
We de�ned the compound Poisson process S(t) = X1+::: +XN(t) where
N(t) is a Poisson process, i.e. the probability that N(t + h) � N(t) = k is
e��h (�h)

k

k!
and the X1; ::: are i.i.d. copies of a severity random variable X with

a cdf P (x), pdf p(x), and the literature often writes the raw moments as
p1; p2; :::(note these are raw moments even though there is no 0 above them).

A few facts can be noted:
De�ne FS(t+hjt)(x) = Pr[S(t+ h)� S(t) � x j S(u) for all u � t]. Then

FS(t+hjt)(x) =
1P
k=0

e��h
(�h)k

k!
P �k(x)

fS(t+hjt)(x) =
1P
k=0

e��h
(�h)k

k!
p�k(x)

Contingent on S(u) for all u � t, the probability that the next claim occurs
within the interval [t+ h; t+ h+ dh] and that the size of that claim is � x is

Pr fno claims in [t; t+ h]gPr f1 claim in [t+ h; t+ h+ dh]gPr fclaim � xg
=

�
e��h

	�
e��dh(�dh)

	
fP (x)g

= e��h(1� �dh+ :::)(�dh)P (x)

= e��h�dhP (x), ignoring dh2 etc.

= �e��hP (x)dh (1)

CS(t+hjt)(z) = ln
�
MS(t+hjt)(z)

�
= ln

�
PN(t+hjt)(MX(z))

�
= ln

�
e�h(MX(z)�1)

�
=�h (MX(z)� 1) so �S(t+hjt)k = �hpk gives all the cumulants of S(t + h j t)
which could hardly be more convenient. For example, the �rst four central
moments of S(t+h j t) are: � = �1 = �hp1, �2 = �2 = �hp2, �3 = �3 = �hp3,
�4 = �4 + 3�

4 = �hp4 + 3(�h)
2p22; etc. These formulas are why a lot of the

literature uses the pk = raw moment of X notation. We will use them
repeatedly in what follows, so don�t forget them.

Now, de�ne the capitalization (or surplus) process U(t) = u + ct� S(t).
We�re thinking of a process that starts out with an amount of capital (or
surplus) U(0) = u � 0 and proceeds through time with a continuous addition
of funds (or a premium in�ow) at a rate of c, so that it has received ct in
any length of time t, while absorbing risk costs (or losses) according to the
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compound Poisson process S(t) de�ned above. Since u, c, and t are not
random variables we know that E[U(t)] = u + ct � �tp1 and the variance
V[U(t)] = V[S(t)] = �tp2.

The question we want to study is whether and when U(t) < 0 ever occurs,
and how much is it a¤ected by the amount of starting capital (or surplus)
u and the funding rate (or premium rate) c? If U(t) < 0 ever occurs it is
called "ruin" (the process has run out of money, the enterprise is bankrupt)
and the �rst time T that U(T ) < 0 occurs is called the "time of ruin" T
(in stochastic process terms, T satis�es the de�nition of a "stopping time").
The event U(T ) < 0 (i.e. the �rst time it occurs) is called the "event of
ruin." If the event of ruin has not yet occured, we are still in the "state of
survival." We have some notational de�nitions:

'(u; t) = Pr fU(�) � 0 for all 0 � � � t j U(0) = ug
is the �nite time survival probability function

'(u) = Pr fU(�) � 0 for all 0 � � <1 j U(0) = ug
= lim

t!1
'(u; t) is the ultimate survival probability function

 (u; t) = Pr fU(�) < 0 for some 0 � � � t j U(0) = ug
= Pr fT � t j U(0) = ug
= 1� '(u; t) is the �nite time ruin probability function

 (u) = Pr fU(�) < 0 for some 0 � � <1 j U(0) = ug
= lim

t!1
 (u; t)

= Pr fT <1 j U(0) = ug
= 1� '(u)

is the ultimate ruin probability function

Knowledge of these functions is of interest to anyone trying to manage a risky
situation through a combination of starting capital u and on-going funding
ct.

The ruin-survival question is interesting only when the in�ow of fund-
ing equals or exceeds the expected value of the out�ow of losses, ct �
E[S(t)] = �tp1, so that the question is whether random �uctuations cause
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ruin somewhere along the way even though the expected value of the out-
come is survival. It is conventional to write c = (1 + �)�p1 where � � 0
is called the "safety margin" in the funding (or the "safety loading" in the
premium). � represents the extent to which ongoing funding (or premiums)
exceed the expected size of the on-going risk costs (or losses). In terms
of �, E[U(t)] = u + ��tp1 follows easily from the de�nition of U(t) and the
expression for c in terms of �.

The main theorem about this set-up is:

 (u) =
e�Ru

E[e�RU(T ) j T < 1] (2)

where for � > 0, R is de�ned to be the smallest positive solution to the
equation

R(1 + �)p1 =MX(R)� 1
and for � = 0, R is de�ned to be 0. R depends only on the safety margin �
and the distribution P (x) of X.
Proof: Pick any t > 0 and let �T = T ^ t. (Later we�ll let t ! 1): We

will look at E[e�RU( �T )] in two di¤erent ways. First,

E[e�RU( �T )] = E[e�R(u+c �T�S( �T ))] from def. of U( �T )

= e�RuE[e�R(c �T�S( �T ))]
= e�RuE[e�Rc �TE[eRS( �T )]]
= e�RuE[e�Rc �TMS( �T )(R)] from def. of MS( �T )(R)

= e�RuE[e�Rc �TPN( �T )(MX(R))]

= e�RuE[e�Rc �T e� �T (MX(R)�1)] from N( �T ) Poisson

= e�RuE[e�Rc �T e� �T (R(1+�)p1)] by hypothesis
= e�RuE[1] because c = (1 + �)�p1

= e�Ru

0@ notice that both �T and � have
disappeared from the equation;
R depends only on � and P (x)

1A
So lim

t!1
E[e�RU( �T )] = e�Ru since that�s what it equals for all value of t.
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On the other hand,

E[e�RU( �T )] =  (u; t)E[e�RU(T ) j T � t] + '(u; t)E[e�RU(t) j T > t]�
since �T = T ^ t and using def. of  and '

�
So lim

t!1
E[e�RU( �T )] =  (u)E[e�RU(T ) j T <1] + '(u) lim

t!1
E[e�RU(t) j T > t]

which means that e�Ru =  (u)E[e�RU(T ) j T <1] + '(u) lim
t!1

E[e�RU(t) j T > t]

So, to prove (2) it only remains to prove either that limt!1 E
�
e�RU(t) j T > t

�
=

0 or that '(u) = 0. When � > 0, so that ct > E[S(t)] = �tp1, we will prove
that limt!1 E[e�RU(t) j T > t] = 0, as follows: For any arbitrary positive real
number K,

lim
t!1

E[e�RU(t) j T > t] =

= lim
t!1

(
Pr[U(t)�K>0]
Pr[U(t)�0] E[e

�RU(t) j T > t; U(t) � K � 0]
+Pr[K>U(t)�0]

Pr[U(t)�0] E[e
�RU(t) j T > t;K > U(t) � 0]

)

� lim
t!1

�
1 � e�RK + Pr[K > U(t) � 0]

Pr[U(t) � K > 0]
� 1
�

0@ because e�RU(t) � e�RK when U(t) � K
and e�RU(t) � 1 when U(t) � 0

and Pr [U(t) � K > 0] � Pr [U(t) � 0]

1A
= e�RK + lim

t!1

Pr[K > U(t) � 0]
1� Pr[K > U(t) � 0]

= e�RK , if we can prove that lim
t!1

Pr[K > U(t) � 0]
1� Pr[K > U(t) � 0] = 0
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But that can be proved by

lim
t!1

Pr[K > U(t) � 0] =

= lim
t!1

Pr[u+ �t�p1 � u+ �t�p1 � U(t) > u+ �t�p1 �K],

since it�s just subtracting from the same constant

� lim
t!1

Pr[u+ �t�p1 � U(t) > u+ �t�p1 �K],

since eliminating one of the inequalities just adds more possibilities

� lim
t!1

Pr[ju+ �t�p1 � U(t)j > u+ �t�p1 �K],

since the j j just adds more possibilites

= lim
t!1

Pr

�
ju+ �t�p1 � U(t)j > u+ �t�p1 �Kp

�tp2

p
�tp2

�
,

since it�s multiplying and dividing by same thing

� lim
t!1

1�
u+�t�p1�Kp

�tp2

�2 , by Chebychev�s inequality
�
which says that Pr[jx� �j > ��] � 1

�2
whenever � exists,

which you can prove easily if you don�t remember it.

�
= 0 when you take the limit.

So we have limt!1 E[e�RU(t) j T > t] � e�RK for any arbitrary positve
real number K. But that means limt!1 E[e�RU(t) j T > t] = 0, so that for
� > 0 we now have proven (2).

When � = 0, (2) will follow if we can prove that lim�!0R = 0. To do
that, remember that for � > 0, R is the smallest positive solution of

R(1 + �)p1 =MX(R)� 1

But the �rst two derivatives of MX(R)� 1 at R = 0 are p1and p2 which
are both bigger than 0. We also know that as R ! 1, MX(R) = E[eRX ]
will go to 1 exponentially fast (viz. faster than R(1 + �)p1.) So, as a
function of R, MX(R) � 1 starts out equal to R(1 + �)p1 at R = 0, has a
smaller �rst derivative than R(1 + �)p1at R = 0 so it begins smaller than
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R(1 + �)p1 for small R, and then must overtake R(1 + �)p1 on its way to
1. The �rst R at which it equals R(1 + �)p1 is the value in (2). Now,
if � ! 0 then the �rst derivative of R(1 + �)p1 ! p1 = the �rst derivative
of MX(R) � 1. Moreover, the second derivative of R(1 + �)p1 = 0 while
the second derivative of MX(R) � 1 = p2 > 0, so in the limit as � ! 0,
MX(R)� 1 exceeds R(1 + �)p1 for small R and therefore the limit as � ! 0
of the smallest R where they are equal will be 0. By continuity, then, the
value for R in (2) when � = 0 must be R = 0. This completes the proof of
the main theorem (2). �

Note that the discussion in the last paragraph of the proof establishes
that the solution R in fact exists whenever the moment-generating function
MX(R) exists.

Now we can draw some quick conclusions that bear on risk management.
First, if the safety loading � = 0 then  (u) = 1 no matter what the value

of the starting capital u might be, because R = 0 when � = 0. This result
tells us that no matter how much capital you start with, the probability
is 100% to be ruined at some point in time if your in�ow is only equal to
the expected value of your out�ow. Pro�ts aren�t just something nice to
have. With an expected pro�t of 0, ruin is certain no matter how much
you start with. ("Certain" in the sense that the exceptions to the rule have
probability 0, they constitute a set of measure 0.) This is a well known fact
about stochastic processes, but it takes careful thinking to prove it. The
proof above is probably no more di¢ cult that any other (although this proof
only works when the moment-generating function exists; the result is true
regardless of the existence of the moment generating function.)
Second, if the safety loading � > 0 then there is some R > 0 with  (u) <

e�Ru because U(T ) < 0 (remember, T is the moment when ruin occurs) so
e�RU(T ) > 1 and therefore E[e�RU(T ) j T < 1] > 1. This result tells us
that as soon as we have a positive expected value of net in�ow (after losses)
then we can improve our chances of survival (i.e. limit the chance of ruin)
by increasing our starting capital, and the improvement proceeds at least as
fast as an exponential determined by � and the distribution of the individual
risk event costs (loss amounts) X.
Third, if we could understand the distribution of the strange random

6



variable U(T ) well enough to make an exact calculation of the expected
value in the denominator of (2), then we could calculate the probability of
ruin  (u) exactly. U(T ) is the random variable representing what the value
of capital is at the moment you get ruined (assuming that ruin occurs). It is
the measure of "how bad" the ruin is, how far under you go at the moment
of ruin. It seems strange, but it is true, that this random variable holds the
key to the probability of ruin occuring in the �rst place.

It turn out that we can in fact understand the random variable U(T ) and
the understanding will come from our old friend the equilibrium distribution.
First consider only the case when u = 0. Since U(T ) is negative
(moment of ruin, remember) make life easier by de�ning a random variable
L1 = �U(T ) that will be positive (the reason for the subscript will come out
later). Now consider the amount of surplus U(T�) the instant before the
event of ruin occurred. A more precise de�nition is U(T�) = limt!T U(t) 6=
U(T ) where the limit is from the left and the nonequality re�ects the fact
that at precisely the moment T the ruinous event occurs, not before. U(T�)
is also a random variable and it�s non-negative (remember T is the �rst time
ruin occurs so that before T all the U(t) are non-negative).
We know that U(T�) +L1 = XN(T ) since U(t) develops from events that

cost a random amount X. Therefore, we can condition on U(T�) and write

fL1(y) =
1R
0

fU(T�)(v)fXjX>v(y + v)dv

=
1R
0

fU(T�)(v)
fX(y + v)

SX(v)
dv

Now comes the trick. Suppose I know that fL1(y) = fU(T�)(y) for all y:
Then

fL1(y) =
1R
0

fL1(v)
fX(y + v)

SX(v)
dv

This is just an integral equation for an unknown function fL1 and remem-
bering our friend the equilibrium distributition we can guess that a solution
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might be fL1(y) =
SX(y)
p1
. Try it out:

1R
0

fL1(v)
fX(y + v)

SX(v)
dv =

1R
0

SX(v)

p1

fX(y + v)

SX(v)
dv

=
1R
0

fX(y + v)

p1
dv

=
1R
y

fX(v)

p1
dv

=
SX(y)

p1
= fL1(y)

It works. If I can prove that fL1(y) = fU(T�)(y) for all y, then I will know
that L1 = �U(T ) in the case when u = 0 follows the equilibrium distribution
of the individual risk cost (or loss) variable X:

To prove that fL1(y) = fU(T�)(y) for all y, consider what happens if the
process continues after the ruin moment T . The distribution of U(T + h)
for any h will have mean U(T ) + h��p1 and variance h�p2. Using Cheby-
chev�s inequality again (you can do the details for yourself), as h ! 1 the
probability that U(T + h) < 0 goes to 0. That means that the probability
is 1 that there is some time H at which U(T +H) = 0.
Now look at the process running backwards from U(T + H) to U(T ),

and put a minus sign in front of everything (i.e. look at it upside down as
well as backwards.) It starts at 0 and has exponential (1=�) interarrival
times for downward jumps that themselves have the distribution of X. The
only �y in the ointment is that the very �rst interarrival time might not be
exponential. The time from the last event while U(t) was negative until the
next event, after it crossed 0 into positive territory, is exponential. But we�re
interested in the time from that last event while U(t) was negative until the
time it crossed 0 into positive territory. But the memoryless property of the
exponential makes that time also an exponential with the same parameter.
So, the upside-down backward process from U(T+H) to U(T ) is identical

to the original process from U(0) to U(T ). In the upside-down backward
process, U(T�) plays the same role that L1 plays in the original process. So
U(T�) and L1 must have identical distributions, which completes the proof
that fL1(y) =

SX(y)
p1
.�
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Now (2) tells us that

 (0) =
eR�0

E [eRL1 ]

=
1

ML1(R)

and since we know the density of L1 we can calculate the moment generating
function. With an integration by parts it gives

ML1(R) =
1

p1R
[MX(R)� 1]

=
1

p1R
[R(1 + �)p1] , by def. of R

= (1 + �)

Therefore  (0) = 1
1+�

is the probability of ruin if you start with zero capital,
u = 0.

But now we can get an expression for  (u) for any starting capital u by
conditioning on the amount that the surplus �rst drops below the starting
point (which it must do if it is ever to reach 0):

 (u) =  (0)

�
uR
0

fL1(y) (u� y)dy +
1R
u

fL1(y)dy

�
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