
As of 8�12-2008, here are some corrections and extensions of the 12-21-2007
paper in ARCH2008.1:
What need to be corrected are the de�nition at (1.1) and the formulae at

(2.3), (2.6), (2.11), and (4.5.8). The extensions involve (a) (2.10)/(2.11) for
m = 4, (b) calibration of the drift compensation in (1.1), (c) formulae for
L�d^t (x) and L�d (x) for x � 0, (d) the value of (4.5.8) when t ! 1, and (e)
clari�cation of the proof of (3.6).
The de�nition at formula (1.1) and its explanatory material should

be replaced by the following. This new de�nition accurately provides for
the situation of a regime-switch occuring within the most recent model time step
by pro-rating the mean-reversion among all of the random targets that arise
within the most recent model time step. This new de�nition leads correctly to
(1.2), (1.3) and the rest of the paper as originally published:

d ln (rt) =
h
1� (1� F )dt

i
[ ln(Tt)� ln(rt�dt)]

+ (1� F )dtDtdt+ (1� F )dt �
p
dtNt (1.1)

where

rt = the interest rate we want to model over time.
F = an annualized mean reversion factor between 0 and 1.
dt = a discrete time-step interval.
Tt = a random mean reversion target for rt at time t determined by

Tt =
1Y
j=0

T
(1�F )dt^(t�tj+1)+�(1�F )dt^(t�tj)+

1�(1�F )dt

j where

fTjg1�j = i.i.d. lognormal mean reversion targets for the interest rate,
thus characterizing each regime by a randomly chosen mean
reversion target. (T0 is a �xed target value for the �rst regime.)

ftj+1 � tjg1�j = a set of i.i.d. random variables with common law

gamma(�; �), the inter-arrival intervals for regime-switches,
t1 = a random variable independent of ftj+1 � tjg1�j distributed

as a randomly chosen point within a gamma(�; �) interval.
t0 = 0 launching the process at a random time within the �rst

regime.
Dt = an annualized drift-compensation function available to be

calibrated up front as part of the model.
� = an annualized volatility parameter.

fNtg0�t = i.i.d standard normal random variables independent of all the
other random variables in the process.
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For a more concrete picture of the random target de�nition, for each t let k
and k0 be determined by the relations tk < t � tk+1 and tk0 � t� dt < tk0+1.
Then the foregoing de�nition of Tt works out to

Tt = T
1�(1�F )dt^(t�tk)

1�(1�F )dt

k

k�1Y
j=k0

T
(1�F )dt^(t�tj+1)�(1�F )dt^(t�tj)

1�(1�F )dt

j , where if

tk � t� dt < t � tk+1 then Tt = Tk:

So Tt is a weighted geometric mean of values Tj . Therefore ln(Tt) is a weighted
arithmetic average of values ln(Tj):

ln(Tt) =
1X
j=0

ln(Tj)
(1� F )dt^(t�tj+1 )+ � (1� F )dt^(t�tj)+

1� (1� F )dt

= ln(Tk)
1� (1� F )dt^(t�tk)
1� (1� F )dt +

k�1X
j=k0

ln(Tj)
(1� F )dt^(t�tj+1 ) � (1� F )dt^(t�tj)

1� (1� F )dt ,

where if tk � t� dt < t � tk+1 then ln (Tt) = ln (Tk) .
fln(Tj)g1�j = i.i.d. normal random variables, independent of all the other

random variables in the de�nitions. Further, de�ne
�T = the common mean of the fln(Tj)g1�j .
�2T = the common variance of the fln(Tj)g1�j .

The formula at (2.3) is an incorrect transcription of (2.4) when
N=3. Correct is

E
h
(rt)

l
i
� el�+

1
2 (l�)

2

�
1 +

l4

4!

�
�4 � 3�4

��
1� 1

2!
(l�)

2

�
+
l6

6!

�
�6 � 15�6

��
(2.3)

The formula at (2.6) is accurate only in the limit as t!1. That�s
where we use it the most, so little harm is done, but we do want to use the
correct formula for �nite t when n = 1. Here is the correct statement of
all of this to replace (2.6) in the paper:

lim
t!1

E
h
fln(rt)� E [ln(rt)]g2n+1

i
= 0 (2.6.a)

lim
t!1

E
h
fln(rt)� E [ln(rt)]g2n

i
=

= (2n)?E

248<:�2dt (1� F )2dt

1� (1� F )2dt
+ �2T lim

t!1

1X
j=1

e2j

9=;
n35 (2.6.b)
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E
h
fln(rt)� E [ln(rt)]g2

i
=

= �2dt (1� F )2dt 1� (1� F )
2t

1� (1� F )2dt
+ �2TE

24 1X
j=1

e2j

35
+(ln (T0)� �T )

2
(1� F )2t

�
E
�
(1� F )�2t1^t

�
�
�
E
�
(1� F )�t1^t

��2o
(2.6.c)

where, as shown in section 3, t1 ^ t = �d ^ t provides the means to calculate
values.
The general correct version of (2.6) beyond the second moment is compli-

cated:

E [fln(rt)� E [ln(rt)]gn] =

=

bn2 cX
m=0

n!(2m)?

(2m)!(n� 2m)! (ln (T0)� �T )
n�2m

(1� F )(n�2m)t �

E
��
(1� F )�t1^t � E

h
(1� F )�t1^t

i�n�2m
�0@�2dt (1� F )2dt 1� (1� F )2t

1� (1� F )2dt
+ �2T

1X
j=1

e2j

1Am35 (2.6)

where the covariances involved in terms of the form

E

264(1� F )�kt1^t
0@ 1X
j=1

e2j

1Al
375

can be calculated using the techniques in section 4.5.

To prove all of this write

E [(fln(rt)� E [ln(rt)]gn)] =

= E [E [fln(rt)� E [ln(rt)]gn j ftjg]]
= E [E [fln(rt)� E [ln(rt) j ftjg]

+E [ln(rt) j ftjg]� E [ln(rt)]gn j ftjg]] (2.6.d)

and examine ln(rt)�E [ln(rt) j ftjg] and E [ln(rt) j ftjg]�E [ln(rt)] separately:
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First,
ln(rt)� E [ln(rt) j ftjg] =

= �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+
1X
j=1

(ln (Tj)� �T )
�
(1� F )(t�tj+1)+ � (1� F )(t�tj)+

�
by (1.3) and (2.5). Since

�
Nt�(s�1)dt

	
and f(ln (Tj)� �T )g are independent

mean-zero normal distributions conclude that, conditional on ftjg,
ln(rt) � E [ln(rt) j ftjg] is a mean-zero normal distribution with odd central
moments 0 and even central moments

E
h
fln(rt)� E [ln(rt) j ftjg]g2m j ftjg

i
=

= (2m)?
n
E
h
fln (rt)� E [ln(rt) j ftjg]g2 j ftjg

iom
= (2m)?

8<:�2dt
t
dtX
s=1

(1� F )2sdt + �2T
1X
j=1

e2j

9=;
m

= (2m)?

8<:�2dt (1� F )2dt 1� (1� F )2t1� (1� F )2dt
+ �2T

1X
j=1

e2j

9=;
m

So
lim
t!1

E
h
fln(rt)� E [ln(rt) j ftjg]g2m j ftjg

i
=

= (2m)?

8<:�2dt (1� F )2dt

1� (1� F )2dt
+ �2T lim

t!1

1X
j=1

e2j

9=;
m

Next, look at

E [ln(rt) j ftjg]� E [ln(rt)] = E [ln(rt)� E [ln(rt)] j ftjg]

= (ln (T0)� �T )
�
(1� F )(t�t1)+ � E

h
(1� F )(t�t1)+

i�
= (ln (T0)� �T ) (1� F )

t
�
(1� F )�t1^t � E

h
(1� F )�t1^t

i�
by (1.3) and (2.5). Conclude (see (e) at the end of this note for the limit) that
(i)

lim
t!1

(E [ln(rt) j ftjg]� E [ln(rt)]) = 0

on almost all paths ftjg for the switching regimes.
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(ii)

E
h
(E [ln(rt) j ftjg]� E [ln(rt)])2 j ftjg

i
=

= (ln (T0)� �T )
2
(1� F )2t

�
E
h
(1� F )�2t1^t

i
�
�
E
h
(1� F )�t1^t

i�2�
(2.6.e)

and (iii)
E [(E [ln(rt) j ftjg]� E [ln(rt)])m j ftjg] =

= (ln (T0)� �T )
m
(1� F )mt E

hn
(1� F )�t1^t � E

h
(1� F )�t1^t

iomi
from which all the conclusions about (2.6) follow, using (2.6.d).
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The formula at (2.11) is in error and should read instead

E

264
0@ 1X
j=1

e2j

1A3
375 =

= E

24 1X
j=1

e6j

35+ 3�2;1
8<:E

24 1X
j=1

e4j

35E
24 1X
j=1

e2j

35� E
24 1X
j=1

e4jE
�
e2j
�359=;

+�1;1;1

8><>:
0@E

24 1X
j=1

e2j

351A3

� 3E

24 1X
j=1

e2j

35E
24 1X
j=1

e2jE
�
e2j
�35

+2E

24 1X
j=1

e2j
�
E
�
e2j
��2359=;

(2.11)

To prove this write 0@ 1X
j=1

e2j

1A3

=

=

26666666664

1X
j=1

e6j + 3
1X
j=1

e4j

( 1X
i=1

e2i

!
� e2j

)

+

1X
j=1

e2j

8>>>><>>>>:

 1X
i=1

e2i

" 1X
k=1

e2k

!
� e2i � e2j

#!

�e2j

" 1X
k=1

e2k

!
� 2e2j

#
9>>>>=>>>>;

37777777775
and take expected values on both sides (carefully.)

(4.5.8) has a factor missing and should read

�a;b =
1� P

�
�d � t

�
D

n
E
h
(1� F )2(a�b)�d^t

i
� P

�
�d � t

�
(1� F )2(a�b)t

o
where

D =
n
E
h
(1� F )2a�d^t

i
� P

�
�d � t

�
(1� F )2at

o
�

�
n
E
h
(1� F )�2b�d^t

i
� P

�
�d �t

�
(1� F )�2bt

o
, by (4.5.2)-(4.5.5)

and (4.5.7), and

�a1;:::;ak = �a1;a2+:::+ak�a2;:::;ak recursively. (4.5.8)

This follows from observing that each of (4.5.3), (4.5.4) and (4.5.5) are missing
a factor 1

1�P[�d�t]
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Extending the results of the paper,
(a) here is the extension of (2.10) and (2.11) to the case m = 4:

E

264
0@ 1X
j=1

e2j

1A4
375 =

= E

24 1X
j=1

e8j

35+ 4�3;1
8<:E

24 1X
j=1

e6j

35E
24 1X
j=1

e2j

35� E
24 1X
j=1

e6jE
�
e2j
�359=;

+3�2;2

8><>:
0@E

24 1X
j=1

e4j

351A2

� E

24 1X
j=1

e4jE
�
e4j
�35
9>=>;

+6�2;1;1

8><>:E
24 1X
j=1

e4j

350@E
24 1X
j=1

e2j

351A2

� 2E

24 1X
j=1

e4jE
�
e2j
�35E

24 1X
j=1

e2j

35
�E

24 1X
j=1

e4j

35E
24 1X
j=1

e2jE
�
e2j
�35+ 2E

24 1X
j=1

e4j
�
E
�
e2j
��2359=;

+�1;1;1;1

8><>:
0@E

24 1X
j=1

e2j

351A4

� 6

0@E
24 1X
j=1

e2j

351A2

E

24 1X
j=1

e2jE
�
e2j
�35

+8E

24 1X
j=1

e2j

35E
24 1X
j=1

e2j
�
E
�
e2j
��235+ 3

0@E
24 1X
j=1

e2jE
�
e2j
�351A2

�6E

24 1X
j=1

e2j
�
E
�
e2j
��3359=;

To prove this write (next page)
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0@ 1X
j=1

e2j

1A4

=

=

26666666666666666666666666666664

1X
j=1

e8j + 4
1X
j=1

e6j

( 1X
i=1

e2i

!
� e2j

)
+ 3

1X
j=1

e4j

( 1X
i=1

e4i

!
� e4j

)

+6
1X
j=1

e4j

( 1X
i=1

e2i

" 1X
k=1

e2k

!
� e2i � e2j

#!
� e2j

" 1X
k=1

e2k

!
� 2e2j

#)

+
1X
j=1

e2j

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

0BBBBBBBBB@
1X
i=1

e2i

26666666664

 1X
k=1

e2k

  1X
l=1

e2l

!
� e2k � e2i � e2j

!!

�e2i

  1X
l=1

e2l

!
� 2e2i � e2j

!

�e2j

  1X
l=1

e2l

!
� 2e2j � e2i

!

37777777775

1CCCCCCCCCA

�e2j

266664
 1X
k=1

e2k

  1X
l=1

e2l

!
� e2k � 2e2j

!!

�2e2j

  1X
l=1

e2l

!
� 3e2j

!
377775

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;

37777777777777777777777777777775
and take expected values on both sides (very carefully).
(b) here is a calibration of the drift compensation using (2.5) and

the following intuitively appealing condition:

E [rt j ftjg] = r
(1�F )t
0 T

(1�F )(t�t1)+�(1�F )t
0

�T 1�(1�F )
(t�t1)+ where

�T = E [Tj ] = e�T+
1
2�

2
T by def. of Tj lognormal (e.1)

Since, conditional on ftjg, rt is lognormal

E [rt j ftjg] = eE[ln(rt)jftjg]+
1
2V[ln(rt)jftjg] so

E [ln (rt) j ftjg] = ln (E [rt j ftjg])�
1

2
V [ln (rt) j ftjg]

= ln (r0) (1� F )t + ln (T0)
h
(1� F )(t�t1)+ � (1� F )t

i
+

�
�T +

1

2
�2T

�h
1� (1� F )(t�t1)+

i
� 1
2
V [ln (rt) j ftjg] by (e.1)

= [ln (r0)� ln (T0)] (1� F )t

+

�
ln (T0)�

�
�T +

1

2
�2T

��
(1� F )t (1� F )�t^t1

+

�
�T +

1

2
�2T

�
� 1
2
V [ln (rt) j ftjg] (e.2)
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But E [V [ln (rt) j ftjg]] = V [ln (rt)] � V [E [ln (rt) j ftjg]] by the usual rule on
conditioned variances, so using (e.2)

E [ln (rt)] = E [E [ln (rt) j ftjg]]

= [ln (r0)� ln (T0)] (1� F )t

+

�
ln (T0)�

�
�T +

1

2
�2T

��
(1� F )t E

h
(1� F )�t^t1

i
+

�
�T +

1

2
�2T

�
� 1
2
(V [ln (rt)]� V [E [ln (rt) j ftjg]])

Now, use (2.6.c) and (2.6.e) on the last term above to get

E [ln (rt)] =

= [ln (r0)� ln (T0)] (1� F )t

+

�
ln (T0)�

�
�T +

1

2
�2T

��
(1� F )t E

h
(1� F )�t^�d

i
+�T +

1

2
�2T

241� E
24 1X
j=1

e2j

3535
�1
2
�2dt (1� F )2dt 1� (1� F )

2t

1� (1� F )2dt
(e.3)

(Remember that t1 ' t ^ �d by (4.1.1) so t ^ t1 ' t ^ �d.) This is the easiest
expression to use for calculating E [ln (rt)] to apply in calculating (2.2)-(2.4).

Comparing (e.3) with (2.5) allows us to express the cumulative drift com-
pensation as

dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt =

=
1

2
�2T

8<:1� (1� F )t E h(1� F )�t^�di� E
24 1X
j=1

e2j

359=;
�1
2
�2dt (1� F )2dt 1� (1� F )

2t

1� (1� F )2dt
(e.4)

(compare this with formula (2.2.7) in the Nov. 3, 2006 ARCH2007.1 paper)
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Asymptotically,

dt
1X
s=1

Dt�(s�1)dt (1� F )sdt

=
1

2
�2T

8<:1� lim
t!1

E

24 1X
j=1

e2j

359=;� 12�2dt (1� F )2dt

1� (1� F )2dt

with reference to (e) at the end of this note for

lim
t!1

(1� F )t E
h
(1� F )�t^�d

i
= 0:

To calculate Dt (in applying (1.1) in a Monte Carlo model, for example) the
easiest thing probably is to calculate (e.4) at t and again at t�dt and subtract:

Dt =
(e.4) at t

dt (1� F )dt
� (e.4) at t� dt

dt

Written out, this di¤erence works out to (compare (2.2.8) in the Nov. 3, 2006
ARCH2007.1 paper):

Dt =

= �1
2
�2

(1� F )dt

1 + (1� F )dt
�
1 + (1� F )2t�dt

�
+
1

2
�2T

1

dt (1� F )dt
n
1� (1� F )dt

� (1� F )t
�
E
h
(1� F )�t^�d

i
� E

h
(1� F )�(t�dt)^�d

i�
�

0@E
24 1X
j=1

e2j

35
t

� (1� F )dt E

24 1X
j=1

e2j

35
t�dt

1A9=;
Asymptotically

lim
t!1

Dt =

= �1
2
�2

(1� F )dt

1 + (1� F )dt
+
1

2
�2T
1� (1� F )dt

dt (1� F )dt
lim
t!1

E

24 1X
j=1

e2j

35
with reference to (e) at the end of this note for

lim
t!1

(1� F )t E
h
(1� F )�t^�d

i
= 0:
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(c) Some of the incomplete gamma functions in section 3.3 for
calculating L�d^t (x) and L�d (x) are unde�ned when x � 0.

In this case, integrating by parts in the de�nition of L�d^t (x) gives one of
four results:

(i) If x = 0

L�d^t (0) = � 1

��

�
t

�
1� �(�; t

�
)

�
� ��(�+ 1; t

�
)

�
+ P[�d � t]

which can be used in calculations for �nite t and, using l�Hôpital�s rule on the
�rst term, shows that L�d (0) = 1

� .

(ii) If � 1
� < x < 0 the expression in section 3.3 for L�d^t(x) remains valid

and can be used in calculations for �nite t

L�d^t (x) =
1

��x

�
1� e�xt

�
1� �

�
�;
t

�

��
� (1 + �x)�� �

�
�;
(1 + �x) t

�

��
+ e�xtP

�
�d � t

�
.

(e.5)

An application of l�Hôpital�s rule on the two exponential terms is enough to
show that

L�d (x) =
1

��x

n
1� (1 + �x)��

o

(iii) If x = � 1
�

L�d^t
�
� 1
�

�
= � 1

�

�
1� e

1
� t

�
1� �(�; t

�
)

�
� t�

�(�+ 1)��

�
+ e

1
� tP[�d � t]

(e.6)

which can be used in calculations for �nite t and makes L�d(� 1
� ) =1 obvious.

(iv) If x < � 1
�

L�d^t(x) =
1

��x

8>>><>>>:
1� e�xt

�
1� �(�; t� )

�
�

tZ
0

s��1e
�s(x+ 1

�
)

�(�)�� ds

9>>>=>>>;+ e
�xtP[�d � t]

(e.7)
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and further integration by parts gives

L�d^t(x) =
1

��x

8>>>>>>>><>>>>>>>>:

1� e�xt
�
1� �(�; t� )

�
+ 1
�(�)�� e

�t(x+ 1
� )

kX
j=0

(��1)���(��j)
(x+ 1

� )
j+1 t��j�1

� (��1)���(��k�1)
�(�)��(x+ 1

� )
k+1 e

�t(x+ 1
� )

tZ
0

s��k�2e�(s�t)(x+
1
� )ds

9>>>>>>>>=>>>>>>>>;
+e�xtP[�d � t]

(e.8)
for any k � b�� 1c. Note that when � is an integer the sum terminates at
k = � � 1 with no remainder and provides an exact calculation. Otherwise,
the remaining integral is of order O(t��k�2), so for k = b�� 1c and large t the
sum would provide a reasonable approximate calculation (it certainly converges
as t!1).
For small t I believe (but have not validated) that inserting a reasonable

number of terms of

tZ
0

s��1e�s(x+
1
� )

�(�)��
ds =

t�

�(�)��
e�t(x+

1
� )

1X
n=0

�
x+ 1

�

�n
tn

� (�+ 1) � � � (�+ n)

into (e.6) would be more accurate.
At any rate, L�d(x) =1 follows directly from L�d(� 1

� ) =1 and the de�ni-
tion of L�d(x), sparing us the need to take the limit in (e.8) or (e.7).

12



(d) The value of formula (4.5.8) as t ! 1 depends critically on
the behavior of P

�
�d � t

�
(1� F )�2bt as t ! 1 which in turn depends

critically on the distribution of �d. In our case, with the distribution of �d
determined by the assumption that d follows a gamma(�; �) distribution,

lim
t!1

�a;b =
E[ (1� F )2(a�b)�d]

E[ (1� F )2a�d]E[ (1� F )�2b�d]

when 2b < � 1

� ln (1� F )
lim
t!1

�a;b = 0

when 2b � � 1

� ln (1� F ) (limit 4.5.8)

(Remember, we are assuming that a � b, using the fact that �a;b = �b;a to
handle the opposite case). For higher order covariances,

lim
t!1

�a1;:::;ak = lim
t!1

�a1;a2+:::+ak limt!1
�a2;:::;ak recursively.

To Prove This: by formula (4.5.8) in the paper (including with the cor-
rection earlier in this note),

lim
t!1

�a;b =
E
h
(1� F )2(a�b)�d

i
E
h
(1� F )2a�d

i
lim
t!1

n
E
h
(1� F )�2b�d^t

i
� P

�
�d � t

�
(1� F )�2bt

o
Using the approach of section 3.3 (including the assumption that d follows a
gamma(�; �) distribution) and the results from (c) above

E
h
(1� F )�2b�d

i
= L�d(2b ln(1� F ))

= 1
�
for � 1

�
� 2b ln(1� F )

�
=

1

��2b ln(1� F

n
1� (1 + �2b ln(1� F )��

o
�
for � 1

�
< 2b ln(1� F )

�
since ln(1� F ) < 0. So the critical issue is

lim
t!1

�
P
�
�d � t

�
(1� F )�2bt

�
.
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Using the approach of section 3.3 and applying l�Hôpital�s rule twice

lim
t!1

�
P
�
�d � t

�
(1� F )�2bt

�
= lim

t!1

�f�d(t)
2b ln(1� F )(1� F )2bt

= lim
t!1

�P [d � t]
E [d] 2b ln(1� F )(1� F )2bt by (3.7)

= lim
t!1

fd(t)

E [d] (2b ln(1� F ))2 (1� F )2bt
.

With the assumption that d follows a gamma(�; �) distribution section 3.3 now
gives

lim
t!1

�
P
�
�d � t

�
(1� F )�2bt

�
= lim

t!1

t��1e�
t
�

�� (�)��+1 (2b ln(1� F ))2 (1� F )2bt

= lim
t!1

t��1e�t(
1
�+2b ln(1�F ))

� (�+ 1)��+1 (2b ln(1� F ))2
. (e.9)

So if 1� + 2b ln(1� F ) > 0 the last limit is 0 and

lim
t!1

n
E
h
(1� F )�2b�d^t

i
� P

�
�d � t

�
(1� F )�2bt

o
= E

h
(1� F )�2b�d

i
(thereby making lim

t!1
�a;b =

E[ (1� F )2(a�b)�d]
E[ (1� F )2a�d]E[ (1� F )�2b�d]

).

But if 1� +2b ln(1�F ) � 0, it will be necessary to work at a �ner level of detail.
Again from section 3.3

E
h
(1� F )�2b�d^t

i
= L�d^t(2b ln(1� F ))

=
1

E [d]

Z t

0

e�2b ln(1�F )sP [d �s] ds+ e�2b ln(1�F )tP
�
�d �t

�
and use (e.8)

=
1

��2b ln(1� F )

�
1� e�2b ln(1�F )t

�
1� �(�; t

�
)

�
+

1

�(�)��
e�t(2b ln(1�F )+

1
� )

kX
j=0

(�� 1) � � � (�� j)�
2b ln(1� F ) + 1

�

�j+1 t��j�1

� (�� 1) � � � (�� k � 1)

�(�)��
�
2b ln(1� F ) + 1

�

�k+1 e�t(2b ln(1�F )+ 1
� )

tZ
0

s��k�2e�(s�t)(2b ln(1�F )+
1
� )ds

9>=>;
+e�2b ln(1�F )tP

�
�d � t

�
where k is b�� 1c. (If 1

� + 2b ln(1 � F ) = 0 use the comparable expression
based on (e.6) instead of (e.8))
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Combine this with expression (e.9) above for lim
t!1

�
P
�
�d � t

�
(1� F )�2bt

�
and note that lim

t!1

n
E
h
(1� F )�2b�d^t

i
� P

�
�d � t

�
(1� F )�2bt

o
will be deter-

mined completely by the terms containing factors of e�t(
1
�+2b ln(1�F )) and e�2b ln(1�F )t.

Leaving out all other terms, for simplicity,

lim
t!1

n
E
h
(1� F )�2b�d^t

i
� P

�
�d � t

�
(1� F )�2bt

o
=

= lim
t!1

e�t2b ln(1�F )

8<:�
h
1� �

�
�; t�

�i
��2b ln(1� F ) + P

�
�d � t

�9=;
+ lim
t!1

e�t(
1
�+2b ln(1�F ))

8><>: 1

�(�+ 1)��+12b ln(1� F )

kX
j=0

(�� 1) � � � (�� j)�
2b ln(1� F ) + 1

�

�j+1 t��j�1

� (�� 1) � � � (�� k � 1)

�(�+ 1)��+12b ln(1� F )
�
2b ln(1� F ) + 1

�

�k+1
tZ
0

s��k�2e�(s�t)(2b ln(1�F )+
1
� )ds

� t��1

� (�+ 1)��+1 (2b ln(1� F ))2

)
.

Now the �rst limit is always non-negative because ln(1 � F ) < 0. The second
limit will be determined completely by the terms involving t��1 because the
integral is of order O(t��k�2). These terms combine to give

�t��1

� (�+ 1)��+1 (2b ln(1� F ))2 (1 + �2b ln(1� F ))

(in the case 1
� + 2b ln(1� F ) = 0 use of (e.6) instead of (e.8) will give

t�

�� (�)��
as the dominant term in the second limit.)

So the second limit diverges to +1 whenever 1
� +2b ln(1�F ) � 0, making the

entire limit diverge

lim
t!1

n
E
h
(1� F )�2b�d^t

i
� P

�
�d � t

�
(1� F )�2bt

o
=1.

(thereby making lim
t!1

�a;b = 0).
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(e) Finally, (3.6) requires an argument similar to this in order to
prove that

lim
t!1

(1�G)tE
h
(1�G)��d^t

i
= 0

For a su¢ ciently long-tailed distribution of �d this limit could fail to vanish,
adding an additional factor in (3.6). But assuming d is gamma(�; �):

If � 1
� < ln(1�G), (e.5) above gives

lim
t!1

(1�G)tE
h
(1�G)��d^t

i
= lim

t!1
et ln(1�G)L�d^t(ln(1�G))

= lim
t!1

1

�� ln(1�G)

�
et ln(1�G) �

�
1� �

�
�;
t

�

��
�et ln(1�G) (1 + � ln(1�G))�� �

�
�;
(1 + � ln(1�G)) t

�

��
+ P

�
�d � t

�
= 0

because ln(1�G) < 0.
If ln(1�G) � � 1

� , (e.6) or (e.8) above give (ignoring terms in L�d^t(ln(1�G))
not of exponential order)

lim
t!1

(1�G)tE
h
(1�G)��d^t

i
= lim

t!1
et ln(1�G)L�d^t(ln(1�G))

= lim
t!1

et ln(1�G)
n
c1e

�t( 1�+ln(1�G)) + c2e
�t ln(1�G)

o
for expressions c1 and c2 where c1 is of polynomial order as t ! 1 and
limt!1 c2 = 0. So

lim
t!1

(1�G)tE
h
(1�G)��d^t

i
= lim

t!1
c1e

�t 1�

= 0

This same argument gives

lim
t!1

(1� F )tE
h
(1� F )��d^t

i
= 0

in the asymptotic versions of the drift correction and cumulative drift correction
earlier in this note and

lim
t!1

(1� F )tE
h
(1� F )�t1^t

i
= 0

in the proof of the correction to (2.6.) earlier in this note.
Since (1� F )t (1� F )�t1^t � 0 this also implies that

lim
t!1

(1� F )t (1� F )�t1^t = 0

on almost all paths ftjg for the switching regimes.
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