Calibration of a Regime-Switching Interest Rate Model

James Bridgeman

Zepeng Xie Songchen Zhang Xuezhe Zhang University of Connecticut

Actuarial Research Conference - Temple University

August 2, 2013

Context for the Model

- Long-Rate Anchor: 20 Yr, Not (yet) Whole Curve
- Stress-testing
 - Not Forecasting
 - Not Pricing
- What's Important:
 - Severe but Plausible Extreme Scenarios
 - Plausible: in historical context
 - Severe: represent real stresses
 - Extreme: on both (all) tails
- Much Less Important:
 - Accuracy Around the Likely Scenarios
- Completely Irrelevant:
 - Risk Neutrality
 - Arbitrage Free

Summary

• Typical Generators (e.g. AAA).....

- Gaussian-based volatility driver
- A single mean reversion point (MRP)
-Fail To Produce Historically Plausible Ranges of Results
 - Unhistorical shape to the realized volatility
 - Tightly bunched paths versus historical ranges
 - MRP assumption largely drives the extreme paths
- To Fix the Problems
 - Use fat-tailed volatility driver
 - Randomize MRP to spread range of extreme paths
- But This Introduces More Parameters
 - Calibration becomes a real challenge

History of 20 Year US Treasury Rate

Plausible By Definition

20 Yr Treasuries: History vs AAA Generator Monthly %-iles

Neither Early 80's Nor Japan Are Remotely Plausible In AAA

No One Path Follows the Monthly Extremes

AAA Extreme Paths Are Not Japan-Like Near-Term - But They Persist

Historical Frequency of 20 Year Rates

Bridgeman Xie Zhang² (Actuarial Research C

August 2, 2013 7 / 34

Historical Frequency of 20 Year Rates vs AAA Generator

Historical Realized Volatility of 20 Year Rates

Monthly log-change in 20 year risk free rate

August 2, 2013 9 / 34

Historical Distr. of Realized Volatility of 20 Year Rates

High Kurtosis

frequency of monthly log-change in 20 year rates

Historical Distr. of Realized Volatility vs AAA Generator

Stochastic Volatility Helps, May Not Fully Pick Up The Tails

frequency of monthly log-change in 20 year rates

Historical Distr. of Realized Volatility vs AAA Generator

Missing Tails Are Significant

frequency of monthly log-change in 20 year rates

Comparative Statistics: History vs AAA

Rate Levels and Spread as well as the Shape of the Realized Volatility Differ Significantly from History

	60 Year	ΑΑΑ	ΑΑΑ
	History	Mean	StdDev
Rate = 20 Year Treasury			
Rate Mean	.0635	.0410	.0081
Rate StdDev	.0266	.0117	.0058
Rate Kurtosis (normal=3)	3.53	3.02	1.29
Rate 6th-osis (normal=15)	21.5	17.7	26.1
(6th Ctrl Mom/StdDev^6)			
Realized Volatility = $\Delta \ln Rate$			
Volatility StdDev	.0360	.0338	.0039
Volatility Kurtosis (normal=3)	10.9	5.3	1.6
Volatility 6th-osis (normal=15)	479	76	124

Consider A New Model

• Traditional Models (including AAA)

 $\Delta \ln \textit{Rate}_t =$

 $\textit{F}*(\textit{In MRP}-\textit{In Rate}_{t-1}) + \textit{SlopeAdjustment} + (1-\textit{F})*\textit{Gaussian} \Delta$

• Proposed New Model:

Regime-Switching with Random Regimes

 $\Delta \ln Rate_i = F * (\ln MRP_t - \ln Rate_{t-1}) - DriftCompensation + (1 - F) * DiWeibull\Delta$ where

 $MRP_t = MRP_{t-1}$

unless

 $t - t_{regime} >$ a random $Gamma(\alpha, \beta)$ variate.

In that case, the regime switches to a new, random MRP:

 $MRP_t =$ a random LogNormal variate, fixed until next regime-switch.

And the regime-switching clock restarts at $t_{regime} = t$.

(a *SlopeAdjustment* can be included if desirable), _____

DiWeibull Is Like Laplace:

Laplace is symmetric Exponential, DiWeibull is symmetric Weibull

A Sample Path From the New Model (inti-MRP 4-53)

New Model Requires 8 Parameters

- 2 Parameters For The Regime Clock Random $Gamma(\alpha, \beta)$ Variate.
 - $\alpha = 7.1$ and $\beta = 1.14$ (in annualized units) follows from MLE applied to historical random MRP estimates derived by Least Square Error analysis versus historical rates
 - Average length of an interest rate regime is lphaeta=8 Years plus 1 Month
- 1 Initial Value For The MRP
 - Least Square Error analysis versus historical rates gives
 - For 4-1953 start: init-MRP=2.36%
 - For 6-2013 start: init-MRP=2.04%
- This Leaves 5 Parameters To Be Determined
 - 2 Parameters For The Lognormal Random MRP
 - 2 Parameters For The *DiWeibull*∆ Volatility Driver
 - 1 Mean Reversion Strength Factor (F in the formula)
- Choose The 5 Parameters To Best Align Comparative Statistics vs History

Comp. Stats: History vs New Model (init-MRP 4-53)

Rate Levels and Spread as well as the Shape of the Realized Volatility Now Align With History

	60 Year	Model	Model
	History	Mean	StdDev
Rate = 20 Year Treasury			
Rate Mean	.0635	.0631	.0126
Rate StdDev	.0266	.0268	.0105
Rate Kurtosis (normal=3)	3.53	2.96	1.24
Rate 6th-osis (normal=15)	21.5	15.8	18.9
(6th Ctrl Mom/StdDev^6)			
Realized Volatility = $\Delta \ln Rate$			
Volatility StdDev	.0360	.0363	.0027
Volatility Kurtosis (normal=3)	10.9	10.9	4.8
Volatility 6th-osis (normal=15)	479	365	636

New Model (init-MRP 4-53) vs History: Monthly %-iles

Only 55/723 Months Breach 5%-95%: History Fits Into This Easily

Hist Freq of 20 Yr Rates vs New Model (init-MRP 4-53)

Fits Like A Glove

Bridgeman Xie Zhang² (Actuarial Research C

August 2, 2013 20 / 34

Realized Vol: History vs New Model (init-MRP 4-53)

Too Far In The Other Direction? At Least The Tail Is Good

frequency of monthly log-change in 20 year rates 0.12 0.1 0.08 frequency of occurrence 0.04 0.02 0.0000 0 1950 Monthly change in logarithm of 20 year treatury rate

Bridgeman Xie Zhang² (Actuarial Research C

Calibration

AAA Vs New Model (init-MRP 6-13): Monthly %-iles

AAA Vs New Model (init-MRP 6-13): Rate Frequency

Same Prob. \leq 2.25%, Wild Difference Thereafter

An Extreme Path In The New Model (init-MRP 6-13)

For First 15 Years Slightly More Stress Than The 99%-ile AAA Scenario (And After 15 It Has Different Stresses That AAA Would Never Generate)

Comp. Stats: New Model (init-MRP 6-13) vs AAA

Shape Of Model Realized Volatility Is Not Only Fatter-Tailed On Average But Also Much More Varied

	Model Mean	Model StdDov	AAA Mean	AAA StdDov
Rate = 20 Year Treasury	Wear	Judev	Ivican	StuDev
Rate Mean	.0628	.0126	.0410	.0081
Rate StdDev	.0271	.0104	.0117	.0058
Rate Kurtosis (normal=3)	2.94	1.19	3.02	1.29
Rate 6th-osis (normal=15)	15.3	17.7	17.7	26.1
(6th Ctrl Mom/StdDev^6)				
Realized Volatility = $\Delta \ln \text{Rate}$				
Volatility StdDev	.0364	.0027	.0338	.0039
Volatility Kurtosis (normal=3)	10.8	5.0	5.3	1.6
Volatility 6th-osis (normal=15)	368	706	76	124

Realized Vol: New Model (init-MRP 6-13) vs AAA

Both Miss Parts of Historical Volatility Shape Despite Other Evidence

frequency of monthly log-change in 20 year rates

Bridgeman Xie Zhang² (Actuarial Research C

Calibration

Instead of Kurtotis and 6th-osis: • Minimize L2 Distance of CDF to History

$$\sqrt{\int \left(F\left(r\right) - H\left(r\right)\right)^{2} dr}$$

• Minimize L1 Distance of CDF to History $\int |F(r) - H(r)| \, dr$

- Use CDF Rather Than PDF To Emphasize Tails
- Use Both Rates and Realized Volatility

Calibration On L2 and L1 Distance, Means, Vol Std Dev

	Model	Model	ΑΑΑ	ΑΑΑ
	Mean	StdDev	Mean	StdDev
Rate = 20 Year Treasury				
Rate Mean	.0631	.0078	.0410	.0081
Rate StdDev	.0190	.0048	.0117	.0058
L2 Distance to History	.0372	.0135	.0858	.0271
L1 Distance to History	.0102	.0035	.0230	.0070
Realized Volatility = $\Delta \ln \text{Rate}$				
Volatility StdDev	.0335	.0018	.0338	.0039
L2 Distance to History	.0067	.0012	.0074	.0030
L1 Distance to History	.0027	.0004	.0031	.0013

Realized Vol. Comparison For This Alternative Calibration

Bridgeman Xie Zhang² (Actuarial Research C

August 2, 2013 29 / 34

DiWeibull Driver For This Alternative Calibration

With This Calibration The Volatility Driver Has Milder Tail BiModal Not A Problem: Mean-Reversion Smooths It Out In Realized Vol.

Rate Distr. Comparison For This Alternative Calibration

Monthly %-iles vs History For This Alternative Calibration

20 year risk-free rate: History vs Model

And Compared To AAA Generator

3 🕨 🖌 3

Image: Image:

Extreme Path In This Alternative Calibration

Still Japan-like For A Good 15 Years

Bridgeman Xie Zhang² (Actuarial Research C

August 2, 2013 34 / 34