SINGULAR INTEGRALS ON C''% REGULAR CURVES IN CARNOT GROUPS

VASILEIOS CHOUSIONIS, SEAN LI, AND SCOTT ZIMMERMAN

ABSTRACT. Let G be any Carnot group. We prove that if a convolution type singular integral associ-
ated with a 1-dimensional Calderén-Zygmund kernel is L2-bounded on horizontal lines, with uniform
bounds, then it is bounded in L”, p € (1,00), on any compact C1'%, a € (0,1], regular curve in G.

1. INTRODUCTION

In this paper we will study the boundedness of convolution type Singular Integral Operators (SIOs)
on smooth, 1-dimensional subsets of arbitrary Carnot groups. We will consider SIOs formally given by

Tf(p) = f K(q~' p)f(@) dp(a),

where K is a 1-dimensional Calder6n-Zygmund (CZ) kernel and p is the restriction of the Hausdorff
1-measure %' to a smooth, regular curve in a Carnot group G. In an effort to keep the introduction
concise and rather informal, we will defer all definitions to Section 2.

The study of SIOs on lower dimensional subsets of Euclidean space has been a highlight of the inter-
face between harmonic analysis and geometric measure theory, see e.g. [2,11,13, 15, 26,29]. Advances
in the area have partly been motivated by the importance of lower dimensional SIOs in complex anal-
ysis, potential theory, and PDE. For example, certain singular integrals, such as the Cauchy and Riesz
transforms, play crucial roles in the study of removability for bounded analytic or Lipschitz harmonic
functions, see e.g. [30, 34].

Singular integrals in Carnot groups, defined with respect to the corresponding Haar measure, have
been studied extensively since the early 70’s, see e.g. [20, 32]. However, SIOs on lower dimensional
subsets of sub-Riamannian spaces were first considered relatively recently in [7] and further studied
in [3-5,8,17,18]. Analogously to the Euclidean case, some of these investigations have been motivated
by the emergence of lower dimensional singular integrals in the study of removability for Lipschitz
harmonic functions in Carnot groups [3, 6, 8]. In such a setting, harmonic functions are solutions to
sub-Laplacian equations. For an extensive account on sub-Laplacians, see [1].

Research programs into SIOs on lower dimensional subsets of Euclidean spaces exhibit a common
characteristic: all of the studied kernels are odd. Indeed, for a SIO to make sense on lines and other
“nice” 1-dimensional Euclidean objects, one employs cancellation properties of the kernel, see e.g.
[32, Propositions 1 and 2, p. 289]. Surprisingly, the situation is very different in Carnot groups. More
specifically, it was shown in [4, 5] that, in any Carnot group, there exist non-negative and symmetric
kernels (which we will call vertical Riesz kernels) that define L? bounded operators on all 1-regular
curves. See Example 2.17 for more details.

Féssler and Orponen [18], in a significant recent contribution, proved that C*°, —1-homogeneous
and horizontally antisymmetric kernels (see Remark 2.15) define convolution type SIOs which are
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bounded in L”, p € (1,00), for any regular curve in the first Heisenberg group. Recall that the first
Heisenberg group is the simplest non-abelian example of a Carnot group. Although this result applies
to a very broad class of kernels, it does not apply to the vertical Riesz kernels mentioned above. Aiming
for a framework that will also encompass these examples, Féassler and Orponen ask in [18, Question 1] if
any smooth, —1-homogeneous CZ kernel in the Heisenberg group which is also uniformly L? bounded
on horizontal lines (see Definition 2.13) is necessarily L2 bounded on regular curves. Theorem 1.1 be-
low gives a partial answer to their question if the curve is further assumed to be C1'* regular. Moreover,
our result holds in any arbitrary Carnot group, and we do not need to assume —1-homogeneity and C*®
smoothness for the kernels.

Theorem 1.1. Let a € (0,1] and suppose thatT is a CV% regular curve in a Carnot group G. Then any
convolution type singular integral operator with a 1-dimensional CZ kernel which is L?> bounded on
horizontal lines with uniform bounds, is LP (7 |g)-bounded for any 1-regular set Ec T and any p €
(1,00).

Moreover, the conclusion of Theorem 1.1 applies to any 1-regular measure y whose support is
contained in I'. An interesting aspect of Theorem 1.1 is that it reduces the problem of determining
LP (7' |r)-boundedness of a Carnot convolution type SIO to a problem of Euclidean 1-dimensional
SIOs. Indeed, the restriction of a Carnot 1-dimensional CZ kernel (as in Definition 2.9) to a horizontal
line essentially induces a Euclidean SIO of convolution type associated with a standard 1-dimensional
CZ kernel. See the proof of Proposition 2.16 for more details. This phenomenon was first observed
in [3]. However, the reduction in that paper was to 3-dimensional Euclidean kernels acting on 2-
dimensional planes, while, in our case, the problem is reduced to the action of 1-dimensional kernels
on lines.

The proof of Theorem 1.1 is performed using the “good lambda method" and an application of the
T1 theorem in homogeneous spaces. In order to verify the T'1 testing conditions (on the correspond-
ing Christ cubes) we employ a Littlewood-Paley decomposition of the operator as in [3-5]. We stress
that a key ingredient in our proof involves horizontal approximation of smooth curves. It is known
from Pansu’s Theorem [31] that Lipschitz curves in Carnot groups are well approximated by their hor-
izontal tangent lines. We will show in Proposition 3.2 (which is inspired by Monti’s work in [27]) that,
if a Lipschitz curve is further assumed to be C1%, then this approximation by horizontal tangents is
quantitatively strong. This was essential in our application of the T'1 theorem.

The paper is organized as follows. In Section 2, we discuss (and introduce basic properties) of Carnot
groups, curves in Carnot groups, and singular integral operators. Moreover we include two examples
of families of kernels which satisfy the assumptions of Theorem 1.1. In Section 3 we include some es-
sential tools for the proof of Theorem 1.1. In particular, we prove Proposition 3.2. Section 4 is devoted
to the proof of Theorem 1.1.

Throughout the article, we will write a < b if a < Cb for some constant C > 0 which depends only
on the group structure of G, the curve I', and the kernel K.

Acknowledgements. We thank Katrin Fassler and Tuomas Orponen for several helpful comments
regarding the good A method.

2. PRELIMINARIES

2.1. Carnot groups. A connected, simply connected Lie group G is called a step-s Carnot group if the
associated Lie algebra g is stratified in the following sense:

szl@"'@vs» [V],‘/j]=‘/i+]f0ri=1,...,s—l, [V],Vs]:{o}
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where V1, ..., Vs are non-zero subspaces of the Lie algebra. We now define a special tangent subbundle
b of the tangent bundle T'G. Let hy = V;. We then use left translation to pushforward V; to every other
point, that is hg = (Lg)«(ho) where Lg(x) = gx is the left-translation map. We call § the horizontal
subbundle.

Choose a basis {Xj, ..., X} of g adapted to the stratification in the following sense:
{ij;ll(dimvj)ﬂr”-’ij.zl(dimv,»)} is a basis of V; foreach i € {1,..., s}.

Since the first layer is arguably the most important layer in any Carnot group, for simplicity we will set
n:=dim V). For any x € G, we can uniquely write x = exp(x; X1 +---+ xy Xy) for some (x,...,xn) € RN
via the exponential map exp : g — G. Thus we may identify G with RY using the relationship x «—
(x1,...,xn). Note that, under this identification, we have p~! = —p for any p € G. Denote by |-| the
Euclidean norm in G = RV (depending on the above choice of basis). For a general discussion of Carnot
groups, see [1].

There is a natural family of automorphisms known as dilations on G. Each coordinate j satisfies
dim V; +---+didej_1 <j=dimV; +---+didej

for some d; < s, and we call d; the degree of the coordinate j. We thus define for any ¢ > 0 the dilation
0:(x)= (txl, tdzxg,..., thxN) .

It follows that {6;};>¢ is a one parameter family of automorphisms i.e. §,,06; = ;. Note that if p =
(p1,..., ps) € G where p; € RY™Vi then for any £ >0

5[(}9) = (tpl, tng,..., tsps).

Moreover, we define the horizontal projection : G — Gby i (py, ..., ps) = (p1,0,...,0) where p; € RA™ Vi
for i =1,...,s. In some instances we will denote g € G as (¢, g2) where q; € R"” and ¢; € RN in
particular, we will write g = (¢1,0) for 0 = (0,...,0) e RN=",

Since the Lie algebra is nilpotent, we may explicitly compute the group operation using the famous
Baker-Campbell-Hausdorff formula (see [16]). We will collect some useful properties of the group law
here (see [1, Proposition 2.2.22]).

Proposition 2.1. We may write the group law as xy = x+y+Q(x, y) for some polynomial Q = (Qy,...,Qn)
where

D Q=-=Q,=0;

(2) for n <i < N, the polynomial Q;(x,y) is a sum of terms each of which contains a factor of the
form (xjy,—xpy;)) forsomel <0, j<i;

(3) Q; is homogeneous of degree d; with respect to dilations (i.e. t%Q;(x,y) = Q;(5:(x),8.(y)) for all
x,ye€G).

(4) If the coordinate x; has degree d; = 2, then Q;(x,y) depends only on the coordinate of x and y
which have degree strictly less than d;.

There are many choices of metric space structure for a Lie group G. However, any left-invariant, ho-
mogeneous metric d (i.e. any metric which satisfies d(px, py) = d(x,y) and d(6;(x),0,(y)) = td(x, y))
is bi-Lipschitz equivalent to any other left-invariant, homogeneous metric d’ in the following sense:
there is a constant C = 1 such that

Cld'(x,y)<d(x,y)<Cd'(x,y) foranyx,yeG.

The following implies that the topologies of (RN, |-) and (G, d) are equal for any choice of left-invariant,
homogeneous metric d. See, for example, Proposition 5.1.6 from [1].
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Proposition 2.2. Suppose G has step s, and let A c G be compact. Then there is a constant D = 1 such
that

D lx—yl<dx,y < Dlx—yll/s

forallx,y€ A.
One particularly useful left-invariant, homogeneous metric is defined as follows. Define the norm
Il on G as

1/d;
x| := max {/1]|xj| / f}
j=1.N

where the constants A; > 0 are chosen (based on the group structure) so that | - || satisfies the triangle
inequality and A; = --- = 1, = 1. (Such a choice can always be made; see [22].) Define du(x,y) =
|l y~'x| for any x, y € G. One may easily check that d,, is indeed left-invariant and homogeneous.

2.2. Curves in Carnot groups. Suppose a € (0,1]. A function f : [a, b] — R is of class C"'* if the deriv-
ative of f exists and is a-Hoélder continuous on [a, b]. (Differentiation at the endpoints is understood
in terms of left and right hand limits.) That is, for some Cy = 1,

If'(x) = ') = Cqlx—y|* forall x,ye€ |a,b].

A mapping v : [a, b] — RY is of class C"'* if each coordinate of y is of class C'*. We will say that a
set I" is a (Lipschitz) curve if it is equal to the image of a Lipschitz map y : [a,b] — G. Frequently,
Lipschitz curves are also called horizontal curves because if y : [a, b] — G is Lipschitz then y'(t) € b for
a.e. t € [a, b], see [31]. We say that a horizontal curve I = y([a, b]) is che ifyisa che mapping into the
ambient Euclidean space RYN with a C1'® arc length parameterization (with respect to the metric on G).

Definition 2.3. We say that a Radon measure u on G is 1-regular if there exists some constant C = 1:
2.1) Clr< w(B(p,r)=<Cr foranypeG,0<r <diam(supp ).

We will denote by reg (u) the smallest constant C = 1 such that (2.1) holds. If only the second inequality
in (2.1) holds, u is called upper 1-regular.

Moreover, a closed set E c G will be called 1-regular, if A1 (the restriction of the 1-dimensional
Hausdorff measure on E) is 1-regular. Analogously, we also define upper 1-regular sets.

Definition 2.4. A set I c G is a C"* regular curve if it is a horizontal C»%-curve whose image is a
1-regular set.

Remark 2.5. The claim that the arc length parameterization of ' is C1'% is more restrictive than nec-
essary. It is an exercise in calculus to show that, if y : [a, b] — G is any C1'%, Lipschitz curve and |y’| > 0,
then the arc length parameterization of y must be C1'* as well.

Remark 2.6. Due to the stratified structure of the Carnot group, we do not need to assume that y is
CY% in every coordinate. Indeed, we need only to assume that the first n coordinates (which are the
coordinates in the first layer of G) are C L& and smoothness of the remaining coordinates would follow.
This is a much more intrinsic assumption in the Carnot setting. However, we will assume full regularity
of the curve for simplicity.

The following lemma is a fundamental fact in Carnot groups. It states that the Pansu derivative of a
Lipschitz curve lies solely in the first layer almost everywhere. By Proposition 2.2, every Lipschitz curve
in G is also Lipschitz as a curve in R, In particular, such curves are classically differentiable almost
everywhere.

Lemma 2.7. Ify:[0,1] — G is Lipschitz then
y{%&/s(y(t)‘ly(ms)):(y’l(t),...,y;(t),o,...,O) fora.e. t€[0,1].
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For a proof, see [27, Lemma 2.1.4]. Note that the cited lemma uses the terminology h; in place of y/
where £ is the vector of canonical coordinates of the Lipschitz curve y with respect to the basis of g.
However, in a Carnot group, we may always choose a basis so that h; =y’ a.e. fori =1,..., n. See, for
example, Corollary 1.3.19 and Remark 1.4.5 in [1].

Lemma 2.7 tells us that the tangents to Lipschitz curves are (left translates of) lines which vanish
outside of the horizontal layer. This inspires the following definition.

Definition 2.8. A set L c G is a horizontal line if
L={(sx1,...,5X,,0,...,0) : se R}.

Note that left translates of horizontal lines remain lines only in step 2 Carnot groups; in Carnot
groups of higher step they are polynomial curves!

2.3. Singular integral operators. For the remainder of the paper, suppose that d is any left-invariant,
homogeneous metric on G.

Definition 2.9. A continuous function K : G\{0} — Ris a I-dimensional Calderon-Zygmund (CZ) kernel
if there exist constants B > 0 and § € (0, 1], such that K satisfies the growth condition

2.2 K <
(2.2) IK(p)l 4(,0)
and the Holder continuity condition

_ _ _ _ d(p1, p2)P
2.3 K@ 'py-K(@ 'p)l+IK(pi'q) - K(p;'q)| < B————
(2.3) IK(g™" p1) —K(g " p2)I+IK(py"q) — K(py~ 9l Aoy, )

for any p € G\ {0}, and any p1, p2, g € Gwith d(p1, p2) <d(p1,q)/2.

Fix a 1-dimensional CZ kernel K : G\ {0} — R and an upper 1-regular measure u (recall Definition
2.3). Define for any ¢ > 0 the truncated SIO T}, . associated with K as

Tuef(p) :fd( ) K@ 'p)f(g)du(g) forany feLP(u), 1< p<oo,
p.q >€

and define the maximal SIO T, associated with K as

(2.4) Ty« f(p) =sup|Tuef(p)| forany fe LP(u), 1< p<oo.
>0

Definition 2.10. If K : G\ {0} — Ris a 1-dimensional CZ kernel, 1 < p < 0o, and p is an upper 1-regular
measure, we say that the singular integral operator T, associated with K is bounded on LP(u) if the
operators f — Ty . f are bounded on L? (u) uniformly for all € > 0 (i.e. the constants are independent
of the choice of €). We also denote

|| TM“LP(#)—)LP(”) = sup{C >0: || T'u’gf”Lp(u) < C||f||Lp(’u) for f elP (,u),e > 0}.

In other words, T}, is bounded on L (u) if and only if | Ty ll 1r (u)— 17 () < 00.

The following remark asserts that convolution type SIOs acting on upper 1-regular sets are invariant
under left translations.

Remark 2.11. Suppose that K is a 1-dimensional CZ kernel, E c G is upper 1-regular and x € G. Then,
for any p € (1,00),

I Tl p (72015~ Lo 01 1) = W D0 W Lr (7 oy — 1P (760 1) -
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This follows because T is a convolution type SIO and . is left invariant on G. Indeed, let f € LP (A" | <)
and € > 0. Let also z = xz’ where z’ € E. Then, after changing variables

I%”mﬁf@):jm

s EK(q‘1Z)f(q)de1(q)= f Ky ') fxy)d 7' (y) = Ty ),,e8(2),
Z,€)°NX

B(z',e)°NE

where g : E — Ris defined as g(y) = f(xy). Then since the left invariance of #" implies that || f | 1z
IgllLr (s, Our claim follows.

|xl:‘) =

In order to eventually apply the T'1 theorem for homogeneous metric spaces, we must introduce the
adjoint operator T,.

Definition 2.12. If K: G\ {0} — R is a 1-dimensional CZ kernel, define the adjoint kernel KasK (p) =
K(p_l) forall p eG.

Note that

f(Tu,ef)gdﬂ:f(fd( ) K(g™'p)f (@) du(q) | g(p) du(p)
p.q)>e

= f ( f R(p ' g)g(p) du(p))f(q) du(q) = f (Tue8) f dp.
d(q,p)>¢

That is, K is the kernel of the adjoint TM of T, .. Note that K will also satisfy the conditions (2.2) and
(2.3) whenever K is itself a 1-dimensional CZ kernel.

Definition 2.13. Given a kernel K : G\ {0} — R with |[K(p)| < d(p,0)"!, we say that it is uniformly
bounded on horizontal lines (or UBHL) if the SIO associated to K is bounded on L?(#|1) for any
horizontal line L in G (with constants independent of the choice of L).

A function v : G — R is G-radial if there is a function f : [0,00) — R so that w(p) = f(d(p,0)) for every
p € G. Given a G-radial function v, we write

v (p):=(Wwoby,)(p) forallr>0,peG.

Definition 2.14. A kernel K : G\ {0} — R satisfies the annular boundedness condition if, for every G-
radial, C* function v : G — R satisfying yp,1/2) < ¥ < XB(0,2), there is a constant A = 1 (possibly de-
pending on ¥) such that

(2.5) f[l//R(p)—i//r(p)]K(p)del(p) <A forall0<r<R
L

where L is any horizontal line.

It follows from Proposition 2.1 (1) that d(x,y) = |x — y| for any x,y € L, so, here, #' may be the
Hausdorff 1-measure associated with either the Euclidean or Carnot metric. We remark that annular
boundedness was first introduced in [3] for 3-dimensional kernels and vertical planes in the Heisen-
berg group.

Remark 2.15. A kernel K is said to be antisymmetric if K(p~') = —K(p) for any p € G\ {0}, and we say
that K is horizontally antisymmetric if K(—p1, p2,..., ps) = —K(p1,..., ps) for p; € IRdimV", i=1,...,s,. It
is easy to check that any antisymmetric or horizontally antisymmetric kernel necessarily satisfies the
annular boundedness condition.

In the following proposition we will prove that annular boundedness is equivalent to UBHL.

Proposition 2.16. Let K be a 1-dimensional CZ kernel. Then K is UBHL if and only if it satisfies the
annular boundedness condition.
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Proof. If K is UBHL then arguing exactly as in the proof of [3, Lemma 2.9] we get that the annular
boundedness condition is satisfied. Indeed, the metric d is equal to the Euclidean metric along any
horizontal line L, and the group operation restricted in any horizontal line is simply Euclidean addi-
tion.

Now assume that K satisfies the annular boundedness condition. Fix some horizontal line L and let
U= Z1|;. As noted after Definition 2.14, we can take ! to be the Euclidean Hausdorff measure (or
simply the 1-dimensional Lebesgue measure). By the preceding observations if p € L then d(p,0) = |p|
where || denotes the Euclidean norm. We will show that there exists some constant C depending only
on B and A such that, forany 0 < r < R < oo,

(2.6) =C.

f K(p)du(p)
r<|pl<R

Indeed, for p € Llet n,r(p) = wR(p) — v’ (p) = w(p/R) —w(p/r) where v is as in the definition of
annular boundedness. Note that . r(p) =0if |p| > 2R or | p| < r/2. We then write,

f K(p)du(p) - f nrr(P)K (p)du(p)'
r<|pl<R L

S[ IK(p)ldu(p) +f IK(p)ldu(p) +
ri2<|pl<2r

f K(p)(A =np,r(p))du(p)
R/2<|p|<2R 2r<|pl<R/2

=L+ 1+ Is.

If 2r = R/2 then trivially I3 = 0. By the size estimate (2.2) of K, we have I + I < 8B. On the other
hand, if 2r<|p|<R/2, then n,r(p) = 1. Hence, I3 = 0 and we obtain (2.6) with C = 8B + A. Note that K
restricted to L is a 1-dimensional Euclidean kernel, indeed if L = {(sx;,...,$x,,0,...,0) : s € R} then we
can identify any p = (sx1,...,5x,,0) € L with s and define the kernel K(s):=K(sx1,...,5%,,0). Now the
result follows from [21, Theorem 5.4.1] upon noticing that K satisfies properties [21, (5.4.1)-(5.4.3)].
See also [21, p.374-5]. O

2.3.1. Examples. We now present two families of 1-dimensional CZ kernels which satisfy the annular
boundedness conditions, and hence Theorem 1.1 may be applied to these kernels. In the following
examples we will also assume that the left invariant, homogeneous metric d has been chosen so that
p— d(p,0) is of class C! on G\ {0}. (Such a choice can always be made.)

Example 2.17. The vertical G-Riesz kernels are defined by
d(NH(p),0)"
d( P 0) n+1
where NH(p) = #(p)~! pis the non-horizontal part of p. The vertical G-Riesz kernels are 1-dimensional
CZ kernels. Indeed, note first that the size condition (2.2) is satisfied because d(NH(p),0) < d(p,0).

Moreover, we have that V,,(p) is —1-homogeneous (i.e. V,,(8,(p)) = r_IVn(p) forr >0and p e G\ {0})
and of class C! on G\ {0}. Hence, from [20, Proposition 1.7] we infer that

(2.7) IVa(ap) = Va(@)| S d(p,0)d(g,0)"* and |V, (pg) — Vi ()| S d(p,0)d(q,0) "

for d(p,0) <27 'd(q,0). Although the second inequality cannot be deduced directly from [20, Proposi-
tion 1.7], we obtain it by using the smoothness of the map p — pq and arguing exactly as in [20, Propo-
sition 1.7]. Now (2.7) easily implies the H6lder condition (2.3), see also [4, Lemma 2.7]. Moreover, since
the kernels V;, vanish on horizontal lines they satisfy the annular boundedness condition.

Vu(p) = , PeG\{0}L,neN,

The kernels V;;, were first considered in [4] in the first Heisenberg group. It was shown there that,
if I' is a 1-regular curve, then the kernel Vg defines a SIO which is L?(A'|r)-bounded. This result was
generalized to arbitrary Carnot groups in [5] for symmetrizations of V,2, where s is the step of the
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group. Conversely, it was also proved in [4] that, if E is a 1-regular subset of the Heisenberg group and
V> defines a SIO which is L?(#!|g)-bounded, then E is contained in a 1-regular curve. These were the
first non-Euclidean examples of kernels with such properties. In addition, unlike in the Euclidean case
where all known kernels with such properties are antisymmetric, the kernels V,, are nonnegative and
are symmetric (for Carnot groups of step 2) or can by symmetrized (as in [5]).

Example 2.18. The 1-dimensional quasi G-Riesz kernel is defined by

P1 b2 Ps
d(p,0)2" d(p,0)3" """ d(p,0)5+1)’

Q(p) =

where p = (py,..., ps) € G\ {0} for p; e RI™Yi i =1, .. s. Note that the kernel Q is —1-homogeneous.
Hence, arguing as in Example 2.17, we can see that the coordinates of the quasi G-Riesz kernel are 1-
dimensional CZ kernels. Moreover, 2 is antisymmetric, so recalling Remark 2.15, it also satisfies the
annular boundedness condition.

The kernel Q, which is modeled after the Euclidean Riesz kernels, was introduced in [7] for the
Heisenberg groups H”. It was proved there that, if ¢ is an m-regular measure for m e NN [1,2n+1] and
the SIO associated with the m-dimensional analogue of Q is bounded in L?(u), then supp(u) can be
approximated at u-almost every point and at arbitrary small scales by homogeneous subgroups.

3. TOOLS FOR THE PROOF OF THEOREM 1.1

In this section we will state and prove the two important propositions which will be necessary in
the proof of the main theorem. The first is an application of Lemma 2.7 to prove a change of variables
formula for integrals along rectifiable curves in G.

Proposition 3.1. Suppose y : [a,b] — G is Lipschitz. Write y(t) = (y1(£),72(1)) € R" x RN™" and G =
y([a, b)). Then for everyn € L' (F'|), we have

b
fGndﬁ1|G=f nly)yi(lde.
a

Proof. Define the speed |y| of y as

d(y(t+s),y(®)

lyl(6) :=£13(1) S

=limd(814(y (0" y(t +5)),0)

for every ¢ € [a, b] for which this limit exists. In particular, Lemma 2.7 and Proposition 2.1 (1) give
lyl(£) = Ei{réd (G151 (y(® 1y (£ +5)),0) = d (¥ (,0),0) = Iy} (t)] fora.e. t€[a,bl.

Let I c [a, b] be any open interval. According to [23, Theorem 3.6] then, we have

Jfl()f(l))=€(Y|1)=£|Y|(l‘)dt=ﬁ|)"1(t)ldt-

Using standard approximation arguments of L! functions by characteristic functions x|y, we have
proven the proposition. O

As seen in Lemma 2.7, Pansu’s Theorem implies that a Lipschitz curve in G is well approximated
by its horizontal tangent lines. According to the next proposition, if such a Lipschitz curve is further
assumed to be C1'%, then this approximation by horizontal tangents is quantitatively strong.
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Proposition 3.2. Supposey :[0,1] — RY is of class C"* and is Lipschitz in G. Writey = (y1,...,YN), fix
tp € [0,1], and set
L(1) :=y(to) * ((t = )Y} (%), ..., (£ — 10) Y, (£0),0,...,0) forteR.
Then
(3.1 d(y(t),L(t))glt—tol”% forallt€0,1].

(The constant in this bound necessarily depends on the choice of y.)

Proof. Since the metric d is invariant under left translation, we may assume without loss of generality
that y (%) = 0. Also, by the symmetry in the arguments below, we may assume #; = 0. We write the group
operationin Gas xy = x+y+Q(x, y) for a polynomial Q with the properties outlined in Proposition 2.1.

Since d(y (1), L(1)) < doo(y(2), L(£)) = | L() "1y (1) ||, it suffices to establish for every ¢ € [0, 1] the bounds
(3.2) |Yi(t) _ t)f’i(0)| <flrao LS
when 1<i<nand
33 lyi (0 + Qi (L)~ y ()| S 149 < (H0+D

when n < i < N where d; < s is the degree of the ith coordinate. Indeed, this follows from the defini-
tions of L(¢#) and the norm || - ||.

Fix t € [0,1]. Fix 1 < i < n. The Holder continuity of y’ gives

t ¢
|Yi(t)—ty;(0)|sf Iy’i(s)—y’i(O)IdS,Sf stds< 't
0 0
which proves (3.2).

Now fix n < i = N. Following the example of Monti in [27], write h = (7/’1, .. .,y’n,O, ...,0). (Note that,
by definition, y'(0) = h(0) since y(0) = 0.) We will first establish a bound in (3.3) for |y;(#)|. Suppose by
way of induction that we have shown

|yj(s) - sdfy’].(0)| = |yj(s) - sdfhj(O)’ < sdita
for every j <iand se0,1].

As in equation (1.7.83) and the proof of Lemma 2.1.4 in [27], we can write

0Q;(y(s),y)

= Qi (y(s), h(s))
ayj Y

y=0

Yi(8)= 2 7;(s)
j=1

for every s € [0,1] where Q;(x, y) is the finite sum of the monomials in Q; in which y appears linearly.
Note that Q;(x,y) depends only on x, and y, with ¢ < i (see Proposition 2.1 (4)). Since it follows
from Proposition 2.1 (3) that Q; is homogeneous of degree d;, and since 61,5(h(s)) = h(s)/s, we may
conclude that

$Yi(9) = $UQiy(9), h(9) = Qi (Burs(y (), h(s)).
Moreover, Proposition 2.1 (2) implies that Q;(x, y) is a sum of terms each of which contains a factor

of the form (x;ys — x¢y;) for some 1 < j, £ < i. That is, we can write each such term as

px, y)(Xjye—Xeyj)

where p(x, y) is some polynomial. Since y appears linearly in the monomials of Q;, we may conclude
that Q; is also a finite sum of terms of the form

pPX)(x;jye—X¢y;)
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forsome 1 < j, ¢ < i where p(x) is a polynomial. In particular, this implies that sl‘d"y;. (s) is a finite sum
of terms each of which possesses

—d,

STy (9 he(s) = s~ Uy p(s)hj(s)

as a factor for some 1 < j, ¢ < i. By the induction hypothesis and the continuity of ¥’ on [0, 1], each
such term may therefore be bounded by a constant multiple of

1™y j($)he(s) = s~ Uy () hj () < 5™ Uy (8) = sUThj O e ()] + 5 Uy e(s) = s% he(0)]1 R ()]
+1hj(0) he(s) = he(0)hj(s)]
<s“.
Indeed, the bound on the last term follows from the Hélder continuity of y’ since
Y;0)7,(9) =¥ 07 (91 = 1Y 011y (8) =y, (O + [y, 01y (0) = ¥ ()] < 5%
We therefore have
—d; 1tl—d-/ L[t lta a
oyl = —f s ’Y,-(S)Ids=—f |Qi(61/s(y(8)),h(s))|ds,§—f stds<t
tJo rJo tJo
for any ¢ € [0, 1]. This completes the induction step, and thus
(3.4) lyi () = % hi(O)] = lyi (0] S e
forallm<i<Nandte€]0,1].
We will now establish a bound for |Q; (L(t)_l,y(t))l. Recall from Proposition 2.1 (3) that
UQiLN Y (1) = QiE1/1 (L), 8114 (y (1)),

As discussed above, we may write the polynomial Q;(81,,(L(£)™1),51 /¢(y(#))) a sum of terms each of
which contains a factor of the form

2y (1Y) = %y (DY, 0)

forsomel < j, ¢ < i (noting that y, (k) (0) = 0 when k > n). Therefore, we may appeal to the inequalities
proven above to bound each summed term in the polynomial by a constant multiple of

9y o070 = Ny 07,0 < 7 |y 0 - 1By [y o)

+t%

Yo =y, 0 [y 0| S 2o < .
In other words, we have
|Qi (L), y ()| S et
This together with (3.4) verifies (3.3) and completes the proof of the proposition. U

4. PROOF OF THEOREM 1.1

Before starting the proof of Theorem 1.1 we need an auxiliary lemma. As usual we define the cen-
tered Hardy-Littlewood maximal function M,, associated with a Radon measure u on G, by

1

4.1 M, = _— d ’ Ll .
4.1) uf () =sup s wa) [FW1auy),  feLip W

It is well known, see e.g. [24, Theorem 3.5.6], that if u is doubling, then for all p € (1,00] there exist
constants ¢, only depending on p and the regularity constant of y, such that M, fll, < ¢yl fl, for
felP.
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Lemma 4.1. Let K : G\ {0} — R be a continuous function satisfying (2.2). Let also u be a 1-regular,
measure with regularity constant Cg, such that supp(u) = AU B, where B is bounded and dist(A, B) =
diam(B). Let uy = ula and pp = plg. If

(4.2) I THl ||L2(M1)—>L2(#1) < C1 < oo and II Tuz ”LZ(IJZ)_’LZ(IJZ) = C2 < 00,

then
I Tullz2(— 12w = C(Cy1, C2, CR, K) < 00.

Proof. Let f € L?>(u) and € > 0. Then

I Tsell 7oy = fA | Ty e f () > dp(x) + fB | Tye f () dp(x) := 1) + I.

We first treat I;:
2
Ilsz KO0 f0)dut)| dux)
A |JB(x,€)¢
2 2
S f f Ky 0 fdpy)| dueo + f f Ky 0 dp(y)| du)
(4.3) AlJB(x,e)cnA AlJB(x,e)cnB
2
(4.2) 9 -1
=< C1”f||L2(u)+ff Ky x)f(y)du(y)| du(x)
A |JB(x,e)’NB
= Cill 7y + Tn2-
Let

2(x) = f KO0 () du(y).
B(x,e)°NB

Then for x € A, by our assumption d(x, B) = d(A, B) = diam(B). Therefore,

2.2)
(4.4 801 S [ty IfWldut) = DA S My f).
B d(x,B) JB(x,2d(x,B)
Thus, by the 2 (1)-boundedness of My,
(4.5) P ,SfAM#f(x)zd,u(x) < IIfIIiz(H)
(4.3)A(4.5)

~

andli < Ifl%,

We now estimate I as in (4.3),
2
f Ky ') f(nduy)| dux)
B(x,e)°’nA

(4.2) 2
IZ = C2||f||L2(“)+ 5

2
= C2||f||L2(u) + 122-

(4.6)

Let
hix) = f Ky 0 f(duiy).
B(x,£)°NA

For x € B, we have by Cauchy-Schwartz,

P < ( f |K(y—1x)|2du(y)) ( f If(y)lzdu(y))
B(x,e)°NA

2.2)
(4.7) S (f d(x, y)‘2du(y)) 1F1%2
{y:d(x,y)>diam(B)}

S diam(B) 1 f172
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where in the last inequality we split the integral on annuli, as in [34, Lemma 2.11]. Therefore, since
is 1-regular and B is bounded,

4.7
@.8) bo 5 [ diam(B) LI, du) S 171y,
(4.6)A(4.8)
Hence;, < |f IIiz(u).The proof is complete. g

Proof of Theorem 1.1. Suppose I' is a C1'* regular curve, and y : [0, 1] — G is its C1'% arc length param-
eterization. Write Cp := reg (/' |r). We may assume without loss of generality that the arc length of
I' is 1, and moreover, by Remark 2.11, we can also assume that y(0) = 0. It follows from [24, Proposi-
tion 5.1.8] and the proof of Proposition 3.1 that y is 1-Lipschitz and |y’| = |y} | = 1. Thus, since y is ct,
there is some 0 < § < % so that

[z = tlly' (0D = Iy (12) =y ()| < 31 12 — 1|
forany |£, — 1] < in [0, 1], and hence
(4.9) [t — 1l = 2|y (&) —y(t) = Dd(y(t),y(t1)) fort,6€[0,1], [ty — | <O

where D/2 > 1 is the constant given by Proposition 2.2 depending only on G and diam(T).

Let K:G\{0} — Rbe a 1-dimensional CZ kernel satisfying the UBHL condition, and denote by Tz,
the SIO associated with K. Arguing as in [3, Lemma 3.1] it suffices to prove that T . is LP (A p)-
bounded. We will do so by using an appropriate “good A method”.

For the next proposition we define X to be the set of all Radon measures v on G which satisfy (2.1)
and diam(supp(v)) = co.

Proposition 4.2. Letv € X and suppose that there exist constants0 <6 <1,C =1 and C, >0, p € (1,00),
such that for every B = B(x, r) with x € supp(v) and r > 0, there is a compact set G < Bnsupp(v) and a
Radon measure o € X such that

(1) reg(o) =C,

2) v(G) =60v(B),

3) vV(ANG)<0o(A) forall AcG,

D N To« fllro) = Cpl fllLp (o) forall1 < p < oo.

Then there exist constants Ap = Ap(Cp, C,reg(v), K,0), p € (1,00), such that | Ty « fllLrv) < Apll fllrv)-

Proposition 4.2 follows from [13, Proposition 3.2, p60]. While the setting in [13, Proposition 3.2, p60]
is Euclidean, its proof can be applied in our case with only minor modifications. In particular, David
uses the Besicovitch covering theorem in the proof of [13, Lemma 2.2], but one can do away with this
issue by applying the 5r-covering lemma. This modifications (along with several other subtler ones
which do not arise in our setting) has been treated in detail in [18, Theorem 6.3] where the authors
extend [13, Proposition 3.2, p60] to metric spaces and generalized CZ kernels.

Note that the hypothesis of Proposition 4.2 requires the support of the measure v to have infinite
diameter, but the support of #!|r is compact. We rectify this issue with the following construction.
Choose any unit vector vy € R” and consider the horizontal ray

lo=1{(s19,0) : s€[3,00)} cR" x {0}.

Note that d(£y,T) > 1 = #1('). We set
f = FU[(),
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and we let v = #'|;. Note, that v € £, and reg (v) only depends on C, which is the regularity constant
of I.

Let us see how to choose a “nice” set G inside any ball centered on I'. Fix x € T and r > 0, and set
B = B(x,r). In the following, 6 := §2DC%(1 + d(£,,T)) .

Casel: xeypandr>0

Set G=Bn¥ysothatv(G)=r.If r =v(I), then
v(B) =v(BnD) =v() +v(BNn¥ly) <r+2r <3v(G).
Ifr<v(),then BNT =®,s0v(B) =v(BNI) =v(Bn ¢y =v(G).

Case2: xel'and r =2(1+d (¢, I")

Note that B((xo,0), 5) < B since v(I') = 1. Choosing G = B((xy,0), 5) N ¢y < B gives v(G) = 5. Thus
viB)=sv(I)+v(Bn¥y < % +2r =5v(G).

Case3: xel'and r <2(1+d(¢y,I))

Choose a, b€ [0,1] so thaty(a) = xand |b—al = m < 8. (Without loss of generality, we may

assume that a < b.) Set G :=y([a, b]). Note first that d(y(?),y(a)) < |b—a| < r forall € [a, b], so GC B.
Moreover, the bound (4.9) and the regularity of I' give

or
>
2DCRr(1+d(£o, 1)) ~ 2DCA(1+d(€o,T))

Note (4.9) implies that G is the bi-Lipschitz image of an interval with bi-Lipschitz constant D. In par-
ticular, G is a regular curve with a regularity constant independent of the choice of G, and

(4.10) diam (y '(B(x,r)nG)) < Dr forallxeG, r>0.

v(B) =0v(B).

v(G) = d(y(a),y(b)) = 5 |b—al =

Given any ball B(x, r) with x € supp(v), we have chosen a set G = G,,. We now define the measure
0 :=0yx,. If x and r are as in Cases 1 and 2, then G < ¢, and we set o = #'|,,. Clearly, o € £ and
reg(o) = 2. On the other hand, if x and r are as in Case 3, then G c I'. Note once again that the
diameter of the support of o must be infinite. We will now describe how to choose o in this case.

Suppose x and r are as in Case 3. Define the horizontal ray
lc=1{(519,0) : s € [3diam(G),00)},

where vy € R" is a unit vector. We set Lg = x¢. Note that 2diam(G) < d(Lg, G) < 3diam(G) since x € G.
We define G = GU L and 0 = 7! |¢. Observe that o € X, and, since Lg is a controlled distance away
from G, it follows that reg (o) depends only on the regularity constant Cg of I'. Moreover, v(ANG) =
o (A) for all AcG. Therefore, our choices of G and o satisfy (1), (2), and (3) of Proposition 4.2.

We will now verify Proposition 4.2 (4) i.e. we will show that Ty . is LP (0)-bounded for any 1 < p < oo
with constants only dependent on v, K, G, and p. In particular, the constants will be independent of
the choice of G and o. To this end, it will suffice to show that

(4].].) ” TO'”LZ(U)—>L2(O‘) = C(Y, K,G) < 00.

Indeed, once this is achieved, [12, Theorem 2.4, p.74] (see also [9, Theorem 9, p.94] and [34, Theorem
2.21]) will allow us to deduce that T, is bounded in L (g), p € (1,00), and in weak L (o) with bounds
only depending on v, K, G, and p. Then, using Cotlar’s inequality as in [25, Lemma 20.25] (wherein the
Lemma is stated only for Euclidean spaces but the proof translates without issue to our setting), we
infer that Ty . is bounded on L” (o), p € (1,00), with bounds only depending on vy, K,G, and p. Note
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that, for the last step, we could also use the version of Cotlar’s Lemma stated in [28, Theorem 7.1], but
this is rather an overkill since the measures discussed in [28] merely require polynomial growth.

In Cases 1 and 2 above, o = #'|,,, and hence (4.11) follows from the UBHL condition. Thus we are
left with Case 3. Fix a set G and measure o as in Case 3. We first note that, by the UBHL condition and
Remark 2.11,

(412) || TJL””LG ”LZ(JLM‘L(;)_’LZ(J'?”L(;) = C(K) < 00.
Setu:=olg=vlg= #€'|. In the remainder of the proof, we will show that

(4.13) { THI|L2(/.L)—>L2(/J) =< C(K,G,Y) < 00.

We start by recalling the so called Christ cubes which were introduced in [10] and provide decompo-
sitions of spaces of homogeneous type much like the usual dyadic cube tiling of Euclidean space. In
particular, Christ’s theorem applied to (G, d, u), reads as follows:

Theorem 4.3. For each j € Z, there is a family A j of disjoint open subsets of G satisfying

(D) G=Ugea; Q,

@) ifk<iand Qe A; and Q' € Ay, then either QN Q' =@ orQc Q/,

(3) ifQe Aj, thendiam(Q) =27/,

(4) There is a constant ¢, > 0 (depending only on Cr) so that, for each Q € A j, there is some point
zg € Q sothat B(zg,c,27 ) nG < Q,

(6) Thereis a constant Cy = 1 (depending only on Cg) so that for any p >0 and any Q € Aj,

u({q €Q:d(q,G\Q) = pZ‘f}) < Cop"p(Q).

Write A:=U; A;. According to the T'1 theorem of David and Journé [14] applied to the homogeneous
metric measure space (G, d, 1), in order to show that T is bounded in I? (1) with bounds independent
of G, it suffices to prove that there exists some constant C := C(y, K,G) = 1 such that, for any Q € A,

(4.14) | TuexQll 7o) < CH(Q) and I TpexQli7z ) S CH(Q),

where T, e is the formal adjoint of T}, . (recall Definition 2.12). The previous statement of the T'1 the-
orem can be found in [34, Theorem 3.21]. Although, there it is formulated for Euclidean spaces and
measures with polynomial growth, it is also valid in spaces of homogeneous type. For details of this
argument, see the honors thesis of Surath Fernando [19] which extends the proof from [33] to spaces
of homogeneous type.

Note that we can reduce the problem even further as it suffices to prove that there exists some con-
stant C := C(y, K,G) = 1 such that

(4.15) | Tue X QN 72y, < CHQ).

Indeed, recalling Definition 2.12 and the discussion afterwards, K is the kernel of the adjoint T}, .
Moreover, since K( p)=K (p_l) it follows immediately that K is a CZ kernel with the same constants
B, B as K. Moreover K obeys the annular boundedness condition since the the Hausdorff 1-measure
is invariant on horizontal lines under the mapping p — p~!, and the functions appearing in Defini-
tion 2.5 are radial (and d(p,0) = d(0, p‘l)).

We now perform a Littlewood-Paley decomposition of the operator T as in [3-5]. Fix a smooth, even
function v : R — R satisfying xp(0,1/2) < ¥ < ¥B(0,2) and define the G-radial functions y; : G — R as

vi(p):=yw(2/d(p,0) forallpeG, jeZ.
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Setn;:=v;—wj+1 and K(j) :=n; K. In particular, we have
supp K < B(0,2-U"")\ B(0,2°0*2),
and it is a standard exercise to verify that K; is an 1-dimensional CZ kernel with (growth and Hélder
continuity) constants only depending on the corresponding constants of K.

Define the operator T(;) as

Ty f(p)= fGK(j)(q_IP)f(CI) du(q)

and the sum Sy =) j<n I(j- Note that, since diam(I') < oo, there is an index Ny € Z depending only
onI sothat Gc B(p,z_(j+2)) for all j < Ny and p € G. Observe that properties (1) and (4) of the Christ
cubes imply that we can choose Np such that A = @ for j < Np. Since the map g — K (g~! p) vanishes
on B(p,2~Y*2)), it follows that T(j) f =0 when j < Np. Hence we may write Sy =} ny<j<n T(j)-

The following lemma justifies the above decomposition by allowing us to approximate Ty, . by some
Sy for small values of €.

Lemma4.4. Fix NeZ and2 N <e <2 WN-D_ Then

ISNF(P) = Tue f(PI S Muf(p) forall f e Ly, (),

and hence we have in particular

” T/,L,EXR”LZ(MR) 5 H(R)llz + ”SNXR”LZ(MR) fOT dllR € A.

The proof of Lemma 4.4 is identical to the proof of [3, Lemma 3.3], and we omit it. As such, it remains
to prove

(4.16) ||SNXR||§2(MR) <u(R) forallReA, NeZ.

Fix R € A and N € Z. We will prove (4.16) for these choices of indices. Note that R € A; for some
J = Np. We need only consider those terms in Sy y g for which j = J—2 (i.e. for the small supports).
Indeed, for any p € R, the mapping g — K(j)(q_lp) vanishes on B(p,2~U*?) by definition, and note
that R < B( p,Z_(j +2)) whenever 2~/ > 27U=2 gince diam(R) <2~/ by property (3) in the definition of
the Christ cubes. Therefore,

(4.17) T(j)xr =0 on R whenever j <] —2.

Let us now decompose the L2 norm of Sy y r into integrals over slices of the cube. Define
d,R={qeR:p2 V"V <d(q,G\R) =< p27}.

According to condition (5) for the Christ cubes, p(ap R) =< Cy p” Co H(R). Set p(k) = 21+J-k ¢ that, when
k is very large, 0, R is very thin. Note that d,x) R = @ whenever k < J since diam(R) < 277/, We can
therefore write

”SNXR”iZ(MR) = Ig] . ISnxrl* dp.
Why do we make this decomposition? Fix a slice size k = J and a point p € 0,y R. Then we have
d(p,G\R) >27%,s0 GnB(p,27%) c R. Also, for j > k, the support of g — K(j)(q_lp) is contained in
B(p,27U=Y) < B(p,27). This allows us to write

418 Towp)= [ Ko paua=[ K@ pdua = [ Ko pau

NB(p,2~k

which will be essential when applying Proposition 3.1.
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We will also choose an index Jy depending only on G and I'. The value of this index will be made
clear later in the proof.

Writing m(k) = max{k, Jo}, we have

2 2
”SAUXR”LZUHM = 2: |SAU(R| dlt
k=JY0mR
2
N
4.17)
="y f Y. Tgxr| du
k=J /0w R |j=]-2
m(k) 2 N 2
<Y Y. Tgxr| du+ ). Y. Tyxr| du
k=jY0pmR |j=j-2 k=JY0wR | j=m(k)+1

:=A+B.

(Here, we use the convention that ZZ: 2%n =0when a > b.) Thus, in order to prove (4.16), it suffices to
bound A and B by a constant multiple of u(R) where this constant depends only on K, G, and .

Let us first establish a (very rough) bound for A. (This sum is over the larger annuli where (4.18) may
not hold.) Fix p € G and any j € Z. Since the support of g — K(j)(g™! p) is contained in B (p,27V V), it
follows from (2.2) that |K(j(g™' p)| < 2J. Thus, for any f € L™ (u), we have

TSP S 1 fleo | 2 dp =12/ (B (p,277)) S1f oo
B(p,2

*(j*l))
by the regularity (2.1) of G. In particular, this gives for each k= J

m(k)
Y TG xr(P)I Smk)-J+3 forany p€dypR.
j=J-2

Thus, by property (5) of the Christ cube construction,

m(k) 2
A= > Toxr| dp< Y. (m(k) —J+3)*u@pu R)
k=jJY0wR |j=]-2 k=J
<Y (mk) - J+3)7 200G y(R) S pR),
k=]

where for the last inequality we also used that J = Nj.

We will now bound B. Fix k = J and p € 0, R, and choose 1y € [a, b] so that y(f) = p. Writing
Y(@) = (y1(5),y2(8) e R" x RN-" for each £ € [0, 1], we define as before

L(t)=p*((t- fp)y](f),0) forallteR
to be the horizontal approximation of y at t.

Using Proposition 3.1, for any m(k) < j = N we have

b
Tixr(p) = fR Ky (g p) dulg) 2" fG Ki)(q ' p) dulg) = f Ky~ ply, ol d,

and we can write

b
fK(j)(y(t)‘lp)Iy’l(t)Mr
a

b b
(4.19) =f K(j)(Y(t)_lp)l}"l(t)ldt—f Ky (L p)ly} (o)l dt
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b 1 !
4.20) + f Koy (L ply, (1) dt.
a

We will first provide a bound on the sum over j of (4.20). Let
L:={L(s) 'p: sela bl} cR" x {0}.

Proposition 2.16 implies that K satisfies the annular boundedness condition. Hence, using Proposi-
tion 3.1 we get

N b
Y fK(j)(L(t)_IP)IY'l(to)Idt’

j=m(k)+1

N

<! X f Km(q‘lmdiﬁl(q)‘
j=m(k)+17L(a,b])

(4.21)
= L([ b (1//(2m(k)+1d(l9, 6])) _W(2N+1d(p’ q)))K(q—lp) d%l(q)‘

= fL (we™ @+ a(g,00) -y @V dq,0) K (@) diﬁl(q)‘

2.5)
< A

Let us now provide a bound for (4.19). Fixan index m(k) < j < N. Note that, forany t € y‘l (B(p, 2-U=Dyn
G), we have

. (4.10) .
(4.22) |t — to] < diam(y ' (B(p,27V™Vy) < 277,

We have that

b b
fK(j)(Y(t)_IP)W'l(f)ldl‘—/ K(j)(L(t)_lp)W/l(tO”dt‘
a a

b
4.23) sf K (07" p) = Koy W0~ p)| Iy, (o)1 die

b
(4.24) +f Ky (L™ p)| |1, (o) = I, 01| .

We will ﬁr_st bound (4.2.3). We would like to apply the Holder estimate (2.3) directly for each ¢ €
Y 1 (B(p,2=U=Y)\ B(p,2=U*2) 1 G), but, in order to do so, we need d(y (), L(t)) < d(y(¢), p)/2. If this
bound does not hold, then we have by Proposition 3.2

. (3.1)A(4.22) S
277 <dy),p)i2<dy®), L) < 2709,

~

However, we may choose the index Jy depending only on G and I'" so that, for j > m(k) = Jy, thisis a
contradiction, and it must be true that d(y(#), L(¢)) = d(y(?), p)/2. Hence,

2.3) B _ | A+al/s)B (3.1)A(4.22)
diy(8), L)P _ |t~ 1o ¢

Ky ' p) =KL p)| S

2j—a:ﬁj/s
~ody(n),p)tB Y 2-0+20+h) =

forany rey 1 (B(p,2"V")\ B(p,2"U*?) n G). Since supp K(j) < B(p,2"U™Y),

4.10

b . . (4.10) )
(4.25) f |I<(,-)(y(t)‘1p)—K(j)(L(t)‘lp)||y’1(t)|dt,szf‘“ﬁf“f , lyi(lde < 27hIls,
a Y 1 B(p,2~V-D)nG)
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In order to bound (4.24), we note again that |K(| < 2J follows here from (2.2), using the Holder
continuity of ¥’ we obtain the following bound on (4.24):
(4.10)A(4.22)

b .
(4.26) f|K(j)(L(t)_1p)||IY'1(to)|—|7f'1(t)||dt,§2’f , lt—1l%de S 27
a Y 1(B(p,2~U-D)NG)

We are now ready to bound B:

N (4.21)A(4.25) A (4.26) N y _
> Toixr(p) N A+ ) (2‘“ﬁ1 S+2—a1) <1.
j=m(k)+1 j=k+1

Hence by condition (5) on the Christ cubes,
2

N
B= Zf Y Tjxr| duS Y OB S Y 20T CpR) S ur),
k=7Y0p0R | j=m(k)+1 k=] k=J

where for the last inequality we also used that J = Ny. Hence, we have proved (4.15) and thus we have
established (4.13).

Lemma 4.1 together with (4.12) and (4.13) imply (4.11). Hence, we can apply Proposition 4.2 and
obtain for p € (1,00) and f € LP(v)

1Ty« fllLrovy < Apll fllLr -
Recalling the definition of v, this implies that

I T 011 5 fllpery) < Apll fll e ey
for pe (1,00) and f e LP (#'r). The proofis complete. O
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