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STATIONARY IMMUNIZATION THEORY 
 

James G. Bridgeman, United States of America 
 

Summary 
 

Classical immunization theory studies conditions under which present-value 
relationships are immune to adverse development if interest rates change.  It can be 
characterized as “active immunization” because maintenance of an immunized position 
over time can require active trading - rebalancing - in response to interest rate 
movements or to just the evolution of the portfolio. 

This paper explores a concept that could be called “stationary immunization” 
because of an analogy with the stationary population theory in life contingencies.  It 
deals with conditions under which the volatility of annual interest rate spreads in a 
portfolio managed on a buy-and-hold strategy is modulated relative to the volatility of 
market interest rates.  Since active immunization suboptimizes yields, there is merit to 
a concept of immunization built around a buy-and-hold model, avoiding transaction 
costs and undue exposure to the short end of the yield curve. 

All of the information about maturity patterns of assets and liabilities, and their 
interaction, is contained in the moments of their respective schedules of principal 
repayments, considered as generalized density functions.   Based on this analogy, 
complex formulas express interest rate spreads in terms of asset and liability principal 
repayment schedules interacting with the evolution of market interest rates.  The 
formulas resolve into (1) “stationary” components, which prevail in a mature portfolio 
and reflect generalized moments of the repayment schedules, plus (2)“transient” 
components, which reflect start-up anomalies and disappear over time in a stably 
growing portfolio. 

The resulting formulas describe the response characteristics of a stably growing 
insurance company viewed as an “antenna” or “tuner” that modulates an incoming 
signal of market interest rates over time into an output signal of interest rate spreads in 
the portfolio over time.  The task of immunization is (or should be) to maintain in the 
portfolio a modulation structure that will dampen the volatility of the output response 
to any such input signal.  Mathematically, a Fourier transform expresses on-going 
sensitivity of portfolio interest rate spreads to market interest rate cyclicity across the 
entire spectrum, replacing the Taylor’s series coefficients by which classical 
immunization expresses sensitivity of present values just to one-time pulses in interest 
rates.  

The reason to explore such a highly idealized model is similar to the reason to 
explore stationary populations in mortality theory.  Each provides a framework and a 
touchstone to identify what might prove to be systematically important aspects of real 
world relationships.  In addition, we glimpse the possibility of a model of the insurance 
enterprise complementary, in the sense of a mathematical duality, to the balance sheet 
focused present-value model that until now has dominated life actuarial practice. 
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TEORIA DE INMUNIZACION ESTACIONARIA 

 
James G. Bridgeman, Estados Unidos de América 

 
Resumen 

La teoría clásica de inmunización estudia las condiciones bajo las cuales relaciones de 
valor presente quedan inmunes a desarrollos adversos en caso de cambios en las tasas 
de interés.  Se puede caracterizar como “inmunización activa” porque el 
mantenimiento de una posición inmunizada puede requerir transacciones activas - 
balanceo - en respuesta a movimientos en tasas de interés o a la evolución del 
portafolio. 

Este ensayo explora un concepto que podría ser llamado “inmunización 
estacionaria” por una analogía con la teoría de población estacionaria en contingencias 
de vida.  El ensayo explora las condiciones bajo las cuales la volatilidad de la diferencia 
en tasas de interés anuales en un portafolio administrado bajo una estrategia de 
“comprar y mantener” es modulada en relación a la volatilidad de tasas de interés del 
mercado.  Dado a que la inmunización activa sub-optimiza los rendimientos, existe 
mérito en un concepto de inmunización construido alrededor de un modelo de 
“comprar y mantener”.   

Toda la información sobre patrones de vencimiento de activos y pasivos y su 
interacción, está contenida en los momentos de sus respectivas planillas de re-pagos a 
la suma principal, considerada como funciones de densidad generalizadas.  Basada en 
esta analogía, fórmulas complejas expresan las diferencias en tasas de interés en 
términos de planillas de re-pago a la suma principal de activos y pasivos interactuando 
con la evolución de tasas de interés en le mercado.  Las fórmulas resuelven hacia (1) 
componentes “estacionarios”, que prevalecen en un portafolio maduro, más (2) 
componentes “transitorios”, que desaparecen a través del tiempo en un portafolio de 
crecimiento estable. 

Las resultantes fórmulas describen las características de respuesta de una 
compañía de seguros creciendo establemente siendo vista como una “antena” o 
“sintonizador” que modula una señal entrante de tasas de interés de mercado a través 
del tiempo hacia una señal saliente de diferencias en tasas de interés del portafolio a 
través del tiempo.  La tarea de inmunización es (o debería ser) el mantener en el 
portafolio una estructura de modulación que disminuya la volatilidad de las respuestas 
a cualquiera de estas señales entrantes.  Matemáticamente, una transformación Fourier 
expresa la sensibilidad corriente hacia la ciclicalidad de tasas de interés a través del 
todo el espectro, reemplazando los coeficientes de la serie de Taylor de inmunización 
clásica.  

Adicionalmente, vemos la posibilidad de un modelo de la compañía de seguros 
complementaria, en el sentido matemático de dualidad, al balance general enfocado al 
modelo de valor presente que hasta ahora ha dominado la práctica actuarial. 
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I. Introduction 
Classical asset/liability immunization theory works with present values of assets 

and liabilities.  It studies the theoretical conditions governing relationships between 
present values of asset cash flows in a portfolio and present values of liability cash 
flows in a related portfolio.  In particular, it establishes the theoretical conditions under 
which such relationships are immune to adverse development if interest rates should 
change. 

As any such theory, classical immunization theory has limitations which 
suggest exploration of alternative theoretical points of view, not to replace classical 
immunization theory but to complement it in a richer total framework.  In particular, 
classical immunization theory can be characterized as requiring  “active” immunization.  
Maintenance of an immunized position over time requires active trading of the 
portfolio - rebalancing - in response both to interest rate movements and to just the 
simple evolution of the portfolio over time.  If rebalancing fails to occur for any 
reason, the supposed immunization will turn out to have been a chimera.  

Transaction costs and the possible need to increase exposure at times to the 
short end of the yield curve, usually at lower yields, suggest that the rebalancing 
implicit in classical immunization practice suboptimizes returns over time, perhaps 
beyond a reasonable risk premium for the protection afforded.  A little more 
fundamentally, the theoretical model to calculate present values in the first place 
reflects an enormously unrealistic oversimplification of the true complex economics of 
the insurance enterprise.  The fact that the oversimplification involved in the present 
value concept has served so many useful purposes so very well over time does not 
necessarily imply that it will do so well for the asset/liability mismatch problem, or that 
(at a minimum) another model of insurance economics would not provide a useful 
complement for the purpose. 

At an even deeper level, to focus exclusively on present value relationships 
creates vulnerability to the fundamental paradox that no single accounting model can 
present simultaneously a completely accurate and timely balance sheet and a 
completely accurate and timely income statement.  This is directly analogous to the 
uncertainty principle in physics.  Concepts such as reserves, asset values, margins and 
profits radically interpenetrate and distort each other.  But just as the mutual 
distortions of positions and momenta are related by disciplined principles of 
complementarity in quantum mechanics, one can hope to develop disciplined principles 
of complementarity between the balance sheet focused present value account of the 
insurance enterprise, on the one hand, and on the other hand ... what? 

This paper explores the behavior of an enormously unrealistic 
oversimplification of the true complex economics of the insurance enterprise.  But not 
a present value appears anywhere.  Instead, the paper focuses on the interest rate 
spread between the interest currently available from the assets versus the interest 
currently required on the liabilities, as the enterprise evolves over time.  Put another 
way, this model develops the “momentum” picture of the insurance enterprise, in 
contrast to the “position” picture at the foundation of classical immunization theory.  

The gross simplifications this model makes will create a parallel to the 
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stationary population theory of life contingencies.   Here we model two portfolios 
(populations), one of assets and another of liabilities, and the interaction between the 
two over time and with changing interest rates.  Nevertheless, the close parallel 
determines the title “stationary” immunization theory.   (Actually, the somewhat more 
general stable growth concept governs the model.) 

The model portfolios grow from the assumption that at each point in time: 
1. The model takes on new liabilities at an exponentially growing rate. 
2. The principal value of liabilities taken on at each prior point in time grows and/or 

runs-off according to a schedule that is the same for each such prior generation of 
liabilities.   

3. The principal value of assets purchased at each prior point in time grows and/or 
runs-off according to a schedule that is the same for each such prior generation of 
assets. 

4. New assets are purchased with the net cash flow, defined as the net of (1) through 
(3), borrowing on the same terms if negative. 

5. Each generation of assets earns interest at the market rate of interest that prevailed 
when it was purchased. 

6. Each generation of liabilities requires interest at the market rate of interest that 
prevailed when it was taken on. 

7. The interest rate spread is the difference between (5) and (6), in the net premium 
sense that if all goes according to plan the spread would be zero.  (If the model 
handles all this well, addition of an explicit margin later would be no problem.)  

The formulas that result are forbidding, but generally resolve into a 
“stationary” component that has some intuitive appeal and prevails once the portfolios 
mature into a stable system, plus thorny “transient” components that reflect start-up 
anomalies and disappear over time.  Occasionally, a “residual” crops up, which is the 
remnant of past transients that have not disappeared, but that change vanishingly less 
over time.  

There is no such thing as an insurance enterprise quite this simple, but then 
there is no such thing as a present value, either.  Together one could hope that they 
provide more rich and complementary a view than does either alone.  Before that can 
happen, the interest-rate-spread point of view requires elaboration perhaps comparable 
to that the present-value view has experienced over the decades. 

Section II. below develops mathematical notations and results that allow a 
simplification of most of the analytic complexities that would otherwise arise in the 
subsequent model development to algebraic manipulations.  Sections III., IV., and V. 
then apply that machinery to develop the liability, asset, and interest rate spread 
components, respectively, of the general model in largely algebraic fashion.  Section 
VI. recasts the interest rate spread component of the model into a form that explicitly 
displays its dependence on changes in market interest rates.  This step, unfortunately, 
uses some ponderous calculus to supplement the algebraic logic.  Section VII. 
specializes the general model to two specific applications, a stochastic model and a 
model of the effects of an interest rate jump, which bring to a focus almost all of the 
prior developments.  Finally, Section VIII. applies a Fourier transform to analyze the 
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characteristics of the general model of Section VI. more deeply, followed by some 
concluding remarks in Section IX. 

Especially for core formulas that underlie the work, explicit expressions for the 
error terms involved, usually identified as “transients,” accompany the simplifying 
approximations developed in this paper.  This complicates things, but can be 
anticipated to help with future attempts to relax some of the simplifying assumptions 
made here.       

Source references made by authors’ names within the text of the paper are 
listed at the end.  DeVylder’s monograph came to hand only after completing this 
work.  Its initial chapters offer convenient reference for the manner in which some of 
the purely mathematical ground in Section II. of this paper has been covered already in 
risk theory, but the application to asset/liability modeling appears to be new, as do 
some of the generalizations in Section II. involving exponential growth.  
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II. Notation and Mathematical Preliminaries 
We will model the maturity schedules for assets and liabilities according to an 

analogy with probability density and distribution functions.  Means and higher 
moments of the maturity schedules, together with some generalizations of those 
concepts, encode important information about sensitivity to interest rate changes.  We 
will need shorthand notation to model and manipulate such information.  Portfolio 
growth rates add further complexity to the model.  Convolution notation and delta-
functions help to manage the complexity. 
 
CONVOLUTIONS  

Given two functions f(x) and g(x), their convolution (f ∗  g)(y) is a new 

function defined by  ( )( ) ( ) ( )f g y f y x g x dx∗ = −
−∞

∞

∫ .  Risk theorists (see DeVylder,  sec. 

I.1.3.2, or Wooddy) prefer to write f ∗  G for this integral instead of f ∗  g, where G is a 
distribution with density G′ = g.  The f ∗  g used here follows the more traditional 
notation of real analysis and physics (see sec. 7.13 of Rudin, ch. 4 of Brigham, or sec. 
2.3 and 2.4 of James.  The latter two also show the connection between convolutions 
and delta functions, introduced below.) 

Convolutions follow the rules f ∗  g = g ∗  f,   f ∗  (g ∗  h) = (f ∗  g) ∗  h,   
and  f ∗  (g + h) = f ∗  g + f ∗  h.  A property that we will need later is that  
if e(y - x) = e(y) / e(x), e.g. if e(x) is an exponential function, then  

 
(e ⋅ f) ∗  (e ⋅ g) = e ⋅ (f ∗  g)             (II.1) 

 
where (e ⋅ g)(x) = e(x) g(x).  The proofs follow directly from the definition of 
convolution. 
  
DELTA FUNCTIONS 

Let ∆(x) be the function defined by ∆(x) = 1 for x ≥ 0 and ∆(x) = 0 for x < 0. 

Then for any function f(x), ( )( ) ( )∆∗ =
−∞
∫f y f x dx
y

 follows directly from the definition 

of convolution, which will simplify many formulas.  In fact, the technical content of 
this paper is a fugue on integration by parts (if f(-∞) = g(-∞) = 0 then  
 

∆ * (f ⋅ g) = (∆ * f) ⋅ g - ∆ * ((∆ * f) ⋅ g′), where g′ is the derivative of g) 
  

in counterpoint with II.1.  If we define I(x) = x for x ≥ 0, and I(x) = 0 for x < 0, then it 
follows immediately from the definitions of ∆ and of convolution that  
 

∆ ∗  ∆ = I.                                   (II.2)  
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The Dirac delta-function δ(x) is a generalized “function,” special rules for the 
use of which this paper will reflect scrupulously, but without explicit recitation.   It is 
defined by δ(x) = 0 for x ≠ 0 and (δ ∗  f)(x) = f(x) for all functions f(x).  δ(x) is the 
derivative of ∆(x), which we will write as ∆′(x) = δ(x).  

Sec. 15 of Dirac is still the best short introduction to delta functions and their 
properties.  For a rigorous development, unfortunately, none of the sources is easy.  
Sec. 5.3 of Robinson may be the most coherent of the rigorous treatments, but its rigor 
is the (ultra)product of a highly subtle framework from technical model theory.  Dirac 
denotes by ε(x) what this paper calls ∆(x).  Elsewhere in the physics literature H(x) or 
θ(x) may be found, depending upon the author.  This paper uses ∆(x) for consistency 
with the upper case/lower case notation convention for distributions/densities followed 
for all other functions that appear in the paper.   

 
DENSITIES AND DISTRIBUTIONS 

Let f(x) be a function such that ( )f x dx
−∞

∞

∫ = 1.  Then f(x) is analogous to a probability 

density function, except that we allow f(x) < 0 and ∫ f(x)dx > 1 over subintervals of 
the real line to occur so long as the full integral is still unity.  This paper always 
assumes that f(x) = 0 for x < 0, and some of the results require that f(x) be of bounded 
variation, which is hereby assumed.  Neither assumption impairs asset and liability 
maturity schedule modeling. 

Define F(y) = (∆ ∗  f)(y), so that F′(x) = f(x).  Then  F(y) is analogous to a 
probability distribution function corresponding to f(x), except that F(y) might not 
be monotonic, and in fact F(y) < 0 and F(y) > 1 are possible for some values of y, so 
long as F(y) → 1 as y → ∞.   
 
PARTIAL MOMENTS 

Define the mean, or first moment, of a distribution F 

by ( ) ( )( )( )F
y

xf x dx I f yµ = = ∗ ⋅
−∞

∞

→∞∫ lim ∆ .  Now generalize this concept by defining the 

function F µ(y) = (∆ ∗  (∆ - F))(y).  To see that this function deserves the notation 
suggesting a mean, 

        F µ(y) = (∆ ∗  (∆ ⋅ (∆ - F)))(y), trivially, and integrating by parts  
        = y (∆ - F)(y) - (∆ ∗  (I ⋅ (δ - f)))(y)  
                  = y (∆ - F)(y) + (∆ ∗  (I ⋅ f))(y)                                 (II.3) 
 
because  ∆ ∗  ∆ = I,  (∆ - F)′ = (δ - f),  and  I ⋅ δ = 0 everywhere.  Since (∆ - F)(y)→0 
as y → ∞, II.3 implies that F µ(y) → F µ  as  y → ∞.    (This is one of the steps 
requiring bounded variation.)  To avoid confusion between F µ(y) the function and F µ  
the value of the mean, we will always write F µ∞ for the value of the mean.  Looking  
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further,  F µ(y) = y (∆ - F)(y) + [∆ ∗  (I ⋅ (f / F(y)))](y) F(y), so F µ(y) can be viewed as 
a sort of “partial mean,” a weighted average of the amount y (for values of  x≥ y ) 
with an amount equal to a truncated mean of F (over only values of  x<y). 
 Except for a normalizing factor, F µ(y) is what risk theory calls the “concave 
transform” (sec. I.3.2.2 of DeVylder), but the word “concave” no longer may be apt 
since this paper does not restrict F(x) to the range of a true probability distribution (we 
allow F(x) < 0 and F(x) > 1.)  II.3 is the “surface interpretation of the first moment” 
(sec. I.3.2.1 of DeVylder).   Both concepts extend to higher moments as follows.  

Define the second moment of a distribution F by 

( ) ( )( ) ( )F
y

m x f x dx I f y2
2 2= = ∗ ⋅

−∞

∞

→∞∫ lim ∆   .  Generalize this concept by defining the 

function F m2(y) = 2 (∆ ∗  (I ⋅ (∆ - F)))(y).  Integrating by parts, 
 
  F m2(y) = y2 (∆ - F)(y) - (∆ ∗  (I2 ⋅ (δ - f)))(y) 

   = y2 (∆ - F)(y) + (∆ ∗  (I2 ⋅ f))(y)             (II.4) 
 
just as in the case of the first moment and F m2(y) → F m2  as y → ∞. To avoid 
confusion between F m2(y) the function and F m2  the value of the second moment, we 
will always write F m2

∞ for the value of the second moment. 
Similarly,  F m2(y) = y2 (∆ - F)(y) + [∆ ∗  (I2 ⋅ (f / F(y)))](y) F(y), and F m2(y) can 

be viewed as a sort of “partial second moment,” the weighted average of the amount 
y2 (for values of x ≥ y) with a truncated second moment of F (over only values of x < 
y). 

An extraordinarily useful relationship (which will be recognized from stationary 
population theory) arises between the first and second partial moment concepts:   
  ∆ ∗  F µ   = ∆ ∗  (∆ ⋅ F µ) , trivially, and integrating by parts 
    = I ⋅ F µ  -  ∆ ∗  (I ⋅ (∆ - F)), using ∆ ∗  ∆ = I   
                                                                    and F µ′ = (∆ ∗  (∆ - F))′ = (∆ - F), 
   = I ⋅ F µ - ( 1/2  )F m2 ,  by definition of F m2                (II.5) 
 
(See ch. 8, sec. 1 of Jordan.  Our F µ(x) is his T0 - Tx in the stationary population and 
our F m2(x) is his 2∫0,x y ly dy = 2(Y0 - Yx - x Tx).  II.5 also can be viewed as an extension 
of DeVylder, sec. I.3.2.2 Theorem 1, after applying both the concave transform and 
the surface interpretation back upon the concave transform itself.)     
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MEANS AND CONVOLUTIONS 
Define  f*(0) = δ 

                         f*(1) = f 
                         f*(2) = f ∗  f 

                         f*(3) = f ∗  f ∗  f , and so on.  For short let ( ) ( )∑∑
∞

=

∗∗∗ =
0n

nff  . 

For a broad range of density functions f, including most of those that represent 
realistic asset or liability portfolio maturity schedules, (∑f**)(x) → some definite limit 
as x → ∞.  (However, we mention below one class of density functions for which this 
is not true that includes some simple maturity schedules.)  Assuming that (∑f**)(x) has 
a limit as x → ∞ , then the value of the limit is  
 

(∑f**)(x) →  1 /F µ∞ as x → ∞                    (II.6) 
 
To prove (II.6) note that if  (∑f**)(x) has a limit as x → ∞, then 

 
  ( ) ( )( ) ( ) ( )( )xfyfF

xFy

∗∗

∞→

∞∗∗

∞→
Σ=Σ∗−∆ lim   lim µ                                  (II.7) 

because in the convolution on the left, as y → ∞, (∆ - F)(y - x) becomes negligible 
unless x is very large, in which case (∑f**)(x) approaches its assumed limiting value.  
In that case, the entire convolution on the left approaches ((∆ - F) ∗  ∆)(y) times that 
limiting value.  But ((∆ - F) ∗  ∆)(y) = F µ(y) and F µ(y) → F µ∞ as y → ∞, by II.3, 
proving II.7.  On the other hand, the entire convolution on the left of II.7 must equal 
simply 1 for all positive y because  
 
(∆ - F)∗ (∑f**) = ∆ ∗  (δ - f) ∗  (∑f**) = ∆∗ ((∑f**) - f ∗  (∑f**))= ∆∗  f*(0) = ∆ ∗  δ = ∆.  
 
Since the left side of II.7 is 1, the limit on the right of II.7 must be 1 /F µ∞, proving 
II.6.   

When (∑f**)(x) does not have a limiting value it is because it oscillates 
endlessly nearer to a repeated cycle of accumulation points as x → ∞.  For this class of 
density functions, the limiting value 1 /F µ∞ still holds on average over the cycle of 
accumulation points for large x.  This exception is a resonance phenomenon that 
requires such precise tuning that a typically complicated portfolio of assets or liabilities 
is unlikely to have a maturity schedule that falls into this exceptional class. 

Variations on the theme of II.6 and the surrounding discussion provide some of 
the cornerstones for risk theory (see sec. I.1.4, sec. I.1.5 and app. A of DeVylder.)  
The nearly algebraic proof afforded in this paper using delta functions and partial mean 
functions, however, seems especially perspicuous.  
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STABLE GROWTH 
To introduce a constant growth rate g into the mathematical tools outlined 

above, define g∆(x) = (1 + g)x ∆(x).  For any distribution F define F
gs to be the limit of 

(∆ ∗  (f / g∆))(y) as y → ∞.  We will see that F
gs  functions as a kind of scaling factor in 

many formulas.  It is the expected value of (1 / g∆)(x) on the density function f(x).  
Now define a new density function g f = f / (F

gs ⋅ g∆) with distribution  
g F = ∆ ∗  g f.  From the definition of F

gs, we see that g F(y) → 1 as y → ∞, so these 
meet the definitions of density and distribution functions.  The notations gF µ(y),  
gF µ∞, gF m2(y),  and gF m2

∞ for the partial mean, mean, partial second moment and 
second moment of this new distribution g F  follow the definitions set out and 
relationships derived in the preceding pages.   

So far, this looks formally like the “exponential transformation” process in risk 
theory (sec. I.1.5.3 and sec. I.3.2.4 of DeVylder) with “adjustment coefficient ρ” equal 
to - ln(1+g) and “renewal equation coefficient q” equal to  
(Fµ∞ ln(1+g))/(1- F

gs) in the couple with the concave transform of F.  To fit the 
requirements of an asset/liability model with growth, however, there will be some new 
concepts required that apparently have no precise counterparts yet in risk theory, to 
generalize the earlier partial mean and partial second moment concepts.  Before 
proceeding to the generalizations, this is a convenient spot to prove a lemma about g∆ 
that will be needed in developing the asset and liability models: 

 
      (δ - f) ∗  g∆ = g∆  -  f  ∗  g∆ 
   = g∆  -  g∆ ⋅ ((f  / g∆) ∗  ∆)),  by II.1. 
                                   = g∆ ⋅ (∆ - F

gs(g f  ∗  ∆)), factoring and using the definition of g f  
    = g∆ ⋅ (∆ - F

gs ⋅g F), by definition of g F 
                        = g∆ ⋅ ((1 - F

gs) ∆ + F
gs(∆ - g F))                     (II.8) 

 
This implies that [(δ - f) ∗  g∆](x) → (1 - F

gs)⋅ g∆(x) as x → ∞.   
 

Another way to look at II.8 is to say that (δ - f) ∗  g∆ splits into: 
 
a “stationary” (i.e. stably growing) component (1 - F

gs)⋅ g∆(x) that 
characterizes the situation after x becomes large,  

plus  
a “transient” component F

gs(g∆⋅(∆ - g F))(x) that reflects start up  
relationships and disappears over time as the situation matures.  
  

Now to the generalizations of the partial mean and partial second moment concepts. 
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A GENERALIZED PARTIAL MEAN 
By analogy with F µ(y), define F

gµ(y) = (∆ ∗  (g∆ ⋅ (∆ - g F)))(y).  An analysis 
similar to (II.3), integrating by parts, provides some intuitive meaning to this 
definition: 

        F
gµ = (∆ ∗  g∆) ⋅ (∆ - g F) - ∆ ∗  ((∆ ∗  g∆) ⋅ (δ  - g f))  

    = (∆ ∗  g∆) ⋅ (∆ - g F) + ∆ ∗  ((∆ ∗  g∆) ⋅ g f)                      (II.9) 
 
So F

gµ(y) is a “partial expected value” of the quantity (∆ ∗  g∆)(x) over the density 
function g f(x).   As y → ∞,   F

gµ(y) → F
gµ∞ , the expected value of (∆ ∗  g∆)(x)  over 

the density g f(x).  The form (II.9) will prove useful in some manipulations, but it also 
will be useful to insert the calculation (basic calculus)  
 

(∆ ∗  g∆) = (g∆ - ∆) / ln(1 + g)                      (II.10) 
 

(As g→0, L’Hôspital’s rule verifies that the expression in II.10 for (∆∗  g∆) → I  which 
equals (∆ ∗  ∆), consistent with II.2, and validating the use of notation suggesting a 
mean.) 

Using (II.9), (II.10) and the definition of g f  allows the calculation 
 

                  F
gµ∞ = (1 - F

gs) / (F
gs ln(1 + g))                      (II.11) 

 
(now L’Hôspital’s rule applied to II.11 verifies that F

gµ∞ → F µ∞ as g → 0, so we are, 
in fact, dealing with a generalization of the concept of a mean.) 
 
TWO GENERALIZED PARTIAL SECOND MOMENTS 

There are three different ways to generalize the useful formula II.5 into this 
stable growth model.  They will provide two different ways to generalize the partial 
second moment concept, both of which will appear in the asset and liability modeling.  
First,  

∆ ∗  F
gµ = ∆ ∗  (∆ ⋅ F

gµ), trivially, and integrating by parts gives 
= I ⋅ F

gµ  - ∆ ∗  (I ⋅ (g∆ ⋅ (∆ - g F))), since F
gµ′ = g∆ ⋅ (∆ - g F).   

  = I ⋅ F
gµ - ∆ ∗  ((I ⋅ g∆) ⋅ (∆ - g F)).                     (II.12) 

 
Comparing with II.5, this suggests a definition of the generalized partial 

second moment function as F
gm2  = 2 [∆ ∗  ((I ⋅ g∆) ⋅ (∆ - g F))], which integrates by 

parts and simplifies to give 
 

                 F
gm2 = 2[(∆∗ (I⋅ g∆))⋅(∆ - g F)+∆∗ ((∆∗ (I⋅ g∆))⋅ g f)]                             (II.13) 

 
The form II.13 will prove useful in manipulations, but it also will be useful to insert the 
calculation ((∆ ∗  (I ⋅ g∆)) = (∆ ∗  g∆) ⋅ I - ∆ ∗  ∆ ∗  g∆, integrating by parts.  Now  



 13   

repeated use of II.10 & II.2 gives 
  
       ((∆ ∗  (I ⋅ g∆)) = ((g∆ - ∆) / ln(1 + g)) ⋅ I  -  ∆ ∗  ((g∆ - ∆) / ln(1 + g)) 
                  = (g∆ ⋅ I ⋅ ln(1 + g) - (g∆ - ∆)) / (ln(1 + g))2                   (II.14) 
 
(As g → 0, L’Hôspital’s rule verifies that II.14  → ( 1/2  ) I2, validating the use of 
notation suggesting a second moment.)  Using II.13, II.14, and the definition of g f  
allows the calculation  
 
        F

gm2
∞ = 2 [(F µ∞ ⋅ ln(1 + g) - (1 - F

gs)) / (F
gs ⋅ (ln(1 + g))2)]              (II.15) 

 
(which → F m2

∞  as g → 0, using L’Hôspital’s rule.) 
Next, a second way to generalize II.5 is  
 
  g∆ ∗  F

gµ  = g∆ ∗  ∆ ∗  (g∆ ⋅ (∆ - g F)), by definition of F
gµ 

                = ∆ ∗  g∆ ∗  (g∆ ⋅ (∆ - g F)),  which by II.1 becomes  
                = ∆ ∗  (g∆ ⋅ (∆ ∗  (∆ - g F)).   Now integrate by parts to get   
                = (∆ ∗  g∆) ⋅ gF µ  - ∆ ∗  ((∆ ∗  g∆) ⋅ (∆ - g F))                            (II.16) 
 

Comparing with II.5 (and II.2) this suggests an alternative definition of a generalized 
partial second moment function as gF

gm2 = 2 [∆ ∗  ((∆ ∗  g∆) ⋅ (∆ - g F))], which 
integrates by parts and simplifies to give  

 
           gF

gm2 = 2 [(∆ ∗  ∆ ∗  g∆) ⋅ (∆ - g F) + ∆ ∗  ((∆ ∗  ∆ ∗  g∆) ⋅ g f)]        (II.17) 
 

 The form II.17 will prove useful in manipulations, but it also will be useful to insert 
the calculation 
  
             (∆∗∆∗  g∆)=∆∗ ((g∆ -∆)/ln(1+ g))=((g∆ - ∆)-I⋅ln(1+g))/(ln(1+g))2                 (II.18)  
 
based on repeated use of II.10 & II.2.  (As g → 0, L’Hôspital’s rule verifies that    
II.18  → ( 1/2  ) I

2 , validating the use of notation suggesting a second moment.)  Using 
II.17, II.18, and the definition of g f  allows the calculation 
 
               gF

gm2
∞ = 2 [((1 - F

gs) - F
gs ⋅ gF µ∞  ⋅ ln(1 + g)) / (F

gs ⋅ ln(1 + g)2)]        (II.19) 
 
(which → F m2

∞  as g → 0, using L’Hôspital’s rule.) 
Finally, the generalized partial second moment function gF

gm2 figures in one 
more useful analogue of II.5:  
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g∆ ∗  F
gµ = g∆ ⋅ (∆ ∗  ((∆ / g∆) ⋅ Fgµ)) by II.1.  Then an integration by parts gives 

        = g∆ ⋅ [(∆ ∗  (∆ / g∆)) ⋅ Fgµ  - ∆ ∗  ((∆ ∗  (∆ / g∆)) ⋅ g∆ ⋅(∆ - g F))] which by II.1   
        = g∆ ⋅ [(∆ ∗  (∆ / g∆)) ⋅ Fgµ  - ∆ ∗  ((∆ ∗  g∆) ⋅ (∆ - g F))] and, by definition of gF

gm2, 
        = g∆ ⋅ [(∆ ∗  (∆ / g∆)) ⋅ Fgµ  - (1/2)gF

gm2 ]                                                     (II.20) 
 
SUMMARY OF PARTIAL MOMENT DEFINITIONS AND RELATIONSHIPS 

The following display organizes the notational pattern and definitions for the 
various partial mean and partial second moment functions and generalizations that 
have been defined in this section.   

 
              F µ = ∆ ∗  (∆ - F)  F m2 = 2 ∆ ∗  (I ⋅ (∆ - F)) 

      F m2 = 2 ∆ ∗  ((∆ ∗  ∆) ⋅ (∆ - F)) 
 
   gF µ = ∆ ∗  (∆ -g F)            gF m2 = 2 ∆ ∗  (I ⋅ (∆ - g F)) 
                gF m2 = 2 ∆ ∗  ((∆ ∗  ∆) ⋅ (∆ - g F)) 
 
               F

gµ = ∆ ∗  (g∆ ⋅ (∆ - g F))        F
gm2 = 2 ∆ ∗  ((I ⋅ g∆) ⋅ (∆ - g F))  

                                                                       gF
gm2 = 2 ∆ ∗  ((∆ ∗  g∆) ⋅ (∆ - g F)) 

 
The various relations among partial mean and partial moment functions and their 
generalizations that motivated the definitions are summarized in: 
 
     ∆ ∗  F µ = I ⋅ F µ - ( 1/2 )F m2              (II.5) 
 
  ∆ ∗  gF µ = I ⋅ gF µ - ( 1/2 )gF m2                         (II.5) applied to gF 
 
   ∆ ∗  F

gµ = I ⋅ F
gµ - ( 1/2 ) F

gm2                                              (II.12) 
 
  g∆ ∗  F

gµ = (∆ ∗  g∆) ⋅ gF µ - ( 1/2 ) gF
gm2                                    (II.16) 

 
  g∆ ∗  F

gµ = g∆ ⋅ [(∆ ∗  (∆ / g∆)) ⋅ Fgµ  - ( 1/2 )gF
gm2 ]                         (II.20) 

 
When only the ultimate generalized mean and moment values are needed, rather than 
the partial mean and partial moment functions, their expressions directly in terms of F

gs 
are summarized in: 

 
                F

gµ∞ = (1 - F
gs) / (F

gs ln(1 + g))            (II.11) 
 
  F

gm2
∞ = 2 [(F µ∞ ⋅ ln(1 + g) - (1 - F

gs)) / (F
gs ⋅ (ln(1 + g))2)]                    (II.15) 

 
 gF

gm2
∞ = 2 [((1 - F

gs) - F
gs ⋅ gF µ∞  ⋅ ln(1 + g)) / (F

gs ⋅ ln(1 + g)2)]       (II.19) 
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III. Model of Liability Portfolio Structure 
At each point in time x ≥ 0, assume that new liabilities are taken on at the 

incremental rate g∆(x).                       (III.1) 
The new liabilities modeled in g∆(x) include any rollover of prior liabilities into new, 
current interest rate guarantees, pricing, or reserves at time x.  They exclude any 
increment to the liabilities to which prior interest rate guarantees, pricing, or reserves 
still attach at time x.  (Such increments will be modeled as negative “amounts 
maturing” in the prior generations of liabilities). 

Assume that each such generation of liabilities matures (or rolls over into a 
new, current interest rate) according to a maturity schedule for principal represented 
by the density function b(x), with corresponding distribution function  
B(y)=(∆ ∗  b)(y).  At any time y, the rate at which liability principal originally taken on 
at time x is maturing is thus b(y - x)⋅ g∆(x).  By the definition of convolution, therefore, 
integrating over all x the total rate of maturing liabilities in the portfolio at time y is                             
(b ∗  g∆)(y)                                      (III.2) 
Use of the same maturity schedule for all liability generations gives the model its 
“stationary” character. 

For some values of y - x, the maturity schedule b(y - x) for principal can be 
negative if guarantees, pricing, or reserves attach interest rates at issue (i.e. time x) to 
increments of liabilities occurring later (i.e. time y).   For many applications, such in 
fact will be the case (compound interest, multiple premium reserves, etc.)  The concept 
is that the remaining principal at time y belonging to generation x is the amount to 
which the interest rate from time x still applies.  The rate of decrease in that remaining 
principal at y (compared to the original amount at x) is what is represented by b(y - x), 
so an increase is represented by a negative b(y - x). 

At any time z, the total liabilities in force equal the integral of all liabilities 
taken on in the past, less the integral of all liabilities that have already matured.  By 
III.1 and III.2 this is:  

                     (∆ ∗  g∆)(z) - (∆ ∗  (b ∗  g∆))(z) = ((∆ ∗  g∆) - (B ∗  g∆))(z) 
                                                                     = ((∆ - B) ∗  g∆))(z)               (III.3) 
 
In words, III.3 says that total liabilities in force at any time in the model equal the 
remaining survivors of total liabilities originally taken on at all prior times. 

The stationary character of the model is revealed by the following calculation 
for total liabilities in force: 

 
       (∆ - B) ∗  g∆ =  ∆ ∗  (δ - b) ∗  g∆ 
                =  ∆ ∗  (g∆ ⋅ ((1 - B

gs) ∆ + B
gs(∆ - g B))),  by II.8. 

     = ((1 - B
gs) / ln(1 + g))(g∆ - ∆) + B

gs B
gµ,  by II.10 & the def. of B

gµ. 
     = B

gs (B
gµ∞ (g∆ - ∆) + B

gµ), by II.11.    
     = B

gs (B
gµ∞ g∆ - (B

gµ∞ ∆ - B
gµ)).           (III.4) 
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Now since B
gµ(z) → B

gµ∞  as z → ∞, III.4 shows that the total liabilities in force  
(∆ - B) ∗  g∆  consist of: 
 a “stationary” (i.e. stably growing) component B

gs B
gµ∞ g∆ that prevails in the    

mature portfolio,  
plus 

a “transient” component  - B
gs (B

gµ∞ ∆ - B
gµ) that disappears over time as the 

portfolio matures. 
 

 In other words, (∆ - B) ∗  g∆ ≈ B
gs B

gµ∞ g∆  in a mature portfolio.                    (III.5) 
 
IV. Model of Asset Portfolio Structure 

Model the asset portfolio corresponding to the liability portfolio modeled in 
section III according to the net premium principle.   At each point in time x ≥ 0, net 
new assets are purchased at an incremental rate equal to the net rate of liability flows, 
III.1 less III.2:   g∆(x)  -  (b ∗  g∆)(x) = ((δ - b) ∗  g∆)(x)  (The model treats negative net 
new asset purchases, should they occur, as borrowings on the same terms as would be 
available for asset purchases.   This can be considered an extension of the of the 
simplifying stationary portfolio assumption set.)   

Assume that each such purchased generation of net new assets matures (or 
rolls over into a new, current interest rate) according to a maturity schedule for 
principal represented by the density function a(x), with corresponding distribution 
function  A(y) = (∆ ∗  a)(y).   At any time y, the rate at which net new asset principal 
originally purchased at time x is maturing is thus a(y - x)((δ - b) ∗  g∆)(x).  By the 
definition of convolution, therefore, integrating over all x the total rate of maturing 
net new assets in the portfolio at time y is (a ∗  (δ - b) ∗  g∆)(y).  Use of the same 
maturity schedule for all asset generations gives the model its “stationary” character. 

For some values of y - x, the maturity schedule a(y - x) for principal can be 
negative if investment terms attach interest rates at the time of original investment or 
commitment (i.e. time x) to increments of funding or accrual occurring later (i.e. time 
y).  This is less likely to be the case than for liabilities, but it can occur (zero coupons, 
forward commitments.)  The concept is that the remaining principal at time y 
belonging to generation x is the amount to which the interest rate from time x still 
applies.  The rate of decrease in that remaining principal at y (compared to the original 
amount at x) is what is represented by a(y - x), so an increase is represented by a 
negative a(y - x). 
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Now maturing net new asset principal (a ∗  (δ - b) ∗  g∆)(y) also must be used to 
purchase assets since the original “net new asset” definition already accounted for all 
liability flows.  These purchases, in turn, mature according to schedule a(x) at a total 
rate at time y of (a ∗  a ∗  (δ - b) ∗  g∆)(y). This requires yet another generation of  
asset purchases, etc.  In total, therefore, the rate of all asset purchases in the model at 
time x is 
     ((∑a**) ∗  (δ - b) ∗  g∆)(x)                               (IV.1) 
In words, IV.1 says that total asset purchases at any point in time in the model come 
from the new liabilities taken on at that time, offset by any prior liabilities maturing  
at that time, plus reinvestment of all maturing amounts of prior asset purchases, 
including maturities of previously reinvested maturities to any order of iteration.  
Similarly, the rate of all asset maturities in the model at time y is 
 
     (a ∗  ((∑a**) ∗  (δ - b) ∗  g∆))(y)                    (IV.2) 
 

At any time z, the integral of the difference between IV.1 and IV.2 over all past 
times should give the total assets in force: 

 
∆ ∗  (((∑a**) ∗  (δ - b) ∗  g∆) - (a ∗  ((∑a**) ∗  (δ - b) ∗  g∆))) = 
      = ∆ ∗  ((δ - a) ∗  (∑a**) ∗  (δ - b) ∗  g∆) 
      = ∆ ∗  (δ ∗  (δ - b) ∗  g∆), since (δ - a) ∗  (∑a**) = a*(0) = δ. 
      =  ∆ ∗  ((δ - b) ∗  g∆)   

   =  ((∆ - B) ∗  g∆) 
 
The last expression agrees with III.3, as it should (because of the net premium 
principle underlying the asset model.) 

The stationary character of the asset model is revealed by the following thorny 
calculation for IV.1, the rate of all asset purchases in the model at a given time: 

 
(∑a**) ∗  (δ - b) ∗  g∆  = (∑a**) ∗  (((1 - B

gs) ∆ + B
gs(∆ - g B)) ⋅ g∆), by II.8. 

   = (1 - B
gs) (∑a**) ∗  g∆ + B

gs (∑a**) ∗  ((∆ - g B) ⋅ g∆)      (IV.3) 
 
But (∑a**) ∗  (δ - a) = δ implies that g∆ = (∑a**) ∗  (δ - a) ∗  g∆, so 
 
         g∆ =  (1 - A

gs) (∑a**) ∗  g∆ + A
gs(∑a**) ∗  ((∆ - g A) ⋅ g∆),     (IV.4) 

                 
by IV.3 with b = a.   
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Now solve IV.4:  
 
                (∑a**)∗  g∆ = (1/(1 - A

gs))( g∆ - A
gs(∑a**)∗ ((∆  - g A) ⋅ g∆))                 (IV.5) 

 
and substitute the expression from IV.5 into IV.3 to get 
 
(∑a**) ∗  (δ - b) ∗  g∆ =  
 
= ((1 - B

gs)/(1 - A
gs))( g∆ - A

gs(∑a**) ∗  ((∆ - g A) ⋅ g∆))) + B
gs(∑a**) ∗  ((∆ - g B) ⋅ g∆), 

 
and, finally, apply II.11 and collect terms to get 
 
= ((B

gs⋅ Bgµ∞)/(A
gs⋅ Agµ∞))⋅g∆ - B

gs(∑a**)∗ [((B
gµ∞/A

gµ∞)(∆  - g A) - (∆ - g B)) ⋅ g∆]   
                                                                                                                           (IV.6)                             
 
But (∆  - g A)(x) → 0 and (∆  - g B)(x) → 0 as x → ∞, and (∑a**)(y - x)  → (1/ A

 µ∞ ) 
as (y - x) → ∞, by II.6, so ((∑a**) ∗  ((∆ -g A)⋅g∆))(y)→(1/A

 µ∞ )(∆ ∗  ((∆ -g A)⋅g∆))(y)= 
 = (1/ A

 µ∞)A
gµ(y) = (1/ A

 µ∞ ) A
gµ∞ as y  → ∞.   (Like the proof of II.7.)   

Similarly, ((∑a**) ∗ ( (∆  -g B) ⋅ g∆))(y) → (1/ A
 µ∞ ) B

gµ∞ as y  → ∞.   
 
Thus [(∑a**) ∗  (((B

gµ∞/A
gµ∞)(∆  - g A) - (∆ - g B)) ⋅ g∆)](y)  → 0 as y  → ∞.   

 
Therefore, IV.6 shows that the total asset purchases IV.1 at any given time in 

the model consist of: 
         a “stationary” (i.e. stably growing) component ((B

gs⋅ Bgµ∞)/(A
gs⋅ Agµ∞))⋅g∆  

         that prevails in the mature portfolio,  
plus 

         a “transient” component   - B
gs(∑a**) ∗  (((B

gµ∞/A
gµ∞)(∆  - g A) - (∆ - g B)) ⋅ g∆) 

         that disappears over time as the portfolio matures. 
 
In other words, in a mature portfolio, 
 
                       (∑a**) ∗  (δ - b) ∗  g∆ ≈ ((B

gs⋅ Bgµ∞)/(A
gs⋅ Agµ∞))⋅g∆                          (IV.7) 
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V. Model of Interest Rate Spreads 
Taking a net premium point of view, the model should have no interest rate 

spread between the interest rate available from new assets purchased at any point in 
time and the interest rate required to attract new liabilities at that same point in time.  
Any interest rate spread that develops in the model should reflect solely the evolution 
of model components prior or subsequent to the point when interest rates are set on 
particular assets and liabilities.  

Let ρ(x) stand for this common market interest rate available/required at each 
time x.  If P(z) stands for the interest rate spread in the model at time z, then the net 
premium principle requires that  
 
P(z) = integral over all prior x of                                   
     ρ(x)  times rate of asset purchases at time x (from IV.1), minus 
  rate of new liabilities taken on at time x (from III.1), minus 
  integral over all y subsequent to x and prior to z of 
     rate of asset maturities at y from purchases at x (from IV.2), minus 
     rate of liability maturities at y from x (from III.2).                   (V.1) 
 
In the compact convolution notation V.1 is simply:   
 
P = ∆ ∗  (((∑a**) ∗  (δ - b) ∗  g∆) ⋅ ρ) - ∆ ∗  (g∆ ⋅ ρ) - 
 
                            - [∆ ∗  a ∗  (((∑a**) ∗  (δ - b) ∗  g∆) ⋅ ρ)  -  ∆ ∗  b ∗  (g∆ ⋅ ρ)]       (V.2)                               
 
which further simplifies to 
 
           P = (∆ - A) ∗  (((∑a**) ∗  (δ - b) ∗  g∆) ⋅ ρ) - (∆ - B) ∗  (g∆ ⋅ ρ)          (V.3) 
 
In words, V.3 just says (with reference to IV.1 and III.1) that at any point in time the 
interest rate spread is the difference between (a) the remaining survivors of the assets 
purchased at each past point in time, times the interest rate at the time of purchase, and 
(b) the remaining survivors of the liabilities taken on at each past point in time, times 
the interest rate at the time taken on.  Thus, the model does reconcile to the intuitive 
result.  V.3 does not, however, reveal the stationary character of the interest rate 
spread. 
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        As a first step toward a more revealing analysis of the interest rate spread,  go 
back to V.1 and ask at each given point in time x for the difference between (a) the 
rate of asset purchases at time x (from IV.1), and (b) the rate at which new liabilities 
are taken on at time x (from III.1):   

 
                    (IV.1) - (III.1) = ((∑a**) ∗  (δ - b) ∗  g∆ - g∆)(x)  
 

is the initial net investment/obligation at rate ρ(x). Using IV.6 this can be expressed  
  
(∑a**) ∗  (δ - b) ∗  g∆ - g∆ = (((B

gs⋅ Bgµ∞)/(A
gs⋅ Agµ∞)) - 1)⋅g∆ - 

 
        - B

gs(∑a**) ∗  (((B
gµ∞/A

gµ∞)(∆  - g A) - (∆ - g B)) ⋅ g∆)   
        (V.4) 

Following exactly the same reasoning as after IV.6, as y  → ∞  both 
 
((∑a**)∗ ((∆ -g A)⋅ g∆))(y)→(1/A

 µ∞) A
gµ∞ & ((∑a**)∗ ((∆  -g B)⋅ g∆))(y)→(1/ A

 µ∞) B
gµ∞  

 
So V.4 shows that the initial net investment/obligation at any given rate in 

the model consists of: 
        a “stationary” (i.e. stably growing) component (((B

gs⋅ Bgµ∞)/(A
gs⋅ Agµ∞)) - 1) ⋅ g∆  

        that prevails in the mature portfolio,  
     plus 

        a “transient” component   - B
gs(∑a**) ∗  (((B

gµ∞/A
gµ∞)(∆  - g A) - (∆ - g B)) ⋅ g∆) 

        that disappears over time as the portfolio matures. 
 
In other words, the initial net investment/obligation at any given rate in a mature 
portfolio  

≈ (((B
gs⋅ Bgµ∞)/(A

gs⋅ Agµ∞)) - 1) ⋅ g∆                                     (V.5) 
 

The full stationary character of the interest rate spread model is revealed by 
analyzing all of V.2 (i.e. including the maturities subsequent to the initial net 
investment/obligation at a given rate) with the help of IV.6.  First, collecting terms in 
V.2 the opposite from the way they were collected for V.3, 

 
P = ∆∗ (((∑a**)∗ (δ - b)∗  g∆  - g∆) ⋅ ρ) - [A∗ (((∑a**)∗ (δ - b)∗  g∆)⋅ ρ) - B∗ (g∆ ⋅ ρ)] 
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Now substitute for both occurrences of (∑a**) ∗  (δ - b) ∗  g∆ the expression given by 
IV.6: 
 
P=∆∗ [{((B

gs⋅ Bgµ∞)/(A
gs⋅ Agµ∞))⋅g∆ - 

                              -B
gs(∑a**)∗ (((B

gµ∞/A
gµ∞)(∆ -g A)-(∆ -gB))⋅ g∆)-g∆}⋅ρ]- 

 
   -[A∗ {[((B

gs⋅Bgµ∞)/(A
gs⋅Agµ∞))⋅g∆-B

gs(∑a**)∗ ((B
gµ∞/A

gµ∞)(∆-gA)-(∆ -gB))⋅g∆]⋅ρ} 
 
   - B∗ (g∆⋅ρ)],  
and now factor g∆ and ρ terms as far out of brackets as possible and collect terms, 
 
P=(((B

gs⋅Bgµ∞)/(A
gs⋅Agµ∞))-1)(∆∗ (g∆⋅ρ)) - 

 
                   -B

gs∆∗ [{(∑a**)∗ (((B
gµ∞/A

gµ∞)(∆-gA)-(∆-gB))⋅ g∆)}⋅ρ] - 
 
                         -(((B

gs⋅ Bgµ∞)/(A
gs⋅Agµ∞))A-B)∗ (g∆⋅ρ) + 

 
                                + B

gsA∗ [{(∑a**)∗ (((B
gµ∞/A

gµ∞)(∆ -g A)-(∆ -g B))⋅g∆)}⋅ρ]. 
 
Finally, collect terms one more time around g∆ ⋅ ρ and ρ to get, 
 
P = (((B

gs⋅ Bgµ∞)/(A
gs⋅ Agµ∞)) (∆ - A) - (∆ - B)) ∗  (g∆ ⋅ ρ) - 

 
        -  B

gs(∆ - A) ∗  [{(∑a**) ∗  (((B
gµ∞/A

gµ∞)(∆  - g A) - (∆ - g B)) ⋅ g∆)}⋅ ρ]        (V.6) 
 
 Referring to V.4 and V.5, we can interpret V.6 in words to say that the interest rate 
spread at any point in time is equal to: 
 the surviving amounts of the “stationary” (i.e. stably growing)  

components of the net investments/obligations at all prior interest rates,  
 
              (((B

gs⋅ Bgµ∞)/(A
gs⋅ Agµ∞)) (∆ - A) - (∆ - B)) ∗  (g∆ ⋅ ρ) 

 
plus  

the surviving amounts of the “transient” components of the net 
investments/obligations at all prior interest rates 
  
      -  B

gs(∆ - A) ∗  [{(∑a**) ∗  (((B
gµ∞/A

gµ∞)(∆  - g A) - (∆ - g B)) ⋅ g∆)}⋅ ρ] 
 
(where, interestingly, the formula displays that “transients” mature on the 
asset portfolio schedule, and are reinvested and rematured to all orders of 
iteration.) 
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The surviving transients  
-B

gs(∆ - A) ∗  [{(∑a**) ∗  (((B
gµ∞/A

gµ∞)(∆  - g A) - (∆ - g B)) ⋅ g∆)}⋅ ρ] → 0 in the mature 
portfolio (because both (∆ - A)(z - y) → 0 as (z - y) → ∞  and   
[{(∑a**) ∗  (((B

gµ∞/A
gµ∞)(∆  - g A) - (∆ - g B)) ⋅ g∆)}⋅ ρ](y) → 0 as y → ∞.  The 

reasoning following IV.6 establishes the latter fact, since the ρ at the end of the [ ](y) 
expression here is just a multiplicative factor.)  In other words, in a mature portfolio, 
the interest rate spread  
  P  ≈  (((B

gs⋅ Bgµ∞)/(A
gs⋅ Agµ∞)) (∆ - A) - (∆ - B)) ∗  (g∆ ⋅ ρ)          (V.7) 

 
The model equation V.6 (or its approximation V.7 for the mature portfolio) 

describes the response characteristics of the stationary (i.e. stably growing) insurance 
company viewed as an “antenna” or “tuner” that modulates an incoming signal of 
market  interest rates ρ(x) over time into an output signal P(z) of interest rate spreads 
in the portfolio over time (in a net premium sense.)  The task of immunization is (or 
should be) to maintain over time in the portfolio a modulation structure that will 
dampen the output response to any such input signal, so that the company’s interest 
rate spread output signal (in the gross premium sense) will reflect to an acceptable 
degree the deliberate margins set in the pricing and/or reserving, not the extraneous 
market interest rate signal. 

One more application of the convolution formalism should be recorded.  The 
total interest rate spread over time accumulated in the model over all times z from 0 
to some time w is just the integral (∆ ∗  P)(w).  Directly from V.6, using the definitions 
of the partial mean functions A µ and B µ: 

 
∆ ∗  P = (((B

gs⋅ Bgµ∞)/(A
gs⋅ Agµ∞)) A µ  - B µ) ∗  (g∆ ⋅ ρ) - 

 
      - B

gs A µ ∗  [(∑a**) ∗  (((B
gµ∞/A

gµ∞)(∆  - g A) - (∆ - g B)) ⋅ g∆)⋅ ρ]          (V.8) 
 
VI. Sensitivity to Interest Rate Changes 

While the modulation equations V.6 or V.7 that express evolving portfolio 
interest rate spreads P(z) in terms of the history of market interest rate levels ρ(x) are 
interesting to behold, there is something inherently unsatisfying about them.  The 
model arose from net premium assumptions, so the history of market interest rate 
levels should not be the real driver.  The history of changes in market interest rates is 
what should count.   

If interest rates never change, V.6 should read P = 0 and the approximation 
V.7 should read ≈ P(z) → 0 as z → ∞.  Both statements can be proved (an interesting 
test of ability to manipulate convolutions and partial means!) but they are not 
transparent (unless such manipulation has become second nature.)  We would like to 
have a model in which the history of market interest rate changes, ρ′, the derivative of 
ρ, manifestly drives the interest rate spread P. 
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To get such a model, simply integrate by parts in the integrals that define the 
convolutions in V.6, resulting in:  
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                                      (VI.1)                      
The second term in VI.1 is a “transient” that vanishes as z → ∞ by exactly the same 
reasoning as that preceding V.7.  
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Thus VI.1 shows that the interest rate spread P consists of : 
 
 a “stationary” (i.e. stably growing) component that characterizes  
            the mature portfolio 
                                     B

gs((B
gµ∞/A

gµ∞) A
gµ  - B

gµ) ∗  (g∆ ⋅ ρ′),  
plus 

 a “transient” component that disappears over time as the portfolio matures               

( ) ( ) ( ) ( ) ( )[ ]
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In the mature portfolio  
         P  ≈  B

gs((B
gµ∞/A

gµ∞) A
gµ  - B

gµ) ∗  (g∆ ⋅ ρ′)                    (VI.2) 
 

VI.1 (or VI.2 in the mature state) describes the response characteristics of the 
stationary (i.e. stably growing) insurance company to an input signal ρ′ of changes to 
market interest rates.  If market interest rates do not change, then the interest rate 
spread manifestly vanishes.  The generalized partial mean functions A

gµ and B
gµ 

together with the related scale factor B
gs tell the whole story of asset/liability mismatch 

in the mature portfolio (given the highly idealized model constructed here.) 
Taking ∆ ∗  (VI.1), and using II.12 in the first term and the definition of Aµ in 

the second, we can express V.8, the total interest rate spread over time (∆ ∗  P)(w) 
accumulated in the portfolio up to any given time w, in terms of ρ′: 
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                                                                                                               (VI.3) 
The second term in VI.3 does not disappear as w → ∞ because it represents 

the accumulated “residual” of transients from the pre-mature portfolio that may not 
cancel out over time.  The “residual” term does remain uniformly limited as w→∞, and 
it does vanish uniformly in respect to contributions from ρ′(y) as y → ∞.  That is, if 
ρ′(y) = 0 for all y < y′, then the residual term as w → ∞ vanishes uniformly as y′→∞.  
In other words, the transient term in VI.1 tends not only to disappear at each time z in 
the mature portfolio, but also to accumulate across all times (in total to ∞) a 
disappearing total effect from all ρ′(y) occurring in the mature portfolio. 

To prove all of this, let w → ∞ in the residual term in VI.3 and apply reasoning 
similar to the proof of II.7 (with the reasoning following IV.6 supplying the necessary 
→ 0) to conclude that the residual term: 
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for y′ chosen large enough, which validates all the claims made about the “residual” 
term in VI.3.   
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Summarizing, to put the complete approximation for the total interest rate 
spread over time (∆ ∗  P) in the mature portfolio into closed forms, combine VI.3 and 
VI.4 to give: 
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for large w and some y′ chosen large enough.                                (VI.5) 
 

VII. Simplest Applications   
In the mature portfolio, VI.2 demonstrates that the contribution to the interest 

rate spread P(z) at time z from interest rates having moved by an amount ρ′(y)dy at 
some time y ≤ z is given by a fairly simple expression involving partial mean functions: 
         P(z) ≈  B

gs[(B
gµ∞/A

gµ∞) A
gµ(z - y)  - B

gµ(z - y)](1 + g)y ρ′(y)dy       (VII.1) 
 
Two questions suggest themselves immediately as applications of (VII.1):  
(1) Given a stochastic model for ρ′(y), the rate of change in interest rates over time, 
what results as a stochastic model for the current interest rate spreads P(z) in the 
portfolio?  
(2) From a specific time y, what total shock to future interest spreads P(z) in the 
portfolio over all future time z ≥ y emanates from a single isolated pulse ρ′(y)dy of 
change to the market interest rate at time y?  In other words, how vulnerable is the 
portfolio at any given time to a single jump in interest rates, measuring vulnerability by 
total subsequent interest rate spreads over time, rather than by any particular present 
value theory? 
 
THE STOCHASTIC MODEL  

For each y let ρ′(y) be a random variable (not necessarily independent for 
different y’s) distributed  identically  to  the distribution  of a random  variable  ρ′,  so 
that the means µρ′ (y) = µρ′  for all y.  (To interpret this, it’s easy to show that with this 
assumption the annual change in interest rates [ρ(y + 1) -  ρ(y)] is a random variable 
with mean  µρ′ .) 

By VI.2, this implies that P(z) at any time z in the mature portfolio (z large) is a 
random variable with mean  

                       µP(z) ≈  B
gs{[(B

gµ∞/A
gµ∞) A

gµ  - B
gµ] ∗  g∆ }(z) µ ρ′ 
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Using II.20, this gives  
                           µP(z) ≈ B

gs{g∆ [(B
gµ∞/A

gµ∞) ((∆ ∗  (∆ / g∆))A
gµ - (1/2) gA

gm2  ) - 
 
                                                                   - ((∆ ∗  (∆ / g∆))B

gµ - (1/2) gB
gm2 )]}(z) µ ρ′ 

which as z → ∞ is equivalent to  
 
                  µP(z) ≈  - (1/2) B

gs g∆(z)[(B
gµ∞/A

gµ∞) gA
gm2

∞  - gB
gm2

∞] µ ρ′                   (VII.2) 
 
by the definitions of A

gµ∞ , B
gµ∞ , gA

gm2
∞, and gB

gm2
∞.  Finally, according to III.5, the 

size of the entire mature portfolio at time z is [(∆ - B) ∗  g∆](z) ≈ B
gs B

gµ∞ g∆(z)  
      (VII.3) 

So, in relation to the portfolio size at time z, the expected value of the stochastic 
variable P(z) representing the interest rate spread in the mature portfolio is given by 
dividing VII.2 by VII.3. 
 

{µP(z)   / [(∆ - B) ∗  g∆](z)} ≈  - (1/2)[(gA
gm2

∞ /A
gµ∞ ) - (gB

gm2
∞ /B

gµ∞ )] µ ρ′              
      (VII.4) 

 
Thus, the expected value of the interest rate spread at any point in time, in proportion 
to the size of the portfolio at that time, is given by the expected value of the change in 
interest rates over time (the secular trend in interest rates) modulated by a simple 
factor involving the difference between the ratio of a generalized second moment to 
a generalized first moment for the asset maturity schedule in each generation of 
assets versus the same ratio for the liability maturity schedule in each generation of 
liabilities.  As respects expected values of interest rate spreads, the entire story of 
asset/liability mismatch is told by these ratios of generalized second to first moments 
(given the highly idealized model constructed here.) 

VII.4 was first derived in 1977 (unpublished) by Edmund F. Kelly, FSA, for a 
restricted case (ρ′(y) constant, g = 0, and simple maturity schedules for A and B) in 
response to simulation studies by the author that surprisingly (at the time) displayed 
simple linear dependence on second moments.  We called the ratio of second to first 
moments the “maturity index.”       
 
VARIANCE 

Now assume further that the random variables ρ′(y) are independent and each 
has variance (σρ′ (y))

2
  = (σρ′)

2/dy where (σρ′)
2 is the variance of  ρ′.  (To interpret this, 

it’s easy to show that with this assumption the annual change in interest rates  
[ρ(y + 1) -  ρ(y)] is a random variable with variance (σρ′)

2  so ρ′ can be identified with 
the annualized evolution of ρ′(y).  This seemingly cavalier assumption of infinite 
variance for the instantaneous random variable can be fully justified within the
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framework of ch. III and ch. V. of Robinson.)  By VI.2, the random variable P(z) at 
any time z in the mature (z large) portfolio has variance 
 
                      (σP(z) )

2  ≈   (B
gs)2{[(B

gµ∞/A
gµ∞) A

gµ  - B
gµ]2 ∗  g∆2 }(z)(σ ρ′)

2           (VII.5) 
 

This paper offers no closed form simplification for VII.5, nor for the interesting 
related question of the covariance among the random variables P(z) for different values 
of z.  These gaps need to be filled, as VII.5 captures the volatility of the interest rate 
spread in response to random volatility (as opposed to secular trend) in market interest 
rates.  And the covariance among the P(z) for different values of z governs the 
persistency over time of random volatile perturbations to the interest rate spread. 

To a certain extent VII.8 below indirectly addresses the covariance issue by 
aggregating annual interest rate spreads over time.  Section VIII. will present an 
entirely different approach, Fourier analysis, to the volatility issue.   
 
EFFECT OF AN INTEREST RATE JUMP 

Suppose the change in market interest rates ρ′(y)dy = 0 for all y except a 
single value ρ′(y)dy ≠ 0, and further suppose that the time y of the jump satisfies y>y′ 
where y′ is the value in VI.4 and VI.5 beyond which the permanent “residual” in (∆∗ P) 
generated by ρ′(y)dy is sufficiently small to ignore.  That is, we are looking at a jump 
in market interest rates where the jump itself occurs in the mature portfolio.  Then 
taking the limit as w → ∞ in VI.3 (or VI.4 or VI.5 to properly verify the smallness of 
the “residual”) shows that the total future interest rate spread emanating from that 
single jump ρ′(y)dy is: 

 
 (∆ ∗  P)(∞) ≈  - (1/2)B

gs[(B
gµ∞/A

gµ∞)A
gm2

∞ - B
gm2

∞] g∆(y) ρ′(y)dy       (VII.6) 
 
Finally, according to III.5, the size of the entire mature portfolio at time y is 
 
                [(∆ - B) ∗  g∆](y) ≈ B

gs B
gµ∞ g∆(y)            (VII.7) 

 
So, in relation to the portfolio size at time y, the total future interest rate spread 
emanating from that single jump ρ′(y)dy is given by dividing VII.6 by VII.7: 
 
{(∆ ∗  P)(∞) / [(∆ - B) ∗  g∆](y)} ≈  - (1/2)[(A

gm2
∞ /A

gµ∞ ) - (B
gm2

∞ /B
gµ∞ )] ρ′(y)dy  

                                                                                         (VII.8) 
which (just as VII.4) modulates the interest rate change by a simple factor involving 
the difference between ratios of second to first moments.  (Aficionados of stationary 
population problems will not be surprised!)  Because of the growth factor g in the 
model, different generalizations of the second moment appear in VII.4 and VII.8.  If   
g = 0, the two expressions are identical. 
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Referring to VII.1 and VI.2, recall that all of the effects that changing interest 
rates have on interest rate spreads can be expressed as linear combinations of the 
effects of single jumps such as ρ′(y)dy.   This makes VII.8 a very strong result for 
immunization considerations.  Of particular note, the accuracy of approximation in 
VII.8 depends only upon the simplifying assumption of a mature stationary (i.e. stably 
growing) model.  Within that range of approximation, VII.8 relates the actual values 
of its component terms, not just expected values in a stochastic sense.   

This fact makes the appearance of different second moment concepts in 
VII.4 compared with VII.8 troubling upon first notice.  The conflict resolves itself, 
however, upon consideration that VII.4 reflects response to a secular trend of market 
interest rates persisting right up to the moment z.   Although the effects of the changes 
ρ′(y)dy to market interest rates reflected in VII.8 have been fully realized by time z for 
any y far prior to z, the full response guaranteed by VII.8 for the more recent ρ′(y)dy 
still lies largely in times w beyond z.   

Perhaps this contains a hint that any strategy to attain true economic 
immunization of total interest rate spreads over time against volatility in market 
interest rates must inevitably tolerate at least the degree of period to period volatility in 
interest rate spreads demanded by the difference between VII.4 and VII.8.  An opening 
toward a rigorous quantitative “uncertainty principle” corresponding to the 
complementary relationship between balance sheet and income statement may lurk 
near here.  
 
PRACTICAL NOTE 

In applying VII.4 or VII.8 the use of II.11, II.15, and II.19 provides the most 
practical basis for quick calculation of the generalized second moments and means.  
The same results can be derived, however, from more elaborate calculations based on 
creating tables of generalized partial mean and partial second moment functions, which 
then also can be used in calculations involving some of the formulas less compact than 
VII.4 or VII.8. 
 
VIII. Fourier Analysis 

The most visible property of actual interest rates is cyclicity.   After they go 
up, interest rates always come down.  After they come down, they eventually go back 
up.  It seems perverse then that both classical immunization theory and the simplest 
applications of our model deal only with the response to one-time jumps in interest 
rates (classical immunization and our VII.8) or to the expected secular trend in interest 
rates (our VII.4).  Jumping somewhere and staying there forever, or moving forever 
around one expected secular direction (whether deterministically or on average), are 
two things that actual interest rates just don’t do. 

However, before retreating into the miasma of simulation trials with which 
actuaries have become so familiar over the past twenty five years, the model of interest 
rate spreads expressed in VI.1 and VI.2 creates the opportunity at least to sketch an 
analytic description of how the interest rate spread in the model portfolio responds 
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over time to external market interest rate cyclicity.  The Fourier transform provides 
the preeminent mathematical tool to describe and analyze cyclic phenomena.  It yields 
up interesting information when applied to VI.2.  We will not pursue here the grail of 
the Fourier spectrum for interest rates themselves.  Rather, the goal is to understand 
precisely and in full generality, given our highly simplified model, what response in the 
interest rate spread over time is stimulated by each of the possible cyclic components 
of the external interest rate signal, whatever they may be.  

If one happens to have a conviction about which cyclic components dominate 
the actual external interest rate signal, this approach has the potential to offer specific 
insight into what would be required to minimize (conceivably eliminate) unwanted 
volatility in the resulting interest rate spread output signal.  But it is wholly consistent 
with Redington’s original motives to take the point of view that to immunize means to 
avoid exposing the outcome to anyone’s incorrect conviction about the structure of 
the external interest rate spectrum; that to immunize means to create asset/liability 
relationships that will dampen the interest rate spread response uniformly (i.e. within 
some uniform reasonable upper limit) across the entire spectrum of possible cyclic 
components in the external interest rate signal. 

To a function h(x) there corresponds another function FT(h)(f) called the 
Fourier transform of h that encodes the cyclic components of h in the sense that 

( ) ( )( )h x FT h f ixfe df=
−∞

∞

∫ 2π , which expresses h(x) as a phased and weighted sum of 

cyclic components of all possible frequencies, f.  The phase and weight attaching to the 

cyclic component 2πixfe of frequency f is given by the value FT(h)(f) of the Fourier 
transform of h evaluated at the frequency f.  (The Fourier transform FT(h)(f) is a 
complex-number valued function of  f, allowing it to carry both phase and weight 
information.)  The value of the Fourier transform at each frequency f  is given by 

( )( ) ( )FT h f h x ifxe dx= −
−∞

∞

∫ 2π  

Properties of the Fourier transform relevant to our goal here include:  
               
FT(h + k) = FT(h) + FT(k)   FT(ch) = cFT(h) for c a constant  

 
FT(h⋅k) = FT(h)*FT(k)  FT(h*k) = FT(h)⋅FT(k) 

 
FT[FT(h)](x) = h(-x)   FT(h′)(f) = 2πifFT(h)(f) 

 
FT(2πixh(x))(f) = - FT(h)′(f)  FT(c) = c⋅δ  for c a constant  

 
FT(δ)(f) = 1 for all f    FT(∆)(f) = (1/2)δ(f) + 1/(2πif) 

 
  FT(1/ g∆)(f) = 1/(ln(1+g) + 2πif)                                                          (VIII.1) 
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All follow more or less directly from the definition of the Fourier transform.  Brigham 
and James each provide good introductions to the Fourier transform and its properties.  
Brigham is especially good for visualization of the concepts.  Ch. 2 of Brigham 
illustrates, and his sec. 3-11 demonstrates, the important point that for real-valued 
functions h all frequencies f ≠ 0 in the Fourier transform must come in ± f pairs with 
complex conjugate transform values.  Ch. 9 of Rudin presents a rigorous development 
of the Fourier transform.  There is no general agreement in the literature, however, on 
the notation to use for the Fourier transform nor on a convention for selecting 
constants and signs in the definition.  It is necessary to verify in each source which 
notation and definitional conventions apply. 

Now the expression in VI.2 for the interest rate spread P(z) fails to have a 
Fourier transform (unless g = 0) because it contains an expression g∆ which does not 
have a finite Fourier transform for g > 0.  But 1/ g∆ does have a Fourier transform so 
we can investigate the cyclic components (the Fourier transform) of   

 
            {P(z)/[(∆ - B) ∗  g∆](z)} ≈ P(z)/( B

gs B
gµ∞ g∆(z))                          (VIII.2) 

 
based upon the approximation III.5, [(∆ - B) ∗  g∆](z) ≈ B

gs B
gµ∞ g∆(z), for the size of 

the mature portfolio in our model at time z.  VIII.2 is the expression for the interest 
rate spread in the portfolio at time z expressed in relation to the portfolio size at 
time z (in basis points, rather than dollars, if you will).  First, we prepare for the most 
useful form of its Fourier transform.  

Substituting the expression for P(z) from VI.2 into VIII.2, and using II.1, we 
can conclude that in the mature portfolio 

 
               {P/[(∆ - B) ∗  g∆]} ≈ [(1/ g∆)( A

gµ / A
gµ∞  - B

gµ / B
gµ∞)] ∗  (∆ ⋅ ρ′) 

 
                      ≈ [(1/ g∆)( A

gµ / A
gµ∞  - B

gµ / B
gµ∞)] ∗  ρ′                (VIII.3) 

 
where the last step is justified by noting that the  [ ](z - x) term  → 0  for z large when 
x < 0, by the definitions of A

gµ∞ and B
gµ∞, making the ∆ multiplier on ρ′ superfluous in 

the mature portfolio.   
By definition   A

gµ  = ∆ * (g∆ ⋅ (∆  - g A)) 
 
       =  g∆ ⋅ [(1/ g∆) * (∆ - g A)], by II.1.   
 

Substituting this, and its analogue for B
gµ, into VIII.3 gives 

 
           {P/[(∆ - B) ∗  g∆]} ≈ (1/ g∆) * [((∆ - g A) / A

gµ∞ ) - ((∆ - g B) / B
gµ∞)] ∗  ρ′ 

 
                   ≈ (1/ g∆) * ∆ * [((δ  - g a) / A

gµ∞ ) - ((δ - g b) / B
gµ∞)] ∗  ρ′ 
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Finally, we can take advantage of the basic properties VIII.1 of Fourier transforms, 
beginning with the fact that convolution transforms into multiplication: 

 
FT{ P/[(∆ - B) ∗  g∆]}(f) ≈ 
 
         ≈ FT(1/ g∆)(f)⋅FT(∆)(f)⋅FT[((δ  - g a) / A

gµ∞ ) - ((δ - g b) / B
gµ∞)](f)⋅FT(ρ′)(f) 

 
         ≈ [1/(ln(1+g) + 2πif)]⋅[(1/2)δ(f) + (1/(2πif))]⋅ 
 
                                     ⋅[((1  - FT(g a)(f)) / A

gµ∞ ) - ((1 - FT(g b)(f)) / B
gµ∞ )] ⋅FT(ρ′)(f) 

 
Now δ(f) = 0 for f ≠ 0.  But for f = 0, both (1 - FT(g a)(0)) = 0 and (1 - FT(g b)(0)) = 0, 

because g a and g b are density functions and FT(h)(0) = ( )h x dx
−∞

∞
∫  for any function h 

(by definition of the Fourier Transform.)  So the δ(f) term disappears entirely and the 
Fourier transform of the interest rate spread over time in the mature portfolio 
expressed in relation to the portfolio size at each time is 
 
FT{ P/[(∆ - B) ∗  g∆]}(f) ≈ 
 
    ≈ [1/(ln(1+g)+2πif)]⋅[1/(2πif)]⋅[((1-FT(g a)(f))/A

gµ∞)-((1-FT(g b)(f))/B
gµ∞)]⋅FT(ρ′)(f)   

                                                                                                                        (VIII.4) 
 

This is a wonderfully rich encapsulation of information about the interest rate 
spread in our model portfolio of assets and liabilities in its mature state.  A number of 
observations follow immediately, working from right to left in VIII.4:  

 
1. The phase and weight FT{ }(f) of each cyclic component of the interest rate 

spread in the mature portfolio is just some multiple of the phase and weight 
FT(ρ′)(f) of exactly the same cyclic component of the external signal ρ′ of 
changes in the market interest rate.  These are the only interest rate spread 
output responses stimulated in the mature portfolio by the external signal of 
changes in the market interest rate.  As a “tuner” the mature insurance company 
functions purely by amplitude modulation (AM) and phase modulation, with no 
frequency modulation (FM) at all.  

 
2. The cyclic component of frequency f, with phase and weight FT(ρ′)(f), in the 

external signal ρ′ of changes over time in the market interest rate is modulated 
into the frequency f component of the interest rate spread output signal 
principally by the factor [((1-FT(g a)(f))/A

gµ∞)-((1-FT(g b)(f))/B
gµ∞)].  That is, the 

relative importance of the frequency f input contribution of phase and weight 
FT(ρ′)(f) to the interest rate spread output signal can be tuned only by tuning the 
relationship between the phases and weights (i.e. Fourier transform values at f) 
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FT(g a)(f) and FT(g b)(f) of the frequency f components of the generational 
asset and liability maturity schedules g a and g b (adjusted for the growth rate g 
and scaled to their respective generalized means A

gµ∞ and B
gµ∞.)  Relative 

immunization of the interest rate spread across the whole spectrum of possible 
cyclic components in the change over time in market interest rates depends upon 
tuning the relationship between the adjusted and scaled asset and liability maturity 
schedules relatively across the whole spectrum of frequencies, as measured by 
their Fourier transforms.  

 
3. The factors [1/(ln(1+g)+2πif)] and [1/(2πif)] at lower frequency (/f / smaller, 

cycle longer) draw heavier relative contributions into the interest rate spread 
output signal from cyclic components of frequency f in the external signal of 
changes over time in the market interest rate, as modulated by observation 2.  To 
achieve uniform immunization across the entire spectrum of possible cyclic 
components in the changes over time in market interest rates, it is relatively more 
important to align the lower frequency components of the asset and liability 
maturity schedule Fourier transforms than the higher frequency components. 

 
4. The presence of ln(1+g) in the denominator of one of the factors indicates that a 

higher rate of stable growth, all other things being equal, tends to moderate 
the relative overweighting of the lower frequency contributions into the interest 
rate spread output signal, as described in observation 3. 

 
5. As the frequency f approaches zero (i.e. for a secular trend FT(ρ′ )(0) within the 

cyclic evolution of ρ) one last application of L’Hôspital’s rule (to VIII.4) yields 
the result expressed in VII.4, with FT(ρ′ )(0) in place of µ ρ′ . (The details require 

the relationships FT(2πixh(x))(f) = - FT(h)′(f); FT(h)(0) = ( )h x dx
−∞

∞
∫ ; plus II.11 

and II.19.)  The work of section VII. stands revealed as but one point of 
information within the full spectrum encoded in VIII.4.  Even generalized 
moments are just derivatives of Fourier transforms evaluated at f = 0. 

 
6. The qualitative aspects of observations 1. through 4., which would not necessarily 

have required Fourier analysis in order to be observed, each find precise 
quantitative expression in VIII.4. 

 
 Together, observations 3. and 5. above might seem to suggest a conclusion 
that VII.4 (i.e. evaluation of VIII.4 at only the single frequency f = 0) is in some sense 
an optimal simplified approach to immunization.  On empirical grounds, however, the 
weight /FT(ρ′)(f)/ of the cyclic component of frequency f in the external signal ρ′ of 
changes in market interest rates is unlikely to be anywhere near a maximum at  f  =  0.  
That is, some pair of cyclic components of  ρ′  with frequency /f / ≠ 0 likely carries 
materially more weight in the spectrum of ρ′ than does the secular trend.  For example, 



 35   

work of Becker that found the log-log plot for the Hurst coefficient to have an elbow 
at approximately 5 years seems to suggest that for U. S.  government interest  rates, at 
least, f ≈ ± 1/5 per year may be the lowest frequency with clear importance in the 
spectrum of ρ′.    

In the context of VIII.4 this suggests that single frequency immunization at the 
value f = 0 may not be even the most important single reference frequency for 
immunization.  Instead, the factor  [((1-FT(g a)(f))/A

gµ∞)-((1-FT(g b)(f))/B
gµ∞)]  of 

VIII.4 evaluated at some single “critical frequency” pair somewhere between the 
values  f = 0 and  f =± 1/5, reflecting the effect of observation 3. above, should 
provide the optimal single frequency immunization if the full spectrum encoded in 
VIII.4 is too overwhelming to work with.  Use of an appropriately selected such 
critical frequency pair /f / ≠ 0 should yield a better uniform limit on interest rate spread 
volatility than would, for example, an approximation series using higher moments at  f 
= 0.  This is reminiscent of the Esscher approximation in risk theory (see Wooddy), 
which actually amounts to a Taylor’s series expansion of a certain Fourier transform 
about an arguably better point than 0, about which the Edgeworth approximation 
expands (author, unpublished manuscript.)   

As a final technical point, the Fourier transforms of the growth adjusted 
maturity schedules g a and g b required for the use of VIII.4 can be expressed in terms 
of the growth rate g and the basic generational maturity schedules a and b.  The 
following comes directly from applying parts of VIII.1 to the definition of g a: 

 
    FT(g a)(f0) = {(FT(a)(f)/A

gs) * [1/(ln(1+g)+2πif)]}( f0), for any value f = f0   (VIII.5) 
 
As g → 0 it can be shown that the * [ ]  term in VIII.5 becomes an identity operator 
owing to the fact that a(x) = 0 for x < 0.   The analogue of VIII.5 also holds for g b. 
  
IX. Conclusions 
   Stationary immunization shows promise as an alternative viewpoint to classical 
immunization theory.  This does not mean replacement, but a formally complementary 
relationship between the two.  Radically different assumptions underlie the two 
models, but highly idealized and unrealistic constructions characterize both.  Together, 
they ought to enfold more of the rich economics of the insurance enterprise than either 
alone.  Further development seems to be warranted. 

Stationary immunization features a buy-and-hold model of the investment 
process contrasted to the dynamic rebalancing demands of the classical model.  It 
seems (so far) to reduce to manageable complexity levels only in the mature phase, 
whereas the classical present value model can be calculated for most any state of the 
enterprise.  The classical model seems to promise full immunization given the right 
duration relationships, but then equivocates with convexity conditions, rebalancing 
assumptions, and (as a practical matter) cash flow testing requirements.  Stationary 
immunization builds cash flow and interest rate spreads into its very foundations.  Its 
results assert explicitly that full immunization is a chimera, and focus attention directly 
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on the practical task: how to modulate the inevitable volatility.  The price, sofar, is a 
woefully oversimplified model that nevertheless suffers from woeful complexity.   

It seems likely that a more robust foundation could arise from further 
development, teasing more simplified core results out of the thorny base developed 
here.  In that regard, VII.1, VII.4, VII.8 and especially VIII.4 (the Fourier transform) 
show great promise.  After all, to focus exclusively on interest rate spreads represents 
a very foreign starting point for actuarial practice.  No surprise, then, that it might take 
a while to develop a workable level of balance between theoretical and practical 
comparable to what the present-value starting point offers today, after more than a 
century of actuarial elaboration. 

Once accomplished, however, it could point the way to the principles for a 
model of the insurance enterprise rigorously complementary to the balance sheet 
present-value account of the enterprise.  The latter suffers more and more from an 
unfortunate conflation of the concepts of present value and market value, a conflation 
encouraged by classical immunization theory.  With market-value concepts uncritically 
linked to present-value calculations holding sway over fair-value-of-liability 
discussions, never has there been more need to have as rigorous an intellectual 
foundation for an amortized-cost balance sheet as for a market-value balance sheet, 
allowing each a full and unique measure of importance in describing and controlling 
the insurance enterprise, recognizing that neither alone captures reality.   

Classical immunization theory provides tools relevant for a market-value 
balance sheet model of the enterprise.  Stationary immunization theory suggests a 
direction to find tools that would clarify the role of an interest-rate-spread income 
statement model of the enterprise, complementary to the balance sheet model.  Based 
on the success (so far as it goes) of the over-simplified model displayed in this paper, 
the complementary model that emerges looks a lot like amortized-cost accounting.   If 
concepts developed here can be pushed far enough, that model can be made every bit 
as rigorous and scientifically productive within a volatile world as the more fashionable 
market-value account of things. 
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