We had reached the equation:
$\psi(u)=\psi(0)\left[\int_{[0, u]} f_{L 1}(y) \psi(u-y) d y+\int_{[u, \infty]} f_{L 1}(y) d y\right]$ and interpreted it in probability terms.
Substitute $\psi(u-y)=1-\varphi(u-y)$ and use the fact that $\int_{[0, \infty]} f_{L 1}(y) d y=1$ (it's a probability density):
$\psi(u)=\psi(0)\left[1-\int_{[0, u]} f_{\mathrm{L} 1}(\mathrm{y}) \varphi(\mathrm{u}-\mathrm{y}) \mathrm{dy}\right]=\psi(0)\left[1-\int_{[0, \infty]} \mathrm{f}_{\mathrm{L} 1}(\mathrm{y}) \varphi(\mathrm{u}-\mathrm{y}) \mathrm{dy}\right]$ since $\varphi(\mathrm{u}-\mathrm{y})=0$ for $\mathrm{y}>\mathrm{u}$, so $\psi(\mathrm{u})=\psi(0)\left[1-\left(\mathrm{f}_{\mathrm{L} 1} * \varphi\right)(\mathrm{u})\right]$ using the analytic definition of convolution $\left(^{*}\right)$.

Now use $1-\psi(u)=\varphi(u)$ and $1-\psi(0)=\varphi(0)$ to get
$\varphi(\mathrm{u})=\varphi(0)+\psi(0)\left(\mathrm{f}_{\mathrm{L} 1} * \varphi\right)(\mathrm{u})$ which you can read as prob surv from $\mathrm{u}=$ $=($ prob always stay above $u)+($ prob drop below $u) X \int[($ prob drop by $y, u>y>0)($ prob surv from $u-y)] d y$ This is called the renewal equation for $\varphi(u)$.

A solution for this equation is (plug it in, it works ... perhaps you can see why it was a good guess?): $\varphi(\mathrm{u})=\varphi(0) \sum_{\mathrm{k}=0, \infty}[\psi(0)]^{\mathrm{k}} \mathrm{F}_{\mathrm{L} 1}{ }^{* \mathrm{k}}(\mathrm{u})$ where $\mathrm{F}_{\mathrm{L} 1}{ }^{* \mathrm{kk}}(\mathrm{u})$ is the cum prob dist for $\mathrm{L}_{1}+\ldots+\mathrm{L}_{1}, \mathrm{k}$ times, where the L_{1} 's are independent. Remember from several weeks ago that in general $\mathrm{F}_{\mathrm{X}}{ }^{* k}(\mathrm{u})=\left(\mathrm{f}_{\mathrm{X}}{ }^{*} \mathrm{~F}_{\mathrm{X}}{ }^{*(\mathrm{k}-1)}\right)(\mathrm{u})$ for any random variable X . Seeing the solution for the renewal equation so quickly is the payoff for using the convolution notation.
$\sum_{\mathrm{k}=0, \infty}[\psi(0)]^{\mathrm{k}}=1 /[1-\psi(0)]=1 / \varphi(0)=(1+\theta) / \theta($ remember $\psi(0)=1 /(1+\theta)$ from the other day so $\varphi(0)=\theta /(1+\theta))$. Thus, the solution for $\varphi(u)$ just given is the cumulative probability distribution for a random variable we'll call L that is a compound Geometric- L_{1} distribution, i.e. $\mathrm{L}=\mathrm{L}_{1}+\ldots+\mathrm{L}_{1}$, K times, where K has a geometric distribution, i.e. a negative binomial with $\beta=1 / \theta, r=1$ or $a=1 /(1+\theta), b=0$.
L is the random variable representing the maximum aggregate loss, the maximum amount by which $u(t)$ ever drops below its starting point $u(0)$ on a random path. K is the number of time $u(t)$ drops below its prior low point. (Each such drop has probability $\psi(0)=1 /(1+\theta)$ so the total number of such drops is the geometric K just described.) Each random L_{I} is how far below the prior low point the new drop reached. So the compound variable L is the total of how far below the original starting point all of the drops below prior lows bring you, the maximum aggregate loss. Obviously, you survive forever from a starting point u only if $L \leq u$, so it makes sense that $\varphi(u)=$ the cumulative probability distribution for L, the compound Geometric- L_{1} as just described.

This formula for $\varphi(\mathrm{u})$ gives us a lot of alternatives to learn about probabilities of survival $\varphi(\mathrm{u})$ or of ruin
$\psi(u)=1-\varphi(u)=S_{L}(u)$.
I. We can use Panjer recursion to calculate numerical values for $\varphi(u)$ (and $\psi(u)$),
II. We can use Faa's formula and our knowledge about moments of L_{1} from previous class to determine the moments of the maximum aggregate loss variable L .
III. If the single loss variable X has nice properties we can write down an exact analytic formula for $\psi(u)$, for example if X is an exponential or a gamma random variable.

I. Panjer Recursion

To use Panjer recursion on the formula for $\varphi(u)$ we need to discretize the distribution for L_{1}. Remember that $f_{L 1}(y)=S_{X}(y) / \mu_{X}$ so discretizing L_{1} just means to pick up values of $S_{X}(y)$ at points half-way between your discrete values of y, i.e. $S_{X}(y+d / 2) d / \mu_{X}$ where d is the discrete interval. (see Example of Compound Geometric and Panjer Recursion For Ruin Probabilities on the course website. There is an issue of whether to use the true value of μ_{X} and treat the approximation just as an approximate $f_{L 1}(y)$, or view the discrete values as coming from an approximation discretizing $f_{X}(y)$ itself, in which case you have to pick up any change in μ_{X} (and later $\mu_{\mathrm{X} 2}^{\prime}$) that result from the approximation. I prefer the true value approach, which is "alternative \#2" on the website example. It means that you need to calculate each $\mathrm{f}_{\mathrm{L} 1}(\mathrm{y})$ based on the surface interpretation. Subtract successive values of $\left.\sum_{z>y} S_{X}(\mathrm{z}+\mathrm{d} / 2)\right) \mathrm{d}$ from the true value of μ_{X} to get successive values of the approximation for $S_{\mathrm{L} 1}(\mathrm{y}) \mu_{\mathrm{X}}$, and then take differences of the resulting $S_{L 1}(y)$ values to get $f_{L 1}(y)$ values.)

The Panjer recursion formula here will be:
$f_{L}(u)=\left[1 /\left(1-a f_{L 1}(0)\right)\right] \sum_{y=1, u}(a+b(y / u)) f_{L 1}(y) f_{L}(u-y)$ where $a=1 /(1+\theta), b=0, f_{L 1}(y)=S_{X}(y+d / 2) d / \mu_{X}(b y$
whichever of the two methods discussed above that you choose), and the starting value is $\mathrm{f}_{\mathrm{L}}(0)=\mathrm{P}_{\mathrm{K}}\left[\mathrm{f}_{\mathrm{L} 1}(0)\right]=\left[1-(1 / \theta)\left\{\mathrm{f}_{\mathrm{L} 1}(0)-1\right\}\right]^{\wedge}(-1)$. You can just go ahead and program your spreadsheet with this and get values for $\mathrm{f}_{\mathrm{L}}(\mathrm{u})$ which will sum to values for $\mathrm{F}_{\mathrm{L}}(\mathrm{u})=\varphi(\mathrm{u})$ and then $\psi(\mathrm{u})=1-\varphi(\mathrm{u})$ gives you the ruin probabilities.

Although you don't need it for the spreadsheet calculations, you can do a little algebra on the values just given and get $\left.\left.f_{L}(u)=\left[1 /\left\{(1+\theta) \mu_{X}-S_{X}(d / 2)\right) d\right\}\right] \sum_{y=1, u} S_{X}(y+d / 2)\right) d f_{L}(u-y)$, where once again you need to choose which alternative you'll use to come up with μ_{X} and $\mathrm{S}_{\mathrm{X}}(\mathrm{z}+\mathrm{d} / 2)$)d in the approximation. This version of the formula shows directly how the tail probabilities $\mathrm{S}_{\mathrm{X}}(\mathrm{y})$ of the original single loss variable X compound themselves to determine the probability density $f_{L}(u)$ for the maximum aggregate loss to be u.

II. Moments of the Maximum Aggregate Loss Variable L

Since it is a compound Geometric- L_{1} variable, we can write down the moment generating and cumulant generating functions for L :
$\mathrm{M}_{\mathrm{L}}(\mathrm{r})=\mathrm{P}_{\mathrm{K}}\left(\mathrm{M}_{\mathrm{L} 1}(\mathrm{r})\right)=\left[1-(1 / \theta)\left\{\mathrm{M}_{\mathrm{L} 1}(\mathrm{r})-1\right\}\right]^{\wedge}(-1)$
We can get raw moments of L by using Faa's formula on this, remembering what we already know about the raw moments of L_{1}. Namely, $\mu_{\mathrm{L} 1 \mathrm{k}}^{\prime}=(1 /(\mathrm{k}+1)) \mu_{\mathrm{X}(\mathrm{k}+1)}^{\prime} / \mu_{\mathrm{X}}$ follows directly from surface interpretation and $f_{L 1}(y)=S_{X}(y) / \mu_{\mathrm{x}}$.

Taking logarithms, $C_{L}(r)=-\ln \left[1-(1 / \theta)\left\{\mathrm{M}_{\mathrm{L} 1}(\mathrm{r})-1\right\}\right]$ so once again Faa's formula and knowledge of the raw moments of L_{1} will let us calculate cumulants of the aggregate loss variable L .

III. Exact Analytic Expressions for $\psi(\mathbf{u})$

$\psi(\mathrm{u})=\mathrm{S}_{\mathrm{L}}(\mathrm{u})$ where L is the compound Geometric- L_{1} as shown above.
If X happens to be exponential, then by the memory-less property L_{1} with $f_{L 1}(y)=S_{X}(y) / \mu_{X}$ is also exponential (with same mean). We showed some weeks ago that for a compound distribution L with exponential secondary and primary denoted by K we could rewrite the decumulative distribution as $S_{L}(x)=e^{-x / \mu} \sum_{j=0, \infty}\left[(x / \mu)^{j} / j!\right] S_{K}(j)$ where in this case K is geometric with $a=1 /(1+\theta)$ and μ is μ_{x}, the mean of the exponential. Putting in this value for a, summing the geometric series that appears in $\mathrm{S}_{\mathrm{K}}(\mathrm{j})$, and doing some algebra will give $\psi(u)=S_{L}(u)=(1 /(1+\theta)) \mathrm{e}^{-(\theta /(1+\theta))} \mathrm{u} / \mu$ so the ruin probability is exactly a constant times an exponential function of starting surplus, with the parameters shown.

A similar, but more complex analysis can be done starting from the result we had that $S_{S}(x)=e^{-\mathrm{x} / \mu} \sum_{j=0, \infty}\left[(x / \mu)^{j} / \mathrm{j}!\right] \mathrm{S}_{\mathrm{K}}([\mathrm{j} / \alpha])$ for S a compound distribution with gamma secondary.

