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Introduction
What is the Esscher Approximation?

A series expansion for any probability density function with �nite
moments

possible convergence questions but manageable in practice

Known to actuaries by Esscher�s name (1932)

Known to statisticians as the saddlepoint approximation (Daniels
1954)

Integrate the series to get approximate probability values under the
density

A location parameter in the expansion can be chosen arbitrarily

Choose a value for it that speeds up the convergence of the
integrated series
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Introduction
Why be Interested in the Esscher Approximation?

"Saddlepoint approximations, for both density/mass functions and
CDF�s, are usually extremely accurate over a wide range of x-values
and maintain this accuracy far into the tails of the distributions.
Often an accuracy of 2 or 3 signi�cant digits in relative error is
obtained. " (Butler 2007)
"Accordingly, one should always use [the saddlepoint approximation]
if it is available." (Jens 1995)
"Among the various tools that have been developed for use in
statistics and probability over the years, perhaps the least understood
and most most remarkable tool is the saddlepoint approximation ...
remarkable because [accuracy usually is] much greater than current
suppporting theory would suggest ... least understood because of the
di¢ culty of the subject itself and ... the research papers and books
that have been written about it." (Butler 2007)
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Introduction
How can the Esscher Approximation give Maximum Likelihood Values?

Try to approximate the point where the derivative of the probability
density function is 0

Either: take the derivative of the series expansion for the density

Or: make a series expansion for the derivative of the density

Or: take a weighted average of the two

If the limits exist they will be same in all cases but the partial sums
will not be the same! Maybe one will converge faster than another

Find the value for the random variable that minimizes the absolute
value of the partial sum (or sums)

Assume that the arbitrary location parameter is the unknown point of
maximum likelihood

Vastly simpli�es the minimization problem
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Introduction
Outline

What Does the Esscher Look Like?

Why Is the Esscher So Good?

Where Does the Esscher Come From?

How To Use the Esscher for Maximum Likelihood
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What Does the Esscher Look Like?
For a random variable X and an arbitrary location parameter a the density of X can be
represented as

fX (x) =

dfX�a(ih)
c eh(x�a)ϕ

� x�a
c

�
8>>>><>>>>:
1+ limN!∞

N

∑
j=3

1
j !

�
i j dfX�a (j)(ih)
c j dfX�a(ih) � j?

�
�

b N�j2 c
∑
n=0

(�1)n(2n)?
(2n)! H2n+j

� x�a
c

�
9>>>>=>>>>;

where dfX�a (t) is the Fourier transform E
h
e�it(X�a))

i
of the density for

the random variable X � a; the characteristic function at �t
so dfX�a (ih) is the moment generating function of X � a evaluated at h
ϕ (z) is the standard normal densitydfX�a(j) (t) is the jth derivative of the Fourier transform for X � a
so i j dfX�a(j) (ih) is the jth derivative of the moment generating function
of X � a, evaluated at h
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What Does the Esscher Look Like?
For a random variable X and an arbitrary location parameter a the density of X can be
represented as

fX (x) =

dfX�a(ih)
c eh(x�a)ϕ

� x�a
c

�
8>>>><>>>>:
1+ limN!∞

N

∑
j=3

1
j !

�
i j dfX�a (j)(ih)
c j dfX�a(ih) � j?

�
�

b N�j2 c
∑
n=0

(�1)n(2n)?
(2n)! H2n+j

� x�a
c

�
9>>>>=>>>>;

where j? = 0 for odd j and j? = (j � 1) (j � 3) � � � (1) for even j

h is chosen so that i dfX�a(1) (ih) = 0 (eliminating the j = 1 term)
c is chosen so that i

2 dfX�a (2)(ih)
c2 dfX�a(ih) � 1 = 0 (eliminating the j = 2 term)

if a = µX then h = 0 and c = σX (called the Edgeworth expansion)

Hm (z) =
bm2 c
∑
k=0

(�1)k m!(2k )?
(m�2k )!(2k )!z

m�2k = mth Hermite polynomial
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What Does the Esscher Look Like?
In the literature the order of summation is n �rst, then j

fX (x) =
dfX�a(ih)
c eh(x�a)ϕ

� x�a
c

�
8>>><>>>:

1+
∞

∑
n=3

1
n!Hn

� x�a
c

�
�

n

∑
j=3

in�jn!(n�j)?
j !(n�j)!

�
i j dfX�a (j)(ih)
c j dfX�a(ih) � j?

�
9>>>=>>>;

The ? notation makes n and j both odd or both even, so result is real

To get to our way, change the order of summation, change variables
so 2n+ j replaces n, and simplify

fX (x) =

dfX�a(ih)
c eh(x�a)ϕ

� x�a
c

�
8>>>><>>>>:
1+ limN!∞

N

∑
j=3

1
j !

�
i j dfX�a (j)(ih)
c j dfX�a(ih) � j?

�
�

b N�j2 c
∑
n=0

(�1)n(2n)?
(2n)! H2n+j

� x�a
c

�
9>>>>=>>>>;

Need to use limN!∞ or else you won�t know where the new n stops
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What Does the Esscher Look Like?
To �nd the probability that u<X<v just integrateZ v

u
fX (x) dx =

dfX�a(ih)
c

8>>>><>>>>:

Z v

u
eh(x�a)ϕ

� x�a
c

�
dx + limN!∞

N

∑
j=3

1
j !

�
i j dfX�a (j)(ih)
c j dfX�a(ih) � j?

�
�

b N�j2 c
∑
n=0

(�1)n(2n)?
(2n)!

Z v

u
eh(x�a)H2n+j

� x�a
c

�
ϕ
� x�a
c

�
dx

9>>>>=>>>>;
The integrals have been codi�ed as "Esscher functions" and can be
handled numerically
It turns out that this integrated series has far faster convergence
when the location parameter a is chosen to be either u or v

Even better when the other limit is ∞, i.e. in the tail.

The proper choices for h and c allow any choice needed for the
location parameter a
For tail moments (CTE, option pricing) you get a similar integral

Bridgeman (University of Connecticut Actuarial Seminar) Esscher September 9, 2011 9 / 28



Why is the Esscher So Good?
Summing the integrals over n �rst, then j, suggests one reason convergence is goodZ v

u
fX (x) dx =

dfX�a(ih)
c

8>>>><>>>>:

vZ
u

eh(x�a)ϕ
� x�a
c

�
dx +

∞

∑
n=3

1
n!

vZ
u

eh(x�a)Hn
� x�a
c

�
ϕ
� x�a
c

�
dx � 

n

∑
j=3

in�jn!(n�j)?
j !(n�j)!

�
i j dfX�a (j)(ih)
c j dfX�a(ih) � j?

�!
9>>>>=>>>>;

The choice of h and c has achieved two convergence-enhancing steps
simultaneously (also true even prior to integrating)

1 eliminated the n = 1 and 2 terms of a typical series expansion
2 reduced all further error terms (n > 2) by eliminating the j = 0, 1
and 2 terms of the coe¢ cient for each remaining term n > 2, with
greatest relative e¤ect on the most important terms (those divided by
the smallest n!)

Bridgeman (University of Connecticut Actuarial Seminar) Esscher September 9, 2011 10 / 28



Why is the Esscher So Good?
Our summation (j �rst, then n) suggests another reason convergence is good

Hm (z) ϕ (z) = (�1)m ϕ(m) (z) soZ v

u
fX (x) dx =

dfX�a(ih)
c

8>>>><>>>>:

Z v

u
eh(x�a)ϕ

� x�a
c

�
dx + limN!∞

N

∑
j=3

(�1)j
j !

�
i j dfX�a (j)(ih)
c j dfX�a(ih) � j?

�
�

b N�j2 c
∑
n=0

(�1)n(2n)?
(2n)!

Z v

u
eh(x�a)ϕ(2n+j)

� x�a
c

�
dx

9>>>>=>>>>;
For example, here are 1

3!
(2n)?
(2n)! ϕ(2n+3) (z) and their sum for successive

odd values 3, 5, 7, 9 as would appear in N = 10, j = 3, �3 < z < 3
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Why is the Esscher So Good?
Our summation (j �rst, then n) suggests another reason convergence is good

On the same scale, here are 1
4!
(2n)?
(2n)! ϕ(2n+4) (z) and their sum for even

values 4, 6, 8, 10 as would appear in N = 10, j = 4, �3 < z < 3

Even before integrating, at each point the terms dampen each other a
bit. They will shrink even more as j ! gets larger
The terms oscillate over z and decay (exponentially as O

�
e�

1
2 z
2
�
)

for large jz j (important b/c they will be multiplied by ehz )
Oscillations will tend to zero out when integrated over entire cycles
Best o¤setting when integrated from/to 0; especially to/from ∞
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Why is the Esscher So Good?
Looked at together

X
X 0

X 0 X
" X 0 X 0
j X 0 X 0 X

X 0 X 0 X 0
X 0 X 0 X 0 X

X 0 X 0 X 0 X 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0 0 0 0

n or 2 n + j !
Each new column is sparse compared to its theoretical weight,
especially when the n! dividing it is small
Each new column dampens the oscillations of half the prior columns
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Where Does the Esscher Come From?
Work in Fourier Transform Space and Use Taylor�s Series

First use just some algebra and the usual rules for Fourier TransformsbfX (t) = e�iat dfX�a(t)
\ϕ( xc )(t�ih)

\ϕ
� x
c

�
(t � ih) by translation�FT �exp

= 1
c e
�iat

n dfX�a(t)bϕ(c (t�ih))
o
\ϕ
� x
c

�
(t � ih) by reciprocal scaling. Now expand

= 1
c e
�iat

(
∞

∑
n=0

1
n!

h dfX�a(t)bϕ(c (t�ih))
i(n)
t=ih

(t � ih)n
)
\ϕ
� x
c

�
(t � ih) by Taylor�s

= 1
c e
�iat

∞

∑
n=0

1
n!

h dfX�a(t+ih)bϕ(ct)
i(n)
t=0

i�n
cn

\ϕ(n)
� x
c

�
(t � ih) by deriv�FT � power

= 1
c e
�iat

∞

∑
n=0

1
n!

h dfX�a(t+ih)bϕ(ct)
i(n)
t=0

i�n
cn

\z }| {
ehx ϕ(n)

�x
c

�
(t) by transla�FT �exp

= 1
c

∞

∑
n=0

1
n!

h dfX�a(t+ih)bϕ(ct)
i(n)
t=0

i�n
cn

\z }| {
eh(x�a)ϕ(n)

�
x � a
c

�
(t) by trans�FT �exp
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Where Does the Esscher Come From?
Invert the Fourier Transform

Back in density space

fX (x) = 1
c e
h(x�a)

∞

∑
n=0

1
n!

h dfX�a(t+ih)bϕ(ct)
i(n)
t=0

i�n
cn ϕ(n)

� x�a
c

�
which

= 1
c e
h(x�a)ϕ

� x�a
c

� ∞

∑
n=0

1
n!

h dfX�a(t+ih)bϕ(ct)
i(n)
t=0

in
cnHn

� x�a
c

�
because
ϕ(n)

� x�a
c

�
= (�1)n ϕ

� x�a
c

�
Hn
� x�a
c

�
Now use Leibniz�s product rule creatively to unravel the coe¢ cient
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Where Does the Esscher Come From?
Use Leibniz�s Product Rule to get the Coe¢ cient

For n > 0h dfX�a(t+ih)bϕ(ct)
i(n)
t=0

= dfX�a (ih) h 1bϕ(ct)
i(n)
t=0

+
n

∑
j=1

n!
j !(n�j)!

dfX�a(j) (ih) h 1bϕ(ct)
i(n�j)
t=0

0 =
h bϕ(ct)bϕ(ct)

i(n)
t=0

= bϕ (0) h 1bϕ(ct)
i(n)
t=0

+
n

∑
j=1

n!
j !(n�j)!c

j bϕ(j) (ct) jt=0 h 1bϕ(ct)
i(n�j)
t=0

Now multiply by dfX�a (ih) and subtract, noting that bϕ (0) = 1h dfX�a(t+ih)bϕ(ct)
i(n)
t=0

=

=
n

∑
j=1

n!
j !(n�j)!

�dfX�a(j) (ih)� dfX�a (ih) c j bϕ(j) (ct) jt=0� h 1bϕ(ct)
i(n�j)
t=0

but now using bϕ(j) (0) = i�j j?and h 1bϕ(ct)
i(n�j)
t=0

= cn�j (n� j)? geth dfX�a(t+ih)bϕ(ct)
i(n)
t=0

= n!cn dfX�a (ih) n

∑
j=1

1
j !

�
i j dfX�a (j)(ih)
c J dfX�a(ih) � j?

�
(n�j)?
(n�j)! i

�j
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Where Does the Esscher Come From?
Substitute Back into the Expression for the Density

fX (x) = 1
c e
h(x�a)ϕ

� x�a
c

� ∞

∑
n=0

1
n!

h dfX�a(t+ih)bϕ(ct)
i(n)
t=0

in
cnHn

� x�a
c

�

=
dfX�a(ih)
c eh(x�a)ϕ

� x�a
c

�
8>>><>>>:

1+
∞

∑
n=1

in
n!Hn

� x�a
c

�
�

n

∑
j=1

i�jn!(n�j)?
j !(n�j)!

�
i j dfX�a (j)(ih)
c j dfX�a(ih) � j?

�
9>>>=>>>;

Choose h and c to kill j = 1 and 2, change the order of summation,
change variables so 2n+ j replaces n, and simplify

fX (x) =

dfX�a(ih)
c eh(x�a)ϕ

� x�a
c

�
8>>>><>>>>:
1+ limN!∞

N

∑
j=3

1
j !

�
i j dfX�a (j)(ih)
c j dfX�a(ih) � j?

�
�

b N�j2 c
∑
n=0

(�1)n(2n)?
(2n)! H2n+j

� x�a
c

�
9>>>>=>>>>;
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Where Does the Esscher Come From?
In Summary

Take the Talylor�s series for
dfX�a(t)bϕ(c (t�ih)) around ih in Fourier space

Expand
h dfX�a(t+ih)bϕ(ct)

i(n)
t=0

by Leibniz�s rule, using the trickh bϕ(ct)bϕ(ct)
i(n)
t=0

= 0 to kill the �rst term and make the rest of the terms

into di¤erences

Given a choose h and then c to kill the �rst two di¤erence terms

e�ia...d� xc �(t � ih) becomes eh(x�a)... � x�ac � back in density space.
The eh(x�a) is called "exponential tilting" in the literature, so
exponential tilting comes from a Taylor�s series around ih in Fourier
space.

Changing the order of summation to j �rst, then n seems most
natural to me
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How To Use Esscher for Maximum Likelihood
3 Ways: (1) Derivative of the Esscher (2) Esscher for the Derivative (3) Weighted Average

(1) Derivative of the Esscher
Since ϕ

� x�a
c

�
H2n+j

� x�a
c

�
= (�1)j ϕ(2n+j)

� x�a
c

�
a simple product rule

calculation gives (leaving j = 1 and 2 still in the picture for the moment)

The h term comes from the derivative of eh(x�a) and the 1
c term from

the derivative of ϕ
� x�a
c

�
H2n+j

� x�a
c

�
= (�1)j ϕ(2n+j)

� x�a
c

�
The series does not necessarily converge! Derivative of approx maybe
6= approx for derivative when oscillations are involved
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How To Use Esscher for Maximum Likelihood
3 Ways: (1) Derivative of the Esscher (2) Esscher for the Derivative (3) Weighted Average

(2) Esscher for the Derivative
Doing for f (1)X (x) exactly what we did for fX (x) it�s easy to get to

f (1)X (x) =

d
f (1)X�a(ih)

c eh(x�a)ϕ
� x�a
c

�
8>>>><>>>>:
1+ limN!∞

N

∑
j=1

1
j !

"
i j
d
f (1)X�a

(j)

(ih)

c j
d
f (1)X�a(ih)

� j?
#
�

b N�j2 c
∑
n=0

(�1)n(2n)?
(2n)! H2n+j

� x�a
c

�
9>>>>=>>>>;,

which does converge. But how to deal with
d
f (1)X�a

(j)

(ih)?d
f (1)X�a (t + ih) = i (t + ih) dfX�a (t + ih) is a basic Fourier property sod
f (1)X�a

(j)

(t + ih) jt=0 = �h dfX�a(j) (ih) + ji dfX�a(j�1) (ih) by Leibniz�s rule
= �h dfX�a(j) (ih) + 1

c jc (�i)
�1 dfX�a(j�1) (ih), including j = 0
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How To Use Esscher for Maximum Likelihood
3 Ways: (1) Derivative of the Esscher (2) Esscher for the Derivative (3) Weighted Average

(2) Esscher for the Derivative - continued - plug into the expansion:
The �h term is exactly �h times the original Esscher.
The 1

c term is like 1
c times the original Esscher except j is lowered by

1 and there�re no j? terms (they went with the �h)

(3) Weighted Average
If (1) converges then any weighted average θ (1) + (1� θ) (2) also
will converge.
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How To Use Esscher for Maximum Likelihood
Whichever Way: For a given N, minimize over a, h, and c

Maximum Likelihood occurs at a value xm where f
(1)
X (xm) = 0

Try to approximate xm given only N terms in the sums:

Try to minimize j(1)j, j(2)j, or jθ (1) + (1� θ) (2)j over xm , a, h, c ,
and (maybe) θ using a numerical tool such as SOLVER

But with so many variables it might not be stable or fast

Try to minimize j(1)j over xm and a using the usual Esscher values
for h and c corresponding to each trial value of a

But this may be unstable, slow, or wrong because the derivative of an
approximation may not converge, or not quickly, to the derivative when
the approximation is oscillatory as ours is (coming from Fourier space).

Try to minimize j(2)j over xm and a using the usual Esscher values
for h and c corresponding to each trial value of a

But this may be slow because i2 [fX�a
(2)
(ih) hasn�t been eliminated in

the 1c term
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How To Use Esscher for Maximum Likelihood
Instead, Choose a to be the Unknown Point of Maximum Likelihood
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How To Use Esscher for Maximum Likelihood
Choose h and c to Eliminate the First Two Derivatives of Moment Generating Function
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What if No/No Known Moment Generating Function?
Approximate it Using a Taylor�s Series Involving Moments as Coe¢ cients

The method needs derivatives of the moment generating function.

What if the moment generating function is unknown?

Approximate any derivative of the moment generating function by
expanding it in a Taylor�s series around h = 0

i j dfX�a(j) (ih) = limM!∞

M

∑
m=0

i j+m
m!
dfX�a(j+m) (0) hm where

i j+m dfX�a(j+m) (0) is the (j +m)th moment of X � a
But what if that Taylor�s series doesn�t converge?

This would be the case when there is no moment-generating function
In terms of Fourier transforms this means that the Fourier transform is
not an analytic function and its Taylor expansion doesn�t exist o¤ the
real axis
The lognormal distribution would be an example
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What if No/No Known Moment Generating Function?
Use the Series Expansion with Moments Anyway (or Go To Log-Likelihood)

As long as you know the moments themselves, use the same series up
to a value m = M representing the order of approximation you want
(and moments you know)

i j dfX�a(j) (ih) = limM!∞

M

∑
m=0

i j+m
m!
dfX�a(j+m) (0) hm where

i j+m dfX�a(j+m) (0) is the (j +m)th moment of X � a
To any order there is a new density that has a moment generating
function and moments matching X � a�s moments to that order

Just add arbitrary higher moments that give convergence

You will be approximating maximum likelihood for that new density
For a maximum likelihood estimate, far from the tails, error introduced
by discrepancies at higher moments should be tolerable?
Approximates the non-oscillatory density with given moments?

Alternatively, do the entire Esscher for the log of the density.
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When Might You Use The Esscher?

There are many situations when it is easier to know the
moment-generating function, or just a lot of moments, than to know the
probability density:

Sums of random variables (the typical statistical applications)

Compound random variables

Compound random process (Esscher�s application)

More general random processes (maybe not "easy" but still perhaps
"less di¢ cult")

Monte Carlo simulations (a lot of moments, at least)

Computationally intense? Perhaps,

but we are in a world of actuaries willing to devote entire CPU farms to
"stochastic within stochastic" simulations
why not devote some CPU to computationally intense analytic
approaches?
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