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ABSTRACT. In this paper we study the dimension spectrum of continued fractions with
coefficients restricted to infinite subsets of natural numbers. We prove that if E is any
arithmetic progression, the set of primes, or the set of squares {n2}n∈N, then the contin-
ued fractions whose digits lie in E have full dimension spectrum, which we denote by
DS(CFE). Moreover we prove that if E is an infinite set of consecutive powers then the
dimension spectrum DS(CFE) always contains a non trivial interval. We also show that
there exists some E ⊂ N and two non-trivial intervals I1, I2, such that DS(CFE)∩I1 = I1
and DS(CFE) ∩ I2 is a Cantor set. On the way we employ the computational approach
of Falk and Nussbaum in order to obtain rigorous effective estimates for the Hausdorff
dimension of continued fractions whose entries are restricted to infinite sets.

1. INTRODUCTION

Given any E ⊂ N, frequently called an alphabet, we will denote by JE the collection of
irrationals x ∈ (0, 1) whose continued fraction expansion

[e1(x), e2(x), . . . ] :=
1

e1(x) +
1

e2(x) +
1

e3(x) + . . .

,

has all its coefficients ei(x) in the setE. These naturally defined fractals have been attract-
ing significant attention since the classical paper of Jarnik [20], and many authors have
investigated their metric and geometric properties [3, 4, 7–9, 12, 14, 16–19, 21–23, 27, 33].
We also record that dimension estimates for the sets JE frequently appear in the context
of Diophantine approximation; for example they have been employed in the study of the
Markoff and Lagrange spectra [3,4,10], and in a recent important contribution related to
Zaremba’s conjecture [2].

In this paper we will be concerned with the dimension spectrum of continued fractions.
More precisely if E ⊂ N, the dimension spectrum of continued fractions with coefficients
in E is defined as

DS(CFE) = {dimH(JF ) : F ⊂ E},
where dimH(JF ) denotes the Hausdorff dimension of the set JF . Note that when E is fi-
nite the dimension spectrum DS(CFE) is also finite. However when E is infinite several
interesting questions arise concerning the size and structure of DS(CFE). Regarding the
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topological properties of DS(CFE), we recently proved in [5] that it is always compact
and perfect.

If the alphabet E = N the dimension spectrum DS(CFN) is well understood. Notice,
that in this case the limit set JN is simply (0, 1) \ Q. In the mid 90s, Hensley [17], and
independently Mauldin and the last named author [27], conjectured that the dimension
spectrum DS(CFN) is full, that is

DS(CFN) = [0,dimH(JN)] = [0, 1].

This conjecture is frequently referred to as the Texan conjecture, since Hensley and the
authors of [27] were affiliated with Texan institutions at that time. In 2006, Kesseböhmer
and Zhu [25] gave a positive answer to the Texan conjecture, and developed several
influential tools for the study of the dimension spectrum in a more general context. See
also [21, 26] for some earlier partial results.

Beside the case when E = N, the dimension spectrum of continued fractions with
digits restricted to infinite subsets E ⊂ N has not been investigated. In this paper, for the
first time, we study the dimension spectrum DS(CFE) for various sets E ⊂ N. We will
prove that even when E is arbitrarily sparse the dimension spectrum DS(CFE) can be
full. Our first main result reads as follows.

Theorem 1.1. Let E ⊂ N be any infinite arithmetic progression. Then

DS(CFE) = [0,dimH(JE)].

Moreover we will show that the continued fractions whose partial quotients are prime
numbers have full dimension spectrum.

Theorem 1.2. Let E be the set of primes. Then

DS(CFE) = [0,dimH(JE)].

And the same holds true for continued fractions whose digits are squares.

Theorem 1.3. Let E be the set of squares {n2}n∈N. Then

DS(CFE) = [0,dimH(JE)].

One can then naturally ask how the dimension spectrum is affected when the size of
the gaps in E increases exponentially. Our next theorem asserts that when the alphabet
consists of consecutive powers, i.e. when E = {λn}n∈N for some λ ∈ N, λ ≥ 2, its
dimension spectrum always contains a non-trivial interval.

Theorem 1.4. Let λ ∈ N, λ ≥ 2, and let Eλ = {λn}n∈N. Then there exists some s(λ) > 0 such
that

[0,max{s(λ), dimH(JEλ)}] ⊂ DS(CFEλ).

We currently do not know if Eλ defines continued fractions with full spectrum. We
are inclined to believe that this is not the case, because as our next theorem shows, there
exist continued fractions with alphabets consisting of scaled powers whose dimension
spectrum is not full. Interestingly enough, their spectrum also contains a nowhere dense
part.

Theorem 1.5. Let E = {2 · 100n−1}n∈N. Then there exist 0 < s1 < s2 < dimH(JE), such that
(i) [0, s1] ⊂ DS(CFE),

(ii) [s2, dimH(JE)] ∩DS(CFE) is nowhere dense.
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Since DS(CFE) is always compact and perfect [5], we deduce that if E is as in the pre-
vious theorem, then there exists an interval I suchDS(CFE)∩I is a Cantor set. Moreover
we can prove that if E is a lacunary sequence then there exists an interval I such that
DS(CFE)∩ I is a Cantor set, see Theorem 4.18. It becomes evident that if the alphabet E
has gaps whose size increases exponentially (or faster), then the dimension spectrum has
a very intriguing structure. Our methods do not seem to be sufficient for fully describing
the dimension spectrum of continued fractions with such alphabets and we consider that
new ideas will be needed for such task.

Our proofs employ the machinery which we developed recently in [5] in order to
show that complex continued fractions have full spectrum, as well as some key ideas
of Kesseböhmer and Zhu from [25]. All the techniques used, depend on a well known
remarkable feature of the sets JE ; they can be realized as attractors of iterated function
systems consisting of conformal maps; see Section 2 for more details. This allows us to
take advantage of the technology of thermodynamic formalism developed in [26, 28]. More
precisely, topological pressure and Perron-Frobenius operators are used extensively in
our approach.

In addition, we depend crucially on Hausdorff dimension estimates for the sets JE . We
stress that the topic of estimating the Hausdorff dimension of the sets JE has attracted
significant attention, see e.g. [3,4,12,14,14–16,20,23,24]. In particular when the alphabet
E is finite and rather small, very sharp rigorous estimates are known. For example, quite
recently Jenkinson and Pollicott [23] were able to approximate the Hausdorff dimension
of J{1,2} with an accuracy of over 100 decimal places.

In the present paper we adopt the computational approach of Falk and Nussbaum [12,
13] and we obtain rigorous Hausdorff dimension estimates for continued fractions with
infinite alphabets. We consider that these estimates are interesting on their own right,
and as mentioned earlier they also play a crucial for the study of the dimension spectrum.
To the best of our knowledge, the only previous attempt of rigorously estimating the
Hausdorff dimension of continued fractions with infinite alphabet was in [15], were the
case of J2N was considered. We note though that a high accuracy empirical estimate
for the Hausdorff dimension of J2N−1 appears in the very interesting survey paper of
Hensley [19]. We estimate the Hausdorff dimension of the sets JE for various infinite
alphabets E, such as the odds, the evens (improving the estimate from [15]), the primes,
the squares, the powers of 2, etc. We gather some of these estimates in Table 1.

TABLE 1. Hausdorff dimension estimates for various sets JE

Subsystem Hausdorff dim. interval size of the intervals
Eodd = {1, 3, 5, . . . } [0.821160, 0.821177] 1.7e− 05
Eeven = {2, 4, 6, . . . } [0.71936, 0.71950] 1.4e− 04
E1mod3 = {1, 4, 7, . . . } [0.743520, 0.743586] 6.6e− 05
E2mod3 = {2, 5, 8, . . . } [0.66490, 0.66546] 5.6e− 04
E0mod3 = {3, 6, 9, . . . } [0.63956, 0.64073] 1.2e− 03
Eprime = {2, 3, 5, . . . } [0.67507, 0.67519] 1.2e− 04
Esquare = {1, 22, 32, . . . } [0.59825575, 0.59825579] 4.0e− 08
Epower2 = {2, 22, 23, . . . } [0.4720715327, 0.4720715331] 4.0e− 10
Epower3 = {3, 32, 33, . . . } [0.3105296859, 0.3105296860] 1.0e− 10

Elac = {2, 22
2
, 23

2
, . . . } [0.2362689121, 0.2362689123] 2.0e− 10
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Although the estimates in Table 1 can definitely be improved with heavier computa-
tions, if one is after significantly higher precision then it would be worthwhile to pursue
further the method developed by Jenkinson and Pollicott in [23]. One of the basic ideas
in this approach is to extend the transfer operator, see (3.5), on a suitable Hilbert Hardy
space of analytic functions on a disk around 1. A short description of that method can be
found in [24, Section 2]. Implementing this strategy for finite subsystems of natural num-
bers represented by a polynomial that is increasing gives high accuracy estimates. For
example there is strong indication that the Hausdorff dimension of J2N is approximately
0.719498024836643592434. Nevertheless some considerable effort would be needed to
make these estimates rigorous. Since the main focus of our paper is the study of the di-
mension spectrum of subsystems of continued fractions the method of Falk-Nussbaum
serves our purposes as it is rigorous and versatile, for example it applies to primes and
lacunary series.

The paper is organized as follows. In Section 2 we introduce all the relevant concepts
related to conformal iterated function and their thermodynamic formalism. In Section
3 we establish rigorous Hausdorff dimension estimates for continued fractions whose
entries are restricted to infinite sets using the approach of Falk and Nussbaum; and we
also include a careful description of the Falk-Nussbaum method for convenience of the
reader. Finally in Section 4 we prove Theorems 1.1, 1.2, 1.3, 1.4, and 1.5.

Acknowledgements. We extend our sincere thanks to the referee for several very
useful comments and particularly for sharing his own code for the estimation of the
Hausdorff dimension of J2N which corroborates our estimate. We would also like to
thank De-Jun Feng for some useful discussions during the preparation of this paper.

2. PRELIMINARY RESULTS

Let (X, d) be a compact metric space and let E be a countable set with at least two
elements. Let S = {φe : X → X : e ∈ E} be a collection of uniformly contracting
injective maps. Any such collection S is called an iterated function system (IFS). We denote
by E∗ = ∪n≥1En the set of finite words from E. For any word ω ∈ En, n ≥ 1, we set

φω = φω1 ◦ φω2 ◦ · · · ◦ φωn .
If ω ∈ E∗ ∪ EN and n ∈ N does not exceed the length of ω, we denote by ω|n the word
ω1ω2 . . . ωn. Since S consists of uniformly contracting maps, there exists some s ∈ (0, 1)
such that

d(φe(x), φe(y)) ≤ sd(x, y)
for every e ∈ E and every pair x, y ∈ X . Observe that if ω ∈ EN then

diam(φω|n(X)) ≤ sn diam(X).

Hence {φω|n(X)}n∈N is a decreasing sequence of compact sets whose diameters converge
to zero. Therefore

π(ω) =
∞⋂
n=1

φω|n(X) (2.1)

is a singleton and (2.1) defines a coding map π : EN → X . The set

JS = π(EN) =
⋃
ω∈EN

∞⋂
n=1

φω|n(X),

is called the limit set (or attractor) associated to the system S.
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Let σ : EN → EN be the shift map, which is given by the formula

σ ((ωn)
∞
n=1) = ((ωn+1)

∞
n=1) .

Note that the shift map simply discards the first coordinate. We record that for any e ∈ E
and any ω ∈ EN, φe(π(ω)) = π(eω) and π(ω) = φω1(π(σ(ω))). Hence the limit set JS is
invariant for S , that is

JS =
⋃
i∈I

φi(JS).

Notice also that if E is finite, then J is compact.

Definition 2.1. An iterated function system S = {φe : X → X : e ∈ E} is called con-
formal (CIFS) if X is a compact connected subset of the Euclidean space Rd and the
following conditions are satisfied.

(i) X = Int(X)
(ii) (Open set condition or OSC) For all a, b ∈ E, a 6= b,

φa(Int(X)) ∩ φb(Int(X)) = ∅.
(iii) There exists an open connected set X ⊂ V ⊂ Rd such that all maps φe, e ∈ E,

extend to C1+ε diffeomorphisms on V and are conformal on V .
(iv) (Bounded Distortion Property or BDP) There exists K ≥ 1 such that

|φ′ω(y)| ≤ K|φ′ω(x)|
for every ω ∈ E∗ and every pair of points x, y ∈ X , where |φ′ω(x)| denotes the
norm of the derivative.

We will denote the best distortion constant of S by

KS = sup
ω∈E∗

{
max
x,y∈X

|φ′ω(y)|
|φ′ω(x)|

}
.

For t ≥ 0 and n ∈ N we define

Zn(E, t) := Zn(t) =
∑
ω∈En

‖φ′ω‖t∞,

where for any ω ∈ E∗ we use the notation ‖φ′ω‖∞ := maxx∈X |φ′ω(x)|. It follows that
Zm+n(t) ≤ Zm(t)Zn(t), and consequently, the sequence (lnZn(t))

∞
n=1 is subadditive.

Thus,

lim
n→∞

lnZn(t)

n
= inf

n∈N

(
lnZn(t)

n

)
<∞.

The value of the limit is denoted by P (t) or, if we want to be more precise, by PE(t) or
PS(t). It is called the topological pressure of the system S evaluated at the parameter t.
The topological pressure provides an indispensable tool in the dimension study of the
limit set of S. Before making the previous statement precise we summarize a few basic
properties of the pressure function, whose proofs can be found in [26].

Proposition 2.2. If S is a conformal IFS then the following conclusions hold.
(i) {t ≥ 0 : Z1(t) < +∞} = {t ≥ 0 : P (t) < +∞}.

(ii) The topological pressure P is decreasing on [0,+∞) with P (t)→ −∞ as t→ +∞.
Moreover, the function P is convex and continuous on {t ≥ 0 : Z1(t) < +∞}.

(iii) P (0) = +∞ if and only if E is infinite.
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It becomes evident that the pressure function has two critical parameters:

θS := inf{t ≥ 0 : P (t) < +∞}, and hS := inf{t ≥ 0 : P (t) ≤ 0}.
In particular hS is known as Bowen’s parameter and is related to the Hausdorff dimension
of the limit set, as the following theorem asserts. We record that if S = {φe}e∈E is a
conformal IFS and F ⊂ E we denote the limit set of SF := {φe}e∈F by JF .

Theorem 2.3 ([26] ). If S = {φe}e∈E is a conformal iterated function system, then

hS = dimH(JS) = sup{dimH(JF ) : F ⊂ E finite }.

When the conformal IFS is strongly regular, i.e. when there exists some t ≥ 0 such
that P (t) ∈ (0,+∞), it is possible to obtain asymptotic information for the Hausdorff
dimension of subsystems. The following theorem was originally obtained in [15] and
very recently it was generalized via a simplified proof in [5]. Before stating it, we record
that if S = {φe}e∈E is a conformal IFS the characteristic Lyapunov exponent of S is

χ(S) = −
∫
EN

ln ‖φ′ω1
(π(σ(ω))‖ dµ̃h(ω), (2.2)

where µ̃h is the unique shift-invariant ergodic measure on EN, globally equivalent to the
conformal measure of EN. We will only use the fact that µ̃h is a probability measure,
and for this reason we will not define it explicitly. For more information, we refer the
reader to [6, 28]. If F ⊂ E, we denote by hF the Bowen’s parameter of the subsystem
SF = {φe}e∈F . Note that by Theorem 2.3 it holds that hF = dimH(JF ).

Theorem 2.4 ([5, 15]). Let S = {φe}e∈E be a strongly regular conformal IFS. If F ⊂ E is a
finite set such that hF ≥ θS , then

dimH(JS)− dimH(JF ) ≤
KhF

χS

∑
E\F

‖φ′e‖hF∞ .

From now on we are going to focus our attention on systems generated by the confor-
mal maps φe(x) = 1

e+x for e ∈ N. In particular we are going to consider the systems

CFE :=

{
φe : [0,minE−1]→ [0,minE−1] : φe(x) =

1

e+ x
for e ∈ E

}
, (2.3)

for E ⊂ N. Indeed it is easy to check that if e ∈ E then φe([0,minE−1]) ⊂ [0,minE−1]
and CFE satisfies the properties (i)-(iv) of Definition 2.1, see e.g. [27]. Formally if 1 /∈
E, {φe}e∈E is not a conformal IFS because φ′1(0) = −1. Nevertheless this is not a real
problem since the system of second level maps {φe ◦ φj : (e, j) ∈ E × E} has the same
limit set as CFE and it is uniformly contractive. We are going to denote the limit set of
CFE by JE . Notice that the limit set JE is the set of all irrational numbers in (0, 1) whose
continued fractions expansion only contains digits from E.

The following proposition provides an upper bound for the best distortion constant
for the systems CFE when E ⊂ N \ {1}. When 1 ∈ E it is easy to see that KCFE = 4, see
e.g. [27].

Proposition 2.5. Let E ⊂ {k, k + 1, k + 2, . . . } for some k ∈ N, k ≥ 2. Then

KE := KCFE ≤ exp

(
2

k2 − 1

)
.
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Proof. Let Ik = [0, 1/k]. Recalling (2.3), φe(Ik) ⊂ Ik for all e ∈ E. Notice that ‖φ′e‖∞ ≤ k−2
for all e ∈ E, hence ‖φ′ω‖∞ ≤ k−2|ω| for all ω ∈ E∗. Therefore by the mean value theorem,

diam(φω(Ik)) ≤ k−2|ω|−1. (2.4)

If e ∈ E and x, y ∈ Ik,∣∣ ln |φ′e(y)| − ln |φ′e(x)|
∣∣ = 2| ln(e+ y)− ln(e+ x)|

≤ 2

min{e+ y, e+ x}
|y − x| ≤ 2

k
|y − x|.

(2.5)

Let q ∈ N and ω ∈ Eq. For any z ∈ Ik let

zj(ω) =

{
φωj+1 ◦ · · · ◦ φωq(z), if j = 1, . . . , q − 1

z if j = q.

Then for all x, y ∈ Ik,∣∣ ln |φ′ω(y)| − ln |φ′ω(x)|
∣∣ ≤ q∑

j=1

∣∣∣ln |φ′ωj (xj(ω))| − ln |φ′ωj (yj(ω))|
∣∣∣

(2.5)
≤ 2

k

q∑
j=1

|xj(ω)− yj(ω)|
(2.4)
≤ 2

k

q∑
j=1

k−2(q−j)−1

≤ 2

k2

∞∑
i=0

k−2i =
2

k2 − 1
.

Hence for all x, y ∈ Ik and every ω ∈ E∗ we get that

|φ′ω(x)|
|φ′ω(y)|

≤ exp

(
2

k2 − 1

)
.

The proof is complete. �

We will now provide lower bounds for the Lyapunov exponent of the systems CFE
for E ⊂ N.

Proposition 2.6. Let E ⊂ {k, k + 1, k + 2, . . . } for some k ∈ N. Then

χE := χ(CFE) ≥ 2 ln

(
k +
√
k2 + 4

2

)
.

Proof. For any ω ∈ En we define

q−1(ω) = 0, q0(ω) = 1 and qi(ω) = ωiqi−1(ω) + qi−2(ω) for i = 1, . . . , n. (2.6)

It is not difficult to see, see e.g. [25, Lemma 4.1], that for all ω ∈ Nn, n ∈ N, and x ∈ [0, 1]

φ′ω(x) =
(−1)n

qn(ω)2
(
1 + x qn−1(ω)

qn(ω)

)2 . (2.7)

Therefore for all ω ∈ Nn,
‖φ′ω‖∞ = |φ′(0)| = qn(ω)

−2.
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Now consider the sequence q∗n = qn(k
n) where kn := k . . . k ∈ En . It is easy to see using

(2.6) and strong induction that for all n ∈ N and every ω ∈ En, qn(ω) ≥ q∗n. Hence for all
ω ∈ En,

‖φ′ω‖∞ ≤ q∗n
−2. (2.8)

Let ζ : EN → R defined by

ζ(ω) = ln ‖φ′ω1
(π(σ(ω))‖,

and note that if ω ∈ EN, then
n−1∑
j=0

ζ ◦ σj(ω) =
n−1∑
j=0

log ‖φ′ωj+1
(π(σj+1(ω)))‖

= log
(
‖φ′ω1

(π(σ1(ω)))‖ ‖φ′ω2
(π(σ2(ω)))‖ · · · ‖φ′ωn(π(σ

n(ω)))‖
)
.

By the Leibniz rule and the fact that π(σk(ω)) = φωk+1
◦ · · · ◦ φωn(π(σn(ω))) for 1 ≤ k ≤ n

we deduce that
n−1∑
j=0

ζ ◦ σj(ω) = log ‖φ′ω|n(π(σ
n(ω)))‖. (2.9)

Recalling (2.2) and using the fact that µ̃h is a shift invariant measure we deduce that

χE = − 1

n

∫
EN

log ‖φ′ω|n(π(σ
n(ω)))‖dµ̃h.

Therefore, (2.8) implies that for all n ∈ N,

χE ≥
2

n
ln q∗n. (2.10)

According to (2.6), the sequence (q∗n)n∈N is given by the following recursive formula,

q∗−1 = 0, q∗0(ω) = 1 and q∗i (ω) = kq∗i−1(ω) + q∗i−2(ω) for i ∈ N. (2.11)

This is a linear recurrence relation with constant coefficients, hence

q∗n = c1r
n
1 + c2r

n
2

where c1, c2 ∈ R \ {0} and

r1 =
k +
√
k2 + 4

2
, r2 =

k −
√
k2 + 4

2
.

We record that r1, r2 are solutions to the characteristic equation r2 − kr − 1 = 0 of the
recursive relation. The coefficients c1, c2 can be computed explicitly by the initial condi-
tions, nevertheless we will only need the fact that c1 > 0. This follows because q∗n > 0 for
all n ∈ N and r2 < 0. Note also that r1 > |r2|. Therefore for n large enough∣∣∣∣c2(r2r1

)n∣∣∣∣ < c1
2
.

Since

q∗n = rn1

(
c1 + c2

(
r2
r1

)n)
,

we deduce that for n large enough,
c1
2
rn1 ≤ q∗n ≤

3c1
2
rn1 .
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Using (2.10) and letting n→ +∞we deduce that

χE ≥ 2 ln r1 = 2 ln

(
k +
√
k2 + 4

2

)
.

The proof is complete. �

Proposition 2.7. Let E,F ⊂ N and suppose that there exists an increasing bijection s :
E → F . Then

dimH(JF ) ≤ dimH(JE).

Proof. Recalling (2.7) from the proof of Proposition 2.6 we have that

‖φ′ω‖∞ = q−2|ω| (ω)

for all ω ∈ N∗, where the sequence qn(ω) was defined in (2.6). Now if ω ∈ En we define
a mapping Sn : En → Fn by

Sn(τ) = (s(ωk))
n
k=1, ω ∈ En.

Note that Sn is a bijection and ωk ≤ (Sn(ω))k for all k = 1, . . . , n. It then follows easily by
induction (using the recursive properties of qn) that

qn(ω) ≤ qn(Sn(ω)), for all ω ∈ En.

Therefore for all t ≥ 0, we have

Zn(F, t) =
∑
ω∈En

‖φ′Sn(ω)‖
t =

∑
ω∈En

q−2tn (Sn(ω)) ≤
∑
ω∈EN

q−2tn (ω)

=
∑
ω∈EN

‖φ′ω‖t∞ = Zn(E, t).

Hence PF (t) ≤ PE(t) and Theorem 2.3 implies that

dimH(JF ) = inf{t ≥ 0 : PF (t) ≤ 0} ≤ inf{t ≥ 0 : PE(t) ≤ 0} = dimH(JE).

The proof is complete. �

3. HAUSDORFF DIMENSION ESTIMATES FOR CONTINUED FRACTIONS WITH RESTRICTED
ENTRIES

In this section we will establish rigorous Hausdorff dimension estimates for continued
fractions whose entries are restricted to infinite sets. Although currently there are plenty
of good and quite fast algorithms to calculate the Hausdorff dimension of limit sets of
conformal IFSs with high accuracy, for example [12, 22, 23, 29], to the best of our knowl-
edge only the approach of Falk-Nussbaum in [12, 13] gives rigorous upper and lower
bounds with good accuracy for IFSs with arbitrary large alphabet. In this paper we adopt
their computational approach supplemented by the interval arithmetic software IntLab
for verification of the float point computations [31]. Since the computational method of
Falk and Nussbaum plays an important role in our numerical experiments, we will now
describe their approach in more detail.
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3.1. The Method of Falk and Nussbaum. The method developed in [12, 13] is quite
general, but for simplicity, and since in the present paper we are only concerned with
continued fractions, we are going to explain how it applies to the systems CFE , defined
in (2.3). A key ingredient in [12, 13] is the finite dimensional approximation of a para-
metric family of transfer operators. In the case of the continued fractions IFS CFE , where
E = {ei}Pi=1 is a finite set of positive integers, the transfer operators Lt : Ck([0, 1]) →
Ck([0, 1]), t > 0, k ∈ N, take the form

(Ltf)(x) =
P∑
i=1

|φ′ei(x)|
tf(φei(x)) =

P∑
i=1

|x+ ei|−2tf
(

1

x+ ei

)
. (3.1)

We start by restating [13, Theorem 3.1] in the case of CFE .

Theorem 3.1. Let E = {ei}Pi=1 be a finite set of positive integers and let CFE be the correspond-
ing continued fractions IFS as in (2.3). For all t > 0, Lt : Ck([0, 1]) → Ck([0, 1]) has a unique
strictly positive eigenvector ρt with Ltρt = λtρt, where λt > 0 and λt = r(Lt) is the spectral
radius of Lt. Furthermore, the map t → λt is strictly decreasing and continuous, and for all
1 ≤ p ≤ k,

(−1)pρ(p)t (x) > 0 for all x ∈ [0, 1] (3.2)

and
|ρ(p)t (x)| ≤ (2t)(2t+ 1) · · · (2t+ p− 1)(k−p)ρt(x), (3.3)

where k = minj ej . Finally, the Hausdorff dimension of the limit set JE is the unique parameter
h such that λh = 1.

Remark 3.1. Due to its crucial role in the numerical approach of Falk and Nussbaum, we
will now give a brief history of Theorem 3.1. Although a proof can be found in [13], we
would like to remark that several parts of this theorem have been established in stronger
forms in the past using different methods. More precisely:

(1) The proofs of [28, Theorem 6.1.2 and Corollary 6.1.4] (carried on therein for t
being such that λt = 1) yield the functions ρt to be real-analytic and not merely
Ck. In fact these proofs give that real analyticity of ρt holds for:
(a) all conformal IFSs, with any countable alphabet F , and not merely those gen-

erated by a continued fraction algorithm with a finite alphabet, and
(b) all t ∈ {s > 0 : PF (s) < +∞} (which is equal to (0,+∞) if E is finite),

(2) The fact that the map t→ λt is strictly decreasing is known in the general frame-
work of thermodynamic formalism since 1978 when it was proved by Ruelle in
[30]. For the realm of conformal IFSs with any countable alphabet E (and not
merely for IFSs generated by a continued fraction algorithm with a finite alpha-
bet) see [28, Theorem 2.6.13] and the references therein.

(3) It follows by [28, Theorem 2.6.12] that the map t 7→ λt is real-analytic and not
merely continuous. In fact, this is proven in [28] for all conformal IFSs, with any
countable alphabet F .

(4) The fact that the Hausdorff dimension of the limit set JE is the unique parameter
h such that λh = 1 is known for all conformal IFSs, with any finite alphabet F ,
since 1988 when it was proved by Bedford in [1]. The full version of this formula,
holding for all conformal IFSs with any countable alphabet F , was proved in
[26, Theorem 3.15], see also [28, Theorem 4.2.13].



ON THE DIMENSION SPECTRUM OF INFINITE SUBSYSTEMS OF CONTINUED FRACTIONS 11

(5) The facts that ∂
∂xρt(x) ≤ 0 and ∂2

∂x2
ρt(x) ≥ 0 for all x ∈ [0, 1] follow immediately

from the proof of [28, Theorem 2.4.3] and the fact that all the functions [0, 1] 3
x 7→ |φ′ω(x)|, ω ∈ E∗, generated by the system CFE , are decreasing and convex.

(6) Estimate (3.3) follows from [18, Section 9.4, p. 177]. An alternative proof can be
found in [13].

Note that applying (3.2) for p = 1 and p = 2 we get that ρt(x) is decreasing and convex
on [0, 1]. Using (3.3), it is not difficult to see that

ρt(x2) ≤ ρt(x1)e
2t
k
|x2−x1|, for all x1, x2 ∈ [0, 1]. (3.4)

Remark 3.2. In fact, it already follows from the proofs of [28, Theorem 6.1.2 and Corol-
lary 6.1.4] (carried on therein for t being such that λt = 1) and Proposition 2.5 that

ρt(x2) ≤ ρt(x1) exp
(

2t

k2 − 1
|x2 − x1|

)
.

Moreover a similar estimate holds for all conformal IFSs (in fact GDMSs) with a count-
able alphabet and not merely for those generated by a continued fraction algorithm with
a finite alphabet.

Since P can be arbitrary large, for computational reasons we first truncate the operator
Lt. We select M < P and define

(LM,tf)(x) =
∑
i≤M
|x+ ei|−2tf

(
1

x+ ei

)
. (3.5)

Since the eigenvector ρt is positive, we have

(LM,tρt)(x) ≤ (Ltρt)(x), for all x ∈ [0, 1].

To obtain an upper bound we notice that (3.4) implies that for any y ∈ [0, 1],

ρt(y) ≤ ρt(0)e
2t
k
y,

and as a result
P∑

i=M+1

|x+ ei|−2tρt
(

1

x+ ei

)
≤ ρt(0)e

2t
keM+1

P∑
i=M+1

ei
−2t.

Thus we obtain the following two-sided bound for (Ltρt)(x) in terms of (LM,tρt)(x) for
any x ∈ [0, 1]

(LM,tρt)(x) ≤ (Ltρt)(x) ≤ (LM,tρt)(x) + ρt(0)e
2t

keM+1

P∑
i=M+1

ei
−2t. (3.6)

After the truncation step (which is only needed if P is very large), we approximate ρt
with continuous piecewise linear functions. To be precise, for any integer N we partition
the interval [0, 1] uniformly with N + 1 points

0 = x1 < x2 < · · · < xN < xN+1 = 1, (3.7)

where xi = (i+ 1)l with l = 1/N , then ρIt on each subinterval [xi, xi+1] is of the form

ρIt (x) = ρt(xi)
xi+1 − x

l
+ ρt(xi+1)

x− xi
l

, (3.8)
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i.e. ρIt is piecewise linear interpolant of ρt. It is easy to see that at any node ρt(xi) =
ρIt (xi), i = 1, 2, . . . , N + 1. From standard approximation theory (see for example [32,
Thm. 2.1.4.1]) we know that for x ∈ [xi, xi+1]

ρIt (x)− ρt(x) =
1

2
(xi+1 − x)(x− xi)ρ′′t (ξ),

for some ξ = ξx ∈ [xi, xi+1]. Notice that from Theorem 3.1

ρ′′t (ξ) ≤ (2t)(2t+ 1)k−2ρt(ξ).

Thus, using the above estimate and the convexity of ρt for any y ∈ [xj , xj+1] we obtain

0 < ρIt (y)− ρt(y) ≤
1

2
(xj+1 − x)(x− xj)(2t)(2t+ 1)k−2ρt(ξy)

≤ 1

2
(xj+1 − x)(x− xj)(2t)(2t+ 1)k−2e

2tl
k ρIt (y),

(3.9)

where in the last step we used the fact that ρt(ξy) ≤ e
2t
k
|ξ−y|ρt(y) ≤ e

2tl
k ρIt (y). Now let

errj,t :=
1

2
(xj+1 − x)(x− xj)(2t)(2t+ 1)e

2tl
k k−2.

Provided errj,t < 1 we obtain

(1− errj,t)ρ
I
t (y) < ρt(y) < ρIt (y), for all y ∈ [0, 1], (3.10)

and as a result for any x ∈ [0, 1]∑
i≤M
|x+ ei|−2t(1− erri,t)ρ

I
t

(
1

x+ ei

)

≤ (LM,tρt)(x) ≤
∑
i≤M
|x+ ei|−2tρIt

(
1

x+ ei

)
.

(3.11)

Let ~αt be the (N + 1)-vector with entries

(~αt)j = ρt(xj) = ρIt (xj) for j = 1, . . . , N + 1.

The next step consists of determining two (N +1)× (N +1) matrices AM,t and BM,t such
that

(AM,t~αt)j =
∑
i≤M
|xj + ei|−2t(1− erri,t)ρ

I
t

(
1

xj + ei

)

(BM,t~αt)j =
∑
i≤M
|xj + ei|−2tρIt

(
1

xj + ei

)
+ ρIt (0)e

2
keM+1

P∑
i=M+1

ei
−2t.

(3.12)

The main difficulty in constructing the above matrices is to locate the interval [xm, xm+1]
that contains (xj + ei)

−1 for each 1 ≤ i ≤M and 1 ≤ j ≤ N + 1. Once such interval with
the corresponding index m is located, then from the formula (3.8), we obtain

ρIt

(
1

xj + ei

)
= (~αt)m

xm+1 − 1
xj+ei

l
+ (~αt)m+1

1
xj+ei

− xm
l

,

and as a result for these particular i and j,

|xj + ei|−2t(1− erri,t)
xm+1 − 1

xj+ei

l
and |xj + ei|−2t

xm+1 − 1
xj+ei

l
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contribute to the (j,m) entry of the matrices AM,t and BM,t, respectively. Similarly

|xj + ei|−2t(1−erri,t)
1

xj+ei
−xm
l and |xj + ei|−2t

1
xj+ei

−xm
l are the contributions to the (j,m+

1) entry of the matrices AM,t and BM,t respectively. Since ρIt (0) = (~αt)1, we have that

e
2

keM+1
∑P

i=M+1 ei
−2t is just a contribution to the (j, 1) entry of the matrixBM,t. We would

also like to point out that the matrices AM,t and BM,t are usually very sparse and have
many zero columns if N is large. This feature can be exploited in computations.

The next central result in the approach is [13, Lemma 3.2], which we restate below.

Lemma 3.3. Let M be an N × N matrix with non-negative entries and w an N -vector with
strictly positive components. Then,

if (Mw)j ≥ λwj , j = 1, . . . , N, then r(M) ≥ λ,
if (Mw)j ≤ λwj , j = 1, . . . , N, then r(M) ≤ λ.

Recall that by Theorem 3.1 we have that

(Ltρt)(xj) = r(Lt)ρt(xj)

for any j = 1, . . . , N + 1, where r(Lt) = λt denotes the spectral radius of Lt. Now notice
that for j = 1, . . . , N + 1,

(AM,t~αt)j
(3.11)
≤ (LM,tρt)(xj)

(3.6)
≤ (Ltρt)(xj) = λtρt(xj) = r(Lt)(~αt)j ,

and

(BM,t~αt)j
(3.11)
≥ (LM,tρt)(xj) + ρIt (0)e

2
keM+1

P∑
i=M+1

ei
−2t

(3.6)
≥ (Ltρt)(xj) = λtρt(xj) = r(Lt)(~αt)j ,

Therefore Lemma 3.3 implies that for any 0 < M ≤ P ,

r(AM,t) ≤ r(Lt) = λh ≤ r(BM,t).

Let h = dimH(JE), and recall that according to Theorem 3.1, r(Lh) = λh = 1. Since the
map t → λt is strictly decreasing if we find h such that r(AM,h) > 1, then r(Lh) = 1 <

r(AM,h) ≤ r(Lh) and as a result h > h. Similarly, if we find h such that r(BM,h) < 1,
then r(Lh) ≤ r(BM,h) < 1 = r(Lh) and as a result h < h. In conclusion, we would have
h < h < h, which is a rigorous effective estimate for the Hausdorff dimension of the
set JE . In the following Section we illustrate how this method can be used in order to
estimate the Hausdorff dimension of the set JE , for various concrete examples of infinite
sets E ⊂ N.

3.2. Concrete examples. Based on the above description we have two strategies for ap-
proximating the Hausdorff dimension of infinite systems CFE , where E = {ei}∞i=1. We
first select a sufficiently large M ∈ N and we let FM = {ei}Mi=1. We also independently
choose N , where recalling 3.7 N determines the size of the mesh. We then compute
the two matrices AM,t and BM,t, defined in (3.12). Notice that in this approach the

term ρIt (0)e
2

keM+1
∑P

i=M+1 ei
−2t disappears. Using the method described in the previ-

ous section, we compute upper and lower bounds of the Hausdorff dimension of the
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limit set JFM , which we denote by hM and hM , respectively. We then estimate the error
dimH(JE)− hM using Theorem 2.4 as well as Propositions 2.5 and 2.6.

The accuracy of hM and hM depends on the choice of N . Since we employ piece-
wise linear approximation it follows that for N nodes the accuracy is essentially of or-
der N−2. The quantity dimH(JE) − hM obviously depends on M but in this case it
is harder to trace the exact dependance, as it is very much example dependent. We
provide details of such estimates for each of our examples below. Finally we rigor-
ously verify the accuracy of hM and hM using the interval arithmetic package IntLab
http://www.ti3.tu-harburg.de/rump/intlab/.

Although Theorem 2.4 allows us to estimate the error dimH(JE)− hM for any M ∈ N,
for certain alphabets E this error tends to zero rather slowly and one needs to consider
quite large finite subsystems FM in order to obtain good estimates. As a result, in some
cases these computations require substantial computer power. On the other hand this
strategy is rather robust and the accuracy increases as M and N increase.

The second strategy allows us to obtain good accuracy with lighter computations. As
in the previous case let E = {ei}∞i=1. Recall that Theorem 2.3 implies that dimH(JE) −
dimH(JFP )→ 0 as P →∞, where FP = {ei}Pi=1, and we can use this fact to show that the
Falk-Nussbaum method can be used to obtain lower and upper bounds for dimH(JE),
not just for dimH(JFP ). To be more precise let ε > 0 and let P large enough such that
dimH(JE) − dimH(JFP ) < ε, note that we only need the existence of such P (justified
by Theorem 2.3) not its exact value. Let M < P be some moderately large number and
independently choose the mesh size N . We then compute the two matrices AM,t and
BM,t from (3.12). This time we use the full formula and the contribution to ρIt (0) can be
estimated by

corrM := e
2

keM+1

P∑
i=M+1

ei
−2t ≤ e

2
keM+1

∞∑
i=M+1

ei
−2t, (3.13)

which is independent of P . Hence, by the method described in the previous section we
obtain hM , hM such that

hM ≤ dimH(JFP ) ≤ hM ,
and consequently

hM ≤ dimH(JE) ≤ hM + ε.

This strategy has several advantages. First of all, there is no need to estimate dimH(JE)−
dimH(JFM ), and secondly M can be taken rather moderately large. However, the main
disadvantage is that it is not clear how hM improves if M and N increase. Again, to
rigorously verify the accuracy of hM and hM we use the interval arithmetic package
IntLab http://www.ti3.tu-harburg.de/rump/intlab/.

At the end of this section we include Tables 2 and 3 which collect the dimension esti-
mates for all our examples. We now provide some estimates of the quantities dimH(JE)−
hM and corrM for various examples of infinite alphabets E ⊂ N.

3.3. Odd integers. From the set Eodd = {1, 3, 5, . . . } we select a finite subset FModd =
{1, 3, 5, . . . , 2M + 1} for some large M . Let

hM ≤ hFModd ≤ hM

http://www.ti3.tu-harburg.de/rump/intlab/
http://www.ti3.tu-harburg.de/rump/intlab/
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where, recalling Theorem 2.3, hFModd = dimH(JFModd
). Note that dimH(JEodd) ≥ hM . Using

the integral test we obtain∑
Eodd\FModd

‖φ′e‖hM∞ ≤
∑

n≥M+1

1

(2n+ 1)2hM
≤
∫ ∞
M

dx

(2x+ 1)2hM
=

1

2(2hM − 1)(2M + 1)2hM−1
.

From Proposition 2.6 we have χEodd ≥ 2 ln
(
1+
√
5

2

)
and since 1 ∈ Eodd we haveKEodd = 4.

As a result for an arbitrary M , Theorem 2.4 implies that

dimH(JEodd)− dimH(JFModd
) ≤ 4hM

4 ln
(
1+
√
5

2

)
(2hM − 1)(2M + 1)2hF−1

.

Similarly, using the integral test, we also obtain from (3.13) (with k = 1 and h ≤ 1),

corrM = e
2h

2M+3

∑
i≥M+1

(2i+ 1)−2h ≤ e
2

2M+3

∫ ∞
M

dx

(2x+ 1)2h
≤ e

1
M

2(2h− 1)(2M + 1)2h−1
.

3.4. Even integers. This case was previously considered in [15]. From the set Eeven =
{2, 4, 6, . . . }we select a finite subset FMeven = {2, 4, 6, . . . , 2M} for some large M . Let

hM ≤ hFMeven ≤ hM .
Using the integral test we obtain∑

Eeven\FMeven

‖φ′e‖hM∞ ≤
∑

n≥M+1

1

(2n)2hM
≤
∫ ∞
M

dx

(2x)2hM
=

1

2(2hM − 1)(2M)2hM−1
.

Propositions 2.5 and 2.6 imply respectively that

KEeven ≤ e2/3 and χEeven ≥ 2 ln (1 +
√
2).

Therefore for an arbitrary M we obtain the estimate

dimH(JEeven)− dimH(JF ) ≤
e2hM/3

4 ln (1 +
√
2)(2hM − 1)(2M)2hM−1

.

Similarly, using the integral test, we also obtain from (3.13) (with k = 2 and h ≤ 1),

corrM = e
2h

2(2M+2)

∑
i≥M+1

(2i)−2h ≤ e
1

2M+2

∫ ∞
M

dx

(2x)2h
≤ e

1
2M

2(2h− 1)(2M)2h−1
.

3.5. Mod 3 integers. This example is very similar to the odd and even cases and we omit
some details.

3.5.1. 1 Mod 3. Let E1mod3 = {1, 4, 7, . . . }. For M ∈ N let FM1mod3 = {1, 4, 7, . . . , 3M + 1},
and

hM ≤ hFM1mod3 ≤ hM .

Propositions 2.5 and 2.6 imply that χE1mod3
≥ 2 ln

(
1+
√
5

2

)
, KE1mod3

= 4. Therefore,∑
E1mod3\FM1mod3

‖φ′e‖hM∞ ≤ 1

3(2hM − 1)(3M + 1)2hM−1
.
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and Theorem 2.4 implies that

dimH(JE1mod3
)− dimH(JFM1mod3

) ≤ 4hM

6 ln
(
1+
√
5

2

)
(2hM − 1)(3M + 1)2hM−1

.

Similarly, using the integral test, we also obtain from (3.13) (with k = 1 and h ≤ 1),

corrM = e
2h

3M+1

∑
i≥M+1

(3i+ 1)−2h ≤ e
2

3M+1

∫ ∞
M

dx

(3x+ 1)2h
≤ e

2
3M

3(2h− 1)(3M + 1)2h−1
.

3.5.2. 2 Mod 3. Let E2mod3 = {2, 5, 8, . . . }. For M ∈ N let FM2mod3 = {2, 5, 8, . . . , 3M + 2}
and

hM ≤ hFM2mod3 ≤ hM .

Propositions 2.5 and 2.6 imply that χE2mod3
≥ 2 ln (1 +

√
2) , KE2mod3

≤ e2/3. Therefore∑
E2mod3\FM2mod3

‖φ′e‖hM∞ ≤ 1

3(2hM − 1)(3M + 2)2hM−1
,

and Theorem 2.4 implies that

dimH(JE2mod3
)− dimH(JFM2mod3

) ≤ e2hM/3

6 ln (1 +
√
2)(2hM − 1)(3M + 2)2hM−1

.

Similarly, using the integral test, we also obtain from (3.13) (with k = 2 and h ≤ 1),

corrM = e
h

3M+2

∑
i≥M+1

(3i+ 2)−2h ≤ e
1

3M+2

∫ ∞
M

dx

(3x+ 2)2h
≤ e

1
3M

3(2h− 1)(3M + 2)2h−1
.

3.5.3. 0 Mod 3. Let E0mod3 = {3, 6, 9, . . . }. For M ∈ N let FM0mod3 = {3, 6, 9, . . . , 3M + 3}
and

hM ≤ hFM0mod3 ≤ hM .

Propositions 2.5 and 2.6 imply that χE0mod3
≥ 2 ln

(
3+
√
13

2

)
, KE0mod3

≤ e1/4. Therefore∑
E0mod3\FM0mod3

‖φ′e‖hM∞ ≤ 1

3(2hM − 1)(3M + 3)2hM−1
.

and Theorem 2.4 implies that

dimH(JE0mod3
)− dimH(JFM0mod3

) ≤ ehM/4

6 ln
(
3+
√
13

2

)
(2hM − 1)(3M + 3)2hM−1

.

Similarly, using the integral test, we also obtain from (3.13) (with k = 3 and h ≤ 1),

corrM = e
2h

3(3M+3)

∑
i≥M+1

(3i+ 3)−2h ≤ e
2

9M

∫ ∞
M

dx

(3x+ 3)2h
≤ e

2
9M

3(2h− 1)(3M + 3)2h−1
.
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3.6. Primes. We denote Eprime = {2, 3, 5, . . . } = {p(1), p(2), p(3), . . . }, where p(n) is
the prime function that gives you the n-th prime. We select a finite subset FMprime =

{p(1), p(2), p(3), . . . , p(M − 1)} for some large M . Let

hM ≤ hFMprime ≤ hM .

It follows from [11, Lemma 1 and Theorem 3] that for n ≥ 6,

n(lnn+ ln lnn− 1) ≤ p(n) ≤ n(lnn+ ln lnn).

Using this estimate and the integral test we obtain∑
Eprime\FMprime

‖φ′e‖hM∞ ≤
∑
n≥M

1

p(n)2hM
≤
∑
n≥M

1

n2hM (lnn+ ln lnn− 1)2hM

≤ 1

(lnM + ln lnM − 1)2hM

∑
n≥M

1

n2hM

≤ 1

(lnM + ln lnM − 1)2hM

∫ ∞
M−1

dx

x2hM

=
1

(lnM + ln lnM − 1)2hM (2hM − 1)(M − 1)2hM−1
.

From Propositions 2.5 and 2.6 it follows respectively that

χEprime ≥ 2 ln (1 +
√
2) and KEprime ≤ e2/3.

Hence Theorem 2.4 implies that for an arbitrary M ,
dimH(JEprime)− dimH(JFMprime

)

≤ e2hM/3

2 ln (1 +
√
2)(lnM + ln lnM − 1)2hM (2hM − 1)(M − 1)2hM−1

.

Similarly, using the integral test, we also obtain from (3.13) (with k = 2 and h ≤ 1),

corrM = e
2h

kp(M)

∑
i≥M

p(i)−2h ≤ e
1

M lnM

(lnM + ln lnM − 1)2hM

∫ ∞
M−1

dx

x2h

≤ e
1

M lnM

(lnM + ln lnM − 1)2hM (2h− 1)(M − 1)2h−1
.

3.7. Squares. From the set Esquare = {1, 4, 9, . . . } we select a finite subset FMsquare =

{1, 4, 9, . . . ,M2} for some large M . Let

hM ≤ hFMsquare ≤ hM .

Using the integral test we obtain∑
Esquare\FMsquare

‖φ′e‖hM∞ ≤
∑

n≥M+1

1

n4hM
≤
∫ ∞
M

dx

x4hM
=

1

(4hM − 1)M4hM−1
.

Propositions 2.5 and 2.6 imply respectively that

KEsquare = 4 and χµ̃h ≥ 2 ln

(
1 +
√
5

2

)
.
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As a result for an arbitrary M we obtain the estimate

dimH(JEsquare)− dimH(JFMsquare) ≤
4hM

2 ln
(
1+
√
5

2

)
(4hM − 1)M4hM−1

.

Similarly, using the integral test, we also obtain from (3.13) (with k = 1 and h ≤ 1),

corrM = e
2h

(M+1)2
∑

i≥M+1

i−4h ≤ e
2
M2

∫ ∞
M

dx

x4h
≤ e

2
M2

(4h− 1)M4h−1 .

3.8. Powers. Now we consider the case when E consists of the powers of m0, for some
m0 ∈ N. If 1 ∈ E, i.e. if the zero power is included, we let Epower+ = {1,m0,m

2
0,m

3
0, . . . }

and we select a finite subset FMpower+ = {1,m0,m
2
0, . . . ,m

M
0 } for some M . Let

hM ≤ hFMpower+ ≤ hM .

By the properties of the geometric sums∑
Epower+\Fpower+

‖φ′e‖hM∞ ≤
∑

n≥M+1

1

m
2nhM
0

=
1

m
2MhM
0 − 1

,

As in the case of odd numbers we have χEpower+ ≥ 2 ln
(
1+
√
5

2

)
and as a result in this case

dimH(JEpower+)− dimH(JFMpower+
) ≤ 4hM

2 ln
(
1+
√
5

2

)(
m

2MhM
0 − 1

) .
If 1 is not included then we denote Epower+ = {m0,m

2
0,m

3
0, . . . } and we select a finite

subset FMpower = {m0,m
2
0, . . . ,m

M
0 } for some M . Propositions 2.5 and 2.6 imply respec-

tively that

KEpower ≤ exp

(
2

m2
0 − 1

)
and χEpower ≥ 2 ln

(
m0 +

√
m2

0 + 4

2

)
.

Therefore

dimH(JEpower)− dimH(JFMpower) ≤
exp

(
2hM
m2

0−1

)
2 ln

(
m0+
√
m2

0+4

2

)(
m

2MhM
0 − 1

) .
In both cases the error is very negligible even for moderate M and the quality of the
approximation depends only one the good approximation of hM and hM , i.e. onN which
is the number of nodes in [0, 1]. Similarly, using the properties of geometric series, we
also obtain from (3.13) (with k = 1 or k = m0 and h ≤ 1),

corrM = e
2h

kmM0

∑
i≥M+1

1

m2ih
0

≤ e
2

mM0

m2Mh
0 − 1

.
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3.9. Lacunary sequences. We now consider the lacunary sequence, Elac = {2n
2}∞n=1. We

select a finite subset FMlac = {2, 22
2
, 23

2
, . . . , 2M

2} for some M and we let

hM ≤ hFMlac ≤ hM .

Since the decay is very fast we only use a crude estimate based on elementary properties
of geometric series∑

Elac\FMlac

‖φ′e‖hM∞ ≤
∑

n≥M+1

2−n
2hM = 2−(M+1)2hM

∞∑
n=0

2−n
2hM ≤ 2−(M+1)2hM

2hF

2hM − 1
.

Propositions 2.5 and 2.6 imply respectively that KElac ≤ e2/3 and χElac ≥ 2 ln (1 +
√
2),

therefore

dimH(JElac)− dimH(JFMlac
) ≤

(
2hM

2hM − 1

)
e

2hM
3

2(M+1)2hM 2 ln (1 +
√
2)
.

Note that the error, i.e. the right hand side, is very small even for moderately large M .
Similarly from (3.13) we have that corrM ≤ 2−M

2h.

TABLE 2. Hausdorff dimension estimates using strategy 1

Subsystem Hausdorff dim. interval accuracy M N
Eodd = {1, 3, 5, . . . } [0.821160, 0.821223] 6.3e− 5 1e+ 7 100
Eeven = {2, 4, 6, . . . } [0.71936, 0.72001] 6.5e− 4 1e+ 7 100
E1mod3 = {1, 4, 7, . . . } [0.74352, 0.74398] 4.6e− 4 1e+ 7 100
E2mod3 = {2, 5, 8, . . . } [0.66490, 0.66795] 3.1e− 3 1e+ 7 100
E0mod3 = {3, 6, 9, . . . } [0.63956, 0.64916] 9.6e− 3 1e+ 7 100
Eprime = {2, 3, 5, . . . } [0.67507, 0.67519] 1.2e− 4 2.6e+ 7 100
Esquare = {1, 22, 32, . . . } [0.59825568, 0.59825603] 3.5e− 7 1e+ 5 1000
Epower2+ = {1, 2, 22, . . . } [0.7339041186, 0.7339041234] 4.8e− 9 60 6000
Epower2 = {2, 22, 23, . . . } [0.4720715327, 0.4720715331] 4.0e− 10 60 6000
Epower3+ = {1, 3, 32, . . . } [0.5627284510, 0.5627284539] 2.9e− 9 50 6000
Epower3 = {3, 32, 33, . . . } [0.3105296859, 0.3105296860] 1.0e− 10 50 6000

Elac = {2, 22
2
, 23

2
, . . . } [0.2362689121, 0.2362689123] 2.0e− 10 12 5000

4. DIMENSION SPECTRUM OF CONTINUED FRACTIONS SUBSYSTEMS

In this section we are going to study the dimension spectrum of continued fractions
generated by various infinite subsets of the natural numbers. We start by presenting
several general criteria related to the dimension spectrum of continued fractions.

4.1. Dimension spectrum criteria for continued fractions. For r ≥ 0 we consider the
sequences

αn(r) =

(
1

n+ 1

)2r

and βn(r) =
(

2

n+ 2

)2r

, for n ∈ N.
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TABLE 3. Hausdorff dimension estimates using strategy 2

Subsystem Hausdorff dim. interval accuracy M N
Eodd = {1, 3, 5, . . . } [0.821143, 0.821177] 3.4e− 05 1e+ 6 200
Eeven = {2, 4, 6, . . . } [0.719109, 0.719498] 3.9e− 04 1e+ 6 200
E1mod3 = {1, 4, 7, . . . } [0.743404, 0.743586] 1.8e− 04 1e+ 6 200
E2mod3 = {2, 5, 8, . . . } [0.664488, 0.665462] 9.7e− 04 2e+ 6 200
E0mod3 = {3, 6, 9, . . . } [0.638856, 0.640725] 1.9e− 03 2e+ 6 200
Eprime = {2, 3, 5, . . . } [0.675044, 0.675228] 1.8e− 04 5.7e+ 6 200
Esquare = {1, 4, 9, . . . } [0.59825575, 0.59825579] 4.0e− 08 1e+ 5 5000
Epower2+ = {1, 2, 4, . . . } [0.73390397, 0.73390415] 1.8e− 07 50 1000
Epower2 = {2, 4, 8, . . . } [0.472071525, 0.472071536] 1.1e− 08 50 1000
Epower3+ = {1, 3, 9, . . . } [0.56272836, 0.56272847] 1.1e− 07 40 1000
Epower3 = {3, 9, 27, . . . } [0.310529684, 0.310529686] 2.0e− 09 40 1000

Elac = {2, 22
2
, 23

2
, . . . } [0.236268909, 0.236268937] 2.8e− 08 10 1000

Proposition 4.1. Let en : N→ N be strictly increasing and let t ≥ s > 0. If for some k ∈ N
∞∑

n=k+1

αen(t) ≥ βek(t), then
∞∑

n=k+1

αen(s) ≥ βek(s).

Proof. For simplicity let αen := αen(1/2) and βen := βen(1/2). If n > k then en > ek and
αen
βek

=
ek + 2

2(en + 1)
< 1.

Hence the functions

φn(r) =
αen(r)

βek(r)
=

(
αen
βek

)2r

are decreasing for all n ≥ k + 1 and consequently the function

φ(r) =
∞∑

n=k+1

αen(r)

βek(r)

is also decreasing. Therefore if t ≥ s > 0
∞∑

n=k+1

αen(s)

βek(s)
≥

∞∑
n=k+1

αen(t)

βek(t)
≥ 1.

The proof is complete. �

Combining [25, Lemma 4.3], [5, Theorem 6.4] and Proposition 4.1 we have the follow-
ing.

Proposition 4.2. Let E = {en}n∈N be an increasing sequence of natural numbers and
denote by I(m) = {ei}mi=1,m ∈ N, the initial segments of E. If there exist t, s such that
0 ≤ t ≤ s ≤ dimH(CFE) and some m ∈ N such that

(i) PI(m)(t) ≤ 0,
(ii)

∑∞
n=k+1 αen(s) ≥ βek(s) for all k ≥ m+ 1,

then [t, s] ⊂ DS(CFE).
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We state as a corollary a special case of the previous proposition.

Corollary 4.3. Let E = {en}n∈N be an increasing sequence of natural numbers. If there exists
s ≥ 0 such that

∞∑
n=k+1

αen(s) ≥ βek(s)

for all k ≥ 2, then [0,min{s, dimH(JE)}] ⊂ DS(CFE).

We are also going to use the following criterion which follows from [5, Proposition
6.17]. Recall that if E ⊂ N, we denote best distortion constant of CFE by KE := KCFE .

Proposition 4.4. Let E = {en}n∈N be an increasing sequence of natural numbers and
denote by I(m) = {ei}mi=1,m ∈ N, the initial segments of E. If there exist t, s such that
0 ≤ t ≤ s ≤ dimH(CFE) and some m ∈ N such that

(i) PI(m)(t) ≤ 0,
(ii)

∑∞
n=k+1 ‖φ′en‖

s
∞ ≥ K2s

E ‖φ′ek‖
s
∞ for all k ≥ m+ 1,

then [t, s] ⊂ DS(CFE).

We state as a corollary a special case of the previous proposition.

Corollary 4.5. Let E = {en}n∈N be an increasing sequence of natural numbers. If there exists
s ≥ 0 such that

∞∑
n=k+1

‖φ′en‖
s
∞ ≥ K2s

E ‖φ′ek‖
s
∞

for all k ≥ 2, then [0,min{s, dimH(JE)}] ⊂ DS(CFE).

Remark 4.6. One may notice that Proposition 4.2 and 4.4 are very similar. It turns out
that Proposition 4.2 is more effective when 1 ∈ E, in all other cases Proposition 4.4 is
preferable. This is because KE decreases as minE increases.

The following theorem provides a checkable condition for determining if subsets of
the dimension spectrum are nowhere dense. It follows from results in [25] and [5]. We
provide the details below.

Theorem 4.7. Let E = {en}n∈N be an increasing sequence of natural numbers such that the
system S = {φe}e∈E is absolutely regular. If there exist 0 < s < r ≤ dimH(JE) such that

∞∑
n=k+1

‖φ′en‖
t
∞ < K−2tE ‖φ′ek‖

t
∞ for all k ∈ N, t ∈ (s, r), (4.1)

then DS(S) ∩ [s, r] is nowhere dense.

Proof. If F ⊂ E is nonempty and finite we let N(F ) ∈ N such that max(F ) = eN(F ).
Moreover we denote

F− = F \max(F ),

and
F+
∞ = (F \max(F )) ∪ {eN(F )+1, eN(F )+2, eN(F )+3, . . . }.

According to [25, Theorem 2.4] it suffices to check that for every nonempty finite set
F ⊂ E and every t ∈ [s, r],

e
P
F+
∞

(t)
< ePF (t). (4.2)
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By [5, Proposition 4.7] we have that

e
P
F+
∞

(t) ≤ ePF− (t) +Kt
E

∑
n=N(F )+1

‖φ′en‖
t
∞

and
ePF (t) ≥ ePF− (t) +K−tE ‖φ

′
max(F )‖

t
∞.

Therefore
e
P
F+
∞

(t) ≤ ePF (t) +Kt
E

∑
n=N(F )+1

‖φ′en‖
t
∞ −K−tE ‖φ

′
max(F )‖

t
∞. (4.3)

Finally (4.2) follows by (4.3) and (4.1). The proof is complete. �

We are now ready to prove our main theorems, establishing fullness of spectrum for
systems associated to various well known subsets of the natural numbers.

4.2. Arithmetic progressions. Our ultimate goal in this section is to establish that real
continued fractions with entries belonging to any arithmetic progression have full spec-
trum. The proof has several steps and we will start with the most well known examples
of arithmetic progressions.

Theorem 4.8. The systems CFodd and CFeven have full spectrum.

Proof. We first consider CFeven. Recall that as we proved in Section 3, dimH(JEeven) <
0.72 := s. We aim to apply Corollary 4.5 forE = 2N, in particular we would like to verify
that

∞∑
n=k+1

(
1

2n

)2s

≥ K2N

(
1

2k

)2s

(4.4)

holds for all k ≥ 2. By the integral test,
∞∑

n=k+1

(
1

n

)2s

≥
∫ ∞
k+1

(x)−2sdx =
1

2s− 1
(k + 1)1−2s.

Hence if k ∈ N satisfies
k2s

(k + 1)2s−1
≥ exp(2/3)(2s− 1), (4.5)

it also satisfies (4.4). One can readily verify that (4.5) holds for k = 2. Moreover it is easy
to check that the function

he(x) =
x2s

(x+ 1)2s−1

is increasing for x ≥ 0. Therefore (4.5) is satisfied for all k ≥ 2 and Corollary 4.5 implies
that CFeven has full dimension spectrum.

We now move on to CFodd. Recall from Section 3 that dimH(JEodd) < 0.822 := s. We
will apply Corollary 4.3 for E = 2N− 1. If en = 2n+ 1, note that it suffices to verify that

∞∑
n=k+1

(
1

n+ 1

)2s

≥ 16s
(

1

2k + 3

)2s

(4.6)

for all k ≥ 1. By the integral test,
∞∑

n=k+1

(
1

n+ 1

)2s

≥
∫ ∞
k+1

(x+ 1)−2sdx =
(k + 2)1−2s

2s− 1
.
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Hence if k ∈ N satisfies
(2k + 3)2s

(k + 2)2s−1
≥ 16s(2s− 1), (4.7)

then it also satisfies (4.6). Indeed (4.7) holds for k = 1 and it is easy to see that the function

ho(x) =
(2x+ 3)2s

(x+ 2)2s−1

is increasing for x ≥ 0. Therefore (4.7) and (consequently) (4.6) hold for all k ≥ 1. There-
fore Corollary 4.3 implies that CF2N−1 has full dimension spectrum. The proof is com-
plete. �

We will now prove a special case of Theorem 1.1; the case of arithmetic progression
whose first element is less or equal than the step of the progression.

Theorem 4.9. Let q, s ∈ N such that s ≤ q and consider the arithmetic progressions Es,q =
{s+ nq}n≥0. Then CFEs,q has full spectrum.

Proof. For q = 1 the result is due to Kesseböhmer and Zhu [25] who gave a positive
answer to the Texan conjecture. For q = 2 the result is contained in Theorem 4.8. Hence
we can assume that q ≥ 3.

Recall from Section 3 that dimH(JE1,3) < 0.744 := s0. Therefore if q ≥ 3 and s ≤ q,
Proposition 2.7 implies that

dimH(JEs,q) ≤ dimH(JE1,3) < s0. (4.8)

We aim to apply Proposition 4.4 and a bootstrapping argument as in the proof of [5,
Theorem 1.4]. We will first determine for which k ≥ 1,

∞∑
n=k+1

‖φ′en‖
hs,q
∞ ≥ 42hs,q‖φ′ek‖

hs,q
∞ (4.9)

where hs,q = dimH(JEs,q) and ek = s + kq. By [5, Lemma 6.17] and (4.8), the condition
(4.9) holds as long as

∞∑
n=k+1

(nq + s)−2s0 ≥ 42s0(kq + s)−2s0 . (4.10)

We have that
∞∑

n=k+1

(nq + s)−2s0 ≥
∞∑

n=k+1

((n+ 1)q)−2s0 ≥ q−2s0
∫ ∞
k+1

(x+ 1)−2s0 dx = q−2s0
(k + 2)1−2s0

2s0 − 1
.

Therefore (4.9) holds if

q−2s0
(k + 2)1−2s0

2s0 − 1
≥ 42s0(kq)−2s0 ,

or equivalently if
k2s0

(k + 2)2s0−1
≥ 42s0(2s0 − 1). (4.11)

Note that the function

h(x) =
x2s0

(x+ 2)2s0−1
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is increasing for x > 0. Therefore, since we easily check by subsitution that (4.11) holds
for k = 5, we deduce that (4.9) holds for all k ≥ 5.

Since q ≥ 3 it follows by Proposition 2.7 that for all m ∈ N

dimH(JIs,q(m)) ≤ dimH(JI1,3(m)). (4.12)

where Is,q(m) = {s+ nq : n = 0, . . . ,m− 1}.
Using the code of Falk-Nussbaum from [12], and verifying our estimate using IntLab

as in Section 3, we deduce that

dimH(JI1,3(5)) ∈ [0.597742, 0.597746].

We let s1 = 0.597746 and we distinguish two cases.
First assume that s1 ≥ dimH(JEs,q). Arguing as before we deduce that

k2s1

(k + 2)2s1−1
≥ 42s1(2s1 − 1) (4.13)

for all k ≥ 2. Note that (4.13) implies that
∞∑

n=k+1

‖φ′en‖
s1
∞ ≥ 42s1‖φ′ek‖

s1
∞ (4.14)

holds for all k ≥ 2. Using the Falk-Nussbaum code once more (as well as IntLab verifi-
cation) we deduce that

dimH(JI1,3(2)) ∈ [0.411181, 0.411184].

Hence if s2 = 0.411185

PIs,q(2)(s2) < 0. (4.15)

By (4.14), (4.15) and Proposition 4.4 we deduce that

[0.411185, dimH(JEs,q)] ⊂ DS(CFEs,q). (4.16)

Note that θCFEs,q = 1/2, hence [27, Theorem 6.3] implies that

[0, 1/2) ⊂ DS(CFEs,q). (4.17)

Combining (4.16) and (4.17) we deduce that in the case when s1 ≥ dimH(JEs,q), the
system CFEs,q has full dimension spectrum.

We now consider the case when s1 = 0.597746 < dimH(JEs,q). Since (4.9) holds for all
k ≥ 5, and (4.12) implies that PIs,q(5)(s1) < 0, we can apply Proposition 4.4 to get:

[0.597746, dimH(JEs,q)] ⊂ DS(CFEs,q). (4.18)

Note now, that (4.14), (4.15) and Proposition 4.4 imply that

[0.411185, 0.597746] ⊂ DS(CFEs,q). (4.19)

Combining (4.18), (4.19) and (4.17) we deduce that CFEs,q has full dimension spectrum.
The proof is complete. �

Before proving Theorem 1.1 we need the following auxiliary lemma.

Lemma 4.10. Let m ∈ N and set Em = {m,m+ 1, . . . }. The system CFEm has full spectrum.
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Proof. If m = 1 the result is due to Kesseböhmer and Zhu [25]. We can thus assume that
m ≥ 2. We want to determine for which k ∈ N

∞∑
n=k+1

‖φ′n‖hm∞ ≥ K2hm
m ‖φ′k‖hm∞ , (4.20)

where hm = dimH(JEm) and Km = KEm . Since Km ≤ K2 = exp(2/3) and hm < 1,
[5, Lemma 6.17] implies that if

∞∑
n=k+1

‖φ′n‖∞ ≥ exp(2/3)2 ‖φ′k‖∞ (4.21)

holds, then (4.20) holds as well. Observer that if

k2

k + 1
≥ exp(4/3), (4.22)

then it follows easily that (4.21) holds. Since f(x) = x2

x+1 is increasing for x ≥ 0 and
(4.22) holds for k = 5 we deduce that (4.20) holds for k ≥ 5. Hence Corollary 4.5 implies
that CFEm has full spectrum for all m ≥ 4. Therefore it only remains to check the cases
m = 2, 3, 4. We provide the details for the case m = 2, the other cases follow similarly.
Let I = {2, 3, 4}. Using the code of Falk-Nussbaum from [12], and verifying our estimate
using IntLab as in Section 3, we deduce that

dimH(JI) ∈ [0.480695, 0.480697].

Hence if s1 = 0.481, PI(s1) ≤ 0. Moreover (4.20) holds for k ≥ 5 therefore Proposition
4.4 implies that [s1, hm] ⊂ DS(CFE2). Finally [27, Theorem 6.3] implies that [0, 1/2) ⊂
DS(CFE2), because θCFE2

= 1/2. Joining these intervals we obtain that CFE2 has full
spectrum. �

We are now ready to prove Theorem 1.1 which we restate for convenience of the reader.

Theorem 4.11. If A ⊂ N is any infinite arithmetic progression then CFA has full spectrum.

Proof. Any infinite arithmetic progression is of the form A = {s+ nq}n≥0 where s, q ∈ N.
If s ≤ q, then the conclusion follows by Theorem 4.9. The case q = 1 follows by Lemma
4.10. The case q = 2 follows by Corollary 4.3 since we have proved that the inequalities
(4.4) and (4.6) hold for all k ≥ 2. Therefore we can assume that q ≥ 3 and s > q. In
that case there exists some k ≥ 1 and some 0 < r ≤ q such that s = kq + r. Hence
A = {r + nq}n≥k. Since we have shown in the proof of Theorem 4.9 that (4.9) holds for
all k ≥ 5, Corollary 4.5 implies that CFA has full spectrum if k ≥ 4. Now suppose that
k = 1, 2, 3 and let Ik = {r+ kq, . . . , r+4q}. Note that since q ≥ 3, Proposition 2.7 implies
that

dimH(JIk) ≤ dimH(JI1) ≤ dimH(J{4,7,10,13}). (4.23)
Using the code of Falk-Nussbaum from [12], and verifying our estimate using IntLab
as in Section 3, we deduce that

dimH(J{4,7,10,13}) ∈ [0.3455682, 0.3455683].

Therefore by (4.23) we deduce that dimH(JIk) < 0.35. Hence PIk(0.35) < 0 and since (4.9)
holds for all k ≥ 5, Proposition 4.4 implies that

[0.35, dimH(JA)] ⊂ DS(CFA).
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Finally [27, Theorem 6.3] implies that [0, 1/2) ⊂ DS(CFA), because θCFA = 1/2. There-
fore CFA had full dimension spectrum. The proof is complete. �

4.3. Primes. In this section we will prove Theorem 1.2 which we restate below.

Theorem 4.12. The system CFprime has full spectrum.

Proof. We will now turn out attention to CFprime. Recall from Section 3 that dimH(JEprime) <
0.6752 := s. We intend to use Corollary 4.3. For n ∈ N let p(n) be the n-th prime. Propo-
sition 2.5 implies that Kprime := K = exp(2/3). We will show that

∞∑
n=k+1

(
1

p(n)

)2s

≥
(
K

p(k)

)2s

(4.24)

for all k ≥ 2. By [11], for all n ≥ 5

p(n) ≤ n(ln(n) + ln(ln(n))).

Hence
∞∑

n=k+1

p(n)−2s ≥
∞∑

n=k+1

(n(ln(n) + ln(ln(n))))−2s

≥
∫ ∞
k+1

(x(ln(x) + ln(ln(x))))−2s dx.

(4.25)

We will now show that

ln(x) + ln(ln(x)) ≤
√
x for all x ≥ 10 (actually for all x > 0). (4.26)

Let f(x) =
√
x− ln(x)− ln(ln(x)). Then

f ′(x) =
(
√
x− 2) ln(x)− 2

2x ln(x)
:=

g(x)

2x ln(x)
.

Note that g′(x) =
√
x(2+ln(x))−4

2x > 0 for all x ≥ 4 and g(10) > 0. Hence we deduce that
f ′ is increasing in [10,∞). Since f(10) > 0 it follows that (4.26) holds. Combining (4.25)
and (4.26) we deduce that for k ≥ 9

∞∑
n=k+1

p(n)−2s ≥
∫ ∞
k+1

(x
√
x)−2sdx =

∫ ∞
k+1

x−3sdx =
(k + 1)1−3s

3s− 1
.

It is well known, see e.g. [11, Lemma 1], that

p(n) ≥ n ln(n) for n ≥ 2.

Hence, if
(k ln(k))2s

(k + 1)3s−1
≥ exp(2s/3)(3s− 1) (4.27)

holds for k ≥ 9, then (4.24) holds for k ≥ 9 as well. Let

hp(x) = ln(x)2s
x2s

(x+ 1)3s−1
.

Notice that 2s > 3s − 1 and consequently hp is increasing for x > 1, as a product of
two positive increasing functions. Moreover hp(9) > exp(2s/3)(3s − 1) hence hp(k) ≥
exp(2s/3)(3s − 1) for all k ≥ 9. Therefore we have proved that (4.27), and consequently
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(4.24), hold for all k ≥ 9. Using Matlab it is easy to verify that in fact (4.24) holds for the
remaining k = 2, . . . , 8, hence Corollary 4.5 implies that CFprime has full spectrum. �

4.4. Squares. In this section we will prove Theorem 1.3 which we now restate.

Theorem 4.13. The system CFsquare has full dimension spectrum.

Proof. We have that CFsquare := CFE where E = {n2 : n ∈ N}. We intend to use
Proposition 4.2 and a bootstrapping argument as in the proof of [5, Theorem 1.4]. Let
s > 1/4. We will first investigate for which k ∈ N

∞∑
n=k+1

(
1

n2 + 1

)2s

≥
(

2

k2 + 2

)2s

. (4.28)

By the integral test,

∞∑
n=k+1

(
1

n2 + 1

)2s

≥
∫ ∞
k+1

(x2 + 1)−2sdx ≥ 2−2s
∫ ∞
k+1

x−4sdx = 4−s
(k + 1)1−4s

4s− 1
.

Hence if k ∈ N satisfies
(k2 + 2)2s

(k + 1)4s−1
≥ 16s(4s− 1), (4.29)

then it also satisfies (4.28). Let

hsq(x) =
(x2 + 2)2s

(x+ 1)4s−1
,

and notice that it is increasing for x ≥ 1. Now recall that from Section 3 that dimH(JE) <
0.5766 := s0. By substitution it follows that (4.29) holds for k = 8 and s = s0, and since
hsq is increasing (4.29) holds for all k ≥ 8 and s = s0. Therefore (4.28) holds for all k ≥ 8
and s = s0. Using Matlab we verify that (4.6) holds for all k ≥ 3 and s = s0.

We now consider the finite conformal system SI(2), where in this case I(2) = {1, 4}
consists of the first two members of the alphabet E. Using the code of Falk-Nussbaum
from [12], and verifying our estimate using IntLab as in Section 3 we deduce that

dimH(JI(2)) ∈ [0.411181, 0.411184].

Hence PI(2)(0.411184) < 0 and since (4.6) holds for all k ≥ 3 and s = s0, Proposition 4.2
implies that

[0.411184,dimH(JE)] ⊂ DS(CFsquare). (4.30)

Now let s1 = 0.411184. Working as previously and using the monotonicity of hsq we
deduce that (4.29) holds for all k ≥ 2 and s = s1. Hence (4.28) holds for all k ≥ 2 and
s = s1, so Corollary 4.3 implies that

[0, 0.411184] ⊂ DS(CFsquare). (4.31)

Combining (4.30) and (4.31) we deduce that CFsquare has full spectrum. �
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4.5. Powers. In this section we investigate the dimension spectrum of continued frac-
tions whose entries are scaled powers. In particular we will study systems CFE where E
is of the form {r−1λn : n ∈ N} for λ, r ∈ N, λ ≥ 2, and r|λ. Our first theorem asserts that
the dimension spectrum of these systems always contains a non-trivial interval. Notice
that Theorem 1.4 is an immediate corollary of the following theorem.

Theorem 4.14. Let λ, r ∈ N, λ ≥ 2, such that r|λ. Let Er,λ∗ = {r−1λn : n ∈ N}. Then there
exists some s(r, λ) > 0 such that

[0,min{s(r, λ), dimH(JEr,λ∗ )}] ⊂ DS(CFEr,λ∗ ).

Proof. Let

K := KEλ∗ =

{
exp

(
2

(λ/r)2−1

)
, if r < λ,

4, if r = λ.

We aim to use Corollary 4.5, so we would like to investigate for which k ≥ 2 and s > 0,
∞∑

n=k+1

‖φ′en‖
s
∞ ≥ K2s ‖φ′ek‖

s,

or equivalently
∞∑

n=k+1

λ−2ns ≥ K2s λ−2ks. (4.32)

We have
∞∑

n=k+1

λ−2ns ≥
∫ ∞
k+1

λ−2sxdx =
λ−2(k+1)s

2s lnλ
.

Therefore if
λ−2(k+1)s

2s lnλ
≥ K2sλ−2sk, (4.33)

holds for some k and s, then (4.32) holds as well. Observe though, that (4.33) is equivalent
to

1

2s lnλ
− (λK)2s ≥ 0, (4.34)

which does not depend on k. Let

f(s) =
1

2s lnλ
− (λK)2s. (4.35)

It follows that f is decreasing in (0,+∞), lims→0 f(x) = +∞ and lims→+∞ = −∞. Hence
there exists a unique s(λ) > 0 such that f(s(λ)) = 0 and f(s) > 0 for all s ∈ (0, s(λ)). In
other words (4.34) holds for all s ∈ (0, s(λ)], and consequently (4.32) holds for k ≥ 2 and
s(λ). Hence by Corollary 4.3

[0,min{s(λ), dimH(JEλ∗ )}] ⊂ DS(CFEλ∗ ).
The proof is complete. �

It is easy to find numerically the roots of the function f , defined in (4.35), for given
values of λ and r. In the following corollary we collect the intervals contained in the
spectrum of the systems CFEpowerλ for λ = 2, 3, 4, 5.
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Corollary 4.15. Let Epowerλ = {λn}n∈N. Then

[0, 0.3102] ⊂ DS(CFpower2),
[0, 0.2389] ⊂ DS(CFpower3),
[0, 0.1977] ⊂ DS(CFpower4),
[0, 0.1729] ⊂ DS(CFpower5).

The following lemma follows easily from Theorem 4.7. We provide the details for
completeness.

Lemma 4.16. Let λ, r ∈ N, λ ≥ 2, such that r|λ. Let Er,λ∗ = {r−1λn : n ∈ N}. If there exist
0 < s < r ≤ dimH(JEr,λ∗ ) such that

1

2t lnλ
−K−2tEr,λ∗

< 0 for all t ∈ (s, r), (4.36)

then DS(S) ∩ [s, r] is nowhere dense.

Proof. By Theorem 4.7 it suffices to prove that
∞∑

n=k+1

λ−2nt < K−2tEr,λ∗
λ−2kt for all t ∈ (r, s). (4.37)

For such t we have
∞∑

n=k+1

λ−2nt ≤
∫ ∞
k

λ−2txdx =
λ−2kt

2t lnλ
.

Hence (4.37) holds if
1

2t lnλ
−K−2tEr,λ∗

< 0.

The proof is complete. �

We will now prove Theorem 1.5 which we restate in a more precise way below.

Theorem 4.17. Let E50,100∗ = {2, 200, 20000, . . . }. There exist s1, s2 such that 0 < s1 < s2 <
h := dimH(JE50,100∗ ) and

(i) [0, s1] ⊂ DS(CFE50,100∗ ),
(ii) [s2, h] ∩DS(CFE50,100∗ ) is nowhere dense.

Proof. Arguing as in Section 3 (i.e. using numerical approximation based on the method
of Falk-Nussbaum and estimating the error using Theorem 2.4) we obtain that

h = dimH(JE50,100∗ ) ∈ [0.160397, 0.160398].

The existence of s1 follows by Theorem 4.14, and solving the equation (4.34) numerically
we can choose s1 = 0.058557.

We will use Lemma 4.36 in order to determine s2. In the case of E50,100∗ , Proposition
2.5 implies that K := KE50,100∗ = exp(2/3). Let

f(t) =
1

2t ln 100
− exp(−4t/3), t > 0.
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Since f ′(t) = − 1
t22 ln 100

+ 4
3 exp(−4t/3) and, 4

3 exp(−4t/3) < 4/3 for t > 0, we deduce that
f is decreasing in (0, s∗) where

s∗ =

√
3

8 ln 100
≈ 0.285.

Since f(s∗) < 0 and limt→+0 f(t) = +∞we deduce that there exists a unique s2 < s∗ such
that f(s2) = 0. Solving the equation f(t) = 0 numerically in (0, s∗) we derive that s2 ≈
0.12894. Hence we have shown that [0, 0.058557] ⊂ DS(CFE50,100∗ ) and [0.128941, h] ∩
DS(CFE50,100∗ ) is nowhere dense. The proof is complete. �

4.6. Lacunary sequences. We finally consider continued fractions whose entries form a
lacunary sequence. Indicatively we consider the lacunary sequence E3lac = {3n2}n∈N
and we prove that the corresponding continued fractions system contains a non-trivial
nowhere dense part. The same scheme works for several other lacunary sequences as
well.

Theorem 4.18. LetE3lac = {3n
2}n∈N. There exists some t0 < dimH(JE3lac

) such thatDS(CF3lac)∩
[t0,dimH(JE3lac

)] is nowhere dense.

Proof. Arguing as in Section 3 (i.e. using numerical approximation based on the method
of Falk-Nussbaum and estimating the error using Theorem 2.4) we obtain that

h = dimH(JE3lac
) ∈ [0.15565551, 0.15565552].

Let t ∈ (0, h] and k ∈ N. We have
∞∑

n=k+1

‖φ′en‖
t
∞ ≤

∫ ∞
k

(32t)−x
2
dx =

∫ ∞
k

e−αtx
2
dx

where αt = 2t ln 3. Integrating by parts we get∫ ∞
k

e−αtx
2
dx =

1

2αt

∫ ∞
k

1

x
(−e−αtx2)′dx

=
e−αtk

2

2αtk
− 1

2αt

∫ ∞
k

e−αtx
2

x2
dx ≤ e−αtk

2

2αtk
=

3−2tk
2

4tk ln 3
.

In the case of E3lac, Proposition 2.5 implies that K3lac := K = exp(1/4). Note that

3−2tk
2

4tk ln 3
< K−2t‖φ′ek‖

t
∞ = K−2t3−2tk

2

is equivalent to exp(t/2)
4t ln 3 < k. Let

f(t) =
exp(t/2)

4t ln 3
, t > 0.

Since f is decreasing for t ∈ (0, 2) and for t0 = 1.42 we have that f(t0) < 1.8 we deduce
that f(t) < k for all t ∈ [t0, 2) and k ≥ 2. Therefore

∞∑
n=k+1

‖φ′en‖
t
∞ < K−2t‖φ′ek‖

t
∞, for all k ≥ 2, t ∈ [t0, 2). (4.38)

Now let
I(t) =

∫ ∞
1

e−αtx
2
dx− (3 exp(1/4))−2t.
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Taking derivatives we get that

I ′(t) = −2 ln 3
∫ ∞
1

x2e−2t ln 3x2dx+ 2 ln(3 exp(1/4))3−2t.

Note that in the interval t ∈ [t0, h],

I ′(t) ≤ 2(ln(3 exp(1/4))3−2t0 − ln 3

∫ ∞
1

x2e−2h ln 3x2dx) := E.

The quantity E is easily computable and it turns out that E ≈ −2.27867, hence I ′(t) < 0
for t ∈ [t0, h]. Since I(t0) < 0 (computed using Matlab) we deduce that

I(t) < 0 for all t ∈ [t0, h]. (4.39)

Combining (4.38) and (4.39) we obtain that
∞∑

n=k+1

‖φ′en‖
t
∞ < K−2t‖φ′ek‖

t
∞, for all k ≥ 1, t ∈ [t0, h]. (4.40)

Therefore Theorem 4.7 implies that [t0, h] ∩DS(CFE3lac
) is nowhere dense. The proof is

complete. �
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[19] , Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic exten-
sion, Discrete Contin. Dyn. Syst. 32 (2012), no. 7, 2417–2436. MR2900553

[20] V. Jarnik, Zur metrischen theorie der diophantischen approximation, Prace Mat. Fiz. 36 (1928), 91–106.
[21] O. Jenkinson, On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan con-

jecture, Stoch. Dyn. 4 (2004), no. 1, 63–76. MR2069367
[22] O. Jenkinson and M. Pollicott, Computing the dimension of dynamically defined sets: E2 and bounded contin-

ued fractions, Ergodic Theory Dynam. Systems 21 (2001), no. 5, 1429–1445. MR1855840
[23] , Rigorous effective bounds on the Hausdorff dimension of continued fraction Cantor sets: a hundred

decimal digits for the dimension of E2, Adv. Math. 325 (2018), 87–115. MR3742587
[24] , Rigorous dimension estimates for cantor sets arising in zaremba theory, preprint (2019).
[25] M. Kesseböhmer and S. Zhu, Dimension sets for infinite IFSs: the Texan conjecture, J. Number Theory 116

(2006), no. 1, 230–246. MR2197868
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