
As of July 23, 2012 here are some more corrections and extensions of the
12-21-2007 paper in ARCH2008.1

Section (c) on pages 11 and 12 of the 8-12-2008 corrections needs to be
replaced with the following:

(c) Some of the incomplete gamma functions in section 3.3 for
calculating L �d^t(x) and L �d(x) are unde�ned when x � 0

In this case, the de�nition of L �d^t(x) gives one of four results:

(i) If x = 0 L�Hôpital�s rule appplied to the expressions in section 3.3 gives

L �d^t(0) = 1 and L �d(0) = 1:
(ii) If � 1

� < x < 0 the expression in section 3.3 for L �d^t(x) remains valid
and can be used in calculations for �nite t.
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An application of L�Hôpital�s rule on the two exponential terms above is enough
to show that
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(iii) If x = � 1
� L�Hôpital�s rule applied to the third term in brackets in (e.5)
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which can be used in calculations for �nite t and makes L �d(� 1
� ) =1 obvious.

(iv) If x < � 1
� the integral that de�nes the incomplete gamma function

in (e.5) is still available (although it no longer de�nes an incomplete gamma
function) and it can be integrated by expanding the exponential in a power
series:
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Note that for t =1 and x < � 1
� < 0 (e.7.1) shows that L �d(x) =1.

For �nite t how many terms of the sum in (e.7.1) are needed to calculate
L �d^t(x) within roughly an absolute accuracy of �? The idea will be to require
that n be large enough to achieve both (a) the additional term at n be smaller
than �

2 and (b) the ratio of the term at n + 1 to the term at n be less than 1
2 .

A powers series argument then will force the entire tail of the summation from
n to be smaller than �:
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will achieve (a). Now taking the ratio of two terms:h
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.
If n is chosen large enough to satisfy both (e.7.2) and (e.7.3) then the ap-

proximation in using n terms of the sum in (e.7.1) should be accurate within an
absolute accuracy of �.
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Going back to (e.7) we can get some more information out of integrating by
parts on the exponential rather than expanding the exponential:
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for any k � b�� 1c. If � happens to be an integer this provides an exact
calculation for L �d^t(x) since the sum terminates with a zero error term when
k = �� 1. In this case, one need not use the approximation in (e.7.1) through
(e.7.3). In addition to providing this exact calculation for integer �, (e.8) also
helps to provide estimates for some later expressions involving L �d^t(x). For
now, note that the integral in the error term in (e.8) is O(t��k�2) because
�(s� t)(x+ 1

� ) < 0 and e
�(s�t)(x+ 1

� ) makes the integrand irrelevant until s is
close to t.

General Formulae To Calculate (2.8) and Related Expected Values

Corresponding to (2.10), (2.11) corrected, and page 7 of the 8-12-2008
corrections the following general formula is available:
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de�ning �filg = �:::;l+1;:::;l+1;l;:::;l;l�1;:::;l�1;:::

where each l, for n � l � 1, appears il times.
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Corresponding to what�s needed to compute (2.6) in the 8-12-2008 correc-

tions:
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can simplify (2.6.f) slightly to
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A complete formula for computing (2.6)
If we take the formula for (2.6) in the 8-12-2008 corrections, expand the two

binomials, and interchange the order of summations so that powers of
1X
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summed over �rst, followed by powers of (1�F )�t1^t, and �nally substitute the

expression (2.6.g) just derived into each occurence of E
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A Slight Restatement of (3.5) and (3.6)

The closed form just presented for (2.6) requires the ability to evaluate ex-
pressions such as
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This can be evaluated by (3.5) in the original paper (or (3.6) for t = 1).
This is not immediately apparent because (3.5) is written in a slightly di¤erent
form. Here is how to restate (3.5) to a form consistent with the form of (3.5.a).
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So long as monotone or dominated convergence applies (monotone applies in all
of our applications) then
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Therefore (3.5) and (3.5.a), together with the corresponding versions of �(x),
di¤er only in how to count the exponent on E
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highest power of ej or x that appears.
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With this notational understanding we can now rewrite (3.5) as
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and (3.6) as
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Now (3.5.a) and (3.6.a) are suitable for evaluating the expression above for (2.6).

On page 10 of the 8-12-2008 corrections there is an error in the asymptotic
expression for drift compensation term Dt as t!1. The correct formula is
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