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Introduction

Work in progress on cash �ow testing interest rate models

Empirical Work In Valuation Actuary Practice (1990�s):

Unconstrained lognormal models have too much tail
Mean-reverting ones have too little shoulder
Randomizing the reversion target �xes it
Trial and error calibration
2001 Valuation Actuary Symposium Proceedings

Theoretical Work (2006):

Closed form calibration for the mean-reverting lognormal
A surprising drift formula for the mean-reverting lognormal
Couldn�t get closed form calibration with randomized targets
ARCH 2007.1

More Recent Results (2007):

Asymptotic closed form calibration with randomized targets
Interesting probability results/techniques
ARCH 2008.1
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Example: 55 Years of the 10-year Treasury Rate

 10 YEAR TREASURY RATE 1953­2007 (monthly data)
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The Distribution of those Interest Rates

FREQUENCY OF 10 YEAR RATES
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Lognormal 4th Moment Is Just Too High (6th too)

FREQUENCY OF 10 YEAR RATES
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55 Years of Changes in the 10 Year Treasury Rate

MONTHLY LOG­CHANGE IN 10 YEAR RATE
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What is the Distribution of Those Changes?

FREQUENCY OF MONTHLY LOG­CHANGE IN 10 YEAR RATES
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For Rate Changes, Lognormal 4th Moment Too Low

FREQUENCY OF MONTHLY LOG­CHANGE IN 10 YEAR RATE
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The Fix: Randomize the Reversion Target

50 YEAR SAMPLE PATH (A DANGEROUS ONE)
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Lognormal Models

Unconstrained:

d ln (r t )=Dtdt + σ
p
dtNt

d ln(rt ) = Dtdt + σdWt

Mean-reverting:

d ln (r t )=
h
1� (1� F )dt

i
[ln(T0)� ln(rt�dt )]

+ (1� F )dt Dtdt + (1� F )dt σ
p
dtNt

actuarial folklore (circa 1970)
d ln(rt ) = f� ln (1� F ) [ln(T0)� ln(rt )] +Dtg dt + σdWt
Black-Karasinski (1991)

With Randomized Reversion Target

d ln (r t )=
h
1� (1� F )dt

i " ∞

∑
j=0

1[j,j+1)(t) ln(Tj )� ln(rt�dt )
#

+ (1� F )dt Dtdt + (1� F )dt σ
p
dtNt , where 1[j,j+1) (t) is

the indicator for t to be in a random interval
�
tj, tj+1

�
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Drift Compensation and Calibration: plain mean-reversion

It would be intuitive to have:

E [rt ] = r
(1�F )t
0 T

[1�(1�F )t ]
0

To �nd out what drift Dt will ensure it, you can integrate d ln(rt ) :

ln(rt ) = ln(r0) (1� F )
t
dt dt + σ

p
dt

t
dt

∑
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
h
1� (1� F )dt

i t
dt

∑
s=1
(1� F )(s�1)dt (= notice geom. series

+dt

t
dt

∑
s=1

Dt�(s�1)dt (1� F )sdt which simpli�es to:

ln(rt ) = ln(r0) (1� F )t + σ
p
dt

t
dt

∑
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
�
1� (1� F )t

�
+ dt

t
dt

∑
s=1

Dt�(s�1)dt (1� F )sdt , which is

Gaussian.
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Drift Compensation and Calibration: plain mean-reversion

Since ln(rt ) is Gaussian, E [rt ] = eµ+ 1
2 σ2where the µ and σ2 are

some mess determined by the constants in the expression for ln(rt ).

If you work that mess out and set it equal to r (1�F )
t

0 T
[1�(1�F )t ]
0 ,

and require that it be true for all t, you can arrive at what the drift
compensation function Dt must be to deliver the intuitive E [rt ] :

Dt = � 12σ2
(1�F )dt

1+(1�F )dt
h
1+ (1� F )2t�dt

i
, or

Dt = � 14σ2
h
1+ (1� F )2t

i
in the continuous case

There is a similar closed form for the variance of rt based on
E
�
r2t
�
= e2µ+ 1

2 (2σ)2which can help calibrate the model to historical

variance F = 1�
n
1� σ2obsdt

ln(Vobs+T 2)�ln(T 2)

o 1
2dt

Practical work with the randomized reversion target model all but
requires you to know similar closed forms for drift compensation and
variance, but now when you integrate no geometric series appears.
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Drift Compensation & Calibration: random mean-reversion

ln(rt ) = ln(r0) (1� F )t + σ
p
dt

t
dt

∑
s=1

Nt�(s�1)dt (1� F )sdt

+
h
1� (1� F )dt

i t
dt

∑
s=1

∞

∑
j=0
1[j,j+1)(sdt) ln(Tj ) (1� F )t�sdt (ugly

+dt

t
dt

∑
s=1

Dt�(s�1)dt (1� F )sdt
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t
dt

∑
s=1

Dt�(s�1)dt (1� F )sdt , but switch the order of summation:

ln(rt ) = ln(r0) (1� F )t + σ
p
dt

t
dt

∑
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
h
(1� F )(t�t1)+ � (1� F )t

i
+

∞

∑
j=1
ln(Tj )

h
(1� F )(t�tj+1)+ � (1� F )(t�tj )+

i
(=after telescoping

+dt

t
dt

∑
s=1

Dt�(s�1)dt (1� F )sdt , so rt 6= lognormal, = log-log-gamma?
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Condition on the Times When Regimes Switch

ln(rt ) = ln(r0) (1� F )t + σ
p
dt

t
dt

∑
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
h
(1� F )(t�t1)+ � (1� F )t

i
+

∞

∑
j=1
ln(Tj )

h
(1� F )(t�tj+1)+ � (1� F )(t�tj )+

i
+dt

t
dt

∑
s=1

Dt�(s�1)dt (1� F )sdt

Conditioning on the tj random variables and using a lognormal model
(reasonable) for the random targets Tj (so each ln(Tj ) is Gaussian)
we again have a (messy) Gaussian for the conditional ln(rt ). Can
that help in calculating an unconditioned E [rt ] and variance?

The answer is "Yes" ... up to an approximate expansion.
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Edgeworth Expansion for the Unconditioned Moments

We expect the tails of ln(rt ) to be supressed in favor of the shoulders.
That suggests that E [rt ], and higher moments as well, might be
approximated e¢ ciently by an Edgeworth expansion for ln(rt ). It
works out to be surprisingly simple:

E
h
(rt )

l
i
� e lµ+ 1

2 (lσ)
2
n
1+ l4

4!

�
µ4 � 3σ4

�o
Here σ2 and µ4 stand for central moments of ln(rt ) and µ is its
mean.

� e lµ+ 1
2 (lσ)

2
n
1+ l4

4!

�
µ4 � 3σ4

� �
1� 3

4! (lσ)
2
�
+ l6

6!

�
µ6 � 15σ6

�o
=

e lµ+
1
2 (lσ)

2

(
1+ limN!∞

N
∑
j=2

l2j
(2j)!

h
µ2j � (2j)?σ2j

i N�j
∑
n=0

(�1)n(2n)?
(2n)! (lσ)2n

)
where (2n)? = (2n� 1) (2n� 3) � � � (1)
Conditional Gaussian ensures that odd higher moments vanish.

The problem now is to calculate µ, σ2, and the µ2j
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Expected Value Easy

Remember,

ln(rt ) = ln(r0) (1� F )t + σ
p
dt

t
dt

∑
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
h
(1� F )(t�t1)+ � (1� F )t

i
+

∞

∑
j=1
ln(Tj )

h
(1� F )(t�tj+1)+ � (1� F )(t�tj )+

i
+dt

t
dt

∑
s=1

Dt�(s�1)dt (1� F )sdt and condition on the tj

So µ = E[ ln(rt )] is given by

ln(r0) (1� F )t + ln(T0)
n

E
h
(1� F )(t�t1)+

i
� (1� F )t

o
+µTE

"
∞

∑
j=1

h
(1� F )(t�tj+1)+ � (1� F )(t�tj )+

i#

+dt

t
dt

∑
s=1

Dt�(s�1)dt (1� F )sdt where µT = E [ln(Tj )]
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� (1� F )t

o
+µT
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(1� F )(t�t1)+
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+dt

t
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Dt�(s�1)dt (1� F )sdt

E
h
(1� F )(t�t1)+

i
turns out to be a Laplace transform that we can

calculuate (later).
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Higher Moments Hard

Remembering that the even central moments of std normal are
(2n)? = (2n� 1) (2n� 3) � � � (1), the even central moments of
ln(rt ) are E

h
fln(rt )�E [ln(rt )]g2n

i
= (2n)?E

248<:σ2dt

t
dt

∑
s=1
(1� F )2sdt + σ2T

∞

∑
j=1
e2j

9=;
n35

= (2n)?E

"(
σ2dt (1� F )2dt 1�(1�F )

2t

1�(1�F )2dt
+ σ2T

∞

∑
j=1
e2j

)n#

σ2T is the common variance of the ln(Tj ) Gaussians

ej =
n
(1� F )(t�tj+1)+ � (1� F )(t�tj )+

o
for each j

The fgn part can be expanded binomially, but that still leaves terms
like...

Bridgeman (University of Connecticut) Random Regimes
Actuarial Science Seminar Jan. 29, 2008 20

/ 36



Higher Moments Hard

Remembering that the even central moments of std normal are
(2n)? = (2n� 1) (2n� 3) � � � (1), the even central moments of
ln(rt ) are E

h
fln(rt )�E [ln(rt )]g2n

i
= (2n)?E

248<:σ2dt

t
dt

∑
s=1
(1� F )2sdt + σ2T

∞

∑
j=1
e2j

9=;
n35

= (2n)?E

"(
σ2dt (1� F )2dt 1�(1�F )

2t

1�(1�F )2dt
+ σ2T

∞

∑
j=1
e2j

)n#
σ2T is the common variance of the ln(Tj ) Gaussians

ej =
n
(1� F )(t�tj+1)+ � (1� F )(t�tj )+

o
for each j

The fgn part can be expanded binomially, but that still leaves terms
like...

Bridgeman (University of Connecticut) Random Regimes
Actuarial Science Seminar Jan. 29, 2008 20

/ 36



Higher Moments Hard

Remembering that the even central moments of std normal are
(2n)? = (2n� 1) (2n� 3) � � � (1), the even central moments of
ln(rt ) are E

h
fln(rt )�E [ln(rt )]g2n

i
= (2n)?E

248<:σ2dt

t
dt

∑
s=1
(1� F )2sdt + σ2T

∞

∑
j=1
e2j

9=;
n35

= (2n)?E

"(
σ2dt (1� F )2dt 1�(1�F )

2t

1�(1�F )2dt
+ σ2T

∞

∑
j=1
e2j

)n#
σ2T is the common variance of the ln(Tj ) Gaussians

ej =
n
(1� F )(t�tj+1)+ � (1� F )(t�tj )+

o
for each j

The fgn part can be expanded binomially, but that still leaves terms
like...

Bridgeman (University of Connecticut) Random Regimes
Actuarial Science Seminar Jan. 29, 2008 20

/ 36



Higher Moments Hard

Remembering that the even central moments of std normal are
(2n)? = (2n� 1) (2n� 3) � � � (1), the even central moments of
ln(rt ) are E

h
fln(rt )�E [ln(rt )]g2n

i
= (2n)?E

248<:σ2dt

t
dt

∑
s=1
(1� F )2sdt + σ2T

∞

∑
j=1
e2j

9=;
n35

= (2n)?E

"(
σ2dt (1� F )2dt 1�(1�F )

2t

1�(1�F )2dt
+ σ2T

∞

∑
j=1
e2j

)n#
σ2T is the common variance of the ln(Tj ) Gaussians

ej =
n
(1� F )(t�tj+1)+ � (1� F )(t�tj )+

o
for each j

The fgn part can be expanded binomially, but that still leaves terms
like...

Bridgeman (University of Connecticut) Random Regimes
Actuarial Science Seminar Jan. 29, 2008 20

/ 36



Still Need To Evaluate Terms Like

... E

" 
∞

∑
j=1
e2j

!m#
where the

ej =
n
(1� F )(t�tj+1)+ � (1� F )(t�tj )+

o
fail to be independent and

are each complicated in their own right.

But they do have a uniform correlation property

Lemma: E
h
e2a1j1 � � � e2akjk

i
= ρa1,...,akE

h
e2a1j1

i
� � �E

h
e2akjk

i
independent of fj1, ..., jkg for distinct fj1, ..., jkg
ρa1,...,ak can be computed using Laplace transforms and there�s even a
recursive relationship ρa1,...,ak = ρa1,a2+...+ak ρa2,...,ak
How does that help?
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For Example

E

24 ∞

∑
j=1
e2j

!235 = E

"
∞

∑
j=1
e4j +

∞

∑
j=1
e2j

( 
∞

∑
i=1
e2i

!
� e2j

)#

So E

24 ∞

∑
j=1
e2j

!235 = E

"
∞

∑
j=1
e4j

#
+

ρ1,1

8<:
 

E

"
∞

∑
j=1
e2j

#!2
� E

"
∞

∑
j=1
e2j E

h
e2j
i#9=; using monotone

convergence to run expectations across ∞ sums

It gets complicated fast
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For m=3

E

24 ∞

∑
j=1
e2j

!335=E

26666666664

∞

∑
j=1
e6j + 3

∞

∑
j=1
e4j

( 
∞

∑
i=1
e2i

!
� e2j

)

+
∞

∑
j=1
e2j

8>>>><>>>>:

 
∞

∑
i=1
e2i

" 
∞

∑
k=1

e2k

!
� e2i � e2j

#!

�e2j

" 
∞

∑
k=1

e2k

!
� e2j

#
+ e4j

9>>>>=>>>>;

37777777775
=E

"
∞

∑
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e6j

#
+ 3ρ2,1E

"
∞

∑
j=1
e4j

#
E

"
∞

∑
j=1
e2j

#

�
�
3ρ2,1 � ρ1,1,1

�
E

"
∞

∑
j=1
e4j E

h
e2j
i#
+ρ1,1,1

8<:
 

E

"
∞

∑
j=1
e2j

#!3

�3E
"

∞

∑
j=1
e2j

#
E

"
∞

∑
j=1
e2j E

h
e2j
i#

+E

"
∞

∑
j=1
e2j
�

E
h
e2j
i�2#)
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Complicated, but each piece is simpler

Now all you need to be able to evaluate are terms like

E

"
∞

∑
j=1
e2nj

n
∏
k=1

�
E
h
e2kj
i�nk#

, where ∑n
k=1 knk � m� n

In fact, we will develop a calculation that includes the odd powers

too, E

"
∞

∑
j=1
enj

n
∏
k=1

�
E
h
ekj
i�nk#

Some notation: to save ink later let ν(x) stand for xn
n
∏
k=1

E
�
xk
�nk so

our expression abbreviates to E

"
∞

∑
j=1

ν (ej )

#
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The Set-Up

Let d1,d2, ...,dj , ...be i.i.d inter-arrival intervals with common law d

De�ne�d0 by the relationships 0 ��d0 � d1 and�d0 ' (d1 ��d0)
Let�d stand for the common law of�d0 and (d1 ��d0), the equilibrium
distribution of d
The density f�d (x) =

P[d�x ]
E[d]

De�ne�d1 = d1 ^ (�d0 + t)��d0, so we begin at a random point in the
�rst i.i.d. interval

Set t0 = 0, t1 =�d1, ... , tj =�d1 + d2 + ...+ dj
Let J=min fj : tj � tg (a "stopping regime")
De�ne random indicators f1j<Jgj�1 by 1j<J = 0 for j � J and
1j<J = 1 for j < J
Set�dJ = t � tJ�1 and�dJ+1 = tJ � t
So t =�d1 + d2 + ...+ dJ�1 +�dJ
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The Result
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Asymptotically
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Everything Is Closed Form

Everything is now of the form P [�d � t] and E [xv] for v one of the
random variables d, �d and�d^ t

E [xv] = Lv [� ln (x)], where Lv is the Laplace transform of v
If, for example, we take the interarrival distribution d for
regime-switches to be gamma(α, β), then

Ld(x) = (1+ βx)�α, L�1d (y) = 1
β

�
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1
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�
,

L�d (x) = 1
αβx

h
1� (1+ βx)�α

i
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Even Those Uniform Correlation Coe¢ cients

ρa,b =
1
D
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o
and ρa1,...,ak = ρa1,a2+...+ak ρa2,...,ak recursively
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Where Does the Edgeworth Come From?

De�ne the Fourier Transform f̂ (t) =
Z ∞

�∞
e�itx f (x) dx

Let W have mean 0 and variance 1 and let φ be std normal density

Write cfW (t) = hcfW (t) � 1bφ(t)
�i bφ (t) and Taylor expand the bracket

cfW (t) =
(

∞

∑
n=0

1
n!

hcfW (t) � 1bφ(t)
�i(n)

t=0
tn
) bφ (t)

So fW (w) =
∞

∑
n=0

1
n!

hcfW (t) � 1bφ(t)
�i(n)

t=0
i�nφ(n) (w) and use Leibniz�s

rulehcfW (t) � 1bφ(t)
�i(n)

t=0
=
�

1bφ(t)
�(n)
t=0

+
n

∑
j=1

n!
j !(n�j)!

cfW(j) (0) � 1bφ(t)
�(n�j)
t=0
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But derivatives of Fourier transforms evaluated at 0 are just moments
so

hcfW (t) � 1bφ(t)
�i(n)

t=0
=

n

∑
j=3

n!(n�j)?
j !(n�j)! i

�j �E �Wj
�
� j?

�
and

fW (w) = φ (w) +
∞

∑
n=0

1
n!

n

∑
j=3

n!(n�j)?
j !(n�j)! i

�n�j �E �Wj
�
� j?

�
φ(n) (w)

=

φ (w) + limN!∞

N

∑
j=3

1
j !

�
E
�
Wj
�
� j?

� b N�j2 c
∑
n=0

(2n)?
(2n)! (�1)

n+j φ(2n+j) (w)

But

φ(2n+j) (w) =

24n+b j2 c∑
k=0

(2n+j)!(2k )?
(2n+j�2k )!(2k )! (�1)

2n+j�k w2n+j�2k

35 φ (w)

Bridgeman (University of Connecticut) Random Regimes
Actuarial Science Seminar Jan. 29, 2008 32

/ 36



But derivatives of Fourier transforms evaluated at 0 are just moments
sohcfW (t) � 1bφ(t)

�i(n)
t=0

=
n

∑
j=3

n!(n�j)?
j !(n�j)! i

�j �E �Wj
�
� j?

�
and

fW (w) = φ (w) +
∞

∑
n=0

1
n!

n

∑
j=3

n!(n�j)?
j !(n�j)! i

�n�j �E �Wj
�
� j?

�
φ(n) (w)

=

φ (w) + limN!∞

N

∑
j=3

1
j !

�
E
�
Wj
�
� j?

� b N�j2 c
∑
n=0

(2n)?
(2n)! (�1)

n+j φ(2n+j) (w)

But

φ(2n+j) (w) =

24n+b j2 c∑
k=0

(2n+j)!(2k )?
(2n+j�2k )!(2k )! (�1)

2n+j�k w2n+j�2k

35 φ (w)

Bridgeman (University of Connecticut) Random Regimes
Actuarial Science Seminar Jan. 29, 2008 32

/ 36



But derivatives of Fourier transforms evaluated at 0 are just moments
sohcfW (t) � 1bφ(t)

�i(n)
t=0

=
n

∑
j=3

n!(n�j)?
j !(n�j)! i

�j �E �Wj
�
� j?

�
and

fW (w) = φ (w) +
∞

∑
n=0

1
n!

n

∑
j=3

n!(n�j)?
j !(n�j)! i

�n�j �E �Wj
�
� j?

�
φ(n) (w)

=

φ (w) + limN!∞

N

∑
j=3

1
j !

�
E
�
Wj
�
� j?

� b N�j2 c
∑
n=0

(2n)?
(2n)! (�1)

n+j φ(2n+j) (w)

But

φ(2n+j) (w) =

24n+b j2 c∑
k=0

(2n+j)!(2k )?
(2n+j�2k )!(2k )! (�1)

2n+j�k w2n+j�2k

35 φ (w)

Bridgeman (University of Connecticut) Random Regimes
Actuarial Science Seminar Jan. 29, 2008 32

/ 36



But derivatives of Fourier transforms evaluated at 0 are just moments
sohcfW (t) � 1bφ(t)

�i(n)
t=0

=
n

∑
j=3

n!(n�j)?
j !(n�j)! i

�j �E �Wj
�
� j?

�
and

fW (w) = φ (w) +
∞

∑
n=0

1
n!

n

∑
j=3

n!(n�j)?
j !(n�j)! i

�n�j �E �Wj
�
� j?

�
φ(n) (w)

=

φ (w) + limN!∞

N

∑
j=3

1
j !

�
E
�
Wj
�
� j?

� b N�j2 c
∑
n=0

(2n)?
(2n)! (�1)

n+j φ(2n+j) (w)

But

φ(2n+j) (w) =

24n+b j2 c∑
k=0

(2n+j)!(2k )?
(2n+j�2k )!(2k )! (�1)

2n+j�k w2n+j�2k

35 φ (w)

Bridgeman (University of Connecticut) Random Regimes
Actuarial Science Seminar Jan. 29, 2008 32

/ 36



But derivatives of Fourier transforms evaluated at 0 are just moments
sohcfW (t) � 1bφ(t)

�i(n)
t=0

=
n

∑
j=3

n!(n�j)?
j !(n�j)! i

�j �E �Wj
�
� j?

�
and

fW (w) = φ (w) +
∞

∑
n=0

1
n!

n

∑
j=3

n!(n�j)?
j !(n�j)! i

�n�j �E �Wj
�
� j?

�
φ(n) (w)

=

φ (w) + limN!∞

N

∑
j=3

1
j !

�
E
�
Wj
�
� j?

� b N�j2 c
∑
n=0

(2n)?
(2n)! (�1)

n+j φ(2n+j) (w)

But

φ(2n+j) (w) =

24n+b j2 c∑
k=0

(2n+j)!(2k )?
(2n+j�2k )!(2k )! (�1)

2n+j�k w2n+j�2k

35 φ (w)

Bridgeman (University of Connecticut) Random Regimes
Actuarial Science Seminar Jan. 29, 2008 32

/ 36



Where Does the Edgeworth Come From?

Finally, if Y = σW+ µ a change of variables gives the Edgeworth
expansion

fY (y) = 1
σ φ
�
y�µ

σ

�
+ limN!∞

N

∑
j=3

1
j !

�
µj
σj
� j?

� b N�j2 c
∑
n=0

(2n)?
(2n)! (�1)

n �

n+b j2 c
∑
k=0

(2n+j)!(2k )?
(2n+j�2k )!(2k )! (�1)

k
�
y�µ

σ

�2n+j�2k
1
σ φ
�
y�µ

σ

�
where µj is the j-th central moment of Y
For Esscher (aka Saddlepoint) Expansion, Taylor expandhcfW (t) � 1bφ(t)

�i
around a di¤erent point than 0

For something even more �exible, use a di¤erent function than φ; try
logistic, gamma, inverse gamma or inverse logistic
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How Do You Get The Moments?

E
�
rlt
�
= E

h
el ln(rt )

i
= E

�
elY
�
=

∞Z
�∞

e ly fY (y) dy

Substitute the Edgeworth expression, complete the square to integrate
just as if you were integrating for the lognormal, and expand the
binomials that occur when you change variables and you wind up with
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How Do You Get The Moments?
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What About the Main Results?

Proofs were inspired by techniques in Decoupling: From Dependence
to Independence, by de la Peña and Giné

Essential lemmata are:

As joint distributions fJ,�dJg ' fJ,�d1g and�dJ '�d1 '�d^ t
Conditional on J = j 0 > 1 the following are each independent
sets:fJ,�d1g,

��d1,d2, ...,dj 0�1	, �d2, ...,dj 0�1,�dj 0	 and fJ,�dJg
This is enough independence to get a geometric series inside the main

expectation E

"
∞

∑
j=1

ν (ej )

#
and to pull apart the two sides of the

correlation expectation for ρa,b , leaving a common term involving�d1
and�dJ which can be evaluated by writing
�d1 = t� (�dJ + dJ�1 + ...+ d2)
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