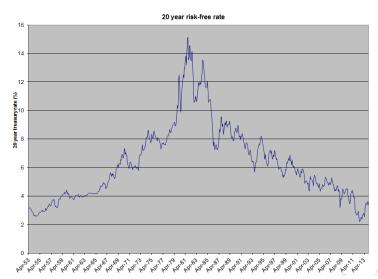
Interest Rate Modeling With Random Regimes

James G. Bridgeman FSA CERA MAAA University of Connecticut

Actuaries Club of Hartford-Springfield

May 21, 2014

INTERWOVEN THEMES AND HISTORY


INTEREST RATES

STRESS TESTING

MODELS

FACTUAL HISTORY

20 Year U.S. Treasury Rates

1974: Guaranteed Income Contracts in the Group Pension Market

Early 1978: 12% Will Bring Blood In the Streets

February 1980: It Didn't; October 1981: Even 15.13% Didn't

FAILURE TO "SEE" A PLAUSIBILITY WAS CATASTROPHIC FOR INSURERS

- One Of The Largest Was Bankrupted
 - An Acquisition Disguised The Fact
- At Least One Of The Largest Visited The Fed
 - ... For A "Maybe, What If?" Discussion
 - Turned Out To Be Unecessary

FACTUAL HISTORY

Saving Grace: Double-Digit Rates Only Lasted For 6 Years

ANECDOTAL HISTORY 1978-1980

SET TODAY'S STAGE

- Dynamic Valuation Interest Rates
- Asset Adequacy Analysis
- Appointed Valuation Actuary
- Principles-Based Discussion Began

January 1993: The Fed Won't Tolerate Long Rates Below 4%

January 1999: Maybe They Will, But That's What RBC Is For

Random Regimes

11 / 54

January 2003: No, That's What Asset Adequacy Reserves Are For

FACTUAL HISTORY ~ FUTURE QUESTION

December 2008: How Long Under 4%?; June 2011: Measured From When?

STRESS-TESTING CAN APPLY TO

- Reserves
 - Asset Adequacy Testing
 - Risk Management for Product/Line of Business
- Surplus
 - Risk Based Capital
 - Embedded Value
- Economic Capital
 - Basel II (III, etc.)
 - Own Solvency and Risk
- Enterprise Risk Management

STRESS-TESTING IS NOT

- A BY-PRODUCT OF FORECASTING
 - Forecasting Looks For Most Likely Outcomes
 - Maybe Within A Confidence Band
 - Forecasting Supports Current Decision-Making
 - Forecasting Will Be Judged By Actual Accuracy

STRESS-TESTING IS NOT

- A BY-PRODUCT OF PRICING
 - Pricing Looks For Expected Values
 - Usually With Reasonable Variance Bounds
 - Pricing Supports Product Portfolio Development
 - Pricing Will Be Judged By Average Accuracy

STRESS-TESTING IS

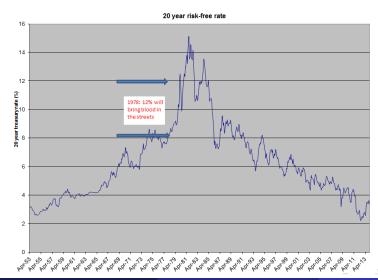
- A SEPARATE, DISTINCT DISCIPLINE
 - One That Looks For Extreme Values
 - Beyond Reasonable Variance or Confidence
 - But Within The Realm Of Plausibility (???)
 -(any fool can assume that the sky will fall)
 - One That Supports Institutional Resilience
 - One That Will Be Judged By "No Surprises"

STRESS-TESTING REQUIRES

- Truly Severe Values
 - Threats To Survival
 - Firm Not Providing Value If These Are Not "In Sight"?
 - ...(Or Maybe We're Not "Seeing" Very Well?)
 - On Both Extremes
- That Are Somehow Still Plausible
 - By What Standard?
 - History?: at a minimum
 - Theory?: maybe
 - Judgment?: be very wary of setting a maximum
 - Informed By History, Theory, and Judgment

STRESS-TESTING CAN / SHOULD IGNORE

- Accuracy
 - Around Likely Or Expected Scenarios
- Current Wisdom & Judgment
 - About Variance And Confidence Bands
- The Arbitrage-Free Shibboleth
 - If Someone Couldn't Get Rich Is It Truly Extreme?
 - But Do Preserve Both Extremes
- Risk-Neutral Modeling
 - Risk-Neutral Models Predict Today's Prices
 - Risk-Neutral Distributions Are Make-Believe


Deterministic Stress-Testing

Deterministic Interest Scenarios

- Necessary But Maybe Not Sufficient
- Risk That It's Limited By Current Imagination
 - "There Would Be Blood In The Streets"
- Risk That It's Limited By Historical Extremes
 - But If It Already Happened Isn't Worse Plausible?
- How Do We Know How Bad Is Bad Enough?
 - Yet Still Plausible

Back To The Anecdotes - 1978

12% Exceeded The Bounds Of Both History And Imagination

Back To The Anecdotes - 1978 To 1980/81

Imagination and History Were Not Nearly Enough

May 21, 2014

Deterministic Stress-Testing

Deterministic Interest Scenarios

- Necessary But Maybe Not Sufficient
- Risk They Are Limited By Current Imagination
 - "There Would Be Blood In The Streets"
- Risk They Are Limited By Historical Extremes
 - But If It Already Happened Isn't Worse Plausible?
- How Do We Know How Bad Is Bad Enough?
 - Yet Still Plausible
 - OR HOW LONG IS LONG ENOUGH? (Plausibly)

FACTUAL HISTORY

Remember: Double-Digit Rates Only Lasted For 6 Years

Back To The Anecdotes - 1990's

Japan Told Us That <2% or 3% Deterministic Was Plausible

Back To The Anecdotes - Flash-Forward

So 2008 &12 Were Not A "Surprise" For The Deterministic Stress-Test

Back To The Anecdotes - 1990's

BUT FOR HOW LONG < 2% or 3%?

- Forever?: Not Plausible (Remember 6 Years Of Double-Digit Rates?
- 5 10 Ten Years?: Maybe Not Severe Enough?
- We Finally Resorted To Random Scenarios
- Definitely A Last Resort
 - We'd Seen Too Much Abuse of Stochastic Models
 - They Only Give Back What You Put In
 - But Hard To Recognize Own Input Coming Back At You
 - No-Arbitrage and Risk-Neutral All The Rage
 - Risked Confusing Even Knowledgeable Audience

RANDOM INTEREST RATE SCENARIOS

- The Extreme Scenarios Will Be The Stress-Test
 - So Risk-Neutral And Arbitrage-Free Are Irrelevant
- Start With A Model For An Anchor Rate
 - 20 Year Treasury
 - Build A Yield Curve Off That Later
- Choices
 - Pure Dispersion (Random Walk)

The Choices Pictorially

PURE DISPERSION – RANDOM WALK — IMPLAUSIBLE $\Delta \ln Rate_t = Gaussian \Delta$

Random Stress-Testing

RANDOM INTEREST RATE SCENARIOS

- The Extreme Scenarios Will Be The Stress-Test
 - So Risk-Neutral And Arbitrage-Free Are Irrelevant
- Start With A Model For An Anchor Rate
 - 20 Year Treasury
 - Build A Yield Curve Off That Later
- Choices
 - Pure Dispersion (Random Walk) ... Implausible
 - Introduce A Mean Reversion Point (MRP)

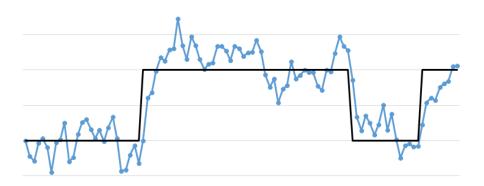
The Choices Pictorially

INTRODUCE A MEAN REVERSION POINT (MRP) $\Delta \ln Rate_t = F*(MRP - \ln Rate_{t-1}) + (1-F)*Gaussian\Delta$

Random Stress-Testing

RANDOM INTEREST RATE SCENARIOS

- The Extreme Scenarios Will Be The Stress-Test
 - So Risk-Neutral And Arbitrage-Free Are Irrelevant
- Start With A Model For An Anchor Rate
 - 20 Year Treasury
 - Build A Yield Curve Off That Later
- Choices
 - Pure Dispersion (Random Walk) ... Implausible
 - Introduce A Mean Reversion Point (MRP)
 - Which One (MRP) and How Fast (F)?
 - Any Choices Eliminate Some Historical Extremes –
 - (Either Level Extremes &/Or "How Long?" Extremes)
 - AAA Generator Chose This (And Eliminated Both)


Random Stress-Testing

RANDOM INTEREST RATE SCENARIOS

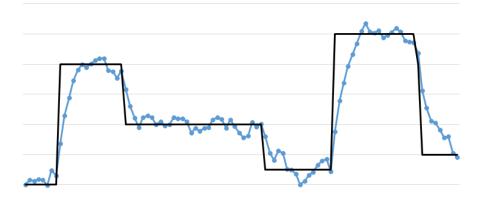
- More Choices
 - Introduce More Than One MRP (Regimes)
 - Switch Off Among Them (Somehow Randomly)

The Choices Pictorially

INTRODUCE MORE THAN ONE MRP (REGIMES) $\Delta \ln Rate_t = F*(MRP_i - \ln Rate_{t-1}) + (1-F)*Gaussian\Delta$ i=1,2 deterministic when regime switch randomly occurs

RANDOM INTEREST RATE SCENARIOS

- More Choices
 - Introduce More Than One MRP (Regimes)
 - Switch Off Among Them (Somehow Randomly)
 - How Many? At What Levels? With What Frequency?
 - Assumptions & Output Both Look Artificial
 - Little Or No Guidance From Interest Rate History
 - ... (How much worse than 15% / 2% is plausible?)


Random Stress-Testing

RANDOM INTEREST RATE SCENARIOS

- More Choices
 - Introduce More Than One MRP (Regimes)
 - Switch Off Among Them (Somehow Randomly)
 - How Many? At What Levels? With What Frequency?
 - Assumptions & Output Both Look Artificial
 - Little Or No Guidance From Interest Rate History
 - ... (How much worse than 15% / 2% is plausible?
 - Introduce A Random Field Of MRPs (Regimes)
 - Switch Off Among Them (Somehow Randomly)

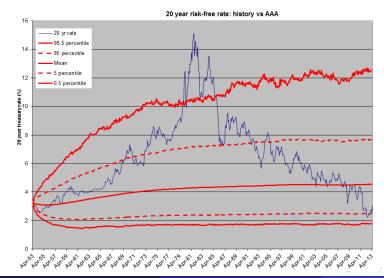
The Choices Pictorially

INTRODUCE A RANDOM FIELD OF MRPs (REGIMES) $\Delta \ln Rate_t = F*(MRP_t - \ln Rate_{t-1}) + (1-F)*Gaussian \Delta \\ MRP_t \text{ random when regime switch randomly occurs}$

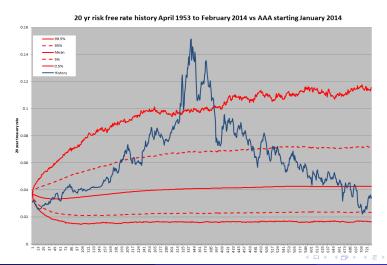
Random Stress-Testing

RANDOM INTEREST RATE SCENARIOS

- More Choices
 - Introduce More Than One MRP (Regimes)
 - Switch Off Among Them (Somehow Randomly)
 - How Many? At What Levels? With What Frequency?
 - Assumptions & Output Both Look Artificial
 - Little Or No Guidance From Interest Rate History
 - ... (How much worse than 15% / 2% is plausible?
 - Introduce A Random Field Of MRPs (Regimes)
 - Switch Off Among Them (Somehow Randomly)
 - Output Starts To Look Very Natural / Assumptions(??)
 - Historical Extremes Fit Right In
 - We Chose This One Parameters A Challenge

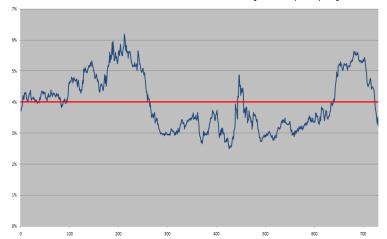

History of 20 Year US Treasury Rate

Plausible By Definition

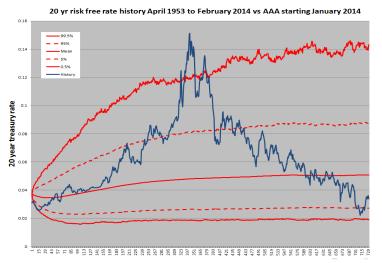

M'ly %-iles Apr.2013 AAA Generator (NAIC MRP 4.25%)

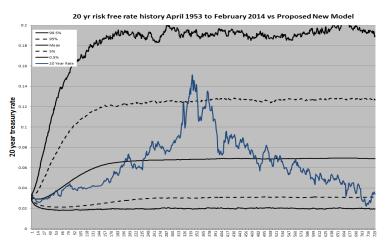
Neither Early 80's Nor Japan Are Remotely Plausible In AAA

M'ly %-iles Dec.2013 AAA Generator (NAIC MRP 4.00%)

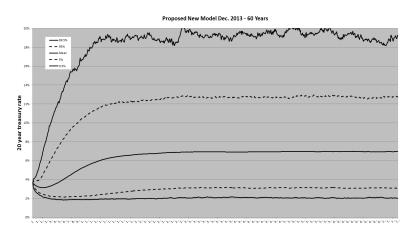

Update To New MRP Makes It Worse Even With Higher Starting Rate

99%-ile Scenario: Dec.2013 AAA (NAIC MRP 4.00%)

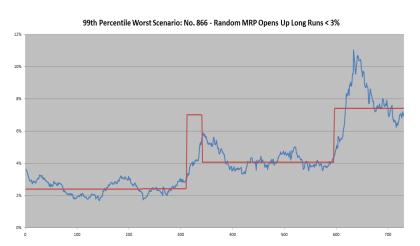

No One Scenario Hugs The Bottom – Here's 99% Cumulative < 4% Run


M'ly %-iles Dec.2013 AAA Generator (AAA MRP 4.75%)

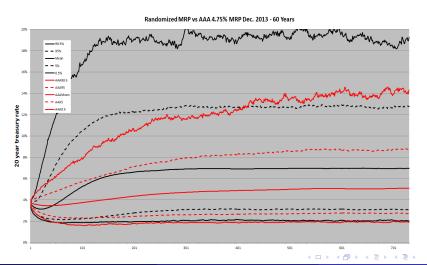
AAA's Recommended MRP Helps A Little, But Loses At The Bottom


M'ly %-iles Randomized MRPs / Apr. 1953 Start

Extreme Enough To Envelop History – But Still Plausible


M'ly %-iles Randomized MRPs / Dec. 2013 Start

Starts Higher But Still Has Similar Range Of Plausibilities


99%-ile Scenario: Randomized MRPs/Dec. 2013 Start

And Model Design Has Not Automatically Ruled Out Bottom-Hugging

Randomized MRP vs AAA (with AAA 4.75% MRP)

The High-Rate Risk Is Captured Much Better

FROM 1994 TO 2006:

— A LOT OF TRIAL & ERROR

SINCE THEN:

— SOME ATTEMPT AT SCIENCE

Historical Regimes - Derived From A Filtering Procedure

WAITING TIME TO REGIME SWITCH

- The MLE Gamma Distribution On Historical
 - Only 8 Data Points
 - Alpha = 3.52; Beta = 2.32
 - Mean = Alpha times Beta = 8.2 Years
 - Alpha And Beta Low Confidence Separately
 - Mean Is Really What Affects Model Output Anyway
 - Interesting That Mean = US Political Cycle

DISTRIBUTION OF MRP

Assume Lognormal - Mutually Independent

REVERSION SPEED

- Set Jointly With The Lognormal Parameters
 - To Get Best Fit With Moments Of Historical Rates

Rate Levels and Spread Align With History			
	61 Year	Model	Model
	History	Mean	StdDev
Rate $= 20$ Year Treasury			
Rate Mean	.0631	.0638	.0131
Rate StdDev	.0266	.0266	.0109
Rate Kurtosis (normal=3)	3.54	2.92	1.24
Rate 6th-osis (normal=15)	21.7	15.5	19.3
(6th Ctrl Mom/StdDev^6)			

VOLATILITY OF INTEREST RATES

- History Is Not Clearly Lognormal
 - We Fit A Three Parameter DiGeneralized Gamma
 - Using L1 & L2 Distances Of Cumulative Disributions
- Essentially As Good As AAA Generator
 - Which Fits Historical Volatility Very Well Indeed
 - Using Stochastic Volatility & Yield Curve Dynamics

With Thanks To

- Many Generations of Actuarial Students
 - At Aetna Life Insurance Company
 - At AnTai Life Insurance Company (in Taiwan)
 - At Aetna International Inc.
- Many Generations of UConn Students
 - Master's In Mathematics, conc. Actuarial Science
 - Master's In Applied Financial Mathematics
- Most Recently
 - Songchen (Darren) Zhang
 - Zepeng (Ben) Xie
 - Xuezhi (Kevin) Zhang
 - Nyan Paing Tin