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@ This year? Numerical examples and extensions
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Example: 55 Years of the 10-year Treasury Rate

10 YEAR TREASURY RATE 1953-2007 (monthly data)
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The Distribution of those Interest Rates
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Lognormal 4th Moment Is Just Too High (6th too)

FREQUENCY OF 10 YEAR RATES
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55 Years of Changes in the 10 Year Treasury Rate

MONTHLY LOG-CHANGE IN 10 YEAR RATE
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What is the Distribution of Those Changes?
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For Rate Changes, Lognormal 4th Moment Too Low

FREQUENCY OF MONTHLY LOG-CHANGE IN 10 YEAR RATE
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The Fix: Randomize the Reversion Target
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o Mean-reverting:

o din(ry)=[1— (1= F)"| [In(To) = In(re_ge)]

+ (1= F)¥ Dydt + (1 — F)¥ o/dtN;
actuarial folklore (circa 1970)

o din(rs) ={—1In(1—F)[In(Tyg) —In(rt)] + Dt} dt + cdW;
Black-Karasinski (1991)

@ With Randomized Reversion Target

o din(r,)= {1 —(1- F)dt] Li)lﬁ,jﬂ)(t) In(T;) — |n(rtdt)]

+ (1= F)" Dedt + (1 — F)™ o/dtNy, where 15,1, (t) is
the indicator for t to be in a random interval [tj,tj+1)

o din(rr)=—=In(1—F) Li(:)lu'jﬂ)(t) In(T;) — In(rt)] dt
1 Dedt + odW, -
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Drift Compensation and Calibration: plain mean-reversion

@ It would be intuitive to have:

At f1-(-F)t
]E[rt]:rél F) TO[ a-F)]
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Drift Compensation and Calibration: plain mean-reversion

@ It would be intuitive to haye:
En] = =" g 0]

e To find out what drift D; will ensure it, you can integrate d In(r;) :

In(re) = In(ro) (1 — F)#% 4 ov/dt Y Ny (o 1)q (1 — F)™

+1In(Tp) [1 —(1- F)dt] (1- F)(S Ddt — notice geom. series

+dt Z D:_(s_1ya: (1 = F)*™ which simplifies to:

s=1

In(ry) = In(ry) (1 — +a\FZN (s-1)ae (1 — F)™"

q

+In(To) [L— (1~ F)'] +dt Z Di—(s—1ygt (1 — F)*™, which is
s=1
Gaussian.
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Drift Compensation and Calibration: plain mean-reversion

. . . 1
o Since In(r;) is Gaussian, I [r;] = e#t27"where the y and ¢ are
some mess determined by the constants in the expression for In(r;).
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. . . 1
o Since In(r;) is Gaussian, I [r;] = e#t27"where the y and ¢ are
some mess determined by the constants in the expression for In(r).

) At _[1-(1-F)*
o If you work that mess out and set it equal to rél F) TO[ 4= ]

and require that it be true for all t, you can arrive at what the drift
compensation function D; must be to deliver the intuitive E [r¢] :
1.2 (1-F)" 2t—dt
ODt——QUm 1+(1—F) , or
o Dy =—10? [1 +(1- ) ] in the continuous case

@ Thereis a S|m|Iar cIosed form for the variance of r; based on
E [r?] = 21+5(29) which can help callbrate the model to historical

. 1 N crobsdt 2dt
variance F =1 {1 N (VapeF T In(T2)
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Drift Compensation and Calibration: plain mean-reversion

. . . 1
o Since In(r;) is Gaussian, I [r;] = e#t27"where the y and ¢ are
some mess determined by the constants in the expression for In(r;).

) At _[1-(1-F)*
If you work that mess out and set it equal to r(gl F) TO[ a=F1]

and require that it be true for all t, you can arrive at what the drift
compensation function D; must be to deliver the intuitive E [r¢] :

1-F)* 2t—d
o Dy = _%Uzili(l ')E)dt [1+(1—F) ! t] or

o Dy =—10? [1 +(1-F)? ] in the continuous case

There is a S|m|Iar cIosed form for the variance of r; based on
E [r?] = 21+5(29) which can help calibrate the model to historical

variance F =1 — {1 — b0t n(T2) }Zdt

In(Vob5+T2)
Practical work with the randomized reversion target model all but
requires you to know similar closed forms for drift compensation and
variance, but now when you integrate no geometric series appears.
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Drift Compensation & Calibration: random mean-reversion

o In(re) =1In(rp) (1 — _|_0-sz (e-1de ( l_F)sdt

+[1-a-p*] 2 Z i) (98 In(T;) (1= F)F <ugly

dt
+dt Y Dy (s 1yg (1— F)*
s=1
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Drift Compensation & Calibration: random mean-reversion

e In(rt) =1In(ry) (1 — +U\/>Z N (s—1) ar ( F)Sdt
+ [1 —(1- F)dt} _,d: )i:o: G (sdt) In(T;) (1= F) " «<ugly

t
at
+dt Z (s—1)dt ( F)Sdt, but switch the order of summation:
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Drift Compensation & Calibration: random mean-reversion

e In(rt) =1In(ry) (1 — +U\/>Z N (s—1) ar ( F)Sdt
&
n [1 —(1- F)dt} 2 ): e (98 In(T;) (1= F)F <ugly
di
+dt E (s—1)dt ( F)Sdt, but switch the order of summation:

e In(rr) =1In(ry) (1 — —|—0’\/>ZN (s—1)dt ( 1—F)5dt
+In(To) [(1— F) - —(1—F)f}

+ E In(T { 1-— )(tftf“)+ —(1- F)(tftfh] <=12fter telescoping

+dt ) Di (s_1yg (L—F 9t o ri 7 lognormal,-= log-log-gamma?
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Condition on the Times When Regimes Switch

o In(ry) =In(rp) (1— +UWZN (s—1)at (1= F)*"
+1In(To) [(1—F)<f )y (l—F) }
CEm o s ]

t
dt
+dt Z (s—1)dt ( —F)*"
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Condition on the Times When Regimes Switch

o In(ry) = In(rp) (1 — +UWZN (s_1)de (1 — F)*"
+1In(To) [(1—F)<f t)e _ (l—F) }

el SR
j=1

dt od
+dt Z th(sfl)dt (1 - F) '
s=1

@ Conditioning on the t; random variables and using a lognormal model
(reasonable) for the random targets T; (so each In(T;) is Gaussian)
we again have a (messy) Gaussian for the conditional In(r;). Can
that help in calculating an unconditioned E [r;] and variance?
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Condition on the Times When Regimes Switch

o In(ry) =In(rp) (1— +UWZN (s_1)de (1 — F)*"
+1In(To) [(1—F)<f )y (l—F) }
o) [0 A - ]
j=1

t

dt od
+dt Z th(sfl)dt (1 - F) '
s=1

@ Conditioning on the t; random variables and using a lognormal model
(reasonable) for the random targets T; (so each In(T;) is Gaussian)
we again have a (messy) Gaussian for the conditional In(r;). Can
that help in calculating an unconditioned E [r;] and variance?

@ The answer is "Yes" ... up to an approximate expansion.
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Edgeworth Expansion for the Unconditioned Moments

@ We expect the tails of In(r;) to be supressed in favor of the shoulders.
That suggests that E [r;], and higher moments as well, might be
approximated efficiently by an Edgeworth expansion for In(r;). It
works out to be surprisingly simple:
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Edgeworth Expansion for the Unconditioned Moments

@ We expect the tails of In(r;) to be supressed in favor of the shoulders.
That suggests that E [r;], and higher moments as well, might be
approximated efficiently by an Edgeworth expansion for In(r;). It
works out to be surprisingly simple:

o E [(rt)/} ~ el {1 + 8 T, — 304]}

e Here 2 and p, stand for central moments of In(r;) and y is its
mean.

o el 00 {14 [ty = 30%] (1= 3 (10)7) + 5 g — 150°]}
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Edgeworth Expansion for the Unconditioned Moments

@ We expect the tails of In(r;) to be supressed in favor of the shoulders.
That suggests that E [r;], and higher moments as well, might be
approximated efficiently by an Edgeworth expansion for In(r;). It
works out to be surprisingly simple:

o E [(rt)/} ~ el {1 + 8 T, — 304]}

e Here 2 and p, stand for central moments of In(r;) and y is its
mean.

o ~ 00" {14 8 [y = 304] (1= 3 (1)) + 5 g — 150°] }
e —
2 . N j . AN qyn n)? n
eli+ k(1) {1+|.mNHooj§2(§j.)! [y — (20)20%] & CHGPE (1) }

n=0
where (2n)? = (2n—1)(2n—3)--- (1)
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Edgeworth Expansion for the Unconditioned Moments

@ We expect the tails of In(r;) to be supressed in favor of the shoulders.
That suggests that E [r;], and higher moments as well, might be
approximated efficiently by an Edgeworth expansion for In(r;). It
works out to be surprisingly simple:

o E [(rt)/} ~ el {1 + 8 T, — 304]}

e Here 2 and p, stand for central moments of In(r;) and y is its
mean.

o ~ 00" {14 8 [y = 304] (1= 3 (1)) + 5 g — 150°] }
o —
N j . A N=j _qyn n)? n
ol 3 (1lo)? {1 + Iim/\Hoojg2 % [ﬂgj - (21)?(721} ngo % (Ir)? }
where (2n)? = (2n—1)(2n—3)--- (1)

o Conditional Gaussian ensures that odd higher moments vanish.
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Edgeworth Expansion for the Unconditioned Moments

@ We expect the tails of In(r;) to be supressed in favor of the shoulders.
That suggests that E [r;], and higher moments as well, might be
approximated efficiently by an Edgeworth expansion for In(r;). It
works out to be surprisingly simple:

o E [(rt)/} ~ el {1 + 8 T, — 304]}

e Here 2 and p, stand for central moments of In(r;) and y is its
mean.

o et d00" f1 4 1, = 30%) (1= 3 (10)) + § [ — 150°] |
o —
it b (10)? - N Vop2] 5 (C1ren? g oyan
o i £ o~ 2] ' P
where (2n)? = (2n—1)(2n—3)--- (1)
o Conditional Gaussian ensures that odd higher moments vanish.

@ The problem now is to calculate 1, 02, and the Ho;
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Expected Value Easy

@ Remember,
In(re) = In(rp) (1 — +0-\F): N, (s 1)a (1= F)™"
FIn(To) [(1— F))s — (1 - F) }

YTy [ P — - F o]

dt
+dt Z Di_(s-1)qe (1 — F)Sdt and condition on the t;
s=1
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Expected Value Easy

@ Remember,
In(re) = In(rp) (1 — +0-\F):N (s_1)ae (1 — F)*"
FIn(To) [(1— F))s — (1 - F) }

YTy [ P — - F o]

dt
+dt Z Di_(s-1)qe (1 — F)Sdt and condition on the t;

s=1
e So u=E|l

n(re)] is given by
In(rp) (1= F

“Hin(To) {E[(1- A — (1 F)}
- F)

(
)
+urE li [(

dt
+dt Y Dy (s_1)a (1— F)*" where ju; = E [In(T)]

F) t_tj+1)+ _ (1 _ F)(t_tj)+:|]
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Expected Value Easy

@ So u =E[In(r)] is given by
In(r0) (1= F)* +In(To) { I [(1 = F))+ | — (1 - F)'}

=1
i
+dt ) Dy (s 1y (1 - F)** where i, = E [In(T;)]

s=1
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Expected Value Easy

@ So u =E[In(r)] is given by
In(r0) (1= F)* +In(To) { I [(1 = F))+ | — (1 - F)'}

=1
+dt ) Dy (s 1y (1 - F)** where i, = E [In(T;)]
s=1
@ Telescoping,

=1In(r) (1= F)t +1In(To) {]E [(1 _ F)(Hm] (1 F)t}

t
dt

+ur {1-E[1 R }}ertz (eetya (1= F)*
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Expected Value Easy

@ So u =E[In(r)] is given by
In(r0) (1= F)* +In(To) { I [(1 = F))+ | — (1 - F)'}

+urE li [(1 — F)Thn)e (1 F)(Hfh}]

dt
+dt ) Dy (s—1)ae (1 — F)** where i = E [In(T))]
s=1
@ Telescoping,

=1In(r) (1= F)t +1In(To) {]E [(1 _ F)(Hm] (1 F)t}

t

fp LB [0 £} e 3D (1 P

o E|(1— F)(t7t1)+] turns out to be a Laplace transform that we can

calculuate (later).
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Higher Moments Hard

@ Remembering that the even central moments of std normal are
(2n)? =(2n—1)(2n—3) - - - (1), the even central moments of

In(r) are IE [{In(rt) —E [ln(rt)]}zn}

= (2n)?E

= (2n)?E

_ & 25dt - "
S

a2dt§1(1—F) —|—0'27—. 1e12

s= j=

(owi-rpe g oo £l
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Higher Moments Hard

@ Remembering that the even central moments of std normal are
(2n)? =(2n—1)(2n—3) - - - (1), the even central moments of

In(r) are IE [{In(rt) —E [ln(rt)]}zn}

= (2n)?E

= (2n)?E

_ & 25dt - "
S

a2dt§1(1—F) —|—0'27—. 1e12

s= j=

(owi-rpe g oo £l

@ 0% is the common variance of the In( T) Gau55|ans
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Higher Moments Hard

@ Remembering that the even central moments of std normal are
(2n)? =(2n—1)(2n—3) - - - (1), the even central moments of

In(r) are IE_ [{In(rt) —E [|n(rt)]}2n:|
= (2n)?E | o?dt i (1-F)*" 102 v e?
s=1 j=1

= (2n)?]E {0’2dt (1— F)zdt - (1 F) 2dt +0’TZ } ]

@ 0% is the common variance of the In(T;) Gau55|ans

°e = {(1 _ F)(f—tf+1)+ —(1- F)(t_t/)+} for each j
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Higher Moments Hard

@ Remembering that the even central moments of std normal are
(2n)? =(2n—1)(2n—3) - - - (1), the even central moments of

In(r) are IE_ [{In(rt) —E [|n(rt)]}2n:|
= (2n)?E | o?dt i (1-F)*" 102 v e?
s=1 j=1

= (2n)?]E {0’2dt (1— F)zdt - (1 F) 2dt +0’TZ } ]

@ 0% is the common variance of the In(T;) Gau55|ans
°¢e = {(1 — F)(t_tf“)+ —(1- F)(t_t/)+} for each j

e The {}" part can be expanded binomially, but that still leaves terms
like...
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Still Need To Evaluate Terms Like
(Ee) ] where the

(t=tjn), _ (1— F)(t_tf)+} fail to be independent and
are each compllcated in their own right.
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Still Need To Evaluate Terms Like
(Ee) ] where the

(t=tjn), _ (1— F)(t_tf)+} fail to be independent and
are each compllcated in their own right.

@ But they do have a uniform correlation property
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Still Need To Evaluate Terms Like

(ge ) ] where the

(t=tjn), _ (1- F)(t_tf)+} fail to be independent and
are each compllcated in their own right.

@ But they do have a uniform correlation property
. 231 23k _ 231 2ak
oLemma.]E[ej1 e }—pal a]E[e- }--~]E[e. }

..... K 1 'k
independent of {ji, ..., jx } for distinct {ji, ..., jx }
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Still Need To Evaluate Terms Like
(Ee) ] where the

(t=tjn), _ (1- F)(t_tf)+} fail to be independent and
are each compllcated in their own right.

@ But they do have a uniform correlation property
. 2a 2ak — 2a 2ak
o Lemma: E {ejl Peee } =0, .aE [ej1 1} - E [ejk }
independent of {ji, ..., jx } for distinct {ji, ..., jx }

° 0, can be computed using Laplace transforms and there's even a
1reen Ak

recursive relationship Parroar = Paragt..4a,Las,..a,
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Still Need To Evaluate Terms Like
(Ee) ] where the

(t=tjn), _ (1- F)(t_tf)+} fail to be independent and
are each compllcated in their own right.

@ But they do have a uniform correlation property
. 231 23k _ 231 . 2ak
o Lemma: E {ejl e } =0, .aE [ej1 } E [ejk }
independent of {ji, ..., jx } for distinct {ji, ..., jx }
°p, . 2 €an be computed using Laplace transforms and there's even a

..... = pal,az+...+akpag,...,ak
@ How does that help?
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For Example
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For Example

using monotone

convergence to run expectations across oo sums
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For Example

2
P11 (]E lz ef]) — E lz ej2-]E [eﬂ using monotone
=1 =1

convergence to run expectations across oo sums

o It gets complicated fast
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)] ool (E](E) o)

“E li e
— (30,1 —0111) E lz e‘E [eﬂ
—3E li | E l; eE ||

+3p,,E l ej-‘
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Complicated, but each piece is simpler

@ Now all you need to be able to evaluate are terms like

© n n
E lzi ej2-” kl;[l (lE [ejz-k]) k] , where Y 1 kny < m—n
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Complicated, but each piece is simpler

@ Now all you need to be able to evaluate are terms like
© n ng
2 2k n
E lEI ej" k]:|1 (lE [ej ]) ] , where } /1 kny < m—n

@ In fact, we will develop a calculation that includes the odd powers

to0, E li ef kfill (2 e D]
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Complicated, but each piece is simpler

@ Now all you need to be able to evaluate are terms like
© n ng
2 2k n
E lEI ej" k]:|1 (lE [ej ]) ] , where } /1 kny < m—n

@ In fact, we will develop a calculation that includes the odd powers

sl n ny

n k
too, E lZej 11 (IE [ejD ]
i—1 k=1
n
o Some notation: to save ink later let v(x) stand for x” [T E [x¥]™ so
k=1

our expression abbreviates to [E lz v (ej)]
=1
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The Set-Up

@ Letd;,dy, ..., d;,...be i.i.d inter-arrival intervals with common law d
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The Set-Up

@ Letd;,dy, ..., d;,...be i.i.d inter-arrival intervals with common law d
@ Definedy by the relationships 0 <dp < d; anddy ~ (d; —dp)
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The Set-Up

@ Letd;,dy, ..., d;,...be i.i.d inter-arrival intervals with common law d
@ Definedy by the relationships 0 <dp < d; anddy ~ (d; —dp)

o Letdstand for the common law of dg and (d; —dp), the equilibrium
distribution of d
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The Set-Up

@ Letd;,dy, ..., d;,...be i.i.d inter-arrival intervals with common law d

@ Definedy by the relationships 0 <dp < d; anddy ~ (d; —dp)

o Letdstand for the common law of dg and (d; —dp), the equilibrium
distribution of d

@ The density % (x) = ]P]Esd[i]x}
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The Set-Up

@ Letd;,dy, ..., d;,...be i.i.d inter-arrival intervals with common law d

@ Definedy by the relationships 0 <dp < d; anddy ~ (d; —dp)

o Letdstand for the common law of dg and (d; —dp), the equilibrium
distribution of d

@ The density % (x) = ]P]Ead[i]x}

e Definedi = dj A (dp + t) —dp, so we begin at a random point in the
first i.i.d. interval
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The Set-Up

@ Letd;,dy, ..., d;,...be i.i.d inter-arrival intervals with common law d

@ Definedy by the relationships 0 <dp < d; anddy ~ (d; —dp)

o Letdstand for the common law of dg and (d; —dp), the equilibrium
distribution of d

The density & (x) = Plgad[i]x}

Defined; = d; A (dg + t) —dg, so we begin at a random point in the
first i.i.d. interval

Set tp =0, t; =, ... ¥ :_d'l—f—dz—i—...—f—dj
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The Set-Up

@ Letd;,dy, ..., d;,...be i.i.d inter-arrival intervals with common law d
@ Definedy by the relationships 0 <dp < d; anddy ~ (d; —dp)

o Letdstand for the common law of dg and (d; —dp), the equilibrium
distribution of d

The density #(x) = ]P]Ead[i]x}

Defined; = d; A (dg + t) —dg, so we begin at a random point in the
first i.i.d. interval

Settp=0,t; =di, ... , t;=7di +dr+...+d;

Let J=min {j : t; > t} (a "stopping regime")
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The Set-Up

@ Letd;,dy, ..., d;,...be i.i.d inter-arrival intervals with common law d

@ Definedy by the relationships 0 <dp < d; anddy ~ (d; —dp)

o Letdstand for the common law of dg and (d; —dp), the equilibrium
distribution of d

@ The density % (x) = ]P]Ead[i]x}

e Definedi = dj A (dp + t) —dp, so we begin at a random point in the
first i.i.d. interval

@ Set tp =0, t; =7, ..., t; =T +d2+...+dj

o Let J=min{j: t; > t} (a "stopping regime")

by 1,y =0 for j > J and

o Define random indicators {1}
1j<J:lforj<J

jz1
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The Set-Up

@ Letd;,dy, ..., d;,...be i.i.d inter-arrival intervals with common law d

@ Definedy by the relationships 0 <dp < d; anddy ~ (d; —dp)

o Letdstand for the common law of dg and (d; —dp), the equilibrium
distribution of d

@ The density % (x) = ]P]Ead[i]x}

e Definedi = dj A (dp + t) —dp, so we begin at a random point in the
first i.i.d. interval

@ Set tp =0, t; =7, ..., t; =T +d2+...+dj

o Let J=min{j: t; > t} (a "stopping regime")

by 1,y =0 for j > J and

o Define random indicators {1}
1j<J:lforj<J
@ Setdyj=t—tj_;anddj g =t;—t

jz1
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The Set-Up

@ Letd;,dy, ..., d;,...be i.i.d inter-arrival intervals with common law d

@ Definedy by the relationships 0 <dp < d; anddy ~ (d; —dp)

o Letdstand for the common law of dg and (d; —dp), the equilibrium
distribution of d

@ The density % (x) = ]P]Ead[i]x}

e Definedi = dj A (dp + t) —dp, so we begin at a random point in the
first i.i.d. interval

@ Set tp =0, t; =7, ..., t; =T +d2+...+dj

o Let J=min{j: t; > t} (a "stopping regime")

by 1,y =0 for j > J and

o Define random indicators {1}
1j<J:lforj<J

@ Setdyj=t—tj_;anddj g =t;—t

@ Sot=di+dy+..+d; 1 +dj

jz1
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The Result

o E liv(ej)] -

(i o (0 )] = (- ) G
+E [v (1 (1= F™)] - Pla>dv (1 (1- F)")




The Result

o E liv(ej)] =
(e [v (0= p7)] —prezdv - P} B
+1E[v(1—(1— )_d—/\t>]—]P{ﬂ'>t] 1-(1-F)Y)

o Where k 1~ (& [v ((1- )))“mq

E[(1-G) "] -Pid>t](1
—1-(1-G) =

)

E[(1-6)"]-




The Result

o E li:lv(ej)] -
K {IE {1/ ((1 — F)_d_/\tﬂ —Pfa>t]v ((1- /_—)t)} M
+E [V<1—(1— )TT/\t)] Pfd>t]v ( (1_F)t)
B
G

)
E[(1-G) ] -Pfd>t](1-G) "
E[(1-6)"]-Pfa=t](1-6)f

o And G is defined by (1— G) = exp{ L3N(E [ ((1 - F)dﬂ)},
L4 being the Laplace transform

=1-(1-G)f
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o E liv € ] =
KBl <1 Ffmﬂ P> ((1-F))} 1L [v(lfu—F)")]
—HE[( At)] Pfa>t]v(1—(1- F))
v

@ Where K =1 — E[(IE <(1 F)d> J—

—dant
—1_(1-C E[(1-G) ™| -Pfd=t](
A= 6) e P
e And G is defined by (1 — G) = exp
L4 being the Laplace transform

2
|J>1}

,_/H

@ Meaning

0] = cafestie ()]} <2 (0 )




Asymptotically

IimHoo]El v(e)| =

]E[v((lfF)_"’)];[v(lf(lfF)d)]
)]
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Everything Is Closed Form

e Everything is now of the form IP {d> t]| and [E [x"] for v one of the
random variables d, @ anddA ¢t
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Everything Is Closed Form

e Everything is now of the form IP {d> t]| and [E [x"] for v one of the
random variables d, @ anddA ¢t

e E[x¥] = Ly [—In(x)], where L, is the Laplace transform of v
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Everything Is Closed Form

e Everything is now of the form IP {d> t]| and [E [x"] for v one of the
random variables d, @ anddA ¢t

e E[x¥] = Ly [—In(x)], where L, is the Laplace transform of v

o If, for example, we take the interarrival distribution d for
regime-switches to be gammal(a, B), then
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Everything Is Closed Form

e Everything is now of the form IP {d> t]| and [E [x"] for v one of the
random variables d, @ anddA ¢t

e E[x¥] = Ly [—In(x)], where L, is the Laplace transform of v

o If, for example, we take the interarrival distribution d for
regime-switches to be gammal(a, B), then

o La(x)= (140" L3 () =} (y+ —1),
Lal(x) = g [1= 1+ B0, Lane (x) =
afime e o (wg)] S 1 g (w B2 )
+e*xt{1—r(a+1;§)—¢[ (mé) }
]P{'d'Zt]:l—I‘(ochl;ﬁ) [ —T w:ﬁ)]
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Even Those Uniform Correlation Coefficients

°0,,= % {IE [(1 _ F)2(a—b)ﬂ7\t } — P> ] (1 - F)z(a—b)t }
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Even Those Uniform Correlation Coefficients

°0,,= % {IE [(1 _ F)Z(a—b)m\t } — P> ] (1 - F)z(a—b)t }
@ where D = {IE [(1 — F)2a_m\t] —Pfad>t](1—- F)2at}
. {IE [(1 _ I_—)f2b—¢/\t} —P>t] (1 - F)bet}
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Even Those Uniform Correlation Coefficients

°0,,= % {IE [(1 _ F)Z(a—b)m\t } — P> ] (1 - F)z(a—b)t }
@ where D = {IE [(1 — F)2a_m\t] —Pfad>t](1—- F)2at}
. {IE [(1 _ I_—)f2b—¢/\t} —P>t] (1 - F)bet}

, recu rsively
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Where Does the Edgeworth Come From?

[ee]

@ Define the Fourier Transform ?(t) = / e tXf (x) dx

— 00
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Where Does the Edgeworth Come From?

@ Define the Fourier Transform ?(t) = / e tXf (x) dx
—00

o Let W have mean 0 and variance 1 and let ¢ be std normal density
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Where Does the Edgeworth Come From?

o Define the Fourier Transform f (t) = / e ™F (x) dx
—00
o Let W have mean 0 and variance 1 and let ¢ be std normal density

o Write fy (1) = [fv; (t) (ﬁ)} ¢ (t) and Taylor expand the bracket
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Where Does the Edgeworth Come From?

o Define the Fourier Transform f (t) = / e ™F (x) dx
—00
o Let W have mean 0 and variance 1 and let ¢ be std normal density

o Write fy (1) = [fv; (t) (ﬁ)} ¢ (t) and Taylor expand the bracket

o ()= {ii "0 (55)], t"}?b(t)

n=0 =0
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Where Does the Edgeworth Come From?

o Define the Fourier Transform f (t) = / e ™F (x) dx
—00
o Let W have mean 0 and variance 1 and let ¢ be std normal density

Write fw (t) = [fv; (t) (é)} ¢ (t) and Taylor expand the bracket

¢(t)
— s — (n) i PN
o () = {20 () (55)] }<p<t>
e So fy (w) = i L {f (t) (#)](n) i—"¢(") (w) and use Leibniz's
W Lot WAV ] =0
rule
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Where Does the Edgeworth Come From?

o Define the Fourier Transform f (t) = / e ™F (x) dx
—00
o Let W have mean 0 and variance 1 and let ¢ be std normal density

Write fw (t) = [fv; (t) (ﬁ)} ¢ (t) and Taylor expand the bracket

wo-{E o (), o

n=0

(]
=
s
—
~
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I

[ ]
wn
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Il
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Where Does the Edgeworth Come From?

°® So f (w) = i a [@ (t) (iﬂ(n) i~"¢(") (w) and use Leibniz's
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Where Does the Edgeworth Come From?
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Where Does the Edgeworth Come From?
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Where Does the Edgeworth Come From?
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Where Does the Edgeworth Come From?

o [ (0 (4 }20:]; (W 0= 0) (i

because W is mean 0 variance 1

Random Regimes
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@ But derivatives of Fourier transforms evaluated at 0 are just moments
so
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@ But derivatives of Fourier transforms evaluated at 0 are just moments
so

o (M) ()], = X 5 (B[] —52) and
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@ But derivatives of Fourier transforms evaluated at 0 are just moments
so

— (n) L ()7 i : .
o [f 0 ()], = K (B ) —2) e

t=0

o o) =00+ 55 8 53 (W] 7)) ()
n= j=
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@ But derivatives of Fourier transforms evaluated at 0 are just moments
so

— (n) L ()7 i : .
o [ (57)],, = X j:énf;%?/ /(B[] —2) and

t=0

CICRL IR W W =

N | |
¢ (w) +limy—e Z}, (E[wW/]—-?) ) ((22’,77))7 (—1)™ pn+) (w)

Jj=3 n=0

i (B W] —j2) 9! (w)
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@ But derivatives of Fourier transforms evaluated at 0 are just moments
so

— (n) L ()7 i : .
o [ (57)],, = X j:énf;%?/ /(B[] —2) and

t=0

CICRL IR W W =

N | |
¢ (w) +limy—e Z}, (E[wW/]—-?) ) ((22’,77))7 (—1)™ pn+) (w)

Jj=3 n=0

i (B W] —j2) 9! (w)

o But

4)(2n+1) Z 2n2—:j+J ~)! (_1>2n+j*k w2nti—2k ¢ (w)
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Where Does the Edgeworth Come From?

@ Finally, if Y = cW + u a change of variables gives the Edgeworth
expansion
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Where Does the Edgeworth Come From?

@ Finally, if Y = cW + u a change of variables gives the Edgeworth

expansion

o fy( )
J (2n+))!
(2n+j— 2k

M v
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Where Does the Edgeworth Come From?

@ Finally, if Y = cW + u a change of variables gives the Edgeworth
expansion

o fr(y) = 1o (52 + nmwi 3 (% -7)

nt| 4] PO N 2n4j—2k B
y ( (2n+1)~(2k)~)! (—1)* (u) Lo (y H)

2n+j—2k)!(2k o v
k=0

@ where M is the j-th central moment of Y
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Where Does the Edgeworth Come From?

@ Finally, if Y = cW + u a change of variables gives the Edgeworth
expansion

o fr(y) = 1o (52 + nmwé 3 (% -7)

nt| 4] PO N 2n4j—2k B
y ( (2n+1)~(2k)~)! (—1)* (u) Lo (y H)

2n+j—2k)!(2k o v
k=0
@ where M is the j-th central moment of Y

o For Esscher (aka Saddlepoint) Expansion, Taylor expand

[f\; (t) (ﬁ)} around a different point than 0
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Where Does the Edgeworth Come From?

@ Finally, if Y = cW + u a change of variables gives the Edgeworth
expansion

o fr(y) = 1o (52 + nmwé 3 (% -7)

2n+j—2k)!(2k o v

nt| 4] 2 )1(2K)? K (yu\2nHi—2k | B
L i (0 () e ()

@ where i; is the j-th central moment of ¥
o For Esscher (aka Saddlepoint) Expansion, Taylor expand

[f\; (t) (ﬁ)} around a different point than 0

@ For something even more flexible, use a different function than ¢; try
logistic, gamma, inverse gamma or inverse logistic
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How Do You Get The Moments?

e E[rl] =E [e”"(’f)] =E[eY] = [ eV~ (y)dy

Sls\g
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How Do You Get The Moments?

o E [ré] =E [e”"(’f)} = [e/Y] = 7e/yfy (y)dy

@ Substitute the Edgeworth expression, complete the square to integrate
just as if you were integrating for the lognormal, and expand the
binomials that occur when you change variables and you wind up with
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How Do You Get The Moments?

o E [ré] =E [e”"(’f)} = [e/Y] = /ooe/yfy (y)dy

@ Substitute the Edgeworth expression, complete the square to integrate
just as if you were integrating for the lognormal, and expand the
binomials that occur when you change variables and you wind up with

o E [r” =

N .
ell’[+%(l0-)2 1+||mNHoo Z% <I/lj _J?UJ> (2n)'
j=3 n=0

n+|4
ZLfJ (2n+))!
(2n+j—2m)!
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How Do You Get The Moments?

o E [ré] =E [e”"(’f)} = [e/Y] = /Ooe/yfy (y)dy

@ Substitute the Edgeworth expression, complete the square to integrate
just as if you were integrating for the lognormal, and expand the
binomials that occur when you change variables and you wind up with

o E [r” =
Iu+3(lo)? : i b o Lz (2n)? n 2n
eltt2 1+ limy—e Z i <Vj —j?UJ> E ot (=1)" (Io)
j=3 n=0
n+L§J i 2k)7 )? (—l)k

Z (2n+))!
(2n+j—2m)!

® Remarkably, ) ((2 k))?,égmj);!? (—1)k =0 when m >0

Random Regimes
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How Do You Get The Moments?

o Why? 0 = [Wf) (ﬁﬂ
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How Do You Get The Moments?

N (2m) _
o 1 o (2k)?(2(m—k))? k
o Why? 0 = [‘P(f) (%)]t:O = k;) eRm=rr (—1)
e Finally, E [rl] =
Noj
l]l+l(/0’)2 1 i N ﬂ e L 2 J (2n)? -1 n / 2n
e 2 +Imy_— e le ,MJ VK% Z (2n)! ( ) ( (T)
j=3 n=0
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What About the Main Results?

@ Proofs were inspired by techniques in Decoupling: From Dependence
to Independence, by de la Pefia and Giné
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What About the Main Results?

@ Proofs were inspired by techniques in Decoupling: From Dependence
to Independence, by de la Pefia and Giné

@ Essential lemmata are:
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What About the Main Results?

@ Proofs were inspired by techniques in Decoupling: From Dependence
to Independence, by de la Pefia and Giné

o Essential lemmata are:
e As joint distributions {J,d3} ~ {J,di} anddj ~dj ~dAt
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What About the Main Results?

@ Proofs were inspired by techniques in Decoupling: From Dependence
to Independence, by de la Pefia and Giné

o Essential lemmata are:
e As joint distributions {J,d3} ~ {J,di} anddj ~dj ~dAt

e Conditional on J = j’ > 1 the following are each independent
sets:{Jidi}, {di.da, ... dy_1}, {dy,...,dy_1 @} and {J7d5}
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What About the Main Results?

@ Proofs were inspired by techniques in Decoupling: From Dependence
to Independence, by de la Pefia and Giné

o Essential lemmata are:

e As joint distributions {J,d3} ~ {J,di} anddj ~dj ~dAt

e Conditional on J = j’ > 1 the following are each independent
sets:{J7di }, {_d_l,dg,...,dj/_l}, {dg,...,dj/_l,‘djr} and {Jd;}

@ This is enough independence to get a geometric series inside the main

expectation E 21/ (ej)| and to pull apart the two sides of the
=1

correlation expectation for p, ,, leaving a common term involvingdi
andTdj which can be evaluated by writing
1 = t_(ﬂtj+dj_1+...+d2)
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