) = 0, and we denote by A
the set of horizontal vectors.

Since H is a torsion-free nilpotent Lie group, the exponential map is a
bijection between H and the nilpotent Lie algebra h = (XY, Z | [X,Y] =
Z); namely, exp(zX + yY + 2Z) = (x,y,z). Then (5) is a consequence of
the Baker—-Campbell-Hausdorff formula

exp(V) exp(W) = exp (V + W+ [V72W] +.. ) :

We will frequently identify H and h and use the same notation for generators
of H and of h. In particular, for V; € h, we write the linear span of the V;
as (V1,Va,...), so that the set of horizontal vectors is

A=(X)Y)={aX +yY | z,y € R}

Since (5) is based on the Baker—Campbell-Hausdorff formula, for any
v € H, the span (v) is the one-parameter subgroup containing v. Since
we typically write the group operation in H as multiplication, we will often
write w! = tw for w € H and t € R.

Given an open interval I C R, we say that v : I — H is a horizontal curve
if the functions x o y,yo~,z 0~ : I — R are Lipschitz (hence v’ is defined
almost everywhere on I) and

SO )] |, € A

for almost every t € I. Notice that left translations of horizontal curves are
also horizontal.

Given (a,b) € R?\{(0,0)} and v € H we will call the coset L = v{aX +bY")
a horizontal line. We define the slope of L as slope L = g when a # 0 and
slope L = co when a = 0. This is the slope of the projection of L to the
xy-plane. Note that for t € R, (X + oY) is a point in the horizontal line
through the origin with slope o.

Let X\, Y| be the left-invariant vector fields

XL (v) = <1,0,—y(2”)> and YL (v) = (0,1,96(2”)> :
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and let Xg, Yr be the right-invariant vector fields
Xg(v) = <1,o,y(2”)) and Yr(v) = <0,1,—$(2”)>.

Note that X| and Xr commute, as do Y| and Yg. We let 0,,0,,0, =
Z be the usual partial derivatives in R3. Given any vector field V =
(Va, Vy, V,): R? — R3 and any smooth function f: R3 — R we let

Vf(v) =V Vf(v) = Vy(v)0y f(v) + Vy(v)9y f(v) + V()0 f (v).

So for example,

XUf(0) = < F@XN)]_y = 0:50) ~ D2 z5(w) 0 € B

We also define the horizontal gradient of f as Vi f = (X f,YLf). For clarity,
we will typically use square brackets for the object of a differential operator
and use - as a low-precedence multiplication operator, so that Vf - Wy is
equal to V[f]W[g], not V[fWg].

The Kordnyi metric on H is the left-invariant metric defined by

dicor(v,0") == [[v™ || Kors

where

H(xvyu Z)HKor = {1/(372 + y2)2 + 1622.
Note that [[aX + bY ||kor = Va? + b2, so the Kordnyi length of a horizontal
line segment is equal to the Euclidean length of its projection to the zy—
plane.
We also define a family of automorphisms s;: H — H, ¢t € R,

st($7 Y, Z) = (t$7 tya tQZ)‘
The mappings s; dilate the metric; for ¢ > 0 and p,p’ € H,
dKor(st(p)a St(p/)) = tdKor(pvp,)'

When w € A is a horizontal vector, the one-parameter subgroup generated
by w can be written in terms of s, i.e., s;(w) = w!, but this is not true
when w is not horizontal.

We can also define the reflection through the z—axis 6: H — H by

0(.2’,', Y, Z) = (—.il?, Y, Z)‘
Note that 8 = s_1.

A wertical plane V is a plane that is parallel to the z—axis. For any such
plane, the intersection VN A is a horizontal line v(aX +bY"), and we can write
V =v(aX 4+ bY, Z). We define the slope of V as slope V' := slope(V N A).

We will frequently refer to the vertical plane Vo = {y = 0}. We will
also use the following projections. First, we define the natural (nonlinear)
projection IT: H — Vj along cosets of (Y) by II(v) = vY ~¥(") v € H. Equiv-
alently,

1
I(z,y,z) = (x,O,z - 2:1:y> )
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Note that II is not a homomorphism, but it commutes with scaling because
st sends cosets of (Y') to cosets of (Y), i.e.,

TI(s:(v)) = s¢(0)Y Y0 = 5, ()Y =) = 5, (0Y 7YV)) = 5,(T(v))

for all v € H and t € R.

Moreover, if V' is a vertical plane which is not a coset of the yz—plane we
define the projection Iy : H — V along cosets of (Y) by setting ITy (v) to be
the unique point of intersection of the coset v(Y) and V. In particular, given
p € H the projection Iy, : H — pVp is given by IL,y, (v) = YY)y ) ¢
H. When 0 € V, this likewise commutes with s;.

2.2. Kernels and symmetries. In this paper, we will consider kernels on
H which are either R— or R%-valued continuous functions on H\{0}. Given
a kernel K, let K denote the kernel IA((U) = K(v™1) for all v € H. Given a
Borel measure v on H, we formally define the singular integral operator T
by letting T% v(p) be the principal value

TX0(p) i=pv.(p) [ R(pw) dufw),

where
© ) [ gw)dv(w) = lim g(w) dv ()
Ba ) B(p,R)\B(p,r)

For a Borel set A C H we denote
pe-r) [ atw)au(w) = pvp) [ a(w)1atw) dviw)

when p is not specified, we take it to be 0.
This definition gives rise to several operators. For 0 < r < R, we define
truncated convolution operators 7% and TT{(R by

TR u(p) == / K(wp) dv(w),
H\B(p,r)

T v (p) = K(w™'p) dv(w),

/B(p,R)\B(pﬂ")
for any Borel measure v on H and any p € H such that these integrals
are defined. Likewise we define operators TVKT rf = TfR[ fdv] and TEf =
TE[fdv]. When K is understood, we will write T = T,

For a € Z, a kernel is said to be a—homogeneous or of degree « if

K(s¢(p)) =t*K(p), Vt e R,p € H.

A function f: H — R™is H-odd if f(0(p)) = —f(p) for all p; it is H-even if
f(0(p)) = f(p) for all p, and since § = s_1, a homogeneous kernel is H-odd
or H-even if it is homogeneous for an odd or even power, respectively.
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Lemma 2.1. Let W be a left-invariant vector field corresponding to a hor-
izontal element of H and let K be a—homogeneous. Then WK is (o — 1)—
homogeneous.

Proof. Suppose that K is a—homogeneous. Let u € H be an element of norm
1 and let t € R. Then
hy _
WK (u) = lim K(uW?) = K(u)
h—0 h
thy _
gy KW = K(si(w)
h—0 h
et gy, KW = K(si(w)
h—0 th
=t T K (s4(u)).

We now get that WK is (o« — 1)~homogeneous. O

Likewise, derivatives of H—odd kernels are H—even and vice versa.
Given an orthogonal matrix M € O(2), M acts on H as an isometry

M(z,y,2) = (M(z,y),det(M)z).
Given an R%-valued kernel, we say that it is orthogonal if
K(M(p)) = M(K(p))

for all p € H and all M € O(2).

We now define a specific kernel that is the main object of our study. Let
U:H — R, ¥(v) = ||v|x2,. By a celebrated result of Folland, see [Fol73]
and [CDPT07, Theorem 5.15], we know that the fundamental solution of
the sub-Laplacian equation

XE+Y? =0,
is (877) 1. Analogously to the Euclidean case, the Riesz kernel R is defined
as
R(v) := =Vp¥ = — (X ¥, V)
7) _ <2x(m2 +y%) — 8yz 2y(a? +y?) + 81:,2)
191 or ’ 1911 or
Since V¥ is symmetric around the origin and homogeneous of degree —2, its
gradient R(v) is an H-odd orthogonal kernel of degree —3. The smoothness
and the —3-homogeneity of R easily imply that it is a 3—dimensional stan-
dard Calderé6n—Zygmund kernel, see e.g. [Chr90, Chapter 6]. Therefore, if v
is a Borel measure on H such that
v(B(z,r)) < Cr3 Yz € H,r > 0,

then |TR(fdv)| < oo for f € Ly(v),p € [1,00) and |TER(de)\ < oo for
f € Ly(v),p € [1,00]. In fact, truncated singular integrals (with respect to
v) are finite for any Borel kernel which satisfies |K (v)| < |lv[|=3,v € H\ {0}.
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2.3. Intrinsic graphs and intrinsic Lipschitz graphs. In previous pa-
pers, intrinsic graphs have been defined as graphs of functions from the
vertical plane Vy = (X, Z) to R. In this paper, we introduce new notation
that defines them in terms of functions from H to R that are constant along
cosets of (Y). Any function from Vj to R can be extended to a function
that is constant along cosets of (Y), so the two definitions give the same
class of graphs, but this definition streamlines some notation. Di Donato
and Le Donne have used similar techniques to define intrinsically Lipschitz
sections in [DDLD22].

For any function f: H — R which is constant on cosets of (Y), we define
the intrinsic graph of f as

Ly = {oY ) ve Vo) ={peH| f(p) = y(p)}-

We define Uy: H — I'y by Wy(p) = pY T(®)=u(®) for all p. This map projects
H to I'y along cosets of (Y'). It is constant along cosets of (Y') and satisfies

(8) y(Vy(p) = f(p)  forallpeH.

Left-translations and scalings of intrinsic graphs are also intrinsic graphs,
and we can use (8) to determine the corresponding functions.

Lemma 2.2. Let f: H — R be a function which is constant on cosets of
(Y) and let g € H. Let h: H — R,

h(p) = y(9) + f(g™'p).
Then h is constant on cosets of (Y) and satisfies I'y, = gI'y and Wp(p) =
9V s(g~'p) for any p € H.

Proof. Since Wy is the unique map from H to I'y that satisfies W (p)(Y) =
p(Y') for all p € H, the map \il(p) = g¥ (g7 'p) sends H to gT's and satisfies
V(p)(Y) = g¥s(g"p)(Y) = g9~ 'p(Y) = p(Y)

for all p € H. Therefore, U = ), where
h(p) = y(¥(p)) = y(g¥s(9~'p) = y(9) + f(g~'p)
and gl'y = I'y,. ([

Lemma 2.3. Let f: H — R be a function which is constant on cosets of
(Y). Let t #0 and let h: H — R,

h(p) = tf(s; " (p))-

Then Ty, = s:(T') and Wp,(p) = s:(P(s; ! (p))) for any p € H.
Proof. As above, U(p) = si(Ur(s; 1 (p))
T(p)(Y) = su(Ty(sy (0))Y)

for all p € H. Therefore, ¥ = U}, where

hip) = y(¥(p) = tf (s (p))
and St(rf) = Fh. O

has image s¢(I'y) and satisfies

= si(sy ' (P)(Y)) = p(Y)
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Let X| = X and Xg = X — yZ be the left-invariant and right-invariant
vector fields defined in Section 2.1. For a smooth function f: H — R, we
have X|[f](v) = 5 f(vX")i=0 and Xg[f](v) = $§f(X"0)|i=0. If ¢: H = R
is constant on cosets of (Y'), we define the intrinsic gradient V as the vector

field
9) Vy(p) = Xr(p) — ¢(p)Z(p) = XL(p) + (y(p) — 0(p))Z.

When v € V), this agrees with the usual definition of the intrinsic gradient
Ve(v) = XL (v) —¢(v) Z(v); equation (9) is the extension of V, that is right-
invariant with respect to the action of (Y). If ¢ and S are smooth and
constant on cosets of (Y'), then for all p € H and ¢ € R,

VaBY') = —LB(X — oY) 2)pY )],

= LB(X ~ 60)2)"D)],_o = Vo),

so V0 is constant on cosets of (Y).

The intrinsic gradient V4 can also be interpreted in terms of the horizontal
curves that foliate I's. When ¢ is smooth, the restriction of V4 to Vg is the
smooth vector field Vy(v) = X — ¢(v)Z. It follows that Vf is foliated
by integral curves of Vg; we call these the characteristic curves of I'y. If
g: R — Vj is such a curve then v = W, o g is a horizontal curve in I'y, with

(10) Y (t) = XL+ Vgo(y(t)Y1,

and the following lemma holds.

Lemma 2.4. Let ¢,m: H — R be smooth functions which are constant
on cosets of (Y), let g: R — Vi be a characteristic curve of I'y, and let
v=Wg4o0g. For anyt € R and any k > 1,
. X dk dk:
Vgm(v(t)) = Vgm(g(t)) = @[m ov(t)] = @[m o g(t)]-

Proof. Since g is an integral curve of V4, we have

k d*
V¢m(g(t)) = @[m o g(t)]

for any & > 1. Since m and V¥m are constant on cosets of (Y), we have
V(’;m(fy(t)) = ng(g(t)) and m o g = m oy, which implies the lemma. [

In particular, if v is as above, then V4¢(v(0)) is the slope of the tangent
line to «y at (0). This implies that the intrinsic gradient is invariant under
translations and scalings. That is, if I'y = g95t(T'y), then V;o(gsi(p)) =
Vsé(p).

For 0 < A < 1, we define the open double cone
Coney = {p € H | Adkor(0,p) < [y(p)|}-
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This is a scale-invariant cone, and when A is close to 1, it is a small neigh-
borhood of (Y') \ {0}. An intrinsic graph I'y is a A—intrinsic Lipschitz graph
if pConey NI’y = 0 for all p € T'y. Equivalently, I'y, is A-intrinsic Lipschitz
if and only if Lip(y[r,) < A. If ¢: H — R is constant on cosets of (Y') and
I'y is a A-intrinsic Lipschitz graph, we say that ¢ is a A—intrinsic Lipschitz
function.

Lemma 2.5. Let A € (0,1) and let I'y be a A—intrinsic Lipschitz graph.
Then

‘y(U) - f(’l))’ = dKor(v7Ff), Vv € H.

Proof. On one hand, dior(v,I'f) < dkor(v,¥¢(v)) = |y(v) — f(v)], so it
suffices to show that dior(v,I'¢) 2 |y(v) — f(v)|. It suffices to show that
there is some C' > 0 depending only on A such that dio(pY*,T'y) > Claf
for all p € I'y and o € R; the lemma then follows by taking p = W;(v) and
o = y(v) - (v).

Let C = %7 so that A = % Let B(Y,C) be the open ball of radius C'
around Y. If ¢ € B(Y,C), then

Adkor(0,q) < AM1+C) =1-C <|y(q)l,

so g € Coney. Since Cone), is scale-invariant, this implies that B(Y®, Cla|) C
Coney,.
By the intrinsic Lipschitz condition, I'y N p Coney = 0, so

I'yNnpB(Y?*, Cla|) =Ty N B(pY*, Cla|) = 0.
Therefore, dko:(pY *,T'f) > C|a|, as desired. O

By [CMPSC14], if I'y is A-intrinsic Lipschitz, then [|[V4¢|« is bounded
by a function of A. Indeed,

A
Vi

see [NY20, Sec. 2.2]. Conversely, if ¢ is defined on all of H and V4¢ is
bounded, then ¢ is A-intrinsic Lipschitz for some 0 < A < 1 depending on
|Vl [CMPSC14].

When ¢ is smooth and p € I'y, we define the tangent plane to I'y at
p to be the vertical plane P, = p(X + Vy4o(p)Y, Z) with slope Vyo(p).
For t > 0, pst(p_1F¢) is the scaling of I'y centered at p, and as t — oo,
psi(p~'Ty) converges to P,. More generally, when ¢ is intrinsic Lipschitz, a
Rademacher-type theorem holds for almost every p € 'y, so the definition
of V¢(p) can be extended so that ps;(p~'T) converges to P, for almost
every p € I'y [FSSCO1].

The following lemma, based on Lemma 2.3 of [NY20], is helpful for bound-
ing intrinsic Lipschitz functions.

(11) IVedlloo <
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Lemma 2.6. Let 0 < XA < 1 and let ¥: H — R be a A—intrinsic Lipschitz
function. LetI' =T1y. Let g € I'. For any h € H,

2
(12)  h() ~ ()| € ol M) < (g, ).
Furthermore, for anyt € R and any p € H,
4./t
0) — ez < T,

Proof. Since v is constant on cosets of (Y'), it suffices to prove (12) when
h € T. Let m = dker(g,h(Y)). Let ¢ € h(Y) be such that dko(g,c) = m.
By the intrinsic Lipschitz condition,

ly(h)—y(c)] < ly(h)—y(g)|+m < Adkor(g, h)+m < A(m+|y(h) —y(c)|)+m.
This simplifies to give

and thus
W) — v (R)] = ly(g) —y(R)] < ly(g) — y(e)| + y(c) —y(h)] < 12_%

For any ¢t € R and any p € H,
2 4
900 ~ 02| = [(Eu(p) ~ SO (D) Z)] € 212 = 21,
O

This implies the following lemma, whose proof we omit; see also [FS16].

Lemma 2.7. Let ¢ be a A—intrinsic Lipschitz function, let p € I'y, and let
r > 0. There is a ¢ > 0 depending on A such that

I(B(p, er)) € I(B(p,r) NT) C I(B(p,)).

In particular, H3(II(B(p,r))) ~ L(II(B(p,r))) ~ 73, where L is Lebesgue
measure on Vj.

Lemma 2.8. There is a left-invariant Borel measure p on H such that
wu(S) = L(II(S)) for any intrinsic Lipschitz graph T' and any Borel set S C T.
Further, if m: H — R is a Borel function which is constant on cosets of (Y)
and S C I" is Borel, then

(13) /Sm(v) dp(v) :/H(S) m(v)dL(v)

if the integrals exist. If A € (0,1) and T' is A—intrinsic Lipschitz, then
H3(S) ~x u(S). In particular, p|r is Ahlfors 3—regular with constants only
depending on A.

This will be our “default” measure on intrinsic Lipschitz graphs, and we
will abbreviate du(v) by dw.
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Proof. For S C H, let

14 S) = lim inf LII(U
(14) ) =l fof, 3 £010)

where C¢(95) is the set of covers of S by sets of diameter at most e. This is
a Borel measure on H by [Mat95, Theorem 4.2], and the restriction of u to
any intrinsic Lipschitz graph is the pullback of Lly,, i.e., u(S) = L(II(Y))
for any intrinsic Lipschitz graph I' and any Borel set S C I'. Consequently,
w satisfies (13).

By the area formula, [CMPSC14, Theorem 1.6], if ¢ is a A-intrinsic Lip-
schitz function and S C I'y is Borel, then

H3(S) ~ /H(S) 14+ (Vo (v))2dv = /S \/ 14+ (Veo(v))2dv =y pu(S).

Since, by [FS16, Theorem 3.9], H3|r ,» is an Ahlfors 3-regular measure this
implies that ju|r, is also Ahlfors 3-regular with constants only depending on
A

Now we check that i is left-invariant. It suffices to show that L(II(gU)) =
L(II(U)) for any g € H and any Borel set U C H. First, for any g, h € H,

II(gh) = ghy ~¥@—v(h) — 4 (h ) y*y(h)> YY) = TI(gII(h)).

Let By: Vo — Vo, Bg(v) = H(gv), so that II(gU) = B4(II(U)). Let g =
(z,y,2) € Hand v = (2/,0,2") € Vy. Then

1
By(v) = T(gv) = go¥ ¥ = (:c + 2,0,z 4 2 — ya! - zmy) .

That is, B, is an affine transformation of Vp with determinant 1. Thus
L(II(gU)) = L(B,(II(U))) = L(IL(U)). By (14), p is a left-invariant mea-
sure. ([l

2.4. Taylor series estimates. In this section, we prove a Taylor-type es-
timate for functions on intrinsic Lipschitz graphs, which we will use exten-
sively in the rest of the paper. Let a be a smooth intrinsic Lipschitz function
and let m be a smooth function which is constant on cosets of (Y'). (In par-
ticular, we can take m = a.) We will show that m is close to a constant
function or an affine function when the derivatives V,m, ng, and Zm are
small.

Lemma 2.9. Let 0 < A < 1 and let a: H — R be a smooth \—intrinsic
Lipschitz function. Let m: H — R be a smooth function. Suppose that
a and m are constant on cosets of (Y). Let p € T'y and let ¢ € H. Let
r =dger(p,q), L = \/1);7, and B = B(p,2(L + 1)r)). Then

m(q) = m(p) + Ox (rlIVamllr.(m) + r?10:mllL. ()

and

m(q) = m(p)+(x(q)—=(p))Vam(p)+O0x (r*[IVemlr () + 10:mll1.(5)]) -
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In particular, if 0 € Ty and p = 0, then a(0) =0, so

la(g) + a(0(9)| = Ox (r*(IVaal o (m) + 100l L)) -
where 0(z,y,z) = (—x,—y, z).

Proof. By (11), we have |Vaa|loo < L. Let v: R — I’y be a horizontal curve
through p. We parametrize 7 so that z(v(t)) = ¢ for all ¢ € R. In particular
v(z(p)) = p. By (10), |/ ()| < L+ 1 for all ¢, so Lip(y) < L+ 1. In
particular, v(z(¢)) € B(p, (L + 1)r).

Recall that Iy, : H — pVj is the projection Iy, (s) = syv)—u(s). for
any s € H, we have

dKor(p7 HpVo (3)) < dKor(pv 8) + ‘y(p) - y(s)‘ < 2dK0r(pv S)'

Then ¢ := Iy, (v(2(g))) and ¢ := IL,y, (¢) are two points in B N pVj with
the same z—coordinate, so ¢’ = ¢'Z* for some zp € R such that |z| <y 72.
Since m(q) = m(¢') and m((x(q))) = m(g),

m(q) = m(y(2(0))) + Or(r?0:m| Lo (5))-
Since (m o7)'(t) = Vem(y(t)) and (m o )"(t) = V2m(y(t)), the Mean
Value Theorem implies that
m(y(z(q))) = m(p) + O(r[Vam|l L. (5)),
SO
m(q) = m(p) + Ox (r||[Vamlr 5y + r*110:m| 1 (B)) -
Taylor’s theorem implies

m(v(z(q))) = m(p) + (x(q) — 2(p))Vam(p) + OA(r*(|Vamll1 . (5)),

SO
m(q) = m(p)+(x(q)—z(p))Vam(p)+Ox (F*(IVamll .5 + [0:mll 1. (5)))
as desired. O

3. CONSTRUCTION

In this section, we construct the family of graphs that we will study in the
rest of this paper. Our construction is based on the construction in Section
3.2 of [NY20]. The authors of [NY20] introduced a process to construct an
intrinsic graph I'y, that is far from a vertical plane at many scales (see Propo-
sition 3.4 of [NY20]). Unfortunately for our purposes, the intrinsic gradient
V1) is Lo—bounded but not bounded, so I'y is not intrinsic Lipschitz. In this
section, we will modify that construction via a stopping time argument so
that it produces an intrinsic Lipschitz function with similar properties. To
keep this paper self-contained, we will reproduce the construction of [NY20]
in parallel with our modification.

The construction depends on three parameters: an integer aspect ratio
A > 1, an integer scale factor p > 1, and a number of steps i. In [NY20],
one starts with a function ¢y = 0 and constructs ;41 by perturbing ;.
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The difference ;11 — 9; is a sum of bump functions supported on regions
in Vj with aspect ratio A, and the scale of the perturbations decreases by a
factor of p at each step.

Recall that if ¥: Vj — R is a smooth function, then it induces a smooth
vector field Vy, = 0, — 10, on Vj, and we call integral curves of V,, char-
acteristic curves. Since 1 is smooth, there is a unique characteristic curve
of 'y, through each point of Vy. A pseudoquad Q) C Vy for I'y, is a region of
the form

Q= {(:E,O,Z) eV | LS [a’a b]?'z € [gl(x)’QQ(x)]}

where g1, ¢g2: [a,b] — R are functions whose graphs are characteristic curves,
ie., gi(x) = —¢(z,0,g;(x)) for all z. In particular, g; € C([a,b]). We
define the width of Q to be §,(Q) = b — a and we define the height to
be 0,(Q) = g2(a) — gi(a). Since the distance between the top and bottom
boundary varies, there is no single canonical height, but this choice is enough

for many applications. The aspect ratio of () is the ratio M; the square

V6:(Q)

root in the denominator makes this ratio scale-invariant.

We say that two pseudoquads are disjoint if and only if their interiors are
disjoint. We say that U = Q1 U ---U @, is a partition of U if the Q);’s are
disjoint.

Let U = [0,1] x {0} x [0, 1] and let x: [0,1]> — R be a nonnegative smooth
function with suppx C (0,1)2. We require that ||k|ls < 1, s(s,t) > 0 for
s,t e [%, %], and that the partial derivatives of k of order at most 2 are all
in the interval [—1,1]. (The assumption on partial derivatives is used in
[NY20] to bound certain derivatives when p > 8; it can be dropped at the
cost of changing some constants.)

We will use induction to construct functions f; and 1; supported on U.
We start with fo = 0 and 19 = 0, and for each i > 0, we let r; := A~ lp~?
and construct:

e a partition U = ;1 U---UQ; 1, such that each Q; ; is a pseudoquad
for T'y, with width 6,(Q; ;) = Ar;, height 6,(Q; ;) = 72, and aspect
ratio A,

e a collection of bump functions &; ; such that &; ; is supported on @; ;
and || oo = A1y,

e aset J; C {1,...,k;} such that |Vy, f;| < % on Q; ; for every j € J;.
Furthermore, we let S; := | kP\ s Q;,; and require that S; D
Sifl (Where 871 = @)

We then define k; := 252:1 Kigs

V; = E ’ii,j = ]-Sfﬁia

Je€J;

jE{l,...,

Yir1 = Y¥; + k; and fi1q = f; + v;. The 9;’s are the functions constructed
in [NY20], and the f;’s are a “stopped” version of the v;’s. That is, when
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|V ¢, fil gets too large on a pseudoquad, that pseudoquad is added to S;, and
the construction ensures that fx|s, = fils, for all & > i.

We first construct the @;;’s. Suppose that we have already defined f;.
Let

G; = {(mAri,O,nriz) m,n € Z} ,
let k; = A_lr?, and let v; 1,v;2,...,v; be an enumeration of G; N ([O, 1) x
{0} x[0,1)). Let ®(1);)5 be the flow map of V, on Vp; so that ®(t;)o(v) = v

for all v € V and the map s — ®(¢;)s(v), s € R is a characteristic curve of
I'y,. In particular, x(®(1;)s(v)) = x(v) + 5. Let

Rij(s,t) := ®(th)s(vi; Z")
and let
Qij = Ri;([0, Ari] x [0,77]).

This is a pseudoquad of width Ar; and height 7’?. Because the top and
bottom edges of U are characteristic curves of 1;, we have @Q; ; C U for all
j. Indeed, U = Qi1 U---UQ;y, is a locally finite partition of U. (Local

finiteness follows for instance from Lemma 3.8.) Let Q; = {Q;1,...,Qix, }-
For each @); j, we define

(15) rig(Rij(s,t)) == A ran(A™ s, 721,

and let x; := Zj kij. Note that k; is smooth and that it is zero in a

neighborhood of 0Q); ; for each j.

To define S5; and v;, we will need some notation. For every k, we say
that a pseudoquad Q' € Q41 is a child of Q € Qy, if int(Q') Nint(Q) # 0.
Note that this does not necessarily mean that Q' C @Q; the pseudoquads in
Qr+1 do not subdivide the pseudoquads in Q. Nonetheless, by the local
finiteness of Qp11, every @ € Qy has only finitely many children.

Let C(Q) be the set of children of @ and define C™(Q) inductively so

that C°(Q) = {Q} and C"(Q) = Ugreen-1() C(Q'). For any set M of

pseudoquads, we let
Uwm = {J @
QeEM

For Q € Q; and I > k, let Q) = |J(C"*(Q)). Let D(Q) = U>>,C"(Q) be
the set of descendants of Q).

If @ € Qr and v € int(Q), then any neighborhood of v intersects the
interior of some child of Q. It follows that v lies in the closure of |J(C(Q)),
and since C(Q) is finite, v € |J(C(Q)). Since the closure of int(Q) is @, we

have Q@ C J(C(Q)); in fact, J(C™(Q)) € U(C"TH(Q)) for all n.
Let S; C Q; be the set

S= U c@u {Q € Qi max Vs fil2)] =

QES; 1

N
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where S_1 = 0. Let S; = J(S;) and let J; = {j : Qi; € Si}. Then S;11 D S;
for all 7. Let v; := Zjer- Kij = lgek; Since K;j is zero on a neighborhood
of 0Q); ;, this is smooth. We define fi11 = f; +v; and ¥;11 = ¥; + k5.

Note that S; C S; for all @ < j, so v; is zero on a neighborhood of S;.
Therefore,

Conversely, if v € S;_1, then for all k <7 — 1, v € Sg and ki (v) = vg(v), so
1—1 i—1

(17) filse, =D walse, =D mlse , = wilse -
k=0 k=0

The functions 1; are exactly the same as those defined in Section 3.2 of
[NY20] and our k; correspond to their v;. We will show that if p is sufficiently
large, € > 0 is sufficiently small, and i < eN*, then f; is intrinsic Lipschitz
and the set on which f; and v; differ is small.

Proposition 3.1. Let A > 1 be sufficiently large. If p is sufficiently large
(depending on A), then for each i, f; is a smooth function supported in U
such that ||V, fille < 1. In particular, f; is intrinsic Lipschitz. Further-
more, filse = ilse  and p(S;) S iA™4,

By (17), it suffices to show that ||V, fille <1 and u(S;—1) S iA™

We will need some bounds from [NY20]. As in [NY20], let
Di =V, Yi1 — Vi, Di =V, fiv1— V. fir

By (16) and (17), we have fit1]se = ¥it1]se and fir1]s, = fils,. Therefore,
D; = 1g¢D;. In particular, ||Djls < [ Dil|oo-

The following bounds on D; are based on the bounds on D; proved in
[INY20].
Lemma 3.2. Let j <i and x,y € Q; . Then

1Dj(x) — Dj(y)| S A2p7 "

Proof. The Dj;—version of this inequality is Lemma 3.12 of [NY20]. The

proof only uses the Lo, bounds of D; and derivatives of D;. As Ej satisfy
those same bounds, the proof also works for D;. ([l

Lemma 3.3. For every p > 8 and A > 1, we have
IDilloc SA™2, Vi>0,

(18) (Di, D)l S AT~ YO<i<j.

Proof. The corresponding D; version of the inequalities is Lemma 3.9 from
[NY20]. The first inequality now follows from the bound || D;|lec < || D;|oc-
The proof of the second bound in [NY20] uses the bound

Dy, (w) Dy (w) dw
Qn,k

S A74pmfan3(Qn7k)
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for n > m.
Let 0 <7 < j. For each 1 < k < kj, we consider two cases. If Q1 € S,
then D; = 0 on Qj, so fQ'k D;Djdw = 0. Otherwise, if Q;x ¢ S;, then
Js

int@;rNS; =int Q;1NS; =0, so D; = D; and Dj = Dj on Q; . Therefore,

Di(w)D;(w) dw
Qjk

S ATTTHA(Qim).-

Since the Q; ;’s partition U, we sum this inequality over k to obtain (18). [J

Now we use these bounds to show that ||V, filloo < 1.

Lemma 3.4. If A is sufficiently large, then for all i, |V, fillco < 1.

Proof. We suppose that A is large enough that ||Djee < 1 for all i and
proceed by induction on i. Since fy = 0, the lemma is clear for ¢ = 0.

Suppose that i > 0 and ||V, fillco < 1. On one hand, if v € S;, then
|vf1fl(v)| < %7 and

IV oy firt ()] < V5, fi0)] + [ Dilloo < 1.

On the other hand, if v € S, then |Vy_  fir1(v)] = [Vy fi(v)] < 1 by
(16). O

It remains to bound pu(S;). Let ¢ > 0. Recall that S; = (J(S;) and that
any pseudoquad Q € S; either satisfies ||V, fill () = § or is a child of
some pseudoquad of S;_1. Let

M;=8\ |J c@.

QES;—1

Then if M € M;, then ||vfi_1fi*1(li)||Loo(M) > % IfQes; \MZ, then @
is a child of an element of S;—1. By induction, any @) € S; is a descendant
of an element of §; for some j <4, i.e., @ is a descendant of an element of
B; := Uj—o M;. Furthermore, if M, M" € B;, M # M’, then neither is a
descendant of the other, so M and M’ are disjoint.

We will thus bound p(S;) by bounding the size of 5;, then bounding the
size of the set of descendants of pseudoquads in B;. We bound B; by showing
that Vy, f; is large on the pseudoquads in B;.

Lemma 3.5. Suppose p is sufficiently large. Let Q € B;. Then |V, fi(v)] >
% for allv € Q.

Proof. If Q € B;, then @ € M; for some j < i, so |V, fillr..) = %
Furthermore, since @ C Sj, (16) implies that Vy, f; = V, fi on Q.
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Let y € Q be such that [V, f;(y)| > 1/2, and let z € Q. By Lemma 3.2,
Vi fi(@) = V5 i) = IV, fi(@) = Vi, [;(y)]

J—1
< IDi(x) = Di(y)| S DA 2pF 7 <2472
k=0

If p is sufficiently large, this gives |V, fi(x) —Vy, fi(y)| and thus |V, fi(z)| >
%, as desired. O
Thus, we can bound the size of M, using the following bound on Vy, f3.
Lemma 3.6. For all k,
IV fillz S A7V
Proof. By Lemma 3.3,
2

k-1
IV 5, fro(2)]? dl‘—/ dx
k—1 _ _ k—1 oo
ID;II7, +2 Y (Di,Dj) SkAT Y Y AP SkAT,
Jj=0 0<i<j<k—1 =0 k=1
so ||V, frlla S A72VE. 0

Now we bound the size of the set of descendants of a pseudoquad. We
will need the following lemma, which is part of Lemma 3.10 of [NY20].

Lemma 3.7. Let R, be the z-coordinate of any of the maps R; ;. If p > 8,
then for all (s,t) € [0, Ar;] x [0,7?],
3 OR,
2 <
4~ Ot
The following bound on the heights of pseudoquads follows immediately.

Lemma 3.8. Leti >0 andlet 1 <j<k;. Let ] CR and g1,g2: I — R be
such that

4
t) < —.
(s:6) < 5

Qi»j = {(33707 Z) | rel,ze [gl(w)792($)]}'
Then

4
(19) 2 < go(z) —g1(z) < grf, Vo e I.

3 9

4 ’L
Proof Let xp = min(Z). Then @;; is the image of a map R;;: [0, Ar;] X
[0,72] — V{ such that R; j(s,t) = (zo + 5,0, R.(s,t)). In particular, gi(z) =
RZ($ 70,0) and ga(x) = R,(x — x0,7?). The Mean Value Theorem along
with Lemma 3.7 then gives the desired bound.

O

As each @; ; has width Ar;, we immediately get the following corollary.
Corollary 3.9. For any i,j > 0, we have that %AT? < Qi | < %AT?.
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For each pseudoquad @, let Q = [J(D(Q)) so that

(20) sic |J @

QeB;
Our next lemma bounds 1(Q).
Lemma 3.10. For any i and any Q € Q;, u(Q) < u(Q).

Proof. Let I C R and g1,g92: I — R be such that I is an interval of length
Ar; and

Q=A{(.02) eV |z el ,z€g()g)}.
We consider | J(C(Q)). If @' is a child of @, then

Q' = {(x,0,2) e Vo |z eI,z € [g1(x), g(x)]}

for some I', g}, and ¢} such that I’ C I.

By our choice of @ and @', the top and bottom curves of @) are charac-
teristic curves of 1); and the top and bottom curves of Q' are characteristic
curves of ;1. Since k; is 0 on a neighborhood of 9Q), we have ¥; = ;11
on 0@, so the top and bottom curves of ) are also characteristic curves
of 1;y1. Since ¥;41 is smooth, its characteristic curves don’t intersect, so
the top and bottom edges of Q' don’t cross 9Q. Thus, since there is some
x € I' such that [g1(z), g2(z)] intersects [¢}(x), g5(x)], it must be true that
[g1(), g2(z)] intersects [¢}(x),g5(x)] for all z € I’ By Lemma 3.8, this

implies [g](2), g(z)] C [g1(x) — 372,1, g2(z) + 377,4] and thus

U(C(Q)) C {(:C,O,z) eW:xzel,ze [gl(az) — grfﬂ,gg(aj) + ;lrfﬂ] } .

By induction,

||M8
co\»h

QC (.’E,O,Z)E‘/O rel,ze gl Zgr]-i-hg?

The upper and lower bounds are geometric series, so by Corollary 3.9,

H(Q) < 1@+ Dty - Ary < (@) + L p Ar} < 4(Q).

Finally, we prove the proposition.

Proof of Proposition 3.1. Let i > 0. By Lemma 3.4, we have ||V, filloc < 1.
It remains to bound the measure of S;.
By (20), we have S; C UQeBi Q, where B; is a collection of disjoint

pseudoquads. Furthermore, by Lemma 3.5, we have |V, fi(v)| > i for
all v € J(B;). By Lemma 3.10,

u(S)< Y w@ < Y w@) =n(UJs)).

QEB; QeB;
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By Chebyshev’s Inequality and Lemma 3.6,
u (U®B)) < 161V, 4113 5147,
so u(S;) <iA™*, as desired. O

In addition to the intrinsic Lipschitz condition, f; satisfies a higher-order
Sobolev condition. We state this condition in terms of a family of differential
operators on smooth functions Vy — R. Let Z be the operator Z = %. The
pseudoquads in Q; have width Ar; and height rf, and we define rescaled

operators

Zi = T?Z 32 = A’l“ini.

For i > 0 and n > 1, we let {Z, 81}” denote the differential operators E
that can be expressed as £ = E - - - E,, where E; € {Z,, 8}} forall1 < j <n.
We call these words of length n in the alphabet {Z, 81} As a special case,
{Z;,0;}° = {id}.

The following lemma bounds Ef; when E € {Zl,él}k This generalizes
the bounds in [NY20, Lemma 3.10].

Lemma 3.11. Given d > 2, there exists po > 0 so that if p > po, © > 0,
k<d, and E € {Z;, 0;}*, then

1Bvilloo Sa A rs.
Furthermore, if E ¢ {id, 31}, then
1B filloo Sa A™trip™ .
In particular,
21) IV fillo S AP 1Zfilloo S A7t

~ ~

The coefficients in this lemma are related to the dimensions of the pseu-
doquads in Q;. As noted above, these pseudoquads have width and height
corresponding to 31 and ZZ The coefficient A~1r; comes from the fact that
1Villoo = A774|6]loo & A™1r;. Thus, when p is large, f; is close to affine on
any of the pseudoquads in Q;.

The proof of Lemma 3.11 is rather technical, and we leave it to Appendix

A.

3.1. Rescaling. Let ¥; = I'y,. Because the singular integrals we consider
are scale-invariant and translation-invariant, it will be convenient to define
rescaled and translated versions of f; and v;. Let ¢ > 0 and let pg € ;.
Let s; :=s,-1. Let a = apy: H = R,
alp) =" (—y(po) + fi(pos; ' () -
By Lemmas 2.2 and 2.3, we have I',, = si(po_lzi) and

Ualp) = si (pg "Wy, (pos; ' (p))) -



28 VASILEIOS CHOUSIONIS, SEAN LI, AND ROBERT YOUNG

In particular, we have 0 € T',, and «(0) = 0.
Let v = Ypoi: H = R, v(p) = r; 'vi(pos; *(p)). Then for any ¢ € R, we
have
alp) +t1(p) = 7 (=y(po) + (fi + tvi) (pos; ' (0)))
and
Loty = si(0g T pirns)-
These functions satisfy the following consequence of Lemma 3.11.

Lemma 3.12. There exists pg > 0 and ¢ > 0 such that if p > pg, i > 0,
k <3, and a and v are defined as above for some py € ¥;, then ||7v]c <
cA7 |[Vaalloo <1, and

(22) [Fy oo < cA™#Val)1 VF € {Vq, Z}*,

where #NV o(F) is the number of occurrences of Vo in F. Moreover, if

F ¢ {id,V,}, then
(23) IFa|e < cA™#ValE) 1yt
Proof. In fact, we will show that for any d > 2, there is a pg such that if
p > po, @ > 0, then (22) and (23) hold for all k¥ < d. Let 0 = AV,. It
suffices to show that if p is sufficiently large, then ||[Fv|s Sq A7! for all
F €{0,Z}* and, if F ¢ {id, 0}, ||Falle Sap !
Let r = r; and s = s,-1. Let L(g) = s(py 'g) so that T, = L(X;) and
a(p) =171 (=y(po) + (fio L™H)(p)),
v(p) =" w0 L7 (p).
Since L sends horizontal curves in 3; to horizontal curves in I'y, it sends

integral curves of Vy, to integral curves of V. Therefore, L,Vy, = r~1V,,
and

(24) L.0; = L.(ArVy,) = Arr='V, = 0.

Likewise, L.Z; = L.(r?Z) = Z.

Let F = F(8,Z) be a word of length at most d in the letters d and Z
and let F' = F(0;,Z;) be F with 9 replaced by &; and Z by Z;. Then
L.(F")=F,so

Fy=FrYvoL Y =r'Fly]JoL™"
Lemma 3.11 implies that if p is sufficiently large, then
1FY oo = 7 HIF il oo Sa AT

This proves (22).
Similarly, if F' # id, then

Fa= r_lF[—y(po) + fio L_l] = r_lF'[fi] o L1,
If F= é, this implies that
Vaoa = A 9o = A_lr_léifi oLt = Vi fio L
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50 [|[Vat|loo = ||V, filloo < 1. Otherwise, if F' ¢ {id, 9}, Lemma 3.11 implies
that ||Falle Sq A71p~1 < p~!. This proves (23). O

4. LOWER BOUNDS ON S—NUMBERS

In this section, we prove Theorem 1.2. In fact, Theorem 1.2 is an imme-
diate consequence of the following bound.

Proposition 4.1. There is a 69 > 0 with the following property. Let 0 <
§ < 0o, A>1, and p > 0. If p > 1 is sufficiently large, N = |6A*|, fi is
constructed as in Section 3, I' =T, , and U = [0,1] x {0} x [0, 1], then

R dr
/ / Br(v,r)P dv— > NA™P > §AYP.
0 Vin ) r

We prove this by introducing a parametric version of fr(v,r). For any
measurable function ¢: H — R which is constant on cosets of (Y), we define
V(v,r) =(B(v,r)) and

4 .
wlo,r) =770 i ¥ = Al ),

where Aff denotes the set of functions of the form «(v) = ax(v)+b, a,b € R.
Note that all vertical planes that are not parallel to the yz—plane are graphs
of functions in Aff.

When v is intrinsic Lipschitz, S, and ~, are comparable.

Lemma 4.2. Let A € (0,1). There is a ¢ > 1 such that for any A—intrinsic
Lipschitz function ¢: H — R, any x € I'y,, and any r > 0,

Br, (z,¢'r) Sx v (@,7) Sx Br, (@, cr).
The proof of this lemma uses the fact that if h(v) = ax(v)+0b is affine and
P =T, is the corresponding vertical plane, then dko. (w, P) ~4 |y(w)—h(w)|

for all w € H. Since the constant in this inequality depends on a, we will
need the following lemma.

Lemma 4.3. Let A € (0,1). There exist m > 0 and € > 0 such that for any
A—intrinsic Lipschitz graph I'y, any u € I'y, and any vertical plane P, if

(25) / dicor(10, P) dpa(w) < er”,
B(u,r)NTy

then | slope P| < m.

Proof. Since T'y, is Ahlfors 3-regular, there is a ¢ = ¢(\) > 0 such that
w(Ly N B(w, s)) > es? for all w € T'y, and s > 0.

Let € = ¢6%, let § = %, let m = (46)7!, and let P be a vertical plane
satisfying (25). We claim that if v € I'y N B(u, §), then dko (v, P) < 267.

Suppose not. Then B(v,dr) C B(u,r) and
dxor(I'y N B(v,ér), P) > 6,
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S0
/ dicor(w, P) dp(w) > p(Ty N B(v, dr))dr > es*r* = er’.
B(u,r)NTy

This is a contradiction, so dke (v, P) < 2Jr.
It follows that dior(u, P) < 26r. By Lemma 2.6, [{p(uX®)—(u)| < 125|7|
for any = € R, so if v := W, (uX®"), then

1
Aigor(1,0) < 887 + [(X™) Y] < oor + o< T
That is, v € I'y N B(u, 5), s0 dkor(v, P) < 26r.
Let ' € PN B(u,2dr) and let v € PN B(v,2r). Then
lz(v") — z(u)| > |x(v) — x(u)| — 46r = 46r
and
r
ly(v) = y(W)] < ly(v) = y(w)| +4dr < 7 +4or <.
Thus
ly(v') — y()] 1
1 P)| = < (46) =
\sope( )’ | (’U’) _ JI(UI)’ = ( ) m,
as desired. (]

We now prove Lemma 4.2.

Proof of Lemma 4.2. Let I' = T'y, let € I', and 7 > 0. Let ¢ = ¢(A) > 0 be
as in Lemma 2.7, so that V(p,s) C II(B(p,cs) NT) for all p € I and s > 0.
Note that by the area formula, we have

H(S) ~ /H(S) S+ Voib(v) do :/S,/l V() dv ~ ()

for any Borel set S C T'.

We first prove that Br(z,c™1r) <y vy (2, 7). Let h: Vj — R be an affine
function so that r=*|¢) — k|1, (v(zr)) < 27¢(z, ) and let P = Tj,. Then
dior(v, P) < [tp(v) — h(v)] for all y € T and II(B(x,c'r)NT) C V(x,7), so

Bla, e r) Syt / dicor(v, P) dpu(v)
B(z,c~1r)nl’

—4
<[ INCCROLET

< 2’71&('%" T)'

Next, we show that vy (x,r) Sy Br(z,cr). Let m = m(X), e = €(\) be as
in Lemma 4.3. Suppose first that Sr(x,cr) < §. Then there is a vertical
plane P that satisfies (25) and thus |slope(P)| < m. Let g be the affine
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function such that I'; = P; then dko: (v, P) =~ |g(v) — ¢(v)| for all v € T
(Lemma 2.5). Therefore, since V(z,r) C II(B(p,cr) NT),

vw<w,r>s;r—4jc( o) — 00l du(e)

<ai 7“_4/ dxor(v, P) dp(v)
B(z,cr)nI’

S Bz, er).

Now suppose fr(z,cr) > § 2 1. Let h be the constant (affine) function
h(v) = ¢(x). By Lemma 2.6, for y € B(x,r), we have

2
1—A

r,

[h(I1(y)) — Y (I(y))| = |(z) = P(y)| <
so |h(v) —Y(v)| Sy r for all v € V(x,r). Therefore,
<

Yo(@,r) < F = bl ey Sart o ra(Vie,r) S 1.5, Be(z,r),
as desired. O

We can thus prove Proposition 4.1 by bounding v,, and vy,. We will prove
the following.

Lemma 4.4. For any A > 1, the following properties hold for all sufficiently
large p. Let it < k. Letv € I'y, and let b > 0. Then

(26) ’Yfi(v’bri) Sb Ailpil'

Let J; be as in Section 3, let j € J;, and let s € [%Am, %Ari], to € [0,72],
and w = Yy, (R; j(s0,t0)). Then

(27) Ty, (U), 87“2') Z AL

Proof. First, we prove (26). Let L: H — R be the affine function L(p) =
fi(v)+(z(p)—z(v))Vy, fi(v) and let v/ = U, (v). Lemma 2.9 and Lemma 3.11
applied to f; imply that for all v € H,

| fi(u) = L(w)| Sx dior (v, w)2(IVF, filloo + 1Z filloo)
(2<1) ’ N2 4—1 —1 —1
S dror(V,u)cAT p

Since
k—1
dK0r<U/7U) < ’fz(v) - fk(v)’ < Z ”VmHoo < 2A71TiH"£Hoo < 27,

if u € B(v,br;), then dgor(u,v') < (b4 2)r; and
) — L] < (b+ 247 0 s 5 A7
|fi(u) = L(w)| < (b +2)7A" p " 'ry Sp A p
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Therefore,

fi (U7 brl) < (bri)_4‘|fz L||L1 (v,bri))
So 75 i = Dl Lo (Blopry) So A~ 107

as desired.

Now we prove (27). First, let w’ = Uy, (w). Then, as above, dor(w, w’) <
27, so V(w',6r;) C V(w,8r;). Then ~,, (w,8r;) 2 v, (w', 6r;), so it suffices
to prove that 7, (w', 6r;) > A~L.

We first apply a change of coordinates. Let j € J; and let R = R; ;, so
that w’ = Uy, (R(so,t0)). Let D = R([so — 57,50 + 157:] x [0,77]). We
claim that if p is large enough, then D C V(w', 6r;).

Let ¢ € [0,r?]. Lemma 3.7 implies that |2(R(so,t)) — 2(R(s0,t0))| < 372,
so by (21),

|fi(R(s0,1)) = fi(w)] < | Z fillos|2(R(s0,8)) = 2(R(s0,t0))| S A7 p™'ri.
We suppose that p is large enough that |f;(R(so,t)) — fi(w')] < r;; then
dKor(\I/fl(R(SOat))aw/)
< 2y/[2(R(s0, 1)) — 2(R(s0,t0))| + | fi(R(s0,1)) = fi(w)]

/4
<2 gr?—H"i < 4r;.

For ¢ € [0,7?], the curve A(s) = Wy, (R(s,t)) is a horizontal curve on I'y,
with velocity Ai(s) = X 4+ Vy, fi(Ai(s))Y. Since ||V, filloo < 1, we have

dicor(Me(8), M (s)) < V2|s — ).

If |s — so| < 1y, then

dior(w', W, (R(s,1))) < dior(w', 5, (R(s0,1))) + dicor (A (s0), Mi(s)) < 67,

so R(s,t) € II(B(w’,6r;)). Thus D C V(w',6r;).
For any h € Aff,

11— Bl (v orey / Vi) — h(v)] dv

50+12
> / ws(R(s,1)) — h(R(s, )| dtds,
4 50— 157
where we used Lemma 3.7 to bound the Jacobian of R.

Since h € Aff is constant on vertical lines, there is an affine function
ho: R — R such that h(R(s,t)) = ho(s). Since j € J;,

Vi(R(s,)) = kg (R(s,8) 2 A~ rin(3,),
i =

where § = A~ 1r1s and 2,

(]
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Let
1

M= min / k(@ 8) — ¢| do.
CGR 0
6[4’4
We chose & so that « is zero on 0[0, 1> and positive on [1, ]2, so M > 0 by
compactness.
Since so € [3, 2], if s € [so — 7574, S0 + 157, then § € [§, 2]. Therefore,
substituting ¢ = r; ~2¢, we find

30+ﬁ7‘1 R
Wi — Bl vt iy 2 73 / / A (3, 8) — ho(s)| di ds

50**7"7,

1.3 S0+ 33 1.4
> A" 7’2‘/ MdszéA_ r; M.
S

0_%"'1
This holds for all h € Aff, so 7, (w’, 6r;) > A~L. O
Finally, we prove Proposition 4.1 and Theorem 1.2.

Proof of Proposition 4.1 and Theorem 1.2. By Proposition 3.1, there is a
§ > 0 such that if 0 < i < §A*, then >ics; |Qigl > 3. Let N = [0A*], let
f=fn,and let I' =T.

Let ¢ be asin Lemma 4.2. Let 0 <i< N and j € J;. Let s € [%An, %An]
and t € [0,7?] and let w = W;(R; ;(s,t)). For any 1, ¢: H — R, ~ satisfies
the reverse triangle inequality

’y¢+¢,(w, T) > ’Yw(wv r) - 7¢(w7 T)a
so since f = fi +v; + Zg;}ﬂ Vins

o0

(28) 7f(w7 87’1') > T (w7 87'73) — <w7 87'1') - Z Ym ('U}, 87'i)'
m=1+1

Lemma 4.4 implies that when p is sufficiently large, v,,(w,8r;) > A~! and
vf (w,8r;) < A7 p~L. Furthermore, for m > 1, [|vm|loc S A7 rum, so

Vo (W, 875) < (873) TV (w, 8r3)| - [vmlloc S i AT S AT

~ "1

Therefore,

v (w, 8r;) + Z Yo, (W, 87;) S A™ 1 71.
m=i+1

When p is large, this is small compared to 7, (w, 87;), so

1
ve(w,8r;) > =y, (w, 8r;) 2 AL

P
and Br, (w, 8cr;) 2 vy(w,8r;) 2 !

A7 In fact, for r € [8cry, 16¢r;],
Br(w,r) = Br(w,8cr;) = A™L
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Therefore, by Lemma 3.7,

2 2

3 §An T

ey o) dv= 3 [ [ (@R, 0).r s
34T

2 Ar} - AT 2 [Qigl AT,

~

Qij

and

/ Br(v,r)Pdv >
Y (U)

We suppose that p > 4 so that the intervals [8cr;, 16¢r;] are disjoint and
let R > 16¢, so that R > 16¢rg and V¢ (U) C B(0, R). Then

R N-1 16¢r;

/ / Br(v,r)pdvdrzZ/ / Br (v, 1) dv- 3T

o Jrns(o,R) T =0 Jseri Jwp) r
N-1  16er;

SN

i—0 Y 8cri

S aerrdez Y A0 2 A
U (Qi,5)

i€J; i€J;

d
AP S Nlog2- AP > 5447,
T

This proves Proposition 4.1. By Lemma 2.8, dv ~ dH3(v), so

R dr R dr
/ / Br(v,r)P dH3(v)— ~ / / Br(v,r)P dv— > §AYP,
0 JINB(0,R) r 0 JINB(0,R) r

When p < 4, this integral goes to infinity as A — oo, proving Theorem 1.2.
O

5. REDUCTION TO VERTICAL PLANES

Now we begin the proof of Theorem 1.1, which will take up the rest of
this paper. In this section and the rest of the paper, K: H\ {0} — R? will
denote a smooth orthogonal kernel which is homogeneous of degree —3 and
K will denote the (also orthogonal) kernel I?(U) = K(v™!'). Many of our
bounds will depend on K, so we omit K in subscripts like <g.

Let ¢: H — R be an intrinsic Lipschitz function. We define 7y = p|r "
where p is the measure defined in Section 2.3. Then Tng(p) = TEny4(p) is
given by

To(p) = pv-(p) | K(p~'w) dw
¢
for all p € H such that the principal value on the right exists, i.e., for all
p € H such that

(29) lim K(p~'w) dw

£39 Jran(Bm.R\B(®.r)

converges. Let 1 be the function equal to 1 on all of H; then, using the
operator notation in Section 2.2, we can write T, = T), 1.
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In this section, we will show that when ¢ is a bounded smooth function
and p € T'y, then Tng(p) is the principal value of a singular integral on a
vertical plane. For any 0 < r < s, any p € H, and any vertical plane @
through p, let

Af?,s(P) =QnN(B(p,s)\ B(p,r)) CQ

and let A,% = A(;?S(O). When @ =V we will suppress the superscripts.

For a point p € H, a vertical plane @) through 0 with finite slope, a
function f: H — R which is constant on cosets of (Y), an intrinsic Lipschitz
function ¢, and 0 < r < R we let

~KGQ _ 7R L > -
(80)  TDf(p) =T of(p) 1= L s, KOV o)1) b

and

T3 f(p) = lim TE f(p),
R—o0

if this limit exists. Note that T f f and Tg rJ are constant on cosets of (Y').

NE
When p € T'y and f = 1 is a constant function, we can substitute w =

U4 (v) to write Td;Ql like the right side of (29):

(31)
TQl(p): lim / I?(p_l\ll(z,(v))dv: lim K(p~'w) dw.
Tk ez, A e (0412)

In this section, we will compare the integrals in (29) and (31) and prove
the following proposition.

Proposition 5.1. Let ¢: H — R be a smooth function which is constant on
cosets of (Y) and let Q be a vertical plane through 0. Let

C = max {||¢lloc, |V lloc, V3 lloo, 10:6|loc, [ slope Q[ }

and suppose that C < oo. Then for any p € T'y, the limits Tny(p) and
Tfl(p) exist and

(32) Tro(p) = TS1(p).
In fact,
Tg(p) — T, p1(p)| Scr+ R

In particular, under these conditions, Tfl(p) is independent of @, so we
write Td> = TZN’;/O.
The implicit constants in the proofs in this section almost all depend on

C, so we will omit the dependence on C from our notation.

We first establish bounds on Tfs A1(p).
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Lemma 5.2. Let ¢, Q, and C be as in Proposition 5.1. Then for any
0<r'<r<l<R<R andpeTy,

8.0 <7

&r',r

and .
70 1) S R
In particular, the principal value Tfl(p) exists for all p € I'y.

Furthermore, for any bounded function f: H — R which is constant on
cosets of (Y) and any 0 < s < t,

7 t
72.450)] £ 1/l log L.

Let Q be a vertical plane through 0 with finite slope. Then, by Lemma 2.8,
it|q is a 3-regular left-invariant measure on ). The uniqueness (up to scal-
ing) of the Haar measure on @) implies that u|g is a constant multiple of
L|g, i.e. plg is a 3—uniform measure. Hence, the following useful lemma
follows easily, see e.g. [Mer22] for the details.

Lemma 5.3. Let Q be a vertical plane with finite slope. There exists a
¢ > 0, depending on the slope of Q, so that for anyv € Q, 0 <r; <rg < o0,
and any Borel integrable function f: R — R,

_ " 2
/1491,7.2(1)) fdkor(v,w)) dw = C/T1 f(r)yr=dr.

For r > 0, let B, = B(0,r) C H.

Proof of Lemma 5.2. By translation, we may assume without loss of gener-
ality that 0 € I'y and p = 0. For arbitrary s < ¢, we define

Ly=TS A(p) = [ K(Uy(v))dv.

We will bound |1,/ .| <7 and |Igp| S R
We will use the following symmetrization argument. Let 0(z,y,z) =
(—z,—y,z). Then B(Agt) = Agt and K is H-odd, so

57) 1
I, (o:) 5

[, R(s) + R(wo(6(0)) dv
Ay

1

2 /AQ —K(0(Ty(v))) + K (Ty(0(v))) dv| .

Since W4(v) = vY W) ~¥() and
Wy(0(v)) = O (v)Y ?O@D=yO0W) — g(y)y 2O@)Fu()
we have

B( Ty (v)) = B(v)Y ~PHVE) = (g(v))Y 4 —000)
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and by the mean value theorem,

R(Ws(0(v))) = K(O(o(0)))] = VLR (m(w)] - 16(v) + 6(0(0))],
where m(v) is a point on the horizontal line segment between §(¥4(v)) and
Uy(6(v)). That is,

1
() Il < 3 / Rl + o0] v
Since m(v) € 6(v)(Y) and @ has bounded slope, we have |m(v)|kor =
|v]|kor for all v € Q. Since m(v) is between 8(¥y(v)) and ¥y (6(v)),
[lm () [kor S max{[|¥s(v)|lkor, [[¥e(0(v)llkor} S llvllior-
That is, for all v € Q,
(34) [m(v)[|kor = [|v]|Kor-

Furthermore, the bounds on ¢ and its derivatives give bounds on ¢(v) +
»(6(v)). On one hand,

|6(0) + ¢(0(v))] < 2[|¢flo <2C S 1.
On the other hand, by Lemma 2.9, |¢(v) + ¢(0(v))| < ||v||%,,, so for all
v e Q,

(35) |6(v) + ¢(0(v)] < min{1, [0]Fo}-
These bounds, the (—4)-homogeneity of Y, K, and Lemma 5.3 imply

Tl 5 [, PR (o)) min{1, ol do
s,t
(36) S [, mindlolich [0l do
s,t
t
S / min{p~*, p7?} - p*dp Smin{s™' -7t — s}
S

In particular, for any 0 < 7’ < r <1 < R < R < oo, |I7,| < 7 and
|Ir r'| S R™1. Thus

’wa r1(P) = Tgr,Rl(p)’ <yl +Hpr| ST+ R L
That is, T¢ R 1(p) converges as r — 0 and R — 00, so the principal value

Tfl(p) exists.
Finally, if f is constant on cosets of (V) and 0 < s < t,

18,000) < [, [Revston @ avs [ 1ol 51 do

s,t
"y, t
Slflle [ 778 P dp = e log
S
as desired. ]
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The next lemma lets us compare I'y N B(p, r) and Yy(V N B(p,r)) when
V' is a vertical plane. Let IIy,: H — V be the projection from H to V along
cosets of (Y'), as in Section 2.1. Let B, = B(0,r).

Lemma 5.4. Let ¢ and C be as in Proposition 5.1. LetI' =Ty and p € T.
Let W be the vertical tangent plane to I' at p, so that slope W = Vy¢(p).
Then there is a ¢ > 0 depending only on C such that for r > 0,

W N B(p,r —cr?) C (TN B(p,r)) € WNB(p,r+cr?)
and for R > 0,
pVo N B(p, R — ¢) C Iy, (I'N B(p, R)) C pVo N B(p, R+ ¢).

Though the inclusions hold for all » and R, they are most useful when r
is small and R is large.

Proof. Without loss of generality, we may suppose that p = 0 so that 1L, =
II. Let 0 = Vyé(p). By Lemma 2.9, we have ¢(q) = ox(q) + O(||q||%,,) for
any g € H. Then there is a ¢ > C such that
dror (W 4(q), Ty (q)) = dKor(qy<z5(q)*y(q)7 qym(q)fy(q))
= |¢(q) — ox(a)] < cllallfor-

In particular, for r > 0, if ¢ € WNB,_,2, then dxor (¥ (q), q) < cllgl%,, <
cr?. Therefore, U,(q) € B, and

q=Uw(Ye(q)) € Uw(I'N B;),

so WNB,_,2 Cly((l'NB,).

Conversely, if ¢ € I' N By, then Hy (¢') € WN B, 2, so Iy (' N B,) C
W N B, 2. This proves the first part of the lemma.

Similarly, since ||¢[|c < C, we have

dicor(V(q), T(q)) = dicor(qY 974D, Y 49)) = |g(q)| < C
for all q. Therefore,
Vo N Br—e CII'N Br) C Vo N BRye,
as desired. O
This lets us write T74(p) in terms of an integral on pVj.

Lemma 5.5. LetI' =Ty, p € I', and W be as in Lemma 5.4. For 0 <r <
R, let
Err = (pVo N B(p, R)) \ Ty, (W 0 B(p, 7).
Then Tng(0) exists and
(37) Tng(0) = lim K(Vy(v)) do.

r—0 E'r‘ R
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Proof. Again, we suppose that p = 0, so that E, p = (VoNBg) \II(WNB,).

We first note that the limit on the right side of (37) exists. If r is suf-
ficiently small and R is sufficiently large, then II(W N B,) C V, N Br. If
in addition 0 < 7' <7 < R < R/, then E, p C Ep p and Ey g \ Ep g =
H(AE/,T,) U AR g/, so by Lemma 5.2,

J;

As r — 0 and R — oo, this goes to zero, so the limit in (37) exists.
Now we compare this limit with Tn4. For any r > 0 and any vertical
plane P through 0, let

<r+R7L

Koo = [ R@o()do

/,R,

FP = (PnB,) ATIp(I'N B,)

where A A B is the symmetric difference (A\ B)U(B\ A). Comparing E; r
to II(I'N (Br \ By)), we find that

(Von Br) ATI(T' N Bg) = Fy,
and
I(WNB,) AN B,) =TI((WNB,) Ally(T'N B,)) = II(EY),

SO
E.r ATI(T' N (Bgr\ By)) C Fr2 UTI(EY).

Therefore, as in (29) and (31),

~

Tr,r14(p) — / K(VUy(v))dv

R

/ K (w)dw — / K(U4(w)) dw
FQ(BR\BT) Er,R

<[ R du
FROUII(FWV)

Let ¢ be as in Lemma 5.4. Then for 0 < r < R < o0,

EV CW N (Byyee \ By_g2) = AV

r—cr2,r+cr?s
and

v
FRO C ARfc,RJrc-
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By Lemma 5.3, and using that Wy is constant on cosets of (Y), we get

T rnp(p) — /E K(U4(v)) dv

<[ R dws [ Ry )| dw
AR—_c¢,Rte oAy, 2)

r—cr2,r+er
@/ ‘f{(%(w))‘ dw+/w ‘ff(%(w))) dw
AR—c,Rtec A

7‘707"2 ,r+c'r2

R+c ) r+cr? 5 )
5/ pp dp+/ p=pPdp

R—c r—cr2
R+e¢ r+ cr?
= log —— + 1 .
OgR—c+ Ogr—cr2

This goes to zero as r — 0 and R — oo, so it implies (37), as desired. [l
Finally, we prove Proposition 5.1.

Proof of Proposition 5.1. Again, we suppose that p = 0. Let W and E, g =
(Vo n Bg) \ I(W N B,) be as in Lemma 5.5. We may suppose that R is
large enough and r is small enough that II(W N B,) C Vo N Br. Let P be a
vertical plane through 0 with |slope P| < C' and let

Jogi= / R(Wy(v)) dv — T, 41(0)
ET,R

/ R(Wy))dv— [ R(Wy(v))do|.
ErRr AT,R

We claim that J. g <7+ R™L.

Since ITo ¢ = 6 o1l, it follows that F, g and AE p are symmetric around
the z—axis, i.e., 0(E, r) = E, g and H(AER) = AER. Let D C V{ be a Borel
set such that D C A, -1 for some € > 0. We claim that if §(D) = D, then
for any t > 0, 7

K(W4(v))dv <. min{t, ¢},
s¢(D)

~

Let I, = [ K(V4(v))dv. Asinthe proof of Lemma 5.2, the H-oddness

st(D)
of K and thet mean value theorem imply that
1 ~ ~
l=g| [, KO + Ko@) av

<5/ DAR@I-16) + o) do,

te,tefl
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where for every v, m(v) is a point on the horizontal line segment between
0(¥y(v)) and Wy (0(v)) with [[m(v)|[kor ~ [[v]Kor- As in (36), by (35), the
(—4)-homogeneity of Y| K, and Lemma 5.3,

1) 5/
A

It follows that if g is an H—even bounded Borel function supported on
A, 1 and t > 0, then

te !

min{lJollct, ol } dv < / min{p*, p~?} - 2 dp

te,t571 te

< min{fle*l, tefl} <c mm{flv t}.

(38) K (Uy(0))g(s:(v)) dv| < [lgllse min{t?, 2}

Vo

Now we apply this to J, . The supports of 1g,_, and Ly APy are too
large to apply (38) directly, but we can write

1g, » = WinBr — lnwns,)

Lngar,) = lnpnsg) — luens,)-
Let g = 1VOQB1 — 1H(PﬁBl) and h = 1H(PﬁBl) — 1H(WﬂBl) so that

15, r — Inar,) = (Wonsr — npnsg)) + Anens,) — nwns,))

=gosp-1+hos,.-1.

Then g and h are H-even, and there is an € > 0 such that both are supported
in A, .-1. Therefore,

Jrr =[] E(Wy)1E, ,dv —/ K(Wy(v)1,p dv
Vo P ’
13 =
O RW0) (L5, n = Ingar,)) dv
Vo R
=/, K (W) (g(sg-1(v)) + h(s,-1(v))) dv
0
(38) )
S r+R.
This implies
TFP1(0) = lim K(U4(v))dv = lim K(V,4(v))dv,
¢ ¢ ¢
Ao /Al Ao JEng

so by Lemma 5.5, Tfl(O) =Ty (0), as desired. O
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6. SINGULAR INTEGRALS ON PERTURBED SURFACES AND THE PROOF OF
PROPOSITION 1.3

In Section 3, we constructed intrinsic Lipschitz functions f; that depend
on parameters A, p, and i. In that section, A and p were fixed while i varies;
in this section, we will need to vary A and p, so we will write f; as f; 4,
when we need to specify A and p.

Each surface I'y, , = can be constructed by starting with the vertical plane
Vb, then repeatedly perturbing it at smaller and smaller scales. In this
section, we will state bounds on the change in the singular integral Tgl
when ( is perturbed and use these bounds to prove Proposition 1.3.

For any intrinsic Lipschitz function ¢: H — R, we let Fy: H — R,

(39)  Fe(p) = Tel(p) = pv.(Te(p)) fp R )
¢(p)Vo

For any ¢: H — R which is constant on cosets of (Y) and ¢t € R, let
Gg’w(t) = F<+tw. We can then bound F<+w — FC = Ggw(l) — Ggw(O) by
bounding the derivatives of G¢ . In our applications, ¢ and v will satisfy
bounds like those in Lemma 3.12, so that the length scale of i is much
smaller than the length scale of (.

We denote G¢,(t)(p) = O[Geu(t)(p)] and GF ;(t)(p) = IF[Gew(t)(p)]-
(This is a slight abuse of notation because the limits in the partial derivatives
may only converge pointwise and not uniformly.) For r < R, we define
truncations

(10)  FR(p) =TI (p) = A o R )

and Gz’f;(t) = Fgﬁw. We will prove the following formula for G7 ;.

Proposition 6.1. Let (,¢: H — R be smooth functions that are constant
on cosets of (Y). Suppose that ||1)|lec < 00 and that ¢ is intrinsic Lipschitz.
Then, for any p € I'c,

lim (GERY(0)(p) = Gy (0) ().

Furthermore, there is a Sobolev-type norm ||v||w, depending on ¢ and its
derivatives of order at most 2 such that

G (0)(0)] ¢ [lellw-
If o and v satisfy the bounds in Lemma 3.12 for some ¢ > 0, then

1G4 A (0)lse Sc AT

We refer the reader to Lemma 7.1 for the definition of |[4||w,.
To use this to bound F¢iy = G¢ (1), we need the following proposition,
which likewise bounds G’C’ 1N terms of a Sobolev-type norm on ¢ and .

Let A > 1 and let 9 = AV¢. As in Section 3, we let {Z, 9} denote the
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set of differential operators that can be written as words of length n. Let
{Z,0}* denote the set of all words.

Proposition 6.2. For any A > 1 and any C > 0, if p is sufficiently large,
then the following bounds hold. Let Gv: H — R be constant on cosets of
(Y). Suppose that for any word E € {Z,0}* of length at most 3,

(41) |Ele < CA™

and if E ¢ {id, d},

(12) 1B Cllo < CpY.

Then, for any p € H, the function t — G¢ . (t)(p) is C* and satisfies
IGEu @l . Se A2

for all t € [0,1]. If o and ~y satisfy the bounds in Lemma 3.12 for some
c >0, then
G (0)loc Se A2

We will use Proposition 6.1 and Proposition 6.2 to prove the following
bounds on FY,.

Lemma 6.3. Let A > 0 and suppose that p > 0 is sufficiently large, de-
pending on A. Let i >0 and let f; and v; be as in Section 3. Then there is
an € > 0 such that:

(1) 167, (0)]lc < A7

~

or each v € H, the function t — L (t)(v) s , and for a

2) Fi h H, the fi G C? d f Il
t€ (0,1, IGF (0o S A

(3) For all0<i<j,

(43) (G}, (0).C), (O] S o

(4) If K is the Riesz kernel R and i < eA*, then 1G%, L. Oy 2 AL

~

This lemma implies Proposition 1.3.

Proof of Proposition 1.3. In this proof, we use |- ||y to denote |- ||, ). Let
9i = Gy, ,,. By Taylor’s theorem,

|Ffy — (Fr, 4+ 9:(0)llo S sup lgi (t)l|o-
0<t<1

Therefore, for any n,

(44)

n—1
Fy, = 4i(0)
i=0

n—1
<> sup lgf (0o
U i—0 0<t<1
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Furthermore,

= Y {4i(0),g5(0))

5

U

40

(o=

——

n—
n—

ceey

||gz HU +2 Z gz >

i= 0<i<j<n

..
Iyl

3

Let € be as in Lemma 6.3 and suppose that n < eA*. Then on one hand,

n—1
>l ~ na
i=0
On the other hand,
> Hgi0), g0 S np7,

0<i<j<n

so if p is sufficiently large, then

n—1
(45) > gi0))| Z VATl
=0 U
while
n—1
(46) Zoiup g7 (D)l S nA™.
=0

Combining these estimates with (44), we see that there is some ¢ > 1 such
that
Han”U > 071\/777,1471 —cenA~3.
Let § = min{e,c */16} and take N = L5A4J When A is sufficiently large,

F —A——A>A
H fNHU_ 5 15

as desired. O

These bounds point to a possible link between the norm of Fy, and the
BS—numbers studied in Section 4. The bounds in Section 4 show that there
is a d > 0 such that if p is sufficiently large and n < §A*, then

(47) / /I}fn Br,, (v ,r)2d >nA 2,

Each layer of bumps with aspect ratio A contributes roughly A=2 to the
integral.

Similarly, the proof of Proposition 1.3 shows that if p is sufficiently large
and n < §A%, then ||Fy, |3 ~ nA~2. Indeed, the proof shows that || Fy, ||? ~
iy 195(0)]|Z when 5 is small. Since [|g;(0)[|Z = A~? when i < eA*, each
step in the construction of f,, contributes roughly A=2 to || FY, ||%.
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This suggests the following question.

Question 6.4. How is the integral (47) for an intrinsic Lipschitz graph I'
related to the Lyo—norm of the Riesz transform for functions on I'?

In the rest of this paper, we will prove Propositions 6.1 and 6.2 and
Lemma 6.3.

We prove Proposition 6.1 in Section 7. The key step is to write GZ:g(t)
in two ways, (52) and (53). The Euclidean analogues of these expressions
are identical, but since H is noncommutative, they differ in H. In practice,
(52) is easier to bound when r and R are large and (53) is easier when r
and R are small, so the two expressions together let us bound GZ’}; and its
derivatives at all scales. 7

By Section 3.1, we can rescale f; and v; to obtain functions v and ~ that
satisfy the bounds in Lemma 3.12. By the scale-invariance of the Riesz
transform, |G’ | (0)[lcc = (G5, 4(0)]co, so part (1) of Lemma 6.3 follows
from Proposition 6.1.

Similarly, in Section 11, we use (52) and (53) again to prove Proposi-
tion 6.2. As before, |G}, , (0)[oc = |GG 1(0)]|cc, s0 part (2) of Lemma 6.3
follows from Proposition 6.2.

To prove parts (3) and (4) of Lemma 6.3, we approximate G, . (0) by a
translation-invariant singular integral operator on a plane. For any vertical
plane P C H, let Ap: H — R be the affine function such that Iy, = P, and
let Hp,: P — R be the function

Hpy(q) =G, - (0)(q)

for all ¢ € P. The map v — Hp, is then a translation-invariant operator
from functions on P to functions on P.

Given v € I'y, we let P, be the vertical tangent plane to I', at v. By
Lemma 2.9 and Lemma 3.12, P, is close to I'y, on a ball around v whose
radius grows with p. In Section 8, we show that Hp, , approximates G, . (0)
on a ball around v whose radius also grows with p. We use this approxima-
tion to prove the lower bound [|G". , (0)|| L) 2 A~ (Section 9), to prove
that G’ , (0) is continuous as a function from Vp to R (Lemma 8.2), and to
prove the orthogonality bound (43) (Section 10). This completes the proof
of Lemma 6.3.

7. FIRST-ORDER ESTIMATES FOR T<+w

Let ¢,%: H — R be smooth functions that are constant on cosets of (Y
A 7R J— 7R
and suppose ichat €(0) = 0. Let G¢p(t) = Ferwp = Teapl and Gy = F,
be as in Section 6.
In this section, we will derive expressions for (GZ’fz)’ (t) and prove the
following lemma, which is a quantitative version of Proposition 6.1.
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Lemma 7.1. Let (,v: H — R be smooth functions that are constant on
cosets of (Y). Suppose that ||| < oo and that ¢ is intrinsic Lipschitz.
Then, for any p € I'¢,

lim (G2 O) = Ly 0)0)

Furthermore, let 0 < r < 1. Let L = ||V(||co and let B = B(p, (2L+1)r).
For a smooth function g: H — R, define

= E
lgllw,.(B) = Pl . I EY 2o (B)

WB)<3

and
HQHWC’(B)3 Ee{az,vnz})i{ldVC}H EY| .. (B
o(E)<2
Then for any C' > 0 and any s and S such that 0 < s < r < S, if

I<llw;(B) < O then

sS
Lo O®) = (G25) O)] St 1lhwms + 1l
In particular, since G<:¢( )(p ) =0 for all t and p,

G4 (0)(p)] = G 4 (0)(p) = (GZ) (0) ()| Sr.c (r+ 7 Dl llw, (s
Proposition 6.1 follows immediately.
Proof of Proposition 6.1. Suppose that o and y are as in Lemma 3.12. Then

IVatlloo < 1, lollws S A", and [7llw, e S A when pis suff-
ciently large. Therefore, letting r = 1,

|G, (0) ()] S AT

~

O

We prove Lemma 7.1 by writing two formulas for G”j( ). By left-

invariance, it suffices to consider the case that ((0) = 0 and p = 0. Then
on one hand, by (40),

GEhOO) = [ ROe(0) ) v

The domain of integration depends on ¢, but since the integrand is constant
on cosets of (Y), we can replace Y¥(0) A, r by

Al = TI(YW©O 4, ) = YO 4, gy =),

This is a copy of A, g, sheared in the z—direction, and

(48) GEiE()(0) = y K(Y %O w, ()Y du.
R

In Lemma 7.2 below, we will differentiate (48) to find an expression for
(Gz’i)’ . The changing domain of integration will lead to boundary terms in
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the derivative, but we will see that when r and R are large, this derivative
is small.

On the other hand, just as we translated ¢ so that the graph of { goes
through 0, we can translate ¢ 4+ 7 so that its graph goes through 0. By
Lemma 2.2, there is a function ¢; such that I'c, = Y’Tw(O)FCJrﬂp, which can
be written as follows. For any 7 € R and w € Vj, let

(49) wy =Yy =m0 — 4y — 7h(0)z(w)Z
and
(50) Gr(w) == (€ + 7¢) (wr) = (C+79)(0).

Then (o = (, (+(0) =0, and I'¢, = Y_Tw(O)FCJrTw. By the left-invariance of
T, for any w € Vy and 7 € R, we have
7R 7R 7R - aR
GLp(r)(w) = FE (w) = FLEY T 0w) = F2 R (wy),
where the last equality uses the fact that F CT;R is constant on cosets of (V).
In particular,

(51)
G7R(7)(0) = FLT(0) = /A R (0) g (1) do = /A R0

S0 we can compute (Ggi)’ by differentiating (51) (see Lemma 7.3 below).
This avoids the boundary terms in Lemma 7.2. We will see that when r and
R are small, the derivative of (51) is small.

We first consider the derivative of (48). For any R > 0, let Mp(x) =
1VRY— 2% so that B(0,R) NV = {(2,0,2) | |z| < R, |z| < Mg(z)}. Recall
that Y| is the left-invariant vector field Yy (z,y, z) := (0,1, 5) and YR is the
right-invariant vector field Yr(z,y, ) := (0,1, —3).

For the rest of this section, we suppose that ¢ and ¢ are as in Lemma 7.1
and that ¢(0) = 0 so that 0 € T'c. Welet 0 <7 < 1, L = ||[V¢(]|oo, and
B = B(0,(2L + 1)r), and we suppose that HCHWC’(B) < C. For q € H, we let

q=Y¢(q).
Lemma 7.2. Let " > R > 0. Then

(52 (GEFY(©0)0) = /A b(w)YLR (@) — $(0)YrE (w) dg

7 Mpg(z)
dz

z=—Mg(z)

My (x)

R N
— (0) /Rx - K(Y¢(,0,2))

dx.
z=—M,(x)

+4(0) / v R(U (2,0, 7))

T

where f(z)}l;:a denotes f(b) — f(a). Further,

(GEDY )] S Ik,
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Proof. We proceed by differentiating (48). By the definition of Mg, we have
Apr ={(,0,2) | z € [-Mp/(z), Mg/ (2)] \ (-Mg(z), Mp(x))}.
Let Ap pr(x,t) == {z | (2,0,%2) € AtRR,}. Since Y¥(x,0,2)Y Y = (2,0,z —
yx), we have
App (z,t) = [-Mp(z) — t4(0)x, Mp (x) — t1)(0)a]
\ (=Mg(z) — t(0)z, Mgr(z) — t¥(0)).
Let w = («,0, z) and )\t w) = YOy W) Then by (48),

RR/ / / K(\(z,0,2))dz dz

R R’ (z,t)
(GEDY () = LR (0] dg
¢ dt
AR,R/
R’ Mg (z)—tp(0)x

- Y(0)z - K(M\(,0, 2)) dz

i 2=—Mp (z)—t)(0)
R . Mg (z)—ty(0)z
[ (0 Bu(w,0.2) ax.
-R z=—Mpg(z)—t)(0)x
When ¢t =0,
GEYO0) = [ @R (@) - v(0)RE @) dg
R,R/
R My ()
= @D(O)/ zK(Ve(z,0,2)) dx
—R z=—Mps(x)
R Mg()
+¢(0)/ K (¥(z,0,2)) dz
-R =—Mg(x)

= I — I +I%.

This proves (52).
We thus consider I, Ifl, and I, Since Y K and YRK are homogeneous
of degree —4,

() VLR (@) - p(O)YRK (@) S [l 0l
By Lemma 5.3,

Rl
TR / [ leollwllich, dw < /R llloor™ - £ dr < [[]locR .

AR,R’

Let s € [R, R']. Since ||(x,0, M(x))||Kor = s, we have
[K(Ve(w,0, My(2))| S 57°
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and

I3(8)] < 4(0) / )5~ de < [6]]oos!

—S

Putting these bounds together,

R,R' - _ _ _
(G ) (0)0)] S [lloo R+ 9 lloo(B) T+ ¢l R S M9 lloc R
as desired. O

Now we differentiate (51).

Lemma 7.3. Let 0 < s’ < s <r. Then

(53)  (GZ2)(0)(0) = / ((w) — $(0) — (0)2D.( (w)) YLK () du.

/

sl,s

Furthermore,

(54) (G ©O)(0)] Se ¥l ()5

To prove this lemma, we will need the following bound, which will also be
used in Section 11. Recall that 6(z,y,z) = (—x, —y, z) is rotation around
the z—axis.

Lemma 7.4. Let j > 0 and let M be a smooth (—j)—homogeneous kernel.
Then for all w € B(0,r),

M (Ta(w)) = (=1) M (La(0(w)))] Sarz [€Iwyim) lwli-

Proof. Since M is (—j)-homogeneous, we note that M (6(p)) = M (s-1(p)) =
(=1)? M (p) for all p. As in the proof of Lemma 5.2, for all w € Vp, the points
O(Ve(w)) = 0(w)Y ) and e (0(w)) = O(w)YP®) lie in the same coset
of (Y). Furthermore, by Lemma 2.9, if w € B(0,r), then
((w) = 2(w)Ve((0) + OL(Cllw|Kor)

so the distance between these points satisfies
(55)

[C(w) + ¢(O(w))] = (2(w) — 2(w))V((0) + OL(Cllwlior) St Cllwlior-

By the Mean Value Theorem, there is a point k(w) lying on the horizontal
line between 6(V¢(w)) and W¢(6(w)) such that

[M(Tc(w)) = (=1 M (T (0(w)))] = [M(9(¥¢(w))) — M(Pe(8(w)))]
= [YLM (k(w))[[¢(w) + ¢(0(w))] St Cllw|for| YLM (k(w))]-
Since ( is intrinsic Lipschitz with constant depending on L, we have
[k (w)l[kor 2L [H(w)[[kor < 2[|wl|kor-
By Lemma 2.1, Y} M is (—j — 1)~homogeneous, so

M (Wa(w)) = (1) M(Ta(0(w)))] Sar CllwlFollk(w)llly ' Si Cllwli
as desired. O



50 VASILEIOS CHOUSIONIS, SEAN LI, AND ROBERT YOUNG

Now we prove Lemma 7.3. We take advantage of the symmetry of Ay ¢ by
decomposing functions into odd and even parts. For any function f: H — R,
we have the following even-odd decomposition:

(56) F(w) = 5(F(w)+ FO)) + 5 (F(w) — F(Bw)) == [*(w) + F(w).

Let E2 C H be a subset for which (E) = E. As [, f(w)dw = [ f(6(w)) dw,
we get that [, f°(w)dw = 0 and so if f is integrable on E, then

(57) /E F(w) dw = /E F2(w) duw,

Moreover, if g: H — R and fg is integrable on E, then
69 [ fodw= [ (52 Pt 4 g0y dw = [ ot g dw,
E E E

Proof of Lemma 7.3. By (51),

(59) (G0 =< | [ R(we, (w)dw
dr | Ja o

S/,S

We differentiate (50) to get

07 [Gr(w)] = =(0)(w)0: [¢ + T](wr) + ¢ (wr) — (0)
where w; = w — 79(0)z(w)Z is as in (49). Let

m(w) = 0-[C-(w)](0) = (w) — ¥(0) — P (0)x(w)d:((w),
so that

(GZ2Y(0)(0) = / m(w)YLE () dus

this is (53).

For w € Vp, let Ny, p(w) := YLK (w). We will estimate I := (Gzlj)’(O)(O)
by decomposing m and NYL 7 into odd and even parts.

By (58),

I:/A/ me(w)N;Lf((w)—i—mo(w)N;ij((w)dw.

sl,s

Let w € B(0,r) and let K = ||w|kor- Note that 0 < k < r < 1. By
Lemma 2.9,

P(w) = 9(0) = 2(w)Veih(0) + O(|[¢llw, ()x°),
and

0:¢(w) = 0:¢(0) + O ([92¢ | Lou ()i + IVcO:Cll 1o (k) = 0:€(0) + O(Cr).
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Therefore,
(60)

m(w) ZJU(WWW( ) = 9(0)z(w)d.¢(0) + O([¢llw,()x* + ¥(0)z(w)Crk)

2(w)Vep(0) = 1(0)x(w)d:¢(0) + O([¢llw, (5) (1 + C)r?).

Thus |[m®(w)| Sc [¥llw, B>

Similarly, ¢(w) —4(0) = O([[¢llw,(s)x) and 9.¢ = O([[Cllw(s)), so
(61) m(w) = O([¢llw.()x) + OW(0)slCllw(m) = OUPllw,(B) (1 + C)r),
and [m°(w)| Sc [[¥llw,(p)s- Since YLK is —4-homogeneous, |N K( w)| <
k4. By Lemma 7.4, ]N;LK( w)| Se k™

Therefore,

[m®(w) Ny, (w) +m®(w)N #(w)| Sc [llw s

By Lemma 5.3,

S
1150 [ Il - de < ol
S
as desired. (]
Finally, we prove Lemma 7.1.

Proof of Lemma 7.1. For w € Vj and 7 € R, let ¥, (w) := ¢ (w;), where w;
is as in (49). Let t € R. Then by (50),
Crat(w) = (CHTYHY) (W)~ (CHTYH)(0) = (Grttr) (YO w)—14:(0),
so by Lemma 2.2,
F<T+t - Y_tw(O)FC‘r‘i’th
Therefore, for s < .S,
Gey(r +1)(0) = GZ7y, (H)(0).

Differentiating with respect to t gives

(Ge) (1)(0) = (G2, (0)(0).
Let 0 < ¢ <s<randletr <S <5 Let B =B(0,(2L + 3)r). If
7 is sufficiently small, then [|V¢ (-l < L+ 1, ||CT||W£T(B’) < C+1, and
[z llwe. By < 2l1¥llw,(B)- Then Lemma 7.2 and Lemma 7.3 imply that

(62)

(G5 Y(0)(0) —

Cotbr + (G5, ) (0)(0)

CT?IZJT ‘ - ‘ CT7,¢}
Sie kuoos+ ¥l )5~

That is, (Gz i) (1)(0) = (GéTSwT)’(O)(O) is Cauchy as s — 0 and S — oo,

with bounds independent of 7. Thus, (GZi)’ (1) converges uniformly as
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s — 0 and S — oo. This lets us pass the derivative under the limit, so by

Lemma 5.2,
d
/ Yy s,S _ $,S\/
Gep(m) = o im Gey(r) = lim (Gy) (7).
S—o0 S—o0

Finally, (62) implies that

G4 (0)(p) — (szi)'(())(p)l See 1¥lleos + 1Ullw, ),
as desired. O

This implies Proposition 6.1 and thus part (1) of Lemma 6.3.

8. APPROXIMATING BY A PLANAR SINGULAR INTEGRAL

For any vertical plane P C H with nonzero slope, let Ap: H — R be
the affine function such that I'y, = P. For any bounded smooth function
¢: H — R which is constant on cosets of (Y), let Hpg: P — R be the
function

Hpy(p) := G, 4(0)(p)
for any p € P. By Lemma 7.1 and Lemma 7.3, Hp 4(p) exists and

Hpo(p) = lim (G3,,)O)p) = lm | (6(a)=6(p) YLK (p ' TLp(q)) do;
R—o0 R—oc0 “ PATR

recall that we denote this limit by

(63 Heolv) = pv0) | (6l0) = oo) ViR Tp(0) da
pVo

The functions which are constant on cosets of (Y) are naturally identified

with functions on P, so we can view ¢ — Hp 4 as a singular integral operator

acting on functions from P to R. It is translation-invariant in the sense that

if Py goes through 0, vy € Py, and ¢(v) = ¢(v + vg) for all v € Py, then

Hp, 5(v) = Hpy (v +0)

for all v € F.

In this section, we will show that when P is tangent to I'y, at p, then
Hp,, approximates G - (0) in a neighborhood of p. We will use this to
bound how quickly G}i%(O) can vary, and in the next section, we will use
this approximation to bound the correlation between G’ v (0) and G i (0)
when i # j.

After rescaling f; and v; as in Section 3.1, it suffices to consider functions
a and -y that satisfy the conclusion of Lemma 3.12, i.e., satisfy (22) and (23)
for some ¢ > 0. Many of the constants in the following bounds will depend
on the value of ¢, so we omit ¢ from the subscripts for the rest of this section.
We will prove the following lemmas.
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Lemma 8.1 (H approximates G'). Let o and v satisfy Lemma 3.12 for

some sufficiently large p. Let € = %. Let p € 'y, and let P be the tangent

plane to Ty, at p. For any q € P such that dko:(p,q) < p°,

G, (0)(q) — HpA(g)| S p°
Furthermore, for any 0 <r <1< R,

(64) Hpa(a) = (G2 Y (0)(@)| S AT R +1).

Lemma 8.2 (Holder bounds on G, ). Let e = &. For allp,q € Ty,

_1

(65) |Gor (0)(p) = GG, (0)(0)] S dior(p, @) + P72
We apply Lemma 8.2 to G’ . by rescaling.
Corollary 8.3 (Holder bounds on G, ). Let € > 0 be as above. Leti >0,
letri = A"'p~", and let p,q € Ly, Then
1

(66) ‘G,i,yi (O)(p) - G;"i,yi (O)(q)‘ S (riildKor(pﬂ Q))E + p_2 N
Proof. Let g = G, ,(0). Let s; = st Let a(p) = ritfi(s; 1 (p)) and

r

v(p) = r; 'wi(s; 1 (p)). These satisfy Lemma 3.12 and g(p) = G~ (0)(si(p))-
If p,q € T'y,, then s4(p), si(q) € I'a, so, by Lemma 8.2,

19(p) = 9(@)| = |G (0)(si(p)) — Goy (0)(si(0)] S (i dicor(p, @) + P72
O

D=

The proofs of Lemmas 8.1 and 8.2 are based on the following bounds.

Lemma 8.4. Let o and v satisfy Lemma 3.12. Let C' > 0 and let P be a
vertical plane with |slope(P)| < C. Let W = X + slope(P)Y. Let Vp =
Vp- Leti,j >0 and i+ j < 3. Then for any p € P,
(67) (W Z75(p)| = [VpZ77(p)| Sc A7HL + dicor(p,Ta))'-
Lemma 8.5. Let a and v satisfy Lemma 3.12. Let p € T'y, and let P be the
tangent plane to I'y at p. When p is sufficiently large,
1
Gon(0)(p) = Hpy(p) + O(p™2).

Lemma 8.6. Let o and v satisfy Lemma 3.12. Let p € Ty and let C' > 0.
Then for any two planes P and Q through p with slopes at most C',

|Hp~(p) — Ho~(p)| Sc | slope P — slope Q)|

Lemma 8.7. Let o and ~ satisfy Lemma 3.12. Let p € 'y and q € H. Let
P be a plane through 0 with |slope P| < 1, and suppose that dger(p,q) < 1.
Then

1
’HPPKY(p) - HqPﬁ(Q)’ S dkor(ps )5

Given these lemmas, we prove Lemmas 8.1 and 8.2 as follows.
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Proof of Lemma 8.1. Let p € ', and let P, be the tangent plane to I', at
p. Let A be the affine function such that I'y = P,, and let ¢ € P, be such

that dKor(p7 Q) < p-.

Let K = dkor(p,q). By Lemma 2.9 and Lemma 3.12, § = ¢Y*, where
t = a(q) — Mgq) = O(p~1k?). We choose p large enough that |t| < 1. Let Py
be the tangent plane to Iy, at g and let @ = Y ~'P; be the plane through ¢
parallel to F;. Then by the triangle inequality,

|G (0)(q) = Hp, ~(9)] < |Go,(0)(q) — Hp,»(9)]
+ |HP§,7@) - HQN(Q)‘ + }HQ,'y(Q) - HPP,V(QH'

By Lemma 8.5,

NG

G4 (0)(a) = Hp,y (@] S p7 2.

Since Py and @ are parallel and dkor(q,q) <t < 1, Lemma 8.7 implies that
1 _ 1
‘HP@W(@ - HQ,W(Q)‘ S dior(q,0)5 S (p 1“2)5-

Finally, by Lemma 8.6 and Lemma 2.9,
|Hay(0) = Hp,y(9)] S [Vac(a) = Vaa(p)| S rp~ ' + w271

Since k < p%, these bounds imply that

1

_1 _ 1 _ _ _ 1
|G, (0)(q) — Hp, 1 ()| S p72 4+ (p7'6%)5 + kp t + K2p7 S p7 10,

as desired.
To prove (64), we apply Lemma 7.1 with ( = X, ¢ = v, and r = 1. Let
q € P, such that k = dko:(p, q) < p° as above. Note that

dKor(QaFa) < dKor(q,q) rs p_IKQ S 1.
Since [slope(Pp)| < 1, we take B = B(q, 3). Since A is affine, [[Ally;(5) =
0. For any v € B, we have dkor (v, ') S 3+ dkor(¢, o) S 1, so Lemma 8.4
implies that |||lw,5) < A™'. By Lemma 7.1 and Lemma 7.3,
R _ _ _
|Hp, 1(0) = (G5 0)(@)] S IVllwyyr + 17l R S A™Hr + RTY,
as desired. (]
Proof of Lemma 8.2. We claim that there is an € > 0 such that for all p,q €
Lo,
_1
|G~ (0)(p) = Go, (0)(0)| S dicor(p,a)" + 72

Let r = dkor(p, q)- By Proposition 6.1, [|GY, . (0) |l
consider the case that » < 1.
By Lemma 8.5, we have

(68) |G~ (0)(p) — Gi~(0)(q)] S |Hp,~(0)(p) — Hp,,(0)(q)| + p=.

< 1, so it suffices to

~

D=
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Let @ be the plane parallel to P, that goes through ¢. Lemma 8.6 and
Lemma 8.7 imply that there is an € > 0 such that

‘HPP,W(O)(I’) - HPq,w(O)(Q)‘

< |Hp,(0)(p) — Ho(0)(q)| + [Ho4(0)(q) — Hp, 4(0)(q))|

< 1€+ | slope Q — slope P
(69) =71+ [Vaa(p) = Vaa(q)|.
By Lemma 2.9 with a = a and m = V,, and by Lemma 3.12,

[Vaa(p) = Vaa(q)| £ THvia”oo + TQHBZVaO‘Hoo < Tp_l S
Combining this with (68) and (69), we see that
|G (0)(p) = Gy (O)(@)]| S 147472 St p72,

as desired. O

[T

8.1. Proofs of Lemmas 8.4-8.7. Now we prove the lemmas that we used
in the proofs of Lemmas 8.1 and 8.2. First, we prove Lemma 8.4, which
bounds derivatives of ~ near I',.

Proof of Lemma 8.4. Recall that IIp = II,, is the projection to P and that
Vp) = Vi, (v) = X(v) + (y(v) — Ap(v))Z(v). Since Vp is constant on
vertical lines, we have [Vp, Z] = 0.

Since W = X +slope(P)Y is horizontal, for any u € P, the curve g(w) =
uW® is a horizontal curve in P, so its projection Il o g is an integral curve
of Vp. For any function a which is constant on cosets of (Y'),

W'a(u) = (a0 g)(0) = (a0 Tlo g)D(0) = Vpa(Il(u)) = Via(u).
Therefore, for any ¢ and j and any p € P,
WiZ/ 3] (p) = V27 1] (p)-

This proves the first equality in (67).
We claim that for any p € H and any ¢ > 0, j > 0 with i+ j < 3, we have

(70) IVeZ/7(p)| S (1+ Ap(p) — alp)])".
Since « is intrinsic Lipschitz, [Ap(p) — a(p)| < dkor(p,T'a) for all p € P, so
this will imply the lemma.

Let h: H — R be a smooth function that is constant on cosets of (V).
Let A(v) =1+ |[Ap(v) — a(v)|. For ¢ > 0, d > 0 and n > 0, we say that
h has (¢, d,n)—derivative growth if for any word E € {Z,V4}* of length at
most d and any ¢ € H, we have

|Eh(g)| < cA™Aq)"

In particular, |h(q)| < A7 A(q)". We claim that V% Z%y has (cj,3—i—3,7)-
derivative growth when i + j < 3. This will imply (70).

When j = 0, Lemma 3.12 implies that 7 has (cg, 3, 0)—derivative growth
and Z'y has (cg, 3 — i,0)-derivative growth for some ¢y < AL,
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We thus proceed by induction. Suppose that h has (¢, d, n)-derivative
growth for some d < 3 and consider Vph. Note that

Vph =Voh+ (a—Ap)Zh.
Forany 0 <[ <d-—1,any E=F;...E € {Z,V,}*, and any ¢q € H,

[EVPh(q)| < [EVah(q)| + [El(a = Ap) Zh](q)]

<ch(@"+ Y. |Esla—Apl(q) - EseZh(q)],
Sc{1,...,l}

where Eg = [[,cqg Fi. By Lemma 3.12, |Eg[a — Ap](v)| Sc 1 unless S =
() and Fg = id. Furthermore, EFgcZ is a word of length at most d, so
|EseZh(q)| < ¢ A(q)™. Therefore,

|EVPh(9)| Sc enl(@)"+2'cnl(a)" +[AP(g) — (@) -cnh(@)" Sca en(a)™.

That is, V ph has (¢p41,d—1, n+1)-derivative growth for some c,41 Sca n-
For 0 <i < 3, Z'y has (cg, 3 — i, 0)—derivative growth for some ¢o < AL
so for 0 < j < 3—i, there are ¢; S A™1 such that V%, Z%y has (¢j,3—i—7,j)~
derivative growth. In particular, for all p € P,
VpZ(p)] < iAWY Sc AL+ Ap(p) — a®)])’,

as desired. O

Proof of Lemma 8.5. Let p € ', and let P be the vertical tangent plane to
Ty at p. We claim that

d

G/oc,'y(o)(p) = aFa+t7(p)‘t:0 = Hpﬁ(p) + O(p_%>

After translating, we may suppose that p = 0. Let vo(w) = v(w) — v(0) for
all w € H. By Proposition 6.1 and (63), we can write

’G/a,'y (0) (0) - HP,'y(O) ‘

<timsup | (65) ©)0) - | R () du
(71) +imsup | (GY57) (0)(0) - / o (w) VLR (TTp (w)) duw]
R—o0 A /5.R

We start by bounding the R — oo term. Since P has bounded slope, we
have ||IIp(w)||kor = ||w||Kor- By the homogeneity of ¥] K and the bounded-

ness of -,
o0 1
/ Jwl|zt dw]| = / K 2dr = p2,
A\/ﬁaR \/ﬁ

<

/ Yo(w) YLK (I p(w)) dw
AR
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using Lemma 5.3 to change variables from w to x. By Lemma 7.2, for all

R > /p,

N

%
AS)

Lol

@) |(@EY OO - [ ViR () du| £ 5+

VPR

Now we consider the » — 0 term. By (53), letting w = («,0, z), for any
0<r<y/p,

GO0 = [ (ViR (Tp(w) du
Ar s

(73) = /A Yo(w) (YLK (Uo(w)) — YLK (I p(w))) dw
TP

- / 2(0)20.0(w) VLK (Wa () duv,
A i

and we will bound each integral separately.
We start with the first integral in (73). Let w € Vj and let £ = ||w|/Kkor-
Let A = Ap, so that I'y = P. By Lemma 2.9,

(74) o (w) = A(w)| S p~ s

By the Mean Value Theorem, there is some ¢ between Ap(w) and a(w) such
that

)YLI?(wyMw)) - YLfc(wWPW)( = |a(w) — Ap(w)| - V2K (wY?h)).

Furthermore, ||[wY?||kor & ||w||Kor, S0 by the (—5)-homogeneity of YLQI?,

~ . (74)
(75) ‘YLK(wYa(w)) - YLK(wY)‘P(w))’ < p iR R =p iR

We apply Lemma 2.9 to v to get

o(w)] < Kl Varollee + £210:700l0 S K + 2

by Lemma 3.12. Since ||7o]loo < 1, we have |yo(w)| < min{x + x%,1} < .
Therefore,

/ 70(w) (YR (Wa (w)) — YLR (Tp(w))) duw
A s

(76)

-1 -3 VP 9 19 -1
S [ Mol ol dw S [T 2 e <ok,
A s .

using Lemma 5.3 in the penultimate inequality.
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It remains to bound the second integral in (73). We write

/ 280.0(w) YLK (Uo (w)) dw
A s

_ /A 2(0z0(w) — 8.0(0)) YLK (T (w)) duw

7P
+ / 28.0(0) (YLK (Vo (w)) — YLK (I p(w))) dw
A /5
+ / 28.0(0) - YLK (I p(w)) dw
Ar /5
=01+ 1+ Is.

To bound I, let m = d,a. By Lemma 3.12, we have ||mo < p7 1,
[Vam|loo < p7 1, and ||0.m]lee < p 1, so by Lemma 2.9, letting £ = ||w||kor
as above,

[m(w) —m(0)] S min{p™", p~ (v + %)} S p~ k.

Therefore, using Lemma 5.3,

BIS [ for ol ko LR (W (w)] du
AT7\/E

NG

Sot [ eldws et [Tt an<
A"'v\/ﬁ T

By (75)

|1, 5/ ’x@za(O)P_lHMhzgr} dw
A s

[SI[9Y)

N/
S[ oeldduse [T ans
AT,\//; r
Finally, recall that (z,y,z) = (—x,—y, z) and let h(w) = z(w)d,«(0) -
YLK (IIp(w)). The symmetry of Y{ K implies that h(f(w)) = —h(w). Since
Q(Ar,\/ﬁ) = Ar, Do

I = / 20-0(0)YL K (TTp(w)) dw = 0,
Ary\/ﬁ
and

(77) / 20, 0(W)YLK (Vo (w))dw =11 + I + I3 = O(pfé).
A s

Combining these inequalities, we find that

|GL, - (0)(0) — Hp,(0)] S p 7,
as desired. [
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Proof of Lemma 8.6. Without loss of generality, we may suppose that p = 0.
We claim that

pv. /V (7(g) = 7(0) (YLK (TTp () — YLK (Tl(g))) dg
<c¢ |slope P — slope Q).

Let M(q) = YLK (ITp(q)) —YLI/(\'(HQ(q)). By the smoothness and homogene-
ity of YL K, for all ¢ € Vj, we have

|M(q)| Sc | slope P — slope Ql||q||ar
and M (0(q)) = M(q). Let yo(q) = v(q) — ~(0), and let 4§(q) = 3(vo(q) +
v(0(q))) so that

/ (+() — 4(0))M(q) dg = / 28(0)M(q) dg.
Ar R

Ar R
On one hand, since ||7]loc < 1, Lemma 5.3 implies that for any R > 1,

/ 2&(@)M(q) dg
AR

R
< | slope P — slope Q|]|7]| oo / k4R dk
1
< |slope P — slope Q)|.
On the other hand, by Lemma 3.12 and Lemma 2.9,

70(a) = (@) Var(a) + Ollallior):
so |7€(q)| < llgll%,,- Therefore, for any r < 1,

/ Y6(q)M(q) dg
Ara

1
< | slope P—slope Q|/ x2k%dk < | slope P—slope Q).

Combining these two inequalities, we have

/ 26(@)M(q) dg
Ar R

<c¢ |slope P — slope Q)|.

pv. [ 50 <>dq‘— lim
" FE)

0

Finally, we prove Lemma 8.7. We will need the following bound.

Lemma 8.8. Let C > 0, let P be a plane through 0 with |slope(P)| < C
and let ¥: H — R be a bounded smooth function such that 1¥(0) = 0 and
is constant on cosets of (Y). Let r > 0, and let

e = [|0:9 )l Lo (B0 + IX Y Lo (vonB(0.)-
Then

D()YLE (Ip(v) dv| e er + [[9]|ocr™?
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Proof. Let v € VN B(0,r) and let k = ||v||kor- By Taylor approximation,
there is a ¢ > 0 such that

(v) — X(0)a(v)] < cen?.
Let D =Vp N B(0,r). Then

pv. /D () YLK (Tp(v)) dv

<

v, / Xp(0)2(v)YLE (TTp(v)) dv
D

+pv./ cellvle LR (TR (0)] do.
D

The first term is 0 by symmetry. Since ||v|]%(0rY|_[? (v) is (—2)~homogeneous,
Lemma 5.3 implies that

pv. /D () YLK (Tp(v)) dv

Additionally, by the homogeneity of YRK and Lemma 5.3,

,
<c ce/ k22 dR < er.
0

V. (v)YLK (I1p(v)) dv
Vo\D

o0
sl/‘ [lloor™ %2 di < 14 loar".
'

Summing these two inequalities proves the lemma. O
We now prove Lemma 8.7.

Proof of Lemma 8.7. Recall that p € Ty, ¢ € H, and dker(p,q) < 1. After a
translation, we may suppose that p = 0. Then for any h € H,

Hmwm:pwm[/wm—wmwnkmﬂme
so, letting
v(v) = 7(0) = 4(v) — 7(@) + (q),

Hp~(0) — Hyp(q) = pv.(0) /V v(v)YLK (ITp(v)) dp.

Then ||V|loc < 4[|7]|loo S 1. We abbreviate partial derivatives of v(x,y, 2)
and v(z,y,2) as Yz = 0, Yar = 02027, etc. )

Let £ = dkor(0,9) < 1 and let r = k7 5. We claim that |v,(v)| < x5 and
|Vez (V)] < k5 for all v € VN B(0,r). This will let us apply Lemma 8.8 to
v.

We write ¢ = X% Z%Y"; note that || < &, |[t| < k, and |z| < k2. Since
«y is constant on cosets of (Y'),

v(x,0,2) = v(X*Z%) = 4(0)—y(X*Z) —~v(qY ) +~(qY L YIX*Y 1 Z7)

= 7(07 07 0) - 7(‘,1:7 07 2) - 7(11:07 07 20) + 7(',1:0 + xZ, 07 z20 — tr + Z).
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Suppose that v = (2,0, 2) € Vy N B(0,r). Then
v2(v) = 7:(v") = 7:(0v)
Vaa (V) = ’ch(vl) - 2t'7xz(vl) + t2')’zz (U/) — Vaz(V),

where v' = (zo + 2,0, 20 — tz + 2).

Note that |z(v')| <7+ x Srand |2(v)| < k2 + 72 + kr < r?) so there is
a ¢ > 0 such that v,v" € B(0,cr). Let S = VN B(0,cr). By Lemma 8.4,
fori+ 7 <3,

(78) 10209V L5y S 1+
In particular, [tv,.(v")| Sk(l+7) < k5 and 2., (V)] < K2
1,/

It remains to bound |5 (v") — Yzz(v)| and |v;(v") —v5(v)|. Since v™='v" =
(20,0, 20 — tz), the Mean Value Theorem and (78) imply that

Vaw (V) = Y2 (V)| < |20l V20e Lo (s) + 120 = t] 1ozl Lo (s)
S k(1 +73) + (K2 + kr) (1 +12) < wrd = k5.

(S]]

Likewise,

h’z(v/) —7:(v)] < ’x0|||’)’zz||Loo(S) + |20 — m:’”’)/zz”Loo(S)
/-@(1+r)+(/£2+/<;7“) S kr =

=
(SIS

Combining these inequalities, we obtain |v,(v)| < k5 and Ve (V)] S K3

for all v € Vp N B(0,7). By Lemma 8.8, this implies

’HP,’V(O) - HqPﬁ(Q” =

pv.(0) /P v(0)YLK (ITp(v)) dp

4 2 _ 1
Scr(ks +65) + 17 vl S K5 = dier(0, )5,

as desired. O

(S

9. LOWER BOUNDS ON THE FIRST DERIVATIVE

Now we use the approximations in the previous section to prove lower
bounds on G, . (0). Our main estimate is the following lemma, which shows
that we can estimate Gy, . (0)(p) in terms of the restriction of 7 to the vertical
line p(Z).

Specifically, let P be the vertical tangent plane to I', at p, i.e., P =
p(W, Z), where W = X + Vaa(p)Y. Let Ip: H — P, lIp(pW"WZ?YY) =
pW™Z* be the projection to P along cosets of Y. Let m,: H — p(Z),
mp(pW"WZ?YY) = pZ#. This map is constant along cosets of (Y) and projects
P to p(Z) along cosets of (W). We will show the following bound.

Lemma 9.1. Let A > 1. When p is sufficiently large (depending only on
A), the following holds. Let o and ~ be functions satisfying Lemma 3.12.
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Let p € Ty and let P be the vertical tangent plane to I'y, at p. Let m, be as
above. Then

(79)  Goqy(0)(p) = Hpqom, (p) + O(A7?)

— pv.(p) / () = ALK o) dg + O(A™2).
pVo

Proof. The second equality in (79) is (63), so it suffices to prove the first
equality. After a left-translation, we may suppose that p = 0.
By Lemma 8.5,

(80)
|G (0)(0) = Hpom, (0)] < |G, ,(0)(0) = Hpy (0)|+ | Hpy(0) = Hp o, (0)]
_1
Sp2+ |HP,'y—'yo7rp(0)’-
We thus consider Hp ., or,(0). Recall that by (63),

HP,’Y—’YOWp(O) = pv.(0) /V (v(g) —vo 71'p(q))YLR\’(HP(CI)) dg.
0
Since [|V]lco < A7, Lemma 5.3 implies that
(81)
[ 16t - e m@WR (@) do S [ AT i A7
Vo\B(0,A4) A

Let D = PN B(0,3A4). We claim that if v = W"Z* € D, then
V() = AZ7) +w- Wy(Z7) + O(A%u?).

Let 0 = V,(0) and let \: H — R, A(z,y,2) = ox so that 'y = P.
Recall that for all ¢ € H, we have (Vo) = Xq + (y(q) — a(q))Z,;. If v € P,
then y(v) = A(v), so

Wy = (Va)y — (A(v) — a(v))Zy + 0Y,.

Let m: H — R be a smooth function which is constant on cosets of (V).
Then Ym = 0, so for v € P,

Wm(v) = Xm(v) = Vam(v)—(A(v)—a(v))Zm(v) = (Voa—(A—a)Z)[m](v).

We can apply this identity to a, ~, and their derivatives with respect to V,
and Z, which are all constant on cosets of (V).
Note that by Lemma 3.12 and Lemma 2.9,

(82)  lim max{|[]A — ol p), [IVae = Vac(0)l Lo (), [ £t} = 0.
One consequence of (82) is that for all v € D,

(82)
WA (v) = Vay(v) + O (A = el ) 127]l0) =" Var(v) +0,(1),

where 0,(1) is little-o notation denoting an error term bounded by a function
of p that goes to zero as p — oo.
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We can bound the second derivative similarly. Evaluating all functions at
veED,

W2y =W(Va — (A= a)Z)h]
=V —A=a)ZVey —WA—a] - Zy— (A —a)WZy.

By Lemma 3.12, |ZVo7]ec S A72, so by (82), (A — @)ZVay = 0,(1).
Likewise, || Z7|lcc < A7L. Since VoA (v) = Vaa(0),

WA — a)(v) = Vaa(0) — Vaa(v) — (A®) — a(v)) - Za =) 0,(1).
Finally,
(A(®) = a(©))W Zy(v) = (A(v) — a(v))VaZy(v) = (A(v) — a(v))* 2%y (v)

(82)
= Oﬂ(l)u

so W2y(v) = V2Zv(v) + 0,(1). Thus, by Lemma 3.12, we can choose p large
enough that [W~y(v)| < A72 and [W?2y(v)| < A3 for all v € D.
By Taylor’s theorem, if v = W%Z? € D, then

A1) = 4(Z7) + wWA(Z7) + O(A~5u?).
Let 0(z,y,2) = (—x, —y, 2) and let v*(v) = 3(v(v) +v(0(v))). Then
74 (v) = (Z%) + O(A™w?).
If ¢ € B(0,A), then IIp(q) = Wp(q)Wx(Q) and IIp(q) € D, so v%(q) =
v(mp(q)) + O(A%2(q)?). By (81),
Hpy—or,(0) = pv.(0) / (v(q) =7 (mp(q))) YLK (TTp(q)) dg+ O(A™2).
VonB(0,A)

Let 0 <r < Aandlet U=VyN(B(0,A)\ B(0,r)). Then by symmetry and
the (—4)-homogeneity of Y| K,

| 6@ = 2y te(o) dq]

| 0@ = mla) iR (@) dq'

A
< /U A3 lgllgh dg < A3 / i de < A2,
T

where we use Lemma 5.3 to change variables from ¢ to k.
This holds for any r, so |[Hpy—yor,(0)| S A™2 The lemma then follows
from (80). O

Furthermore, we can write Hpor,(p) as a one-dimensional singular inte-
gral.
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Lemma 9.2. With notation as above, for z # 0 and a € R, let
o0

(83) L(z) = Lo(2) := / VNK(X +aY)*Z7)dx.

— 0o
For p e Ty, and a = Vya(p),
(84) HP,'yoﬂ'p(p) = lim ('7(pZZ) - 7(0))La('z) dz.

r20JR\ (=)

Proof. After a left translation, we may suppose that p = 0. Let W = X +aY
so that P = (W, Z). Since Y| K is (—4)-homogeneous, the integral in (83)
converges absolutely. Note that for any z € R and any ¢t > 0,

(85) L(t%z) = / VK (WYZ"%) dw = / VLK (W Z1#) dw
= / VK (WY Z%) dw = t 3 L(2).
We first write both sides of (84) in terms of integrals over subsets of P.
On one hand, for » > 0, let

L= (1(27) = 1(0)) L (=) d=.
R\(—72,r2)

By (85), since v is bounded, this integral converges absolutely. The right
side of (84) is equal to lim, o I,. For ¢ = W"Z* € P, we have my(q) =
7% = 7*@ and we define 79: P — R,

0(9) = 7(mp(a)) = 7(0) = 4(Z*9) - (0).
Then by Fubini’s Theorem,

~

IT:/\( 2 2)70(22)/ YLI?(WWZZ)dwdz:/ 0(9)YLK (¢) dg,
R\(—r2,r —0o0 r

where E, = {W¥Z? € P | |z| > r?}.
On the other hand, let

Jy = / (V(mp()) — 7(0))YLE (TTp(q)) dg
Vo\B(0,r)

= [ ()R M) do = [ T0(0)YLE (q) dg.
Vo\B(0,r) Ip(Vo\B(0,r))
This integral likewise converges absolutely, and lim,_,q J; is equal to the left
side of (84). Let F, =11p(Vp \ B(0,r)) C P.
Since |slope P| < 1, we have ||v|kor = ||ILp(v)|kor for all v € V. In
particular, if v € Vo N B(0,r), then ||IIp(v)||kor < 2[|v|lkor < 27 and

|z(lp(v))| < r?. Therefore, E, C F,. We thus consider the difference

1, = / Yo(@) YL (q) d.
FT\E,«
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For 0 <s < S, let A; 5 =VyN(B(0,S5)\ B(0,s)), and for i > 0, let
D; = HP(A2ir,2i+1r) \Eﬁ

so that up to a measure-zero set, F;. \ E, = |J;2, D;. For ¢ € D;, we have
|z(q)| < 72, |z(q)| < 2¢1r, and [YLK(q)| < (2°7)~*. Furthermore, by the
Mean Value Theorem

70(q)] = [7(Z27D) —4(0)] < |07 S 2.

Therefore,
|Jr — I| S Z/},(Di) (2071 < ZQZ'T‘E’(QZ'T)*A‘ = Z 273 < 2.
i=0 i=0 i=0
It follows that lim,_,¢ J, = lim,_,¢ I;;, which implies (84). O

For g: R — R, we write
pv. / o(t) dt = lim o(t) dt,
R T 0 JR\(=r,r)

as long as the limit on the right exists.
For the rest of this section, we restrict to the special case that K is the

Riesz kernel
27 (22 +y?) — 8yz 2y(2? + y?) + 8zz
K(:C7 y’ Z) = )
((22 + y2)2 + 1622)3/2" (22 + ¢2)2 + 1622)3/2
=6 (2x(x2 + y2) — 8yz, 2y(ac2 + y2) + 81:2) ,

where r = ||(z,y, 2)||kor- One can calculate that
YV K(X®Z%) =10 (64z3 — 20x2,802%2% — xﬁ) .
Integrating this using Mathematica, we find that

[ (64—202%,802% —2%) [ T(3)(])
ot = /_oo T (0’ =G

where I' is the Euler gamma function. By the symmetry of K , we have
Lo(1) = Lo(~1). Let € = y(Lo(1)). By (85), Lo(z) = (0,]2[ 2¢) for all
z > 0.

A similar calculation shows

X K(X7Z7) = 710 (482222 — 325,202 2 — 642°)

) ~ (0,0.212...),

Mo(£1) == / XL K(X*Z*) da

(4822 — 35, £(202* — 64
:/ (482 2%, (202 ))dx:(0,0).

o0 (2 4 16)2
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These calculations imply that for any left-invariant horizontal vector field
F =aX_ +bY, and any z # 0, the integral

oo
/ FK(X*Z%)dx = aMy(z) + bLo(2)
—0o0

is normal to Vy and is zero only if F' is a multiple of X. The orthogonal
symmetry of K implies that

o
/ FE(WYZ*)dw
—00

is likewise normal to P and is zero only if F' is a multiple of W. In particular,
Lo(2) = |z|_%La(1) is nonzero and normal to X + aY.

We use this formula to prove a lower bound for G, (0). Let r: Vo — R
be as in Section 3. That is, x is a bump function supported on U = [0, 1] x
{0} x [0,1]. Let m > 0 be such that x(z,0,2) > m whenever z, 2 € [%,3].
Recall that r; = A7'p~" and that we defined a set of pseudoquads Q; =
{Qi1,. .., Qi } that partition U, parametrizations R; j: [0, Ar;] x [0,77] —
Q;,j, bump functions r; ;

kij(Rij(s,t) = A7 (A~ s, 7 2t),

and a set J; C {1,...,k;} such that v; =}, ;. Ki ;.
By Lemma 3.7, there are functions g; ; such that

(86) R;j(s,t) = Rij(0,0) + (s, 9i,i(s, 1)),
where 0;g; ;(s,t) € [3, 3] for all s and ¢.

As in Section 3.1, we can rescale f; and v; by a factor of r;l to get
functions « and v that satisfy Lemma 3.12. By Lemmas 9.1 and 9.2 and
the scale invariance of the Riesz transform, for any p € I'y,,

(87) G, (0)(p) = pv. /R (vi(pZ%) — vi(p)) La(2) dz + O(A™2)

= L,(1) - pv. /R(Vi(pZz) — Vi(p))\zr% dz 4+ 0(A™?),

where a = Vy, fi(p).
This lets us prove the following bound.

Lemma 9.3. Suppose that j € J; and s € [iAn, %Am] and letp = R; ;(s,0).
There is a ¢ > 0 such that if A is sufficiently large, then |G’ , (0)(p)| >
cAL

Proof. Since j € J;, we have
Vi(Rij(s,t)) = ki j(Ri (s, t) = Ailrm(Aflr-_ls,ri_Qt)

)

for all ¢. In particular, v;(p) = 0. Since v; is nonnegative,

pv. /R (vi(pZ7) — vs(p))|| 3 dz = / V(0222 dz > 0.
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Let 20 = z(p) = ¢i;(5,0). Then for t € [0,7?], we have R;;(s,t) =
pZ9:i(3)=20 We thus substitute z = g; ;(s,t) — z0. Since d.g;; € [%, %], we
have dz =~ dt and z = t, so

3 9i,j(s,77)—20 3
[ntozolel ez = [ vi(pZ) 2|4 dz
R 0
2

7"1 7’2‘2
z/ VZ-(RM(s,t))t]_gdt%/ A (A s, 200 .
0 0

Let § = A~!r;'s and note that § € [, 3]. We substitute u = r?¢ and use
the fact that #(8,u) > m for all u € [1, 3] to obtain

1
/ ui(pZz)|z|_% dz = A_l/ rm(é,u)(r;2u)_%r;2 du
R 0
3 -1
> A_1/4 mu~2 du > A—
1 ~ 2
4

By (87), there is a ¢o > 0 such that |G’ , (0)(p)| Z coA™"La(1)] + O(A?).
Let ¢ = 9 minge(_1,1)|La(1)]. When A is sufficiently large, |G'., , (0)(p)| >
cA™!, as desired. O

Now we use Lemma 8.2 to prove part (4) of Lemma 6.3.

Proof of part (4) of Lemma 6.5. Recall that S; = ;g Qi;. By Proposi-
tion 3.1, there is an € > 0 such that if i < eA?, then |S;| < 5 and thus

1
JEJ;
Let ¢ be as in Lemma 9.3, so that
|G, (0)(Ri j(s,0))] > cA™!

for all j € J; and s € [iAri, %Am]. Let t € [0,7?], let p = R; ;(s,0), and let

q = R;;(s,t). Since dyg;j(s,t) € [3,3] for all s and ¢, we have

dKor(pv q) ~ \/gi,j(sv t) - givj(87 0) ~ \/i
By Corollary 8.3, there is an a > 0 such that
_ _1
‘G/“I/.L<O)(p) - /fz,ljl(o)(q)‘ ,S (ri 1\/%)(1 + p 2.

We can thus choose pg,d > 0 depending only on x such that if p > pg and
t € [0,672], then

¢
|G, 1, (0)(Rij(s,1))] > 74 L
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Then

An
/Q ’ fl,l/z |dq = / / ful’z ”(s,t))|8zg,~,j(s,t) dsdt

6r 3Ar2
/ / G (0)(Rej(s. )| dsdt 2 5AYQu 5] 2 AV Q.

1 Ar,
By (88),

J e @@lanz 3 [ 16, 0@z 3 A Q! 2 547

Jj€Ji jedi
as desired. O

10. QUASI-ORTHOGONALITY

In this section, we prove part (3) of Lemma 6.3, which claims that there
is an € > 0 such that |(F](0), F}(0))| < p~ for all 0 <i < j.

Recall that v; oscillates with wavelength roughly 7, = A~1p~% so we
expect that F/(0) also oscillates with wavelength roughly ;. Since r; <
p~ g, F(0) has higher frequency than F7(0). We thus bound (£7(0), £7(0))
by partitioning Wy (U) C I'y, into sets of diameter on the order of r; p’ for
some small § > 0. Let Q) be such a set. Since j > ¢, Lemma 8.2 implies that
F}(0) is nearly constant on Q. We claim that the average of F;(0) on @ is
small and thus fQ FJ(0)(q)F}(0)(q) dg is small.

We start by bounding the average of F ]’ (0) on rectangles (Section 10.1).
We will then bound the average of F7(0) on pseudoquads (Section 10.2)
and complete the proof of Lemma 6.3.(3) by tiling U by pseudoquads (Sec-
tion 10.3).

10.1. Averaging over rectangles. We begin the proof of Lemma 6.3.(3)
by bounding the average of F’ J’(O) on rectangles of scale roughly r;p°.

Let P C H be a vertical plane of slope a and let W = X + aY so that
P=(W,Z). For v € P and r > 0, we define

E(v,r; P) == {oW¥Z7 | |w| <, |2| <712}
We call E(v,r; P) a rectangle in P. In this section, we prove the following

lemma.

Lemma 10.1. There is an € > 0 such that when p is sufficiently large,
the following property holds. Let f;, v;, and ¥; = I'y; be as in Section 3.
Let © > 0, let pg € X;, and let P be the tangent plane to ¥; at pg. Let
p € PN B(po, pri) and 2r; < R < pr;. Then

(89) .
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After a rescaling and translation, it suffices to consider the case that «
and ~ satisfy Lemma 3.12 and pg = 0 € I',. Let P be the tangent plane to
I'yat poand W = X +V,a(po)Y. Let € > 0 be as in Lemma 8.1. It suffices
to show that for p € B(po,pg; P)and 2 < R < pg,

1

(90) ol G 0@
E(p,R;P)

By Lemma 8.1, when p is sufficiently large,

RS
1 /
D3 Ga,'y (0)(Q) dq - HP,*y(Q) dq
R E(p,R; P) E(p,R; P)

log(R)

< p ¢4
~ P R

(91) Spt

Then Lemma 10.1 is a consequence of the following bound.

Lemma 10.2. Let P and vy be as above. Let p € P N B(po,+/p) and let
2<R<,/p. Then

1

log(R)
R? '

R

S

/ HP,’Y(Q) dq
E(p,R;P)

We first reduce Lemma 10.2 to a question about a singular integral on
P x P. For r >0, let
A, ={(v,w) € P x P | dgor(v,w) < r}
and for U C P x P, define
pv./ M (v, w)d(v,w) := lim M (v, w)d(v, w).
U r—0 U\AT
Recall that for v € P, we defined

Hp g(v) = pv.(v) / (6(w) — G(v)) YLK (v TIp(w)) duw.

pVo
Lemma 10.3. Let A\ be a bounded smooth function which is constant on

cosets of (Y'). Let p € H and let P be a vertical plane through p with finite
slope. Then

(92) Hpa(p) = pv.(p) /P (\(g) — A(p)YLE (p~"q) dg
and
(93)
[ Hea@da=pv. | (A(w) = A@)YLR (0 w) d(v, w).
E(p,R;P) E(p,R;P)XP

Proof. Without loss of generality, we suppose that p = 0. Let D, := Vg N
B(0,7) and DF := PNB(0,7), and let A, g := Dg\ D, and AER := DE\DF.
Let Ao(q) = A(g) — A(0) so that Hp»(0) =lim 0 L, r, where

R—o0

L= / Mo(@)YLE (ITp()) da.
DR\DT‘
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Likewise, since \ is constant on cosets of (Y'), we can write the right side of

(92) as lim .0 M, g, where
R—o0

Mg = / No(@)YLE (q) dg = / Mo(@)YLE (T1p(q)) dg.
DE\DP I(DE)N\IL(DE)
Then

L.gp— M,r= /v (1pe —1pr —1gpr) + iepry) (@)ro(@)YLE (TTp(q)) dg
0
= [ oy = ) @N@¥LR (p(0) do
0

- [} (0, = Lo @M@V K () do
=:Ig—1I,.
Note that there is a ¢ > 1 depending on the slope of P such that
supp(1p, — Lpry) C Ae-15.cs

for all s > 0. N
Since A is bounded and Y K is (—4)-homogeneous,

RIS Acrerl  [Mlso(c T R)™ Sap BT

so [Ig| — 0 as R — oo.
Let 0(z,y,2) = (—z,—y,2) and let A§(q) = $(Xo(q) + Xo(0(q))) be the
even part of A\g. Then 1p, — 1y(pp) is even, so

I - / (15, (2) — Troy) (@)A§(@) VLR (TTp(q)) dg.
Vo

Since )¢ is smooth and A\o(0) = 0, we have |A&(q)| < llgll%,, When [|glKor
is sufficiently small, so when r is sufficiently small,

|I7“| S)\ |Ac—1r,cr| : 7‘2’/"_4 Sz\,P r.

Therefore, |L, g — My r| Sap 7T+ R~!, which implies (92).
Now let E = E(p,R;P). Since Y| K is (—4)-homogeneous and A is
bounded, for any » > 0 and v € P,

/ ) = AR ) dw

converges absolutely. Furthermore, by the bounds above and Lemma 7.1,
there is a ¢ > 0 depending only on A and P such that for v € E,

‘HR,\(U)— / o (A(w) = M)LK (v w) dw| < er.
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Therefore, using uniform convergence to exchange the integral and the limit,

/E Hp(q)dg = /E lim / Aﬁm()\(w)—)\(v))YLf((vlw) dw dv

r—0

r—0

= lim w) — A(v K(v1w) dw dv
~ 1 /,E/Z)A%O(A() AL (6~ ) dwd

~

. / (A(w) — AW)YLE (v~ w) d(v, w).
ExP
This proves (93). O
Now we prove Lemma 10.2.

Proof of Lemma 10.2. Let E = E(p, R; P). By Lemma 10.3
[ Hra@dv=pv. [ () 1@ ) (. w)
E ExP\E

+ pv./ (v(w) — y(W) YLK (v w) d(v, w) =: Jy + Jo.
ExE

We claim that |J1| < R%log R and |.Jo| < R2.
We first consider .J;. First, we claim that |[y(u) — y(v)| < A" dkor(u, v)
for all v € E and u € P. Let k := dgor(u,v). On one hand, if k > 1, then

() = 7] S [7llo S AT < A7Ms,

so we consider the case that k < 1. Then dkor(u,po) < dior(u,v) +
dkor(v,p0) < 2R. Let W = X + slope(P)Y and write u = vW™¥Z? for
some |w| < x and |z| < k2. Since P is tangent to I'y at pg, Lemma 2.9 and
Lemma 3.12 imply that for all ¢ € P N B(pg, 2R),

dKor(era) 5 pildKor(‘LpU)Q 5 L.

Lemma 8.4 implies that [W~(q)] < A~ and |Zv(q)| < A™!. By the Mean
Value Theorem, |y(u) —v(v)| < (k + k%) A7t < kAL as desired.
Now let v € E and € = dgo (v, OF); suppose € > 0. Let

o) = [ |6t - @MEe )| de
P\E
Since YLI/(\' is (—4)-homogeneous, by Lemma 5.3,
A5 [ () = 2w, 0) "
P\B(v,e)
§/ min{ |||/ oo, A dior (v, w) g or (v, w) ™4 dw
P\B

(v,e
o0
< / min{r%,r*g} cr2dr,
€
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so there is a C > 0 such that

) Clloge| +C 0<e<1
<
nw) = {Cel e> 1.

For any ¢y > 0,
HU € E | dgor(v,0F) < 60}| < min{R?, R%¢},
so for any ¢t > 0,

R? 0<t<§
[{ve E|ji(v) >t} < ¢ $R? C<t<C
RQeXp(%) C <t
Therefore,
c ¢ c o ¢
h(v)dv < =R? R%*dt / R? 1——)dt
[awas iR [ SR [ Ren(-g)

< CR? +CR?logR + CR? < R?log R.

By Fubini’s Theorem and dominated convergence,

|J1] =

r—0

i —~(v Av_lw vV, W
lim /E /P oy () AR ) a(ew)

< / j1(v) dv < R?log R.
E

Now we consider J5. We have

Jo = pv. /E ) = @)K ) do. )

:pv./EXE’y(w)YLI?(Ulw)d(v,w) —pV./EXE’)/(v)YLI?(vlw) d(v, w).

Exchanging v and w in the first term, we get

~

Jy = pv./E E’y(v)(YLK(w_lv) — YLK (v 'w)) d(v, w)

= pv. v v w) d(v, w
=pv. [ M) dw)

where M(p) = YLK (p~) — YLK(p). We use the following lemma to show
that M is vertically antisymmetric, i.e., M(W"¥Z?%) = —M(W®*Z~7?) for all
w, z € R.

Lemma 10.4. Let N: H — R? be an orthogonal kernel. For any horizon-
tal vector W, let W be the corresponding left-invariant vector field. Let
O(x,y,z) = (—x,—y,z) be the homomorphism that rotates H around the
z—azxis by w. Then for any g € H and any horizontal vector W,

aw(g) == WLN(g) — WLN(g~") — WLN(6(g)) + WLN(0(g~ ")) = 0.
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We defer the proof until after the proof of Lemma 10.2. Let h: H — H,
h(z,y,z) = (x,y,—2), so that h(q) = (¢ ') for any ¢ € H. Then K is an
orthogonal kernel, so for ¢ = W% Z*% € P,

MW®Z?:) + M(WYZ™%)

= YiK(q™") = YLK (¢) + LK (6(q)) = LK (6(¢ ")) = 0.

By Fubini’s theorem,

Jy = lim y(v)M (v w) d(v, w)
=0 JExE\A,

r—0

E
= lim/ ’y(v)/ M (w) dw dv.
=0 /g v=1E\B(0,r)

For § C P and r >0, let k:(S) = [ (o, M(w) dw. Then
S =(S\h(S))U(SNh(S)).

The symmetry of M implies that k(SN A(S)) = 0 and thus &,.(S) = k(S \
h(S9)).

Let wg € (—R, R) and z € [0, R?), so that v = W% Z* lies in the top
half of E. Let § = R? — zy € (0, R?). Then

v IE = {WYZ* : lw+wo| < R,z € (§ —2R%,6)}

= lim [ ~(v) / M (v w) dwdv
E\B(v,r)

and
v IE\h(vTIE) = {WYZ% : |w+ wo| < R,z € (6§ — 2R?, —4]}.
That is, v 'E \ h(v™'E) C A;/Soo' Therefore, for all » > 0, we can use

Lemma 5.3 and (—4)-homogeneity of M to show that

k(v E)| = [k (v E\ h(vT'E)| < / | M (w)] dw
AP
Qﬁ,oo
5/ p2dp S8 a.
25

More generally, letting 6(v) = |R? —[2(v)]|, we have |k, (v 'E)| < 5(0)_%
for all r > 0 and all v € E. By dominated convergence,

o] = < vl / 5(v)"% du
E

: -1
}1_r)r(1) /E y()k, (v E) dv
2

R 1 R? 1
§2R/ |R* — ||| 2dz:4R/ z"2dz =8R”.
_R2 0

Therefore,

< |J1| + 2| S R?*log R,

‘ /E Hpo, (v) do
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as desired. O
We used Lemma 10.4 in the proof of Lemma 10.2, and we prove it now.

Proof of Lemma 10.4. We first consider the case that ¢ = (z,0,2) € V.
Any left-invariant horizontal field can be written as a linear combination of
X and Y|, so it suffices to consider W =X or W =Y.

Let I: H — H be an involutory linear isometry of H that fixes 0. Then
N(I(h)) =I(N(h)) for all h € H, so by the chain rule,

WLN(I(g)) = L.(WL)[N o I](g) = L.{(W0)[I o N](g) = I(L.(WL)N(g)).
Let ¢(x,y,2) = (z, -y, —z) and ¢ (z,y, z) = (—z,y, —z) so that
aw (g9) = Wi ( ) = WLN(¥(g)) = WLN(6(g)) + WLN (¢(g))-
Let X1 N(g) = (a,b). Since ¢, 1, and 6 are involutory isometries of H,
4x(9) = XLNg) — Y((XL)N(9)) — 0(0.(XL)N(9)) + &(d+(XL)N(9))

= XLN(g) +¥(XLN(9)) + 0(XLN(g)) + ¢(XLN(9))
= (a,b) + (—a,b) + (—a, —b) + (a,—b) = 0.
Let YL N(g) = (¢,d). Then
ay (9) = YLN(g) — (¥« (YL)N(9)) — 0(6+(YL)N (9)) + ¢(¢«(YL)N(9))
=YLN(g) —¥(YLN(g)) +6(YLN(g)) — #(YLN(9))
= (C, d) - (—C, d) + (_Cv _d) - (Ca _d) =0.

Thus the lemma holds for g € V4.

Let ¢ € Vp and let R: H — H be a rotation around the z—axis. Let
W' = R(W) so that R.(W.) = W/. Then, as above, W N(R(g)) =
R(R.(WL)N(g)), and since R commutes with 6,

qw(R(g)) = WLN(R(g)) — WLN(R(¢™"))
— WLN(R(0(9))) + WLN(R(6(g™")))
=R(W{N(g) - W{N(g~") = W/N(6(g)) + WIN((g™")))

= R(qw(9)) = 0.
Any point in H can be written as R(g) for some rotation R and some g € Vj,
so qw(h) =0 for all h € H. O

10.2. Averaging over pseudoquads. In the previous section, we bounded
the average of F/(0) on rectangles of the form E(p, r; P), where P is tangent
to X; at pp and dgor(po,p) < 7ip. The projections of these rectangles do
not tile Vp, because P depends on pg, so in this section, we will bound the
average of F/(0) on pseudoquads for ;.

We will need the following bound on the size of a pseudoquad of given
height and width.
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Let 65,6, > 0 and let g1, g2 € C1(R) be functions such that for all x, g1(x) <
92(), gij(x) = —¢(2,0,gi(x)), and 6, = g2(0) — g1(0). Then for any x € R

g1(z) — g2(2)| i 62 + 22

Lemma 10.5. Let v be a A—intrinsic Lipschitz function for some X € (0,1).

Let
Q= {(x,O,z) | T € [0,(51],z € [gl(x)vg2(x)]}'
Then
diam W,,(Q) Sx 6z + V6
and

Q| S 0.0, + 62,
Proof. By (11), since 1 is Aintrinsic Lipschitz, the g; satisfy
(94) |gi(x) — gi(a")| = [¢(2,0,gi(x)) — P(2’,0, gs(a"))]

< IVydlleolz = 2'| < Lz — 2],

for all z, 2’ € R, where L = \(1 — )\2)7%. By Lemma 2.6,
(95)

2 4
|¢(070721) _¢(07O7 22)| < 1_ )\dKOF((O>O> Zl)? (0707'22)) = ﬁ V |22 - 21|.
Then |g7(0) — g5(0)] = [1(0,0,91(0)) = ¥(0,0,92(0))| < $25+/3, and

4
l91(2) — ga(2)] < ﬁ\/g—i- 2L x|

for all x. Integrating this inequality and using the definition of J,, we find

4
1_/\]x\\/5Z+La:2 <y 0, + 2%

91(z) — g2(2)| < 0. +

In particular,

Oz
Q= [ loae) — )l o < .- (5.4 120 VE 4 L02) St 46
0 -

Finally, let
E={0y(0,0,2) | z € [91(0), g2(0)]}
be the left edge of Uy, (Q). By (95), diam(E) < /4. Every point p € U,;(Q)
lies on a horizontal curve in ¥, (@) that intersects F, and we can parametrize
this curve as v = (Vz, Yy, 72): [0,02] = Q where z(y(t)) = t. By (94),

Iy ()] < L, so
Oz
5(7):/0 JUE b2 at < 5,\/1+ 12,

dkor(¥4(0,0,91(0)),p) < diam E + £(y) Sy /0 + s,
as desired. O

and

Now we bound the integral of F/(0) on a pseudoquad.
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Lemma 10.6. Let r; = A 'p™" and let f;, v;, and X; = Ly, be as in
Section 3. There is a § > 0 such that if p is sufficiently large, then for any
pseudoquad Q for ¥; with 6,(Q) < rip® and 6,(Q) < r?p*, we have

’/ F{(0)(q) dq’ < rdp¥s,
Q

Proof. Let € > 0 be as in Lemma 10.1 and let 6 = §. After a left-translation,
we may suppose that f;(0) = 0 and that the lower left corner of ¥, (Q) is
0. That is,

Q = {(:E,O,z) ’ LS [07 5$(Q)]7z € [gl(x)ng(x)]}
where ¢1,g2: [0,0;(Q)] — R are functions with characteristic graphs such
that g1(0) = 0, g2(0) = 0.(Q). By Lemma 10.5, [ga(z) — g1(2)| < r2p? for
all x € [0,0,(Q)], diam(V,(Q)) < 7ip°, and |Q| S 73p*. In particular, for
any q € (J, the intrinsic Lipschitz condition implies
(96) |fi(@)] S 1£:(0)] + diam(Q) S 74p”
Let P be the tangent plane to ¥; at 0, and let o = Vy, f;(0) be the slope

of P. Note that |o| < 1. Let W = X + oY so that P = (W, Z). We will
cover IIp(Q) by rectangles. Recall that

Ip(z,0,2) = (2,0,2) - Y% = (ac,ax,z + %332) = W zet5e?,
Let gj(z) = gj(z) + $2?, so that
[p(X*29@) = X 795@yoe — e z9;(@)
and
Ip(Q) ={W"Z* | w € [0,0,(Q)], z € [g1(w), g2(w)]} .
Note that dker(q, IIp(q)) < |2(q)], so diam(IIp(Q)) < diam(Q) < r;p°.
Since g; has a characteristic graph, it satisfies

gi(x) = —fi(2,0,9;(x)) = — f( X+ 2% ),
it follows that g; satisfies

(97) Gj(w) = —fi(X7290) + o3 = 0w — fi(W* 29)).
In particular, for = € [0, 0,(Q)],
(98) 15(@)| < |olds + | V25| S rip.

Let R= ripg and let
D ={W"Z*|w € [0,2R],z € [0,2R?]}
This is a translate of E(0, R; P). Let
T = {(WHEZ?ED | j k€ 7}
be a tiling of P by translates of D, let
So={FeT|intECllp(Q)},
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and let
S ={FeT|int ENJllp(Q) # 0}.

The rectangles in Sy and S; cover IIp(Q), and

‘ /Q Fl(0)(g)d ‘ py > |[ Flo dq’

Since each rectangle in Sy has measure 4R3, we have 4R3 - #S) < |Q| <

r3p%. When p is sufficiently large, we have E C B(0,r;p¢) for every E €

So U 81, so Lemma 10.1 implies that

Ol RLACIOIER

EeS:

)
1 log p2
J F{(oxq)dq‘SR%—f BT ey plBOY s
E RT’Z- p2

for any E' € Sp. Then

w3 | [ RO ] S #0 m S0

EcSy

Now we consider the S; term. We first bound the number of elements of
S1. If E € 8y, then E intersects one of the edges of IIp(Q). Let S{r C &1 be
the set of rectangles that intersect the left or right edge and let Si® C S; be
the set that intersect the top or bottom edge.

By Lemma 10.5, there is a C' > 1 such that the left and right edges of
[Ip(Q) are vertical segments of height at most Cr?p?. Since each E € T is
a rectangle of height 2R?,

07”2 p25

#SIF < +2<Cp.

The top and bottom edges of IIp(Q) are the curves
v = W29 [w e [0,6,(Q)]}-

We can partition 7 into strips of rectangles with the same x—coordinates,
i.e.
T ={E €T |xz(F)=[2kR,2(k + 1)R]}.

Then for each 0 < k < 2(}?),

N[

1 2k (98) 1
BT BNy 20 < 55 [ lgja@)lde+2 5 oo +2<,

and
st 5 2% ](%Q)pg <’
Therefore, #S1 < p°. By part (1) of Lemma 6.3, ||[F/(0)]loc < A7, s0
(101) > / |F/(0)(q)|dg < pP RBA™ < r3p39.

EeS;
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By (99), (100), and (101),
’/F' ' L INC LU P
as desired. O

10.3. Proof of Lemma 6.3.(3). Let 0 <7 < j < N. Let 6 > 0 be as in
Lemma 10.6; note that we can take § < % Let € > 0 be as in Lemma 8.2;
we take € < 1. We claim that

—min{¢,2
[(F{(0), Fj(0))] S p~™intish,

Recall that f; is supported on the unit square U = [0, 1] x {0} x [0, 1], so
that the top and bottom boundaries of U are characteristic curves of Zj.
Let w € [37;0°,7;p°] and h € [ér?p%,r]zp%] be such that N,
and N, := h™! are integers. For m = 0,...,N, and k = 0,. 2, let
Uk = (mw, 0, kh) € Vp and let gy, : [mw, (m + 1)w] — R be the functlon
such that the graph z = g, k( ) is a segment of the characteristic curve of
> through vy, ;. For m =0, . —land £=0,. — 1, let Q1 be

the pseudoquad

Qm,k = {(JI,O,Z) | S [mw7 (m =+ 1)w]7z € [gm,k(x)agm,k—i-l(x)]};

this is the pseudoquad of 3; with lower-left corner vy, i, 0,(Qm k) = w, and
02(@m,k) = h. The pseudoquads @, , then have disjoint interiors and cover
U.

By Lemma 10.6, for every m and k,

—1

5
(102) Fj(0)(q) dg| S rip* 5

Qm,k

Suppose that p,q € Q. We claim that Wy, (p) is close to Wy, (¢) and
thus |F/(0)(p) — F/(0)(¢)| is small. Let p, = ¥y, (p) and ¢, = ¥y, (q). By
Lemma 10.5,

dKor(pja Qj) < diam \I]fj (Qm,k’) 5 rjp(s'
Since i < j,

j—1 j—1
1fj = filloo <D lvalle S A7
Let a = f;(p) — fj(p) and let b : x(q) — a:(p).:Then pi = p; Y%, and
dior(pi» ¢i(Y)) < dxor(pis V) = 1Y P, ' ;Y |l kor
= 1P " 2% kor S dkor(pj, 45) + Vab S rjp° + \/ririp’.
Since j > i, we have r; < pri, so

_ —1+6 _

dicor (pi> ¢i(Y)) Srip” 0+ mipT2 Srp
Let m = dkor(pi, ¢i(Y)) and let ¢ € ¢;(Y) satisfy dgor(pi,c) = m. Note
that p; = Wy, (p;) and so y(p;) = fi(pi). As the y function is 1-Lipschitz we

N
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get that | f;(p;) —y(c)| < m. By Lemma 2.6, | f;(p;) — fi(¢:)| S dxor(pis qi(Y)).
Thus,

dior (Pi, 4i) < dior(pi ) + [y(c) — filps)| + | fi(pi) — fi(@:)| S m S rip™
Therefore, by Corollary 8.3,
(103) [F7(0)(p) — F{(0)(q)| = |} (0)(ps) — F;(0)(a:)| S p™ 1.
Then

N

ESTY

F}(0)(q)Fj(0)(q) dg

/U F;(0)(q)F;(0)(¢) dg

<>
m,k

where the sums are all taken over 0 < m < N, and 0 < k < N,. Part (1) of
Lemma 6.3 implies that ||F)(0)]|co < A7 <1, so by (103),

> /Q IF(0)(@) = F/(0)(vn)| IF}(0)(@)]dg S [U]0™ [ FJ(O0)oc S 7
m,k
Likewise, by (102),

Z‘F’ Umk

Therefore,

as desired.

11. SECOND DERIVATIVE BOUNDS

In this section, we will prove the following lemma.

Lemma 11.1. For any A > 1 and any C > 0, if p is sufficiently large,
then the following bounds hold. Let a,~v: H — R be functions that satisfy
Lemma 3.12. Then

lea, @l S A7
for all t € [0,1].
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We first set some notation that we will use in the rest of this section.
Similarly to Section 7, given functions o and  that satisfy Lemma 3.12, for
7 € R, we define

ar(w) = (@ + ) (V) Ow) — (a +77)(0)
(as in (50)) and
by (w) := A(Y 47Oy
By Lemma 2.2, these are translates of @ and 7 in the sense that a,(0) =0,

Lo, = Yﬁ(OHrTV)(O)Fa—&-T%

and
Lo, =Y~ (etm)(0) Lot (rte)y-

By the left-invariance of the Riesz transform, for any 7,t € R,
(104)

Gon(T+8)(0) = Gar . ()(0) = Fur ., (0) = pv-(0) | K(¥,,,,(v)do.

We will use (104) to decompose Gq (7)(0) and differentiate the decom-
position. We fix some 7 € [0,1] and abbreviate a = a, and b = b,. For
w e H, let W= ¥,(w) and w; = YO0y —t0(0) — 4y 7=b(0)z(w)  Then

(105) Y, (w) = Y_tb(o)\lla-i-tb(wt) — Y_tb(o)ﬁtytb(m).

For 0 < r < R, let D, = B(0,r)NVp and A, g = Dr \ D,. Then we can
decompose G (T +1)(0) = G4()(0) as follows:

Gas(£)(0) = pr. /D R (W, (v)) dv + pv. /V . R(Wa,,(v))dv

= pv./ IA((\IJQTH (v))dv + pv./ K (Y PO gy t(wo)y qoy
D, Vo\D1

(v))dv + lim K (Y Oy ®(®)) dyy

Dy oo

— G () + G (1),
where all principal values are taken around 0 and
Al = YO 4, py (),

For0<r <1< R,let

G0 = [ R (o)
r,1

GEp(t) = K (Y Oy W)y gy,

t
AI,R

We will show the following bounds.
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Lemma 11.2. For any 7 € [0,1] and any 1 < R < R/,

(106) (G20 (0) = (GE)" ()| S AR

Lemma 11.3. For any 7 € [0,1] and any 0 <’ <r <1
[(GF)"(0) = (GF)"(0)] £ A7

Proof of Lemma 11.1. These lemmas show that the functions 7 — (G37})"(0)

and 7 — (GngR)”(O) are uniformly Cauchy on the interval 7 € [0,1] asr — 0
and R — oo. Let

() = lim (G)"(0) f8(r) = lim (G#R)"(0).

R—o0
Then (GS™)"(0) = f5(7) and (G£)”(0) = f'8(7). Moreover, as (G)"(0) =

7,1
0= (G%,)"(0) for all T,
(GT)"(0)] = lim |(G3)"(0) = (GT))"(0)] £ A7,

(GEY'(0) = lim [(GER)"(0) — (GF)"(0)] S A7
Thus
GLLO)] = |(GE)(0) + (G3)(0)] 5 A7,
as desired. O

Before we prove Lemmas 11.2 and 11.3, we will need some lemmas.
The first proves bounds on the derivatives of a and b which follow from
Lemma 3.12.

Lemma 11.4. There is a ¢ > 0 such that for any k < 3 and any word
Fe{V, 7}

Hom | Fbl|so < cA™#ValF)=1
IfF ¢ {id’ va}, then
1o |Falloo < cA#ValP)—1,

Proof. Let m = «(0) + 7v(0) and let \: H — H, A(p) = Y™p. Then
Vo = A (Vairy), and by the Chain Rule, if F € {V,, Z}*, then

Fa(p) = F'la+ 7y = m](A(p)),
where F is obtained from F' by replacing V, by Vairy.
Let V = AV 44, It suffices to prove that for any k£ < 3 and any F €
{v. 2",
1B ]loo < cA™!
and that if E ¢ {id, V},
|Ealloo < cA™L
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Let g = —A7y and V = AV, so that V = V+gZ. Suppose by induction
that for any k < d, we can write any E € {V, Z}* as

(109) E = Z Diilg]. .. Diylg] - Ci

where C;, D;; € {V,Z}* and £(C;) + >, ¢(D;j) = k. We call the Cj’s the
monomials of E. For instance, Z is trivially of the form (109), we can write
V=V+g¢gZ, and

V2=V 4Vyg-Z+g-VNZ+g-ZV+g Zg-Z+g*- Z°
By the product rule, if £ can be written in this form, then so can ZE and
VE, and each monomial of ZF or VE is a monomial of E or a monomial

of E' with one additional letter. X R
If E ¢ {id, V}, then E ends in either Z, V2 or ZV. Since id and V are

not monomials of Z, @2, or Z @, they cannot be monomials of F.
By Lemma 3.12, if k < 3 and C € {V, Z}*, then ||C[|oc < A7L, and if

~

C ¢ {id, V}, then ||Callcc S AL If E € {V, Z}* is as in (109), then

1EY]loo S D I1Dia[AN oo - - 1Dk, [ AN oo | Civll oo S AT
Moreover, if E ¢ {id, @}, then C ¢ {id, V} for all 4, so
1Bl S D I1Di1[AM oo - -+ 1Di g, [AN o[ Cirll oo S A7

as well. O

As a consequence, Za, b, and Zb are close to even. Recall that for a
function f: H — R, we define the even and odd parts of f by

() = f) +2f(9(v)) o) = f() —Qf(G(v))
so that f = f¢+ f°. Furthermore, if g: H — R, then
(110) (fo)f=1fS+ )+ 9°)° = f9°+ [°9°

(f9)° = fo9°+ f9°.
Lemma 11.5. Let a be as above and let m: H — R be a smooth function
that is constant on cosets of (Y). Let v € B(0,./p). Then

m(v) = m(0(v))] < [ollkorl Vamlloo + A7 [0l korl| 21 o

If p> A% and m = Za, m = b, or m = Zb, then for any v € H, we have
|me(v)| < A™! and

()| = g lm(e) ~ m(O())] S Ao ko
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Proof. Let p = U,(0) and let 0 = V,a(0). Let W = X + oY and P =
(W, Z). We first bound the distance from I';, to P. By Lemma 2.9 and
Lemma 3.12, for ¢ € H,

la(q) — a(0) — ox(q)| S A7 dior (p, @)%
Let u € B(0,3,/p) and let ' = Y(@+™)(©)y_ Then
dior(py ') = dior (VO Y OFTIO ) < |y (0)] 4[|t kor S A4V S V-
We have
a(u) = a(u') — a(0) + 7(y(u') — v(0)),
SO
(111) |a(u) — oz(u)| = |a(u) — a(0) — oz (uw)| + 2|7]||V]lso
< A tdger(p,u/ )2+ A7 < AL

Recall that for all ¢ € H, we have (V,), = X4+ (y(q) —alq))Z,;. If u € P,
then y(u) = ox(u), so

Wy = (Va)u — (0z(u) — a(u))Zy, + oY,

Let m: H — R be a smooth function which is constant on cosets of (V).
Then Ym =0, so for u € P,

Wm(u) = Vem(u) — (cz(u) — a(u)) Zm(u).
By (111),
(112) (Win(u)| S [Vamllos + A7 Zm||oc.
Let w, z be such that IIp(v) = W™ Z?; note that |w| < ||[v]|kor < /P, SO
TP (0)[[kor < [[v]lxor + [y(v) — ow] < 3y/p.
Then, by the Mean Value Theorem and (112),
[m(v) = m(0(v))| = [m(W*Z%) —m(W™Z7)]
< Jollkor(IVamlloo + A7 Zm] o),

as desired.
Finally, if m = Za, m = b, or m = Zb and p > A? then ||m|le < A7}
and ||Vem|so + A7 Zm|| 0o < A72. Therefore,
m(v) = m(0(v))| < A72[|v][kor
for all v € B(0, A) and
m(v) = m(@)| < mlloe S A™?|[v]|Kor
for all v & B(0, A). O

Finally, we bound functions of the form Np(v) := T(v) when T is a
homogeneous kernel.
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Lemma 11.6. Letv € H, v 75 0. Let T be a smooth k—homogeneous kernel
on H. Then |Np(v)| <p ||v||Kor and

INT(0(v)) = (=1)*Nr(v)| S A vl -

Proof. Let A(v) = V4a(0) - z(v) be the function whose graph is the vertical
plane tangent to I'; at 0. By Lemma 11.4 and Lemma 2.9, a(v) = A(v) +
O(A v][2,), and la(v) + a(B(v))] S A~ o],

As in the proof of Lemma 5.2,

8(7) = B(v)Y ~o()—a(O()

and any point w on the segment from 6(v) to 6(v) satisfies ||w||kor = ||v||Kor-
The mean value theorem and the (k — 1)-homogeneity of Y| 7" imply that

(N7 (6(v)) — (=1)*Nr(v)| = [T(8(v)) — T(6(v))]
ST !a(v) +a(@())lllvlie: < A vl
as desired. (|
Now we prove Lemma 11.2.
Proof of Lemma 11.2. As above, we let a = a; and b = b;. Let
d)t(w) — Y—tb(O)wytb(’w)’

so that Glg fAt w)) dw.
As in the proof of Lemma 7.2, we define M, (z) = 1v/r* — 2% and

A; r(z,t) = [-Mpg(x) — tb(0)x, Mp(z) — tb(0)z]
\ (=M, (x) — tb(0)z, M, (z) — tb(0)x)

so that Ai’R ={(2,0,2) : z € A, g(z,t)} and

R
= / / K(¢pi(x,0,2))dzdz.
—RJ Ay r(z,0,t)

Taking the derivative with respect to ¢ gives
/ R ~
t) = / / d [K(q&t(az, 0, z))} dzdz
-R AI,R(zvt)
R
= Mp(z)—b(0)tx
~ [ bR (w0 [ 0 da

1
- M1 (x)—b(0)tx
+ / 1 b(O)xK(¢t($7 07 U)) ’u:l(flbl(i))jb(O)tm dCE

= J = J3 + Ja,
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where f(u)‘l; or [f(u)]b_, denotes f(b) — f(a). We have

=a

IR
ot

= /A a [R(outw))] _ dw

‘Mr(z)
u=—M(x)

G )

-

t=0
By (105), if w = (x,0, M) € Vp, then

¢t(za 0,M — b(O)t:E) = gbt(wt) = \IIaT+t (w)v

SO
T " = M, (z
3= [ W0k (W, (0.0, da
and
ars| T ~ e -
ot |,y /_ ) b(0)x0; [K(\Ifw(x,o, Z))L:ob:—MT(m) do =: I5.
Then

(GL%R>" ) =IF—IF+ 1+ I8 -1},
To prove (106), it suffices to show that |IJR —IJR,] SAB3R Mforalll <R <
/
" ;The following calculations will be helpful. Let w € V. We have ¢ (w) =
Y —1(0)gyy alw)+tb(w) and ¢g(w) =, so
(113) QK (¢1(w))] = —b(0)YRK (¢1(w)) + b(w) YLK (¢1(w)).

Taking a second derivative gives

(114) 92K (¢4(w))]i=0 = b(0)*YZ K (W) — b(0)b(w)(YRYL + YLYR)K (W)

+ b(w)?Y2K (w).
By (105),
arpi(w) = a(wy) + th(wy) — tb(0),
(115) Otlar4¢(w)] = —b(0)z0,[a + tb](w:) + b(w:) — b(0)
and

(116) 0K (Vo (w)]li=0 = YLK (@) (b(w) — b(0) — b(0)zd.a(w)).
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Bounding I{*: By (114), we have that

R _ w w)? 2/\@ w
= [ woriRmavs [ wwprekma
_ /A b(0)b(w)(YRYL + YLYR) K (w) dw

= Z /A bi(w) N, (w) dw,

where by (w) = b(0)?, by(w) = b(w)?, b3(w) = b(0)b(w), and the T}’s are
smooth (—5)-homogeneous kernels. By (110) and Lemma 11.5, for any
w € H, we have

6°(w)] < [Iblloe S A 16°(w)| S A2 ||wl|Kor
|65 (w)] < [1b]12, S A7 162 (w)| < [1b]loo|6°(w)] S A7%|Jw]|Kor-
By Lemma 11.6,
INg, (w)] < A7 |wlld, N2, (w)] < [Jw]lid,-

Therefore, by the symmetry of A; r and Lemma 5.3,

Lel <D ‘/A (biNp)*dw| = 3
7 1,R

7
R
< A3 |w| gt dw S /1 A3k 2dr SATPRTL

Iavl
AR

/ BENS, + B2NG, du
A1 R

Bounding [}: Let wy(z) = (2,0, M, (x)) and w_(z) = (z,0, M, (z)). By
(113), we have I§ = [7 hy(x) — h_(z) dz, where

hy(z) = b(O)x(bN s — b(O)NYRf(> (wy(x))
he (@) = b(0)z (b(w (2)) Ny, z(wL(2)) — b(0) Ny, & (w(x)))
Let h&(z) = 3(ha(z) + he(—2)), so that I} = [7 he(z)dx

Since ||w4 ($)HKor =r,

IhS (z)| = ’b z(bNy, b(O)NYRf()O(wi(az))‘
’b (bNY, o +0°NE 2 = (0 ) )(wi(a:)))
<Al (Al-Alr*3+A r- A1A1*3)
<A,

and |I5] < A73r L,
Bounding I5: By (116), I§ = [" ki (2)—k_(x)+14(2)—I_(z) dz, where
i () = B0}y, (s () (s () — b(0))
Li(z) = b(0)%%0.0(ws(2)) Ny, (s (z)
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Since ||ws(z)||kor = 7 > 1 and YLK is (—4)-homogeneous,
lle(z)] S A2 A7t = A3 72,

By Lemma 11.5, for any w € H, we have |(0,a)%(w)| < A~! and |9,a°(w)| <
A72||w||kor- Therefore,

k() = b(O)x(N;Lf((w:t(x))bo(w:l:(w)) + N;Lf{(wi(ﬂ?))(be(wi(gj)) — b(O)))
and

kS ()] < Alr o A 2r 4+ A A3 A7 < A-3p2.
Therefore,

|I5| = ‘/_r kS () — kS () + () — I_(z)dx

Thus, for any R’ > R > 1, we have

< A3y L

" " , , ,

(G 0 (6%0) O < [1F = 1]+ |1f" = 2+ 15— 1
< AR

This proves the lemma. ([

Proof of Lemma 11.3. Let 0 < r < 1 and recall that
G0 [ R, 0)do
Ar
We claim that
[(Gm)"(0) — (C)(0)] £ A3
forall0 <7 <r<1.

As above, we abbreviate a = a, and b = b;. Recall that a(0) = 0. For
v=(x,y,2), let

@1 (v) = dlarse(@))imo ‘= —b(0)xd.a(v) + b(v) — b(0)
and
¢2(v) = O} [ar4¢(v)]i=0 = b(0)%220%a(v) — 2b(0)2,b(v).
Then
2 ~
SoR@ye )] = Cafa Ry ®)|
= 0} lar 1 (0)]i=0 YLK (0) + (0tlar4e(v)]i=0) YK (9),
and

@Y'0) = [ wo)Ny £0) + GH0) Vg () o

As above, we decompose these into odd and even terms. Let by(v) =
b(v) — b(0) and let K = ||v||Kor- By Lemma 11.4 and Lemma 2.9,

(117)  bo(v) = 2(v)Vab(0) + O(A71K?) = O(A%k + A71K%) = O(A7 k),
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so |b§(v)| < A71k? and |b(v)| < A~ 1k. Therefore, by Lemma 11.5,
g5(0)] < B(0)]0a%(v)| + IBE(v)] S A~k A2+ A2 S A1
and
()| 4 [B3(v)| S AT - AT 4 A2 < A%k,
()¢ (v)| £ A3k and

~

g7 (v)] < b(0)z|0:a
Therefore, |(¢3)° ()| = 2Ia¢
[(@D)° ()] = la1(v)* + g (v)*| S A7%%.
For g5, on one hand,
la2(v)] < b(0)%2% - [|02alloc +2/b(0)] - 9:0]|0c S A7k ATH+ AT IR AT
S A%k,
so |gS(v)| £ A72k. On the other hand, by Lemma 11.5,
|45 (v)| < b(0)*2?(|0Zalloo + [26(0)x(8:5)°(v)]
SA?E AT 4 AT R AT R S AR
Since Y. K is (—4)-homogeneous and YL2IA( is (—5)~homogeneous, we can
use Lemma 11.6 to bound NYLR and Ny.p. Thus
L

(GF1)"(0) = (GT)"(0)] =

| @Ny g+ @) o

r'r

<

[ NG BNy (@) NG + () Vg o

r'r

< A3 24 A3 2+ A3 2+ A3 2do
A,

,T

T
~ / ABKk2 Kk2dr < A3
T/

where we used Lemma 5.3 to replace dv by x2dk. This proves the lemma.
O

12. PROOF OF THEOREM 1.1

In this section we will finally finish the proof of Theorem 1.1. First,
recall that for any intrinsic Lipschitz function ¢: H — R and any function
g: H — R which is constant on cosets of (Y'), we have defined a parametric
version of the Riesz transform by

Rszog(p) = TRg(p) = pv.(Ty(p)) /@ R ) do

Note that when ¢ is smooth and bounded and p € I'y, Proposition 5.1
implies that
Rszg4g = TRy dng).
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In order to bound the Ly norm of Rsz on I'y, (where ¢4 is as in Proposi-
tion 1.3) we will need the following lemma, which allows us to replace 1 by
an Ly function.

Lemma 12.1. Let ¢ satisfy the hypotheses of Proposition 5.1. Let E C F
be two bounded subsets of Vy so that d(E,F€¢) > 0. Then there is a C > 0
depending only on ¢, E, and F such that for every p € Vy(E), the principal
value T¢1F<y> (p) exists and satisfies

‘TzﬁlF(Y) (p) — T¢1(p)‘ < C.

Proof. Since we know T¢1(p) exists by Lemma 5.2, it suffices to show that
there is a C' > 0 such that for all p € E, Ty[1pyy — 1](p) exists and

(T¢ [1-1py)) (p)‘ = \T¢>1H\F<Y> (p)‘ <C.

Let x = 1g\ p(y). By compactness and the boundedness of F’, there is an
0 < € < 1 such that for all p € E we have

II(Be(p) NpVo) C II(F) C II(B-1(p) N pVo).

Therefore, for r < € and R > ¢ 1, we have y = 0 on A, ((p) and x = 1 on
Aefl,R(p% S0

TylXI(p) = lim Ty rD)(0) = Tye. s (X (p) + Jim Ty p[1](p).
R—o0

By Lemma 5.2, this limit exists and satisfies |Ty[x](p)| < loge + € for all
p € E. This proves the lemma. O

Given a set £/ C H, we define the Lo norm || - ||z := || - || () )
Let W = [-1,2] x {0} x [-1,2] C Vj and let W = W(Y). Then U and
W satisfy Lemma 12.1, so Proposition 1.3 implies that
(118) ||Rszg,1y7llv > [|Rszg, 1|l — [|Rszg,1 — Rszg, 1yylly > cA—-C 2 A
when A is sufficiently large, and thus that
IRszg s L7ll Loy ) = IRSZ64 Lyl 2 A

Since 13 € La(ng, ), the operator norm of Rszs, on La(n4) goes to infinity
with A. By gluing together graphs with different values of A, we can con-
struct a single intrinsic Lipschitz function ¢ such that Rsz, is unbounded on

La(ng).

Proof of Theorem 1.1. For x € Vo, r > 0, let 7,,: H — H be the affine
transform 7, ,(v) = xs.(v). Note that 7,,(Vp) = Vo. Let x1,29,--- € W
and let 71,72, - - > 0 so that the subsets W), = 7,,, ., (W) are disjoint subsets
of W. Let Uy, = 7z, -, (U) and let W, = W,,(Y).

Let ¢y, be as in Proposition 1.3 and let

() = radn(ry, Ly, ()
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so that I'; = = Tenrn (U4, ). Note that bn(v) = 0 for v & Up(Y). Let
f: Vo — R be the function

flo) = {¢n(v) v e Uy(Y)

0 otherwise.

Then f is an intrinsic Lipschitz function supported in W.
Since |y, = ¢nlyp, . we have Rszply; (v) = Rszg 15y (v) forallv € W
By the translation- and scale-invariance of the Riesz kernel, for all v € Vj,

(119) Rsz; 1y (v) = Rszg, Ly (3t (v)).

Tn,Tn
Since (7r)«(p) = 7,3, this implies
_3
IRsz 1y (0)llLony) = IRszp1yp, (v)llv, = o *[|Rszg, 13(v) lu
(118) 3
2 o)y (0)ll,e,)

for all sufficiently large n. Thus, Rszy is unbounded on La(7y). ([
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APPENDIX A. INTRINSIC SOBOLEV SPACES AND DERIVATIVE BOUNDS ON
ry,
7

In this section, we bound the derivatives of the functions constructed in
Section 3. We first introduce some Sobolev spaces W; g and W/ ; that consist
of functions on HI. 7

Recall that for vector fields Vi,. .., Vi, we let {Vi,...,Vi}! denote the set
of words of length [ and let {Vi,...,Vi}* denote the set of words of any
length. We let #V;(D) denote the number of occurrences of V; in D. For
i>0,let 7;, = A~'p~ and let f; and 7; be as in Section 3. Let 9; = Vy,
and let

(120) Zz == T?Z é@ = An& I)L == AT;II/Z' fz == A’l“;lfz
The first two scaling factors correspond to the width and height of the
pseudoquads in the construction of v;; the third and fourth normalize v; so
that [|7]|ec ~ 1.

For any smooth function g: H — R which is constant on cosets of (Y'),
let

lgllw;, = max [[Dglleo
o(D)<d
and
lgllwy, = max [[Dgl|oo-
(D)<d
D¢{id,0; }

In this section, we will prove the following proposition, which is equivalent
to Lemma 3.11.

Proposition A.1. For any d > 0, if p > 1 is sufficiently large, then for all
i,

villw,, Sa A
and

Ifillw;, Sa A7 .

Equivalently, 7w, , Sa 1 and | fllw,, Sa o~
The proof of Proposition A.1 can be broken into two parts. In the first

part, we bound Dy; in the case that D = Zlkéf

Lemma A.2. Given d > 2, there exists po > 0 so that if p > po, then
(121) I1Zf filloo < 207" Vi>0,1<k<d

(122) 12500 000 S5 1 Vi>0,0<j<d0<k<d.

In the second part, we use Lemma A.2 as part of an inductive argument.
First, we bound #; in terms of || fi[[w .
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Lemma A.3. For any d > 0, tfzere is a ¢1 > 1 such that for any i > 0, if
p > 1 is sufficiently large and ||fi||Wfd <1, then

(123) |Zillw, 4 < e

To bound || fusa s, . we compare |- e, and | - lw, .

i+1,d

Lemma A.4. For any d > 0, if p is sufficiently large, then for any i and
any g € W ,,

(124) lgllw:,, , Sa U+ 12illw, )02 lgllwy .

In particular, if U; satisfies (123), then there is a ca > 0 depending only on
d such that |lgllw;,, , < c2p™lgllwr -

Given these lemmas, we prove Proposition A.1 by induction on 3.

Proof of Proposition A.1. Let ¢; > 1 and ¢o be as in Lemmas A.3 and A .4.
Let c3 = 2cico. We claim that if p is sufficiently large, then ||7|w,, < e

and HfiHng < c3p~ ! for all i > 0. We suppose that p > c3 so that this
bound implies ||fi\|W(d < 1.
We proceed by induction on . When i = 0, we have fy = 0, so HJEOHW(Q L=

0. Suppose that ¢« > 0 and ||f,~||W(d < cgp !t < 1. Lemma A.3 implies that
HZ%HWM < c¢1. By Lemma A.4,

I fivillwy,, , < Arghee 2 fi +villwy,
< 020_1(||fi||wg’d + 12illw,.) < c2c3p™® + crcap™t < 2e100p7 "

I. By induction, ||#i|lw,, < c1 and ||fillw: , <

That is, || fitallwy,, , < c3p”

C3p_1 for all 7 > 0.

O

In the following subsections, we will prove these lemmas.

A.1. Proof of Lemma A.2. Recall that in Section 3, we defined v; using
maps R;;: [0, Ar;] x [0,72] — Q;; for j =1,.. .,Ailri_?’ and a subset J; C
{1,..., A‘lri_3}. For each j € J;, Q; ; is a pseudoquad for I'y, and R; ; is the
parametrization of Q; ; that satisfies 0;[R; j(s,t)] = Vy, and 0¢[R; ;(0,t)] =
Z. The Q;;’s have disjoint interiors and their union is the unit square
U =10,1] x {0} x [0, 1].

We then define v; and f; by letting »: [0,1]> — R be a bump function,

(125) Kij(Rij(s,t) = A (A7 s, %),

v, = ZjEJi Kij, and fiy1 = fi +v. Let S; = UjQJi Qi,j; so that fz|Sl =
fi+1ls;- Recall that Sy = 0 and that S; C S;41 for all 4.

We prove Lemma A.2 by induction on i. We will show that if (121) holds
for some ¢ > 0, then (122) holds for ¢ and (121) holds for ¢ 4+ 1. Since v; =0
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and fiy1 = fi on S;, it suffices to prove that (122) and (121) hold on Q; ;
for all j € J;.

First, we restate (122) and (121) in terms of flow coordinates on Q; ;. Let
J € J; and define coordinates (s,t) on Q;; by letting (s(v),t(v)) = R;jl (v)
for all v € Q; ;. Then % = Vy, = 0; on Q; j. We define rescaled coordinate
systems on Qij by (8,1) = (A~ "y 's,r7%t) and (24, %) = (A7 'y ta, %),
sothat 0<§<1land0<?<1on Qi ;- Let f; = Ari_lfi and 7; = ATl-_ll/i
as in (120). Let S := % =9 and T := % By (125), we have

Di(Rij(Aris, ri)) = Ari hi o (Rij(s,t) = w(3,1),

50 [|[T*S'0i]lo0 = |0k oo Sku 1, where Ok is the appropriate partial de-
rivative of k. With this notation, (122) and (121) can be stated as
(Fo) N ZF fill (i) <207 " forany j€ J;and 1 <k <d,
(Hy)

||Zmeﬁi||Lw(Qi’j) Skm 1 forany j€ J;, 0<k<d,and 0 <m <d.

To prove (F;) and (H;), we will need some bounds from [NY20]. The
bounds in [NY20] apply to ¢; rather than f;, but for each v € U, there is

an 7 < ¢ such that f; and 1 agree on a neighborhood of v. Therefore, by
Lemma 3.10 of [NY20],

afi 8%" i'—1 i—1
< < <
1% <max TR <max2p" <2,
and
Ay —1
0%; ot 0z 3 4
126 = — |2 2.
(126) ot <8zz) ot [4’ 3}
Thus
. Ar | of; .
12 Zifill ==t o< 2rmAptTt =292, L
( 7) f 00 Tz‘_Q Oz ooi riAp p

Suppose by induction on i that (F;) holds for some ¢ > 0. Note that
fo=0,s0 (Fo) holds. For i > 0 and 1 < dy < d, let (P; 4,) be the statement

okz;
(Pi,do ) ‘ 8tAk

We will show that (F;) implies (P; 4) and use (P; 4) to prove (H;) and (Fiyq).
We must be careful to ensure that the implicit constants in (P; 4) and (H;)
are independent of i.

Suppose that (P; 4,) holds for some 1 < dy < d; note that (P; 1) is vacuous.
In [NY20, Lemma 3.10], it was calculated that

(128) % = exp <— /OS %(Rm-(a, t)) d0>

< p~tfor 2 <k < d.

~
[e.o]
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and

9%z 0z (% 0 [9f;
(129) o o /0 ot [a} d,

where the integrand is evaluated at R; j(o,t). Thus

(130)
Ando——azf/ 9 1941 45,
ot 0 ot 8zl

7"1 8f i
ri2 0%;

0% 0 0% / 50
~ = Ty ——= ’f’i -
o2 ot Jo v ot

where the integrand is evaluated at R; j(Ar;6,t). By the product rule, for
k>2,

k3 k=1 is & gk—j 7
, — 9\ 975 J 4
(131) L (k >8z2 97 %% s,
otk S\ 1) ot Jo otk | 0z
Since a% = %’iﬁ 8%1-’ an inductive argument (or the Faa di Bruno formula)

shows that there are constants ca, such that

AN T n—1 J ~ :
om 0%; om o™z, \ o
oin (af) 82?+Z 2 can (H dtae ) 957"
J=1 aeNJ, i

lally=n

Suppose that n < dy. By (P;g4,) and (126), 22 < 1if m = 1 and &2 <

' oim ~ oim ~
p~Lif 2 <m < dy. For each a in the sum, the coefficients of a are between
1 and dp, and not all of them are 1. Therefore, ; 1 %:;’Zl <do p~ 1, and

o 0% — g
132 —— == —+ ) Ogylp™)
(132) o (at)c‘)" Zdo 957

i

We apply this to (131). By (F;), when 1 < n < dj,

o | of; 9z \" ot f; i QI+, .
(133) |~ [%] §‘<@£> i +) 04,(p7 ) e <q L.
: j=1 %

By (P;4,), (131), and (133),

r

That is, (F;) and (P;4,) imply (P;4,+1). By induction, this implies (P; 4).
Furthermore, the implicit constant in (P; 4,41) depends only on d and the
implicit constant in (P;4,), so the implicit constant in (P; 4) depends only
on d.

>z

glotlz; 4
< —1

8d0+1—j [afz]

Htdo+1—3 | 92

dido+1 | >0 2
j:
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Consequently, (132) holds for all 1 < n < d. Solving the resulting system
of equations for 887”,1, we obtain

on ot !
P <8zi) ofn Z 8%

=

In particular, for m,k € {1,...,d},

o atA k o k—1 o
ool < (55 ) TR+ Y 0ule™) 157,
8Zi
=1
af k k—1
Sd || 53 |Omntlloo + Y o~ Omerilloo Sa 1.
Filloo =1

This proves (H;), with implicit constant depending only on d.
It remains to prove (F;i11). Suppose that p > 2. By (127), we have

|’Zi+1ﬁ+l||m < 2p~'. Since

% % 7 i+1
s a1 e itl—ja ma
v =Argh Y v = Arp Y AN =) p e =y 0 i,
§=0 j=0 j=0 m=1

and Z’H—l = p’QmZiH_m, for 2 <k <d,

|2

i+1

ko f —2k ;

i+1fi+1HOO < Z HP " ZEa m[pmViJrl*m]Hoo
m=1

i+1
S;d Z p(172k)m < 2p172k'

That is, thereisac > 0 dependmg only on d such that || Z¥ 1f1+1 loo < ep~3

We take p > /¢, so that ||Z +1f2+1Hoo < cp 3 < 27! for all 2 < k < d.
This proves (F;11). By induction, (F;) and (H;) hold for all 7.

A.2. Proof of Lemmas A.3 and A.4. First, we prove Lemma A.3 by
rewriting words D € {0;, Z;} as sums of operators of the form Zf@f .

Lemma A.5. Let d > 0. Suppose that | fillw: < A~y

For any 0 <1 < d, there is a ¢; > 0 such that any word D &€ {éz, Zl}l can
be written as

(134) D= gDz,

j+k<li

where for all j and k, g; (D) is smooth and ||g;x(D)llw, ,_, < c

)
We call the right side of (134) the standard form of D and we call the
9j.k(D)’s the coefficients of D.
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The following lemma will be helpful in proving Lemma A.5. Let ||« ||k x
denote the operator norm with respect to the norms K and K'.

Lemma A.6. For anyd > 0, HZZ‘HW{,d%Wi,d—l <1 and |0:]lw, yw; 41 < 1.
For g,h € W; 4, ||gh||Wi,d Sd ||g||Wi,dHhHWi,d'
Proof. The operator bounds on Z; and d; follow from the definitions of Wi a
and W/ ;. Let D € {ZZ, 0;} with 0 <[ < d and suppose that D = Dy --- D
where D; € {Z;,8;}. Given a subset A C {1,...,1}, we let

Dys=D; ---D

where 7; < ... < i; are the elements of A. By the product rule,

)

IDGMllss = > Dalg)Dac(h)]| < 2%gllw, lAllw,.

AC{L,..1} -

We prove Lemma A.5 by induction on I.

Proof of Lemma A.5. If | = 0, then D = id, so we can take goo(D) = 1
and ¢g = 1. Let 0 <[ < d and suppose that the lemma holds for words of
length I. Let D € {3¢,Z¢}l+1. Then D = 6Dq for some ¢ € {(‘i,ZAZ} and
Dy e {é“ Zi}l, and there are coefficients g; 1, = g;1(Do): H — R such that
Dy = }: 956250,
Jj+k<l

First, we consider the case that § = Z;. Then

(135) D=7ZiDy= Y Zigjx ZFoI + > gjuZiT0].
JH+k<i J+k<i

where |g;xllw, .., < ¢ for all j and k.

This sum is in standard form, and by Lemma A.6,

||Zigj7k||wi,d—l—l < ngakHWi,dfl < q.
Moreover, [|g;rllw;._,.1 < llgjkllw, 4, < - Thus, the lemma holds for
words of length [ + 1 that start with Z;. R
Second, we consider the case that D = 9;Dg. We have
136 D=dDo= Y g 20+ Y gufibd =111
k<l k<l

Then I is already in standard form, and its coefficients satisfy

10595k
To write II in standard form, we use the identity

Wid—1-1 < ||gj7k||Wi,d—l <q.
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Since ||fillw: < A7'r,
(137) 1 Zifillwaoy < ”fz||W’ < Ary 1||fl||W/ <L

Suppose that £ = g, - aizfag is a summand of II. If & = 0, there is

nothing to do. Otherwise, if £ > 0, then

F = 9jk - ZZéZZf_léz] + 95K Zlfz . Zlkézj
The first term is a multiple of a word of length at most [ + 1 that starts
with Z;. By the argument above it can be written in standard form, and
by Lemma A.6, the norms of its coefficients are bounded by a function of
¢;. The second term is already in standard form, and by Lemma A.6 and
(137), its coefficient g, - Z; fl is bounded by a function of ¢;.

Thus, IT can be written as a sum of terms in standard form. The coeffi-
cients of each term are bounded by a function of ¢; and there are at most
(I4+1)? terms, so D = I+1II can be written in standard form, with coefficients
bounded by some ¢;11 that depends only on /. O

Lemma A.3 follows directly.

Proof of Lemma A.3. Let D € {ZAl,éz}l for [ < d. By Lemma A.5, we can
write D in standard form as

D= g;s20]

j+k<I

where ||gjxlloc Sa 1. Then, by Lemma A.2,

IDvilloo = || 3 gixZfdlvil| < > lginllooll ZF0 vl

J+k<l o JTksI
(122) )
Sa Y, AT Sa AT
J+k<l
(I
Finally, we prove Lemma A.4.
Proof of Lemma A./. Note that
(138) Zigy =127 =p *riZ = p*Z;
and
(139) éiJrl = AriH@iH = p_lAri(Bi - I/ZZ) = p_l(éi - 19121)

Let 0 <[l <dandlet D ¢ {51“, AlH} be a word of length [ such that
D ¢ {id, 81+1} Let n = 2#ZH1( ) + #am( ) and note that n > 2.
We replace ZzH by p~2 Z; and &H by p~ (0 — 1) and distribute to
get an expression D = p™" ijl +D;, where D; € {8¢,yi,Zi} for each
j=1,...,m and m < 2. Furthermore, | < ¢(Dj) < 2l for all j.
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If {(D) =1, then D = Z;;1, so m = 1 and Dy = Z;. Otherwise, UD) =
and ¢(D;) > 2. Since every 7; in Dj is followed by ZZ7 if D; ends in 81, then
the previous letter is either d; or Z;. That is, we can write D; = D/, iEj,

where E; = ZZ, E; = 8i, or B; = Z,@Z.

Since E; ¢ {id,d;}, we have 1Ejllwr —w,. < 1. By Lemma A.6,

d—e(B;) —

for any 0 < k < d, we have HéHW woWio <1 HZHW woWior = 1 and

1Zillw, s wis Sa 1Zillw, 4 Let L <ql+ 1 7illw, , be such that each letter of
D; has operator norm at most L. Then

1Dllw; Lo < NEjllw ;oW a e 1P IWe iy~ Wia s Sd L,

Therefore,

m
_ —27d
1Dglloo < o > IDslIw: s rallgllws, S o2 L0 gllwy -
o

Since this holds for all D € {011, Zi41}* such that ¢(D) < d and D ¢
{idaai-‘rl}v

lgllw:,, , < P2 L0 gllw;, Sa L+ 12w, )2 gl
as desired. O
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