MATH 3410 Midterm

Formula sheet

linear homogeneous equation (H): \(x'' + p(t)x' + q(t)x = 0 \)
linear non-homogeneous equation (NH): \(x'' + p(t)x' + q(t)x = f(t) \)

Abel's theorem: \(W(t) = ce^{-\int_{t_0}^{t} p(\xi) d\xi} \)

reduction of order: \(x_2(t) = x_1(t) \int \frac{e^{-\int_{t_0}^{t} p(\xi) d\xi}}{x_1^2(t)} dt \)

variation of parameter: \(x_p(t) = x_1(t) \int -\frac{x_2(t)f(t)}{W(t)} dt + x_2(t) \int \frac{x_1(t)f(t)}{W(t)} dt \)

Linear homogeneous system (H): \(\frac{dx}{dt} = A(t)x \).
Abel's theorem for a system: \(W(t) = W(t_0)e^{\int_{t_0}^{t} (a_{11}(\xi) + a_{22}(\xi)) d\xi} \).

Predator-prey system with positive constants \(a, b, c, d \):

\[
\begin{align*}
x' &= ax - bxy, \\
y' &= -cy + dxy.
\end{align*}
\]

Then \(H(x, y) = dx + by - c\log x - a\log y \) is constant along solution trajectories.

For \(x'' = f(x) \), the potential energy \(P(x) = -\int_{x_0}^{x} f(t) dt \) for any convenient \(x_0 \).

Trigonometric identities: \(\cos 2\theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1 \). This gives

\[
\int_{0}^{\pi} \sin^2 nx \, dx = \int_{0}^{\pi} \cos^2 nx \, dx = \int_{0}^{\pi} \sin^2 (n + 1/2)x \, dx = \int_{0}^{\pi} \cos^2 (n + 1/2)x \, dx = \pi/2
\]
for any \(n = 1, 2, 3, \ldots \).
(a) \(\text{Let } A = \begin{pmatrix} -4 & 1 \\ 2 & -3 \end{pmatrix} \) Find its (real integer) eigenvalues and the corresponding eigenvectors.

\[
\det (A - \lambda I) = \begin{vmatrix} -4 - \lambda & 1 \\ 2 & -3 - \lambda \end{vmatrix} = 0
\]

\[
\lambda^2 + 7\lambda + 12 - 2 = 0
\]

\[
\lambda^2 + 7\lambda + 10 = 0 \quad \therefore \quad \lambda = -2 \text{ or } \lambda = -5
\]

For \(\lambda = -2 \),

\[
(A - \lambda I) \vec{v} = 0 \text{ gives } \begin{pmatrix} -4 + 2 & 1 \\ 2 & -3 + 2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix} -2 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \text{ take } v_1 = 1.
\]

so \(\text{eigenvector } = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \).

Next for \(\lambda = -5 \),

\[
(A - \lambda I) \vec{v} = 0 \text{ gives } \begin{pmatrix} -4 + 5 & 1 \\ 2 & -3 + 5 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix} -1 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \text{ take } v_1 = 1
\]

so, \(\text{eigenvector } = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \)
(b) (6 pts) Let B be a real constant 2×2 matrix with a complex eigenvalue $\lambda = 1 + i$ with an eigenvector $\begin{pmatrix} 1 \\ i \end{pmatrix}$. Consider the system $\frac{dx}{dt} = Bx$. Find the general solution to the system.

\[
\vec{x} = e^{(1+i)t} \begin{pmatrix} 1 \\ i \end{pmatrix} \text{ is a soln.}
\]

\[
= e^t e^{it} \begin{pmatrix} 1 \\ i \end{pmatrix} \begin{pmatrix} 1 + i \\ 0 \end{pmatrix}
\]

\[
= e^t (\cos t + i \sin t) \begin{pmatrix} 1 \\ i \end{pmatrix}
\]

\[
= e^t \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + e^t \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}
\]

General solution:

\[
\vec{x} = c_1 e^t \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + c_2 e^t \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}
\]
2. [25 pts.] Consider the nonlinear equation $x'' = -x + x^4$.

(a) (2 pts) Write the equation as a first order system.
(b) (3 pts) Find all the equilibrium points of this system.
(c) (4 pts) Find the potential energy P for this system and draw its graph.
(d) (3 pts) Write down the total energy associated with this system; this should be constant along any solution trajectory.

(problem 2 continues on the next page.)

\[
\begin{align*}
\begin{cases}
 x' = y \\
 y' = -x + x^4
\end{cases}
\end{align*}
\]

For equilibrium points, solve \(y = 0\) and \(-x + x^4 = 0\), so $y = 0$ and $x = 0$ or $x = 1$.

Thus, equilibrium points are $(x, y) = (0, 0)$ and $(x, y) = (1, 0)$.

Now, $F(x) = \int_0^x f(\xi) d\xi = \int_0^x (-\xi + \xi^4) d\xi = -\frac{x^2}{2} + \frac{x^5}{5}$.

$P(x) = -F(x) = \frac{x^2}{2} - \frac{x^5}{5}$.

\[
\begin{align*}
\text{Total energy} &= \text{kinetic energy} + \text{potential energy} \\
&= \frac{1}{2} y^2 + P(x) \\
&= \frac{1}{2} y^2 + \frac{x^2}{2} - \frac{x^5}{5}
\end{align*}
\]
For parts (e) to (g), consider a different nonlinear equation \(x'' = f(x) \). Suppose the graph of its potential energy \(P \) is given by the following graph:

\[
Z = P(x) = \int_0^x f(s) \, ds.
\]

(e) (3 pts) Find all the equilibrium points.

(f) (7 pts) Draw the phase plane associated with this potential energy. Fill in all representative trajectories and the arrow direction for increasing \(t \).

(g) (3 pts) Describe what happens if \(x(0) = -1/2 \) and \(x'(0) = 0 \). Sketch \(x(t) \) versus \(t \) for this trajectory.

Critical points of \(P \) is:

\[
0 = P'(x) = -f(x) = -f(x)
\]

Thus they are equilibrium points of \(x'' = f(x) \).

Clear from the graph of \(P \) that \(x = 0 \) & \(x = -1 \) are equilibrium points, i.e. \((x, y) = (0, 0) \) & \((x, y) = (-1, 0) \) are equilibrium points.

\[
E(x, y) = \frac{1}{2} y^2 + P(x) = \text{total energy}
\]

\(E = 0 \) and \(E = -3 \) are special, as they correspond to energy level of equilibrium points.
Thus we plot all representative trajectories for:

(i) \(E > 0 \)
(ii) \(E = 0 \)
(iii) \(-3 < E < 0 \)
(iv) \(E < -3 \)

(f) With \(x(0) = -\frac{1}{2} \), \(x'(0) = 0 \), from the phase plane, we see that it will give rise to a periodic solution since its orbit in the phase plane is a closed loop without equilibrium point in the loop.

A plot of \(x(t) \) versus \(t \) is as follows:

\[
x
\]

\[
-\frac{1}{2}
\]
3. [8 pts.] Solve the nonlinear second order equation \(\frac{d^2 x}{dt^2} + x (\frac{dx}{dt})^3 = 0 \) with initial conditions \(x(0) = 1 \) and \(x'(0) = -2 \). Note that the equation is independent of \(t \) explicitly.

Let \(z = \frac{dx}{dt} \).

Then \(\frac{d^2 x}{dt^2} = \frac{dz}{dt} = \frac{dz}{dx} \frac{dx}{dt} = z \frac{dz}{dx} \). (we use the sloppy notation as in the text)

Thus, \(z \frac{dz}{dx} + x (\frac{dx}{dt})^3 = 0 \)

or \(z \frac{dz}{dx} + x z^3 = 0 \)

\(z = 0 \) or \(\frac{dz}{dx} + x z^2 = 0 \)

As \(x(10) = -2 \), so \(z = 0 \) can be discarded.

Thus we consider only: \(\frac{dz}{dx} + x z^2 = 0 \)

\[\int \frac{dz}{z^2} + \int x \, dx = 0 \]

\[-\frac{1}{z} + \frac{1}{2} x^2 = C \]

At \(t=0 \), \(-\frac{1}{z} + \frac{1}{2} \cdot 1^2 = C \), \(\therefore C = 1 \)

Thus \(-\frac{1}{z} + \frac{x^2}{2} = 1 \)

\(\frac{dx}{dt} = z = \frac{1}{(\frac{x^2}{2} - 1)} \)

\[\int \left(\frac{x^2}{2} - 1 \right) dx = \int dt \]

\(\frac{x^3}{6} - x = t + C \)

At \(t=0 \), \(\frac{1}{6} - 1 = 0 + C \), \(\therefore C = -\frac{5}{6} \)

Thus \(\frac{x^3}{6} - x = t - \frac{5}{6} \).
4. [20 pts.] Let \(a, b, c, d\) be given positive constants and consider the predator-prey model
\[x' = ax - bxy,\]
\[y' = -cy + dxy.\]

(a) (13 pts) Show that \(H(x, y) = dx + by - c \log x - a \log y\) is constant along solution trajectories.

(b) (4 pts) Show that the only non-trivial equilibrium solutions of the model is \((x_0, y_0) = (c/d, a/b)\).

(c) (5 pts) Show that for any positive \((x, y) \neq (x_0, y_0)\), we have \(H(x, y) > H(x_0, y_0)\). (Study the minimum point of \(f(x) = dx - c \log x\) and \(g(y) = by - a \log y\).

(d) (3 pts) Take \(a = 1, b = 4, c = 2\) and \(d = 1\), show that there exists a periodic solution of the predator-prey system such that \(x + 4y - 4 = \log(x^2y)\).

(a) Let \((x(t), y(t))\) be a solution trajectory.

Then \[
\frac{d}{dt} H(x(t), y(t)) = \frac{\partial H}{\partial x} \frac{dx}{dt} + \frac{\partial H}{\partial y} \frac{dy}{dt}.
\]

\[
= (d - \frac{c}{x}) \frac{dx}{dt} + (b - \frac{a}{y}) \frac{dy}{dt}
\]

\[
= (d - \frac{c}{x}) (ax - bxy) + (b - \frac{a}{y}) (-cy + dxy)
\]

\[
= (dx - c)(a - by) + (by - a)(-c + dx)
\]

\[= 0\]

Hence \(H(x(t), y(t)) = constant\) along any solution trajectory.

(b) setting \(x' = y' = 0\), we have \(y(a - by) = 0\) \(\text{or} (b - y\log y) = 0\), \(x(\frac{c}{x}) = 0\) \(\text{or} (a - bx) = 0\).

Thus \(x = 0\) or \(y = \frac{a}{b}\) for \(1\)

and \(y = 0\) or \(x = \frac{c}{d}\) for \(2\).

The only equilibrium points are \((x, y) = (0, 0)\) and \((x, y) = \left(\frac{c}{d}, \frac{a}{b}\right)\).

(c) \(f(x) = dx - c \log x\). Then \(f'(x) = d - \frac{c}{x}\).

\(f' = 0\) when \(x = \frac{c}{d}\). And \(f\) attains its minimum at \(x = \frac{c}{d}\). Similarly \(g\) attains its minimum at \(y = \frac{a}{b}\).
Thus for \((x, y) \neq (x_0, y_0) = (\frac{c}{d}, \frac{a}{b})\), and \(x > 0, y > 0\),
\[
H(x, y) = f(x) + g(y)
\]
\[
> f(x_0) + g(y_0)
\]
\[= H(x_0, y_0).\]

(d) Take \(a = 1, b = 4, c = 2, d = 1\).

We have \((x_0, y_0) = (\frac{c}{d}, \frac{a}{b}) = (2, \frac{1}{4})\)

\[
H(x_0, y_0) = x_0 + 4y_0 - 2 \log x_0 - \frac{1}{2} \log y_0
\]
\[= 2 + 1 - 2 \log 2 - \log(\frac{1}{4})
\]
\[= 3.
\]

\[
H(x, y) = x + 4y - 2 \log x - \log y
\]
\[= x + 4y - \log(x^2y).
\]
\[= 4
\]

If \(x + 4y - \log(x^2y) = 4\)

Thus \(H(x, y) = 4 \geq H(x_0, y_0) = 3\)

Hence there exists a periodic solution with \(H(x, y) = 4\).