As of 8-12-2008, here are some corrections and extensions of the 12-21-2007
paper in ARCH2008.1:

What need to be corrected are the definition at (1.1) and the formulae at
(2.3), (2.6), (2.11), and (4.5.8). The extensions involve (a) (2.10)/(2.11) for
m = 4, (b) calibration of the drift compensation in (1.1), (c¢) formulae for
Lgp: (x) and L5 (z) for x < 0, (d) the value of (4.5.8) when ¢t — oo, and (e)
clarification of the proof of (3.6).

The definition at formula (1.1) and its explanatory material should
be replaced by the following. This new definition accurately provides for
the situation of a regime-switch occuring within the most recent model time step
by pro-rating the mean-reversion among all of the random targets that arise
within the most recent model time step. This new definition leads correctly to
(1.2), (1.3) and the rest of the paper as originally published:

din(r) = |[1-(1- F)ﬂ [10(Ty) — In(rs—ar)]
+ (1= F)* Dydt + (1 — F)* oVdiN, (1.1)
where

r; = the interest rate we want to model over time.

F = an annualized mean reversion factor between 0 and 1.

dt = a discrete time-step interval.

T, = a random mean reversion target for r, at time ¢t determined by
T T o N S N D e e L G D

T, = H T, L-(-Fyt where
j=0

{Tj}lgj = 1i.i.d. lognormal mean reversion targets for the interest rate,
thus characterizing each regime by a randomly chosen mean
reversion target. (7p is a fixed target value for the first regime.)
{tj+1 —t;},.; = asetofiid. random variables with common law

gamma(ca, B), the inter-arrival intervals for regime-switches,

t1 = arandom variable independent of {tj;1 —t;},_; distributed
as a randomly chosen point within a gamma(a, §) interval.

tp = 0 launching the process at a random time within the first
regime.

D; = an annualized drift-compensation function available to be
calibrated up front as part of the model.

o = an annualized volatility parameter.

{N;}y<; = i.i.d standard normal random variables independent of all the

other random variables in the process.



For a more concrete picture of the random target definition, for each t let k
and k' be determined by the relations ty <t < tyxyq and tw <t — dt < tyra1.
Then the foregoing definition of T, works out to

1—(1—p)y¥Alt—tyx) k—1 (1—F)dt/\(t_tj+1)—(1—F)dt/\(t_tj)
—(1— dt —(1— dt .
T, = T, "¢°° H T, e , where if
=

tk < t—dt <t <ty then Ty =Ty

So T is a weighted geometric mean of values T;. Therefore In(T,) is a weighted
arithmetic average of values In(T}):

0 o din(t—t,, )y _ dtA(t—t5)+
(1= F)"A0ta)e - (1 = pydent—ty
In(T;) = jgoln(Tj) 1— (1 F)dt
1— (1 — F)dtAt—te) k—1 1 - PYUNE=t 1) ] p)dia(i—ty)
B e i om0 P) (- F)
1-(1-F) = 1-(1-F)
where if txy < t—dt <t <tgyq then In(Ty) =1n(Ty).
In(T; . = 1i.i.d. normal random variables, independent of all the other
{ J)r1<; P
random variables in the definitions. Further, define
pp = the common mean of the {In(T))},_,.
02 = the common variance of the {In(T;)}, ;-

The formula at (2.3) is an incorrect transcription of (2.4) when
N=3. Correct is
l lut1(10)? I 4 1 2 ° 6
E[(rt)] ~ elnts 1+ 37 [ = 30%] (1= 5 000 ) + 55 [ — 150°]

(2.3)

The formula at (2.6) is accurate only in the limit as t — co. That’s
where we use it the most, so little harm is done, but we do want to use the
correct formula for finite ¢t when n = 1. Here is the correct statement of
all of this to replace (2.6) in the paper:

lim B [{m(rt) — E[n(r,)] }2”“} =0 (2.6.2)

lim B [{In(r,) - B n(r,)]}*"] =

t—oo

n

2d 00
= (2n)?E JthL);t + 07 lim » e} (2.6.b)
1-(1-F) t=o0 i

)



B [{ln(rt) - B [m(rt)]}ﬂ

1—(1-F)* >
= o%dt(l1-F) —1_(1_ )2dt+0'TE E €;

+(In(Ty) — pp)? (1= P {B[(1 — F)~227]
— (E [(1 _ F)—tl/\t])Q}

where, as shown in section 3, t; At = d At provides the means to calculate

(2.6.c)

values.
The general correct version of (2.6) beyond the second moment is compli-

cated:
E[{In(r¢) — E[In(r)]}"] =

(2m)!(n — 2m)

m=0
B|(1-F) E[(l—F)*tlAt])nﬂm
o2dt (1 — F)** 11 ((11_5) )2;+02T§:e§) } (2.6)
1 P

where the covariances involved in terms of the form

l
E |(1— F) (Ze?)

j=1

can be calculated using the techniques in section 4.5.

To prove all of this write

B[({In(r;) = En(r)]}")] =

E[E [{In(r;) — B [In(r)]}" | {t;}]]

E[E[{In(r;) - Elln(r,) | {t;}]
+E [In(re) | {t;}] — B [In(r)]}" | {t;}]] (2.6.d)

and examine In(r;) — E[In(r;) | {t;}] and E[In(r) | {t;}] — E[In(r;)] separately



First,
In(r;) — EIn(r,) [ {t;}] =

e
= U\/CEZ Nt*(S*l)dt (1 — F)Sdt

s=1
oo

+ (In (Tj) — i) ((1 _ F)(t—thrl)Jr —(1- F)(t_tj)+>

j=1

by (1.3) and (2.5). Since {N;_(s_1)a} and {(In(T;) — py)} are independent
mean-zero normal distributions conclude that, conditional on {tj},
In(r;) — E[ln(ry) | {t;}] is a mean-zero normal distribution with odd central
moments 0 and even central moments

B [{In(r,) — B in(re) | {6111 | {t5}] =

(2m)? {B [{1n (r,) — Blin(ro) | {101 | {t53] }
= (2m)? {azdtzdt: (1—F)*»" 452 ie?}
s=1 j=1

= m o? — 2dt—17(17F)2t o2 Ooez :
= (@ )?{ dt (1 - F) ot TZJ}

So
Jim B |{In(r) ~ B{In(r,) | {61} | {&5}] =
S S P
e {U A FpT +"Ttllr20;ej}

Next, look at

E[In(ry) [ {t;}] — E{n(r;)] = B [In(r;) — B {In(r,)] | {t;}]

(in (Ty) — i) (1= )0 — B[ - )+
= (n(To) = pr) (1= F) (1= F)™ —E [(1 - F)™"])

by (1.3) and (2.5). Conclude (see (e) at the end of this note for the limit) that

§ Jm (B {In(r) [ {t;}] - B [In(r;)]) = 0

on almost all paths {t;} for the switching regimes.



B [(®n(r) | {6;}] - Bln@)])? | {t;}] =

= (In(To) — pp)* (1= F)* (]E. {(1 _ F)—zmt} _ (E [(1 _ F)_tlAtD2>

(2.6.e)
and (iii)
E[(E[in(r,) | {t;}] - BIn(r))™ | {t;}] =
= (n(Ty) )" (1= F)" B [{ (1 - ) —B [0 - Py}

from which all the conclusions about (2.6) follow, using (2.6.d).



The formula at (2.11) is in error and should read instead

= B> €| +300 (B> | B |} ef| B |} ejB[e]
j=1 j=1 =1 j=1
o0 3 o0 oo
toraay (B2l | | —3E |2 ]| B |D_elB[e]]
j=1 j=1 j=1
28 |32 (8[e])’
j=1
(2.11)
To prove this write
3

o}

2
Z €
j=1

ie? +3i6? { (ie?) —e?}
j=1 j i=1

—1

(oo}

(54)-+-7)
EN

|

and take expected values on both sides (carefully.)

o0
_ E : 2
- e €;
2 i=1
+) e
j=1

(4.5.8) has a factor missing and should read

Papy = % {E. {(1 _ p)2e-bdnt } —Pld>t] (1— F)ed } where
D = {E [(1 - F)Q“a“] —Pld>t](1- F)Q“t} :
: {E [(1 - F)‘Qba“] ~Pld>t](1- F)_zbt} , by (4.5.2)-(4.5.5)
and (4.5.7), and
Pay,....ar Payas+...+axPas,....ar, TeCUTsively. (4.5.8)

This follows from observing that each of (4.5.3), (4.5.4) and (4.5.5) are missing

1
a factor Fas]




Extending the results of the paper,
(a) here is the extension of (2.10) and (2.11) to the case m = 4.

i)

5] onfe ][] [
) )

+6p2’11{E >ef ( e])2—2E lieﬁa[eﬂ]mlée?]
R LX—; e;%] B [; o?E [eg]] s li ot (E [65])2] }

I { (E [i e§])4 6 (E ig] ) P li oE [65]]
sa[So]s[Sgian] oo (s Sogmia] )

o li & @ [e?])3] }

To prove this write (next page)




m i

+;e§ _ e?(
| G

_ |

and take expected values on both sides (very carefully).
(b) here is a calibration of the drift compensation using (2.5) and
the following intuitively appealing condition:

t (t—t71) to_ t—t

Bl | {t;}] = of 'm0 O ere

T = E[T)]= el T by def. of T, lognormal (e.1)

Since, conditional on {t,}, r; is lognormal
Efr | {t;}] = Smeolete3vineolit)
1
Efln(r:) [ {t;}] = Wn(B[re|{t;}]) - SV{n(re) | {t;}]

= () (1 - ) +In(To) [0 - B — 1 - F]

+Q@+ 2) [ = POt - GG | )] by )
(

= [In(ro) = In(To)] (1 - F)'
+@n Q@+;@)}O_FYO_FrMh
+ | pr + _ 1v[ln (re) | {t;}] o)
(1 37%) -



But E [V [In(ry) | {t;}]] = V[In(ry)] — V[E[In(r;) | {t;}]] by the usual rule on

conditioned variances, so using (e.2)

B (ry)] = BB [In (re) [ {t;}]

= [In(ro) —In(Tp)] (1 — F)"
+ [m (Tp) — (uT + ;a%ﬂ (1-F)'E [(1 - F)*t“l]
+ (i 5% ) - 5 (VI (e0)] = VB b 1) | {253
Now, use (2.6.c) and (2.6.e) on the last term above to get

Eln(r:)] =

= [In(ro) —In(Tp)] (1 — F)’
+ [ln (To) - <uT + ;a%)] (1-F)E [(1 - F)*Ma}

+pp + aT 1-E|> e
j=1

_%O}dt (1 _F)Zdt 1- (1 F)

(- ) (e:3)

(Remember that t; ~tAd by (4.1.1) so t At; ~t Ad.) This is the easiest
expression to use for calculating E [In (r;)] to apply in calculating (2.2)-(2.4).

Comparing (e.3) with (2.5) allows us to express the cumulative drift com-
pensation as

dat
Aty Dy (s_nyar (1— F)* =

_ ;a?p{l(lF)t]E[(l “d} E[i%l}
L e 1P .
307t (1= " = e (e.4)

(compare this with formula (2.2.7) in the Nov. 3, 2006 ARCH2007.1 paper)



Asymptotically,
dt Z Dy (s vyt (1 — F)**

s=1
(1 _ F)2dt
1 — (1 _ F)th

1 . 1
_ 1 2 o 2| L _ L 2
=507 1 tligloE Zej 57 dt

Jj=1
with reference to (e) at the end of this note for

lim (1- F)'E [(1 - F)‘“ﬂ =0.

t—oo

To calculate D; (in applying (1.1) in a Monte Carlo model, for example) the
easiest thing probably is to calculate (e.4) at ¢ and again at ¢t — dt and subtract:

_ (ed)att  (ed)att—dt
a1 - )™ dt

Written out, this difference works out to (compare (2.2.8) in the Nov. 3, 2006
ARCH2007.1 paper):

Dt:
1, 1-R)" 2t—dt
= ¢ 1+(1-F
2 1+(17F)dt( ( ) )
1
—o2 1—-(1-p)*
2 Tdt(l—F)dt{ ( )

Asymptotically
lim .Dt =

d d 0o
ERUERN (it WG oS bl el Y | P
20 1+ (1-R)" 27 dt(1- )" toe [

with reference to (e) at the end of this note for

lim (1- F)'E [(1 - F)‘“ﬂ =0.

t—oo
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(c) Some of the incomplete gamma functions in section 3.3 for
calculating £3,, () and L5 (z) are undefined when z < 0.

In this case, integrating by parts in the definition of £5,, (z) gives one of
four results:

) Ifx=0

Lan, (0) = —aiﬂ {t <1 (o ;)) —al(a+1; ;)} +P[d > 1]

which can be used in calculations for finite ¢ and, using ’Hopital’s rule on the

first term, shows that £3 (0) = %

(ii) If —% < x < 0 the expression in section 3.3 for £3,;(x) remains valid
and can be used in calculations for finite ¢

i = gifooefor(ed)

a+¢m>QFQM“*g““)}+ewmwazﬂ.

(e.5)

An application of 'Hopital’s rule on the two exponential terms is enough to
show that

La(x) = aiﬁx f1-(+p0)™)
(iif) f 2 = —
() - L or ) )

which can be used in calculations for finite ¢ and makes Ea(—%) = oo obvious.

(iv) fz < —%

Lap(x) = Bz 7/@ + e 'P[d > ]
0

11



and further integration by parts gives

1—e (1-T(es 1))
k
L —t(e+ ) N (D) jamjo1

. 1 e ()Y e
ant(®) Tﬁx =0 s

t

a— a—k oy 1 a—k—2 —(s— ey 1
—fes e ) [inobstmtlertla,
0
(e.8)

for any k¥ < |a —1]. Note that when « is an integer the sum terminates at
k = a — 1 with no remainder and provides an exact calculation. Otherwise,
the remaining integral is of order O(t**=2), so for k = |a — 1] and large t the
sum would provide a reasonable approximate calculation (it certainly converges
as t — 00).

For small ¢ I believe (but have not validated) that inserting a reasonable
number of terms of

t

1 n
Sa 1 *S(‘T‘F ta —t(z«l,»l) oo T + B) t
[ o= o N g @+1)- (atn)

0 n=0

into (e.6) would be more accurate.
At any rate, L3(z) = oo follows directly from L£z(— %) oo and the defini-
tion of L£5(x), sparing us the need to take the limit in (e.8) or (e.7).

12
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(d) The value of formula (4.5.8) as t — oo depends critically on
the behavior of P[d >t] (1 — F)™®" as t — oo which in turn depends
critically on the distribution of d. In our case, with the distribution of d
determined by the assumption that d follows a gamma(a, 8) distribution,

B[(1 - F)** "

lim p,, = = =
e E[(1 - F)*E[(1 - F)~*"]
1
hen 2b s B —
when < Bln(1—F)
tllm pa,b = O
1
hen2b > ——w—"— limit 4.5.8
when > ETYa) (limi )

(Remember, we are assuming that a > b, using the fact that p,, = p,, to
handle the opposite case). For higher order covariances,

Mmoo, e = MM pg, sy L Pg, g, TecuTsively.

To Prove This: by formula (4.5.8) in the paper (including with the cor-
rection earlier in this note),

B {(1 _ F)Q(afb)a }
B {(1 _ F)Qa(_i} lim {]E {(1 _ F)—Qb(_i/\t} _P [(_i > t] 1- F)—th }

t—o0

lim Pab =
t—o0 ’

Using the approach of section 3.3 (including the assumption that d follows a
gamma(a, B) distribution) and the results from (c) above

E [(1 - F)—%ﬂ = £3(2bIn(1 — F))

= o (for —;22bln(1—F)>

1 -
N W{l_(l‘Fﬁlen(l_F) }

1
(for — = < 2bln(1 — F))
B
since In(1 — F) < 0. So the critical issue is

lim (P[d>¢) (1 F)~").

t—o0
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Using the approach of section 3.3 and applying I’Hopital’s rule twice

. = —2bt . —falt
tlggo (P [d 2 t] (1-F) ' ) - tlggo 2bIn(1 — {T'd)((l)— F)2bt
o _Pld > 4]
= N B %W - )= P by (3.7)
fa(t)

lim 5 .
t—oo | [d] (20In(1 — F))” (1 — F)20
With the assumption that d follows a gamma(c, 8) distribution section 3.3 now
gives
) ta—le*%
lim = 5
t—=oo ol (o) B4 (2bIn(1 — F))” (1 — F)2bt
pa—1,=t(F+2bIn(1-F))

I, I (a+1)8° (2bIn(1 — F))*

lim (P[d>¢(1-F)) =

t—oo

(e.9)

So if % +2bIn(1 — F') > 0 the last limit is 0 and

t—oo

tim {B[(1-F) ] Pz 0-») |} =B[0-F)]
E[(l . F)Q(afb)a]

E[(1 - F)*B[(1 - F)" 29"

But if % +2bIn(1—F) <0, it will be necessary to work at a finer level of detail.
Again from section 3.3

(thereby making tlim Pap =

E {(1 - F)‘Q”a“} = L3,,(2bIn(1 — F))

1 -
= —/ e 2mA=F)spd >4 ds 4 e 20 A tp [d >t| and use (e.8)
Ed] Jo

_ ; _ _—2bIn(1-F) o . E
= af2bIn(l - F) {1 e <1 Ples 5)>
1 —t(2bIn(1-F)+1) : (a=1)---(a—j) a—j—1
+ —e B 1
[(a)B ]z::() (2bmn(1 - F) + l)m

B

t
(a—1)--(a—k-1) e t(20(=F)+§) [ a—k—2,~(s—1)(2bIn(1-F)+3) 4

- k1
T(a)6” (bIn(1 - F) + }) d
L e2bIn(1-F)tp [d>1]

S

where k is | —1]. (If % + 2bIn(1 — F) = 0 use the comparable expression
based on (e.6) instead of (e.8))
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Combine this with expression (e.9) above for tlim (]P’ d>t](1- F)fzbt)
and note that lim {E [(1 - F)*Qba“} —Pld>t](1-F)2 } will be deter-

t(5+26In(1-F)) —2bIn(1—F)t

mined completely by the terms containing factors of e~ and e

Leaving out all other terms, for simplicity,

tim {B[(1-F) ] Pz 0-F) } =

t—o0

o ’*)}
_ ; —t2bIn(1—F) [ ( ! >
%, “apm(i_F) TFld=1]
k .
4 lim e t(F+2m01-M) a+11 (a—1)-(a— Jj)+1ta—j—1
t—00 P(a+1)8""2bIn(1 — F) = (2b1n(1—F)+%)
_ (a=1)---(a—k-1) / k=2, —(s—)(2bIn(1-F)+3) 7
k+1
D(a+ 1)F* 12 In(1 ~ F) (2(1 - F)+ 1)

ta—l
" D(a+1)5*T (2bIn(1 — F))? } '

Now the first limit is always non-negative because In(1 — F') < 0. The second
limit will be determined completely by the terms involving t*~! because the
integral is of order O(t*~¥=2). These terms combine to give

_toz—l

T (a+1)8°T (2bIn(1 — F))? (1 + 2bIn(1 — F))

(in the case % +2bIn(1l — F) = 0 use of (e.6) instead of (e.8) will give

ol (o) B

as the dominant term in the second limit.)

So the second limit diverges to +o0o whenever % +2bIn(1 — F) <0, making the
entire limit diverge

lim {E {(1 - F)*Qb‘_‘“] —Pld>t](1-F)™ } = .

t—o0

(thereby making tlim Pap = 0).
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(e) Finally, (3.6) requires an argument similar to this in order to
prove that

lim (1- G)'B[(1-G)~*] =0

t—oo

For a sufficiently long-tailed distribution of d this limit could fail to vanish,
adding an additional factor in (3.6). But assuming d is gamma(a, 5):

If —% < In(1 — G), (e.5) above gives

lim (1 - G)'E [(1 - G)—aﬂ = lim e!™0-G) 25 (In(l - G))

t—o0 t—o0

1 1 n(1-G) _ |1 _ ot
= M=) {et [1 F(a’ﬁ)]

—e!0-6) (1 4 BIn(1 - G)) T (a; B t) } FP[d>]

= 0

because In(1 — G) < 0.
IfIn(1-G) < —1, (e.6) or (e.8) above give (ignoring terms in £3,,(In(1—G))
not of exponential order)

Jim (1= GYE[(1-6) ] = fim O Lg, (1 - G)
= lim ™16 {cle_t(%"‘ln(l—G)) +cze*““(1*G)}
t—o0o

for expressions c¢; and co where ¢; is of polynomial order as ¢t — oo and
lim; oo =0. So

lim (1 - G)'E [(1 - G)*‘_’“} = Jim et
= 0

This same argument gives

lim (1 — F)'E [(1 - F)‘E‘“} =0

t—o0

in the asymptotic versions of the drift correction and cumulative drift correction
earlier in this note and

lim (1 — F)'E [(1 - F)*““} =0

t—oo

in the proof of the correction to (2.6.) earlier in this note.
Since (1 — F)t (1 — F)" " > 0 this also implies that

Jim (1 F)* (1~ F) %M =g

on almost all paths {t;} for the switching regimes.
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