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These notes are informal and intended to outline rapidly the risk neutral
pricing model in continuous time. Neither the de�nitions nor the proofs herein
are rigorous, but they are accurate re�ections of the underlying rigorous models.
The intention is to get students through the big picture in a fairly short time,
preparatory to their more rigorous journies. Here is a summary view of the
contents.
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I: THE GAUSSIAN DIFFUSION S (t)
dS (u)= � (u;S (u))du+ � (u;S (u))dB (u)
(Also called: The Risky Asset, The Random Process, The Underlying Process,

The Gaussian Process.)

S (t) is a Random Variable for each t de�ned by

S (t) = S (0) +

tZ
0

dS (u) where for each u < t

dS (u) = � (u; S (u)) du+ � (u; S (u)) dB (u) , where for all u, � (u; S (u)) 6= 0 and
dB (u) = independent mean 0 variance du normal Random Variables for each u

With B(0) = 0, dB (u) is called a Brownian Motion.

Integrating, B(t) =

tZ
0

dB(u) is a normal mean 0 variance t Random Variable

Integrating, S (t) = S (0) +

tZ
0

� (u; S (u)) du+

tZ
0

� (u; S (u)) dB (u) where

(1) � (u; S (u)) = a (possibly) Random Variable called "drift" for each u < t

so

tZ
0

� (u; S (u)) du = a (possibly) Random Variable "accumulated drift", with mean

E

24 tZ
0

� (u; S (u)) du

35 =

tZ
0

E [� (u; S (u))] du and variance

V

24 tZ
0

� (u; S (u)) du

35 =

tZ
0

tZ
0

coV [� (u; S (u)) ; � (v; S (v))] dvdu, or equivalently

= 2

tZ
0

tZ
u

coV [� (u; S (u)) ; � (v; S (v))] dvdu, or equivalently

= 2

tZ
0

f(t� u)V [� (u; S (u))]+

tZ
u

coV [� (v; S (v))� � (u; S (u)) ; � (u; S (u))] dvg du
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(2) � (u; S (u)) = a (possibly) Random Variable called "volatility" for each u < t

so

tZ
0

� (u; S (u)) dB (u) = a (possibly) Random Variable "accumulated volatility",

with mean 0 and variance

V

24 tZ
0

� (u; S (u)) dB (u)

35 =

tZ
0

E
�
�2 (u; S (u))

�
du

So (3) S (t) = S (0) +

tZ
0

� (u; S (u)) du+

tZ
0

� (u; S (u)) dB (u) a Random Variable with mean

E [S (t)] = S (0) +

tZ
0

E [� (u; S (u))] du = "start value" plus "expected drift", and variance

V [S (t)] =

tZ
0

�
E
�
�2 (u; S (u))

�
+ 2 (t� u)V [� (u; S (u))]

	
du

+2

tZ
0

coV

24 tZ
u

f� (v; S (v))� � (u; S (u))g dv; � (u; S (u)) du+ � (u; S (u) dB(u))

35
It is a lot simpler if � (u; S (u)) is non-random, in which case

S (t) = S (0) +

tZ
0

� (u; S (u)) du+

tZ
0

� (u; S (u)) dB (u) a Random Variable with mean

E [S (t)] = S (0) +

tZ
0

� (u; S (u)) du = "start value" plus "accumulated drift", and variance

V [S (t)] =

tZ
0

E
�
�2 (u; S (u))

�
du

It is even simpler if the di¤usion is something called a local Martingale (we might
just say Martingale later on, but we�re always talking about local Martingales),
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by which is meant

� (u; S (u)) = 0 for all u so

S (t) = S (0) +

tZ
0

� (u; S (u)) dB (u) a Random Variable with mean

E [S (t)] = S (0) and variance

V [S (t)] =

tZ
0

E
�
�2 (u; S (u))

�
du

In fact, in this case

E [S (t) j S (v)] = S (v) for all v � t

II: FUNCTIONS OF A DIFFUSION F (t;X (t))

If X (t) is a di¤usion (such as S (t) above) and F (u; x) is a di¤erentiable
function of two variables then the Itô Rule (Itô Lemma) shows the structure of
a new di¤usion F (t;X (t)) by the formula:

dF (u;X (u)) =
@F

@u
(u;X (u)) du+

@F

@x
(u;X (u)) dX (u)+

1

2

@2F

@x2
(u;X (u)) dX (u) dX (u)

When working out the expression dX (u) dX (u) the rules are:

dudu = 0

dudB (u) = 0

dB (u) dB (u) = du

so, for example, dS (u) dS (u) = �2 (u; S (u)) du

(With these rules, you might notice that the Itô Lemma is just a second order
Taylor�s expansion).
The same general principle applies to multivariate functions G (u; x; y) giving

multivariate di¤usions G (t;X (t) ; Y (t)).
In particular the function G (u; x; y) = xy can be used to get the Itô Rule

for the product of two di¤usions:

d (X (u)Y (u)) =
@ (xy)

@x
(u;X (u) ; Y (u)) dX (u) +

@ (xy)

@y
(u;X (u) ; Y (u)) dY (u)

+
1

2

@2 (xy)

@x2
(u;X (u) ; Y (u)) dX (u) dX (u)

+
1

2

@2 (xy)

@y2
(u;X (u) ; Y (u)) dY (u) dY (u)

+
@2 (xy)

@x@y
(u;X (u) ; Y (u)) dX (u) dY (u)

= Y (u) dX (u) +X (u) dY (u) + dX (u) dY (u)
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III: GEOMETRICAL GAUSSIAN DIFFUSION
dS (u)= � (u)S (u)du+ � (u)S (u)dB (u)

Let the di¤usion take the form

� (u; S (u)) = � (u)S (u) where � (u) is a (possibly) Random Variable for each u

� (u; S (u)) = � (u)S (u) where � (u) 6= 0 is a (possibly) Random Variable for each u

Then d lnS (u) =
@ ln s

@s
(u; S (u)) dS (u) +

1

2

@2 ln s

@s2
(u; S (u)) dS (u) dS (u)

=
1

S (u)
(� (u)S (u) du+ � (u)S (u) dB (u))

�1
2

1

S2 (u)
(� (u)S (u) du+ � (u)S (u) dB (u)) (� (u)S (u) du+ � (u)S (u) dB (u))

= � (u) du+ � (u) dB (u)� 1
2
�2 (u) du

=

�
� (u)� 1

2
�2 (u)

�
du+ � (u) dB (u)

Integrating both sides

lnS (t)� lnS (0) =

tZ
0

�
� (u)� 1

2
�2 (u)

�
du+

tZ
0

� (u) dB (u)

so S (t) = S (0) e

24Z t

0
(�(u)� 1

2�
2(u))du+

Z t

0

�(u)dB(u)

35
= S (0) e�(t)

where � (t) =

Z t

0

�(u)du+

Z t

0

� (u) dB (u)

with �(u) = � (u)� 1
2
�2 (u) called the drift coe¢ cient

and � (u) the volatility coe¢ cient.

If � (t) is a Normal Random Variable, for example if � (u) is non-random (or
random normal) and � (u) is non-random, then S (t) is a Lognormal Random
Variable. This is a commonly used model.
Whether or not � (t) is a Normal Random Variable we can always verify our

starting point:

dS (u) = S (0)

�
@

@�
e�(u)d� (u) +

1

2

@2

@�2
e�(u)d� (u) d� (u)

�
= S (0) e�(u)

��
� (u)� 1

2
�2 (u)

�
du+ � (u) dB (u) +

1

2
�2 (u) du

�
= S (u) (� (u) du+ � (u) dB (u)) = � (u)S (u) du+ � (u)S (u) dB (u)

Note that the volatility coe¢ cient � (u) generates drift 12�
2 (u) du.
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Looked at another way, if the drift coe¢ cient �(u) = � 1
2�

2 (u) then the drift
� (u) du = 0.

IV. THE RISK FREE ACCUMULATION e

Z t

0

r(u)du

(also called a Numeraire)

e

Z t

0

r(u)du

can be a random variable if the instantaneous risk-free rate r (u)
at time u is random, or it can be deterministic if r (u) is deterministic, but in
either case

d

0B@e
Z u

0

r(v)dv

1CA = e

Z u

0

r(v)dv

r (u) du+
1

2
e

Z u

0

r(v)dv

(r (u) du) (r (u) du)

= e

Z u

0

r(v)dv

r (u) du

has no dB(u) component so e

Z u

0

r(v)dv

has what is called Bounded Variation,
meaning it is a di¤usion with what is called "zero volatility " and all the ran-
domness is in the r (u) and r (v) randomness, if any. Note also that

d

0B@e�
Z u

0

r(v)dv

1CA = �e

Z u

0

r(v)dv

r (u) du.

e
�

Z t

0

r(u)du

can be used to discount values from t back to 0.

V. A PORTFOLIO V (t;S (t))
(also called a Portfolio Process or a Portfolio Strategy or a Self-Financing

Portfolio, Portfolio Process, or Portfolio Strategy)

A Portfolio is de�ned by two conditions:

1. it is a combination of a Risky Asset and a Risk-Free Accumulation

2. no deposits or withdrawals occur after inception (also called the "Self-
Financing" condition).
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Condition 1. is a purely arithmetical condition:

V (t; S (t)) = � (t; S (t))S (t) +

26664V (t; S (t))��(t; S (t))S (t)
e

Z t

0

r(u)du

37775 e
Z t

0

r(u)du

where �(t; S (t))) describes how much risky asset S (t) is owned at time t (note
that how much is owned can be random, including varying with the random
value S (t)), and then 26664V (t; S (t))��(t; S (t)))S (t)

e

Z t

0

r(u)du

37775

automatically describes how much risk-free accumulation e

Z t

0

r(u)du

is owned at
time t.
Condition 2., called the "Self-Financing condition" or Self-Financing Port-

folio Dynamics, is what makes this a �nancial model:

dV (u; S (u)) = � (u; S (u)) dS (u)+

2664V (u; S (u))��(u; S (u))S (u)
e

Z u

0

r(v)dv

3775 d
0B@e
Z u

0

r(v)dv

1CA .
The portfolio value only changes according to the change in the value of the
risky asset owned and the change in the value of the risk-free accumulation
owned. Note that there has been no use of the Itô Rule up to now. So far it
is just arithmetic and �nance. Now use the Itô Rule to calculate (as in IV)

d

0B@e
Z u

0

r(v)dv

1CA = e

Z u

0

r(v)dv

r (u) du, so that the Portfolio Dynamics are

dV (u; S (u)) = � (u; S (u)) dS (u) + [V (u; S (u))��(u; S (u))S (u)] r (u) du,

which is another way of expressing Condition 2., the Self-Financing Portfolio
Dynamics.

Since dS (u) = � (u; S (u)) du+ � (u; S (u)) dB (u) we have

dV (u; S (u)) = � (u; S (u)) [� (u; S (u)) du+ � (u; S (u)) dB (u)]

+ [V (u; S (u))��(u; S (u))S (u)] r (u) du
= f�(u; S (u))� (u; S (u)) + [V (u; S (u))��(u; S (u))S (u)] r (u)g du

+�(u; S (u))� (u; S (u)) dB (u)
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The volatility of the Portfolio is the volatility of the Risky Asset it contains; the
drift of the portfolio is the drift of the Risky Asset it contains plus the return
on the Risk-Free Accumulation it contains.

VI. A REPLICATING PORTFOLIO V (t;S (t)) FOR A PAYOFF
(also called a Hedge, a Hedge Portfolio, a Hedge Strategy, or a Hedge

Process)

Given a Payo¤Value PayOffT (S (T )) (also called a "Claim") at a terminal
time T that is a function of the value of the Risky Asset S (T ) at that time,
a Replicating Portfolio for the Claim is a portfolio whose value V (T; S (T )) at
time T is the Payo¤ Value

V (T; S (T )) = PayOffT (S (T ))

If there is such a Replicating Portfolio, we say that the Claim is Replicable.
Note that both the Portfolio Value at T and the Payo¤ Value at T are random
variables, so the Portfolio is a Replicating Portfolio if its random value at T
exactly reproduces the random value of the Payo¤ at T no matter what that
turns out to be.

A market model is called Arbitrage-Free (or No-Arbitrage, or No Free Lunch)
if any two portfolios whose values at time t < T are identical cannot then go
on, with probability strictly greater than 0%, to have one of them with random
value exceeding the random value of the other at time T , while with 100%
probability that random value is never less than the random value of the other
at time T .

A model that is not Arbitrage-Free would be useless for �nancial valuation
because it would allow a non-0% probability of creating value out of nothing
(this is called a Free Lunch with No Risk) by borrowing one portfolio at time t
and simultaneously selling it and buying the other at time t for the same price
with a probability greater than 0% of realizing a pro�t at time T together with
0% probability of realizing a loss at time T : Returning the borrowed portfolio
at time T would be achieved at no risk and greater than 0% probability of pro�t
by selling the bought portfolio for a price (with probability 100%) no lower than
the price of the borrowed portfolio and with greater than 0% probability a price
higher than the price of the borrowed portfolio.
If a Replicating Portfolio exists for a random Payo¤ Value (or Claim) at

time T in an Arbitrage-Free market model, then the value at any time t < T of
owning the right to that random Payo¤ at T is precisely the value V (t; S (t))
at t of the Replicating Portfolio.

This is called the Law of One Price for a Replicable Claim in an Arbitrage-
Free market model. If one owns the Replicating Portfolio one cannot fail to
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reach (or better, one has 100% probability of reaching) a Portfolio Value at T
exactly equal to the Payo¤ Value at T , and no other Replicating Portfolio can
o¤er a better value because the market model is Arbitrage-Free.

A market model is called a Complete Market if all Claims are Replicable.

VII. BLACK-SCHOLES PARTIAL DIFFERENTIAL EQUATION
(In Dimension One)

Supppose the market is one-dimensional, meaning that there is only one
Risky Asset S (t) (or more accurately that there is only one Brownian Motion
dB(u) driving all risky assets in the market). Also assume that the functions
� and � that de�ne the dynamics dS (u) = � (u; S (u)) du + � (u; S (u)) dB (u)
are reasonably nice functions.

In a one-dimensional market a Replicating Portfolio exists for a given Payo¤
Value (i.e. a given Claim is Replicable) if and only if the Black-Scholes Partial
Di¤erential Equation (shown below) has a solution with terminal value equal to
the Payo¤ Value.

Proof: For any function V (t; s) to which the Itô Rule applies:

dV (u; S (u)) =
@V

@u
du+

@V

@s
dS (u) +

1

2

@2V

@s2
dS (u) dS (u)

=

�
@V

@u
+
@V

@s
� (u; S (u)) +

1

2

@2V

@s2
�2 (u; S (u))

�
du

+
@V

@s
� (u; S (u)) dB (u)

Therefore, V (t; S (t)) will be a Portfolio if and only if there is a �(u; S (u))
such that

1.

�(u; S (u))� (u; S (u)) dB (u) =
@V

@s
(u; S (u))� (u; S (u)) dB (u) and

2.

f�(u; S (u))� (u; S (u)) + [V (u; S (u))��(u; S (u))S (u)] r (u)g du

=

�
@V

@u
(u; S (u)) +

@V

@s
(u; S (u))� (u; S (u)) +

1

2

@2V

@s2
(u; S (u))�2 (u; S (u))

�
du
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In order to satisfy 1. it is su¢ cient that

�(u; s) =
@V

@s
(u; s)

where this�(u; s) is called the Delta or the Hedge Ratio. Since we are assuming
� (u; S (u)) 6= 0 it is also necessary for Delta to take this value in order for
V (t; S (t)) to be a Portfolio. Putting this value for �(u; s) into 2.�

@V

@s
(u; s)� (u; s) +

�
V (u; s)� @V

@s
(u; s) s

�
r (u)

�
du

=

�
@V

@u
(u; s) +

@V

@s
(u; s)� (u; s) +

1

2

@2V

@s2
(u; s)�2 (u; s)

�
du�

V (u; s)� @V
@s

(u; s) s

�
r (u) =

@V

@u
(u; s) +

1

2

@2V

@s2
(u; s)�2 (u; s)

and rearranging gives what is called the Black-Scholes Partial Di¤erential Equa-
tion

V (u; s) r (u) =
@V

@u
(u; s) +

@V

@s
(u; s) sr (u) +

1

2

@2V

@s2
(u; s)�2 (u; s)

If this equation has a solution V (t; s) for which V (T; s) = PayOffT (s) for
all s, then V (t; S (t)) is a Replicating Portfolio, demonstrating that the Claim
is Replicable. Conversely, every Replicating Portfolio for a Replicable Claim
provides a solution to the equation for which V (T; S (T )) = PayOffT (S (T )).
For a Replicable Claim in an Arbitrage-Free market model this solution V (t; s),
inserting the value s = S (t), will be the value at time t for owning the right to
the Payo¤ Value at T .
Note that if the Risk-Free Accumulation rate r (u) is random, then a solution

V (t; s) must be random as well and care will have to be taken in interpretting
this result. (What does it mean for a random V (t; s) where s = S (t) to be the
value for owning the right to the Payo¤?)
If r (u) is non-random, however, then in an Arbitrage-Free market model the

Black-Scholes Partial Di¤erential Equation gives a perfectly non-random way of
�nding the value of a random future Payo¤ Value prior to the payo¤ time.

VIII. MARTINGALE MEASURE Q
(also called Risk-Neutral Measure, Risk-Neutral Probability, Equivalent Mar-

tingale Measure, MAKE BELIEVE MEASURE)

A probability measure Q such that for all 0 � v � t,

EQ

264e�
Z t

0

r(u)du

S (t) jS (v)

375 = e�
Z v

0

r(u)du

S (v)
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is called a local Martingale Measure (provided that S (t) satis�es certain tech-
nical integrability conditions that we aren�t going to discuss.)
It is a probability measure for which the present value today of the random

future value of the risky asset at any point in time is a local martingale.
(WARNING: it is a vast oversimpli�cation here to write the expected value

on the left to be conditional only on the value S (v). In a rigorous presentation
it would be conditional on all randomness in the Brownian motion dB(y) for
all y � v. A technical concept from probability theory called a sigma-algebra
would be used to implement this idea.)
A result called the local Martingale Representation Theorem (assuming

e
�

Z t

0

r(u)du

S (t) satis�es the technical conditions) says that such a Q exists if
and only if there is a random process � (t) with the property that

d

0B@e�
Z u

0

r(v)dv

S (u)

1CA = � (u) dBQ (u)

where dBQ (u) is Brownian motion using the Q probability to de�ne the necessary
normal distributions. After integrating both sides from v to t

e
�

Z t

0

r(u)du

S (t)� e
�

Z v

0

r(u)du

S (v) =

Z t

v

� (u) dBQ (u)

leading to (oversimplifying the conditional expectation)

EQ

264e�
Z t

0

r(u)du

S (t) jS (v)

375� e�
Z v

0

r(u)du

S (v) = EQ
�Z t

v

� (u) dBQ (u) jS (v)
�

= 0 because EQ [dBQ] = 0

A local Martingale Measure Q is an arti�cial construct that does not purport to
be the actual probability of anything observable in the �nancial world! Rather,
it is a tool for specifying calculations of present values that would otherwise be
much harder to describe.

IX. GOOD NEWS (In Dimension One)
-LOCAL MARTINGALE MEASURE Q EXISTS & IS UNIQUE

Supppose the market is one-dimensional, meaning that there is only one
Risky Asset S (t) (or more accurately that there is only one Brownian Motion
dB(u) in the Physical Probability Measure P driving all risky assets in the
market).

In a one-dimensional market, a local Martingale Measure Q always exists
and it is unique.
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Proof: To see whether a local Martingale Measure Q can exist, use the Itô
Rule to calculate

d

0B@e�
Z u

0

r(v)dv

S (u)

1CA
and see whether we can �nd the required random process � (t) described in
Section VIII with

d

0B@e�
Z u

0

r(v)dv

S (u)

1CA = � (u) dBQ (u)

The Itô Rule gives

d

0B@e�
Z u

0

r(v)dv

S (u)

1CA = d

0B@e�
Z u

0

r(v)dv

1CAS (u) + e�
Z u

0

r(v)dv

dS (u) + 0

where the 0 comes from the fact that dudS (u) = 0. Continuing,

d

0B@e�
Z u

0

r(v)dv

S (u)

1CA =

= �e
�

Z u

0

r(v)dv

r (u) duS (u) + e
�

Z u

0

r(v)dv

[� (u; S (u)) du+ � (u; S (u)) dB (u)]

= e
�

Z u

0

r(v)dv

� (u; S (u))

�
� (u; S (u))� r (u)S (u)

� (u; S (u))
du+ dB (u)

�
once again using � (u; S (u)) 6= 0. So take

� (u) = e
�

Z u

0

r(v)dv

� (u; S (u))

and ask whether it is possible that there is a probability measure Q with

dBQ (u) =
� (u; S (u))� r (u)S (u)

� (u; S (u))
du+ dB (u)

so that we would have

d

0B@e�
Z u

0

r(v)dv

S (u)

1CA = � (u) dBQ (u)
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as required by the local Martingale Representation Theorem?
It turns out that a result called Girsanov�s Theorem gives the answer yes!
In particular, Girsanov�s Theorem says that we can de�ne an arti�cial prob-

ability for any set of outcomes A (t) observable at or prior to t by

Q [A (t)] = EP
�
dQ
dP

(t)1A(t)

�
where 1A(t) is the indicator function for the set of outcomes A (t) (i.e. 1A(t) = 1
when the outcome is in the setA (t), and= 0 otherwise), EP is the expected value
using the actual observable probability P (called Physical Probability or Real-
World Probability) and dQ

dP (t) is the process (called Radon-Nikodym Derivative
Process) de�ned by

dQ
dP

(t) = e
�

Z t

0

1
2 (

�(u;S(u))�r(u)S(u)
�(u;S(u)) )

2
du�

Z t

0

�(u;S(u))�r(u)S(u)
�(u;S(u))

dB(u)

.

Furthermore, when we de�ne that arti�cial probability measure Q the Girsanov
Theorem says that Brownian motion under Q is precisely

dBQ (u) =
� (u; S (u))� r (u)S (u)

� (u; S (u))
du+ dB (u)

just as we wanted.
In this set-up, �(u;S(u))�r(u)S(u)�(u;S(u)) is called the Market Price of Risk Process.

Since it determines both the de�nition of Q and the relation of dBQ (u) to
dB (u), which is unique, it implies that Q is unique.
NOTICE: In most �nancial modeling the Geometric Gaussian Di¤usion of

section III is used, where � (u; S (u)) = � (u)S (u) and � (u; S (u)) = � (u)S (u).
In that case, the Market Price of Risk Process simpli�es to �(u)�r(u)

�(u) . Remem-
ber that from the beginning (section I) we have been assuming that � (u; S (u)) 6=
0 so in the Geometric Gaussian Di¤usion � (u) 6= 0.
Given that Girsanov�s Theorem guarantees (at least in the one-dimensional

case) that such local Martingale Measure probabilities Q must a exist, a large
part of Financial Engineering consists of coming up with practically useful forms
of probability distributions for Q that allow for sensible calculations of present
values today, without ever worrying about what the supposedly observable un-
derlying future probability P might actually be.
One reason for this is that local Martingales are much easier to work with

than general random processes. AN EVEN MORE IMPORTANT REASON
IS ...

X. THE PV OF ANY PORTFOLIO IS A LOCAL Q-MARTINGALE

If V (t; S (t)) is a Portfolio (as de�ned in V.) then for all 0 � v � t and for

13



a local Martingale Measure Q as de�ned in VIII,

EQ

264e�
Z t

0

r(u)du

V (t; S(t)) jS (v)

375 = e�
Z v

0

r(u)du

V (v; S(v)) .

In other words, the same property that de�nes Q in terms of S(t) actually holds
true for all Portfolios: the present value today of the random future value of the
portfolio at any point in time is a martingale in the Q probability measure.
(REMEMBER: We are vastly oversimplifying when we write the expectation

to be conditional on just S (v). See section VIII.)

To prove this start with the Itô Formula:

d

0B@e�
Z u

0

r(v)dv

V (u; S(u))

1CA
= d

0B@e�
Z u

0

r(v)dv

1CAV (u; S(u)) + e�
Z u

0

r(v)dv

dV (u; S(u)) + d

0B@e�
Z u

0

r(v)dv

1CA dV (u; S(u))
Now use the Itô Formula on the �rst term and the Portfolio Dynamics from
section V on the second term:

d

0B@e�
Z u

0

r(v)dv

V (u; S(u))

1CA
= �e

�

Z u

0

r(v)dv

r (u) duV (u; S(u)) + e
�

Z u

0

r(v)dv

f�(u; S (u)) dS (u)
+ [V (u; S (u))��(u; S (u))S (u)] r (u) dug+ 0

where the 0 for the third term comes from dudu = 0 and dudB (u) = 0. Now

14



substitute the de�nition of V (u; S(u)) from section V and simplify

d

0B@e�
Z u

0

r(v)dv

V (u; S(u))

1CA

= �e
�

Z u

0

r(v)dv

r (u) du

8>><>>:�(u; S (u))S (u) +
2664V (u; S (u))��(u; S (u))S (u)

e

Z u

0

r(v)dv

3775 e
Z u

0

r(v)dv

9>>=>>;
+e

�

Z u

0

r(v)dv

f�(u; S (u)) dS (u) + [V (u; S (u))��(u; S (u))S (u)] r (u) dug

= �(u; S (u)) e
�

Z u

0

r(v)dv

f�S (u) r (u) du+ dS (u)g

Finally, notice that in the last expression

e
�

Z u

0

r(v)dv

f�S (u) r (u) du+ dS (u)g = d

0B@e�
Z u

0

r(v)dv

S (u)

1CA by Itô and

= � (u) dBQ (u) from section VIII

So

d

0B@e�
Z u

0

r(v)dv

V (u; S(u))

1CA = �(u; S (u)) � (u) dBQ (u)

Integrate both sides and take Q expected values conditional on S (v) (oversim-
plifying again)

EQ

264e�
Z t

0

r(u)du

V (t; S(t)) jS (v)

375� e�
Z v

0

r(u)du

V (v; S(v))

= EQ
�Z t

v

�(u; S (u)) � (u) dBQ (u) jS (v)
�
= 0

EQ

264e�
Z t

0

r(u)du

V (t; S(t)) jS (v)

375 = e�
Z v

0

r(u)du

V (v; S(v))

which is what we were trying to prove. In e¤ect, �(u; S (u)) � (u) provides the

local Martingale Representation, as in section VIII, for e
�

Z u

0

r(v)dv

V (u; S(u)).
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XI. LOCALMARTINGALEMEASURE IMPLIES NO-ARBITRAGE

If a local Martingale Measure Q exists then the market model is Arbitrage-
Free

Proof: Suppose V (t; S (t)) and U (t; S (t)) are two Portfolios such that
V (T; S (T )) � U (T; S (T )) with probability 100% and V (T; S (T )) > U (T; S (T ))
with probability greater than 0%. For the market model to be Arbitrage-Free,
we need to to be able to prove that V (t; S (t)) 6= U (t; S (t)), with probability
greater than 0%, for all t � T .
To do this, de�ne a new Portfolio W (t; S (t)) = V (t; S (t)) � U (t; S (t)).

By section X, the present value e
�

Z t

0

r(u)du

W (t; S (t)) of this new Portfolio is
a local Q-Martingale, so for all t � T , again oversimplifying,

e
�

Z t

0

r(u)du

W (t; S (t)) = EQ

2664e�
Z T

0

r(u)du

W (T; S (T )) j S (t)

3775
But for this new Portfolio W (T; S (T )) = V (T; S (T )) � U (T; S (T )) > 0 with
probability greater than 0% and W (T; S (T )) � 0 with 100% probability so,
with probability greater than 0%,

e
�

Z t

0

r(u)du

W (t; S (t)) > 0 meaning that

W (t; S (t)) > 0 so

V (t; S (t))� U (t; S (t)) > 0 and

V (t; S (t)) 6= U (t; S (t)) ,

all with probability greater than 0%, for all t � T as required. So the market
model is Arbitrage-Free.
Looking at the converse, for a market model to be Arbitrage Free in general

does not quite imply the existence of a local Martingale Measure, but see section
XV(1) for something very close to that.

XII. MARTINGALE VALUE FOR A REPLICABLE CLAIM
(also called Risk-Neutral Value or Risk-Neutral Price or Martingale Price)

If Q is a local Martingale Measure and if a Replicable Claim with payo¤ at
time T equal to PayoffT (S (T )) has Replicating Portfolio V (t; S (t)), then at
all times t � T the value at t for owning the Claim ( the right to the payo¤ at
T ) is the Martingale Value

EQ

2664e�
Z T

t

r(u)du

PayoffT (S (T )) j S (t)

3775 ,
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i.e. the expected value using the local Martingale Measure of the present value
at t of the Payo¤Value, conditional on the value of S (t) (again, oversimplifying
the conditional value.)

The proof of this is easy:

e
�

Z t

0

r(u)du

V (t; S(t)) = EQ

2664e�
Z T

0

r(u)du

V (T; S(T )) jS (t)

3775
because the present value of any Portfolio is a local Q martingale by section X.

But then multiply both sides by e

Z t

0

r(u)du

V (t; S(t)) = EQ

2664e�
Z T

t

r(u)du

V (T; S(T )) jS (t)

3775
and use the assumption that V (t; S (t)) is a Replicating Portfolio for the Claim,
so V (T; S(T )) = PayoffT (S (T )), so

V (t; S(t)) = EQ

2664e�
Z T

t

r(u)du

PayoffT (S (T )) jS (t)

3775
By section XI the market model is Arbitrage-Free, so as in section VI (using
the Law of One Price) this Replicating Portfolio value must be the value at t for
owning the right to the payo¤, the Replicable Claim, at T . Owning the portfolio
at t has 100% probability to give us the payo¤ V (T; S(T )) = PayoffT (S (T )),
and in an Arbitrage-Free market model no other Replicating Portfolio can o¤er
a higher value at t with probability greater than 0%.

XIII. MORE GOOD NEWS (In Dimension One)
- MARKET IS COMPLETE �ALL CLAIMS ARE REPLICABLE
- PV OF EVERY CLAIM IS THE MARTINGALE VALUE

Supppose the market is one-dimensional, meaning that there is only one
Risky Asset S (t) (or more accurately that there is only one Brownian Motion
dB(u) in the Physical Probability Measure P driving all risky assets in the
market).

In this one-dimensional case, a Replicating Portfolio exists for any payo¤
PayoffT (S (T )), i.e. in a one-dimensional market model all claims are Replica-
ble .
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(A market model with this property that Replicating Portfolios always exists,
that all claims are Replicable, is called a Complete Market. So we are saying
that a one-dimensional market model is always Complete.)

As a corollary to the Completeness of a one-dimensional market model
we can conclude that in a one-dimensional market model the Martingale Value
gives the present value at any time t < T for owning any Claim, the right to
any PayoffT (S (T )) at T .

This conclusion follows from the facts (a) that a one dimensional market
model has a unique local Martingale Measure Q (section IX) and (b) that, given
Completeness, the right to any PayoffT (S (T )) at T is Replicable and the Mar-
tingale Value gives the value at any time t < T for the right to PayoffT (S (T ))
at T (section XII).
Proof of Completeness, that a Replicating Portfolio exists for any PayoffT (S (T )):

If we assume that we have already proved the 2nd Fundamental Theorem of As-
set Pricing (section XV(2)) then the fact that in dimension one we have a
unique Q (section IX) gives us Completeness, i.e. that a Replicating Portfolio
exists for any PayoffT (S (T )). But since we only sketch the general proof of
XV(2), for any dimension, here is a more precise proof of Completeness in this
one dimensional case:
For any probability measure Q (whether local Martingale Measure or not) we

can de�ne, just as a function for now, and again oversimplfying the conditional
expectation,

V (t; S (t)) = EQ

2664e�
Z T

t

r(u)du

PayoffT (S (T )) j S (t)

3775 so, of course,

V (T; S (T )) = PayoffT (S (T ))

By section V, this function V (t; S (t)) will be a Portfolio (hence, a Replicating
Portfolio) if we can �nd a process �(t; S (t)) such that

dV (u; S (u)) = � (u; S (u)) dS (u) + [V (u; S (u))��(u; S (u))S (u)] r (u) du

To �nd such a process �(u; S (u)), start with the de�nition of V (t; S (t)) and
write (oversimplifying)

e
�

Z t

0

r(u)du

V (t; S (t)) = EQ

2664e�
Z T

0

r(u)du

PayoffT (S (T )) j S (t)

3775 . (�)

For any t � v � T the recursive property of conditional expectations now
gives

e
�

Z t

0

r(u)du

V (t; S (t)) =
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= EQ

2664EQ
2664e�

Z T

0

r(u)du

PayoffT (S (T )) j S (v)

3775 j S (t)
3775

= EQ

264e�
Z v

0

r(u)du

V (v; S (v)) j S (t)

375 by (�) with v replacing t.

This last equation means that e
�

Z t

0

r(u)du

V (t; S (t)) is a local Q-Martingale.
(Note that we could not use section X to prove this because we don�t yet know
whether V (t; S (t)) is a portfolio.)
Now, by the local Martingale Representation Theorem stated in Section

VIII the fact that e
�

Z t

0

r(u)du

V (t; S (t)) is a local Q-Martingale implies that
there is some random process � (t) (not the same one as in sections VIII and
IX) with

d

0B@e�
Z u

0

r(v)dv

V (u; S (u))

1CA = � (u) dBQ (u) so using Itô

e
�

Z u

0

r(v)dv

f�r (u) duV (u; S (u)) + dV (u; S (u))g = � (u) dBQ (u) and

dV (u; S (u)) = e

Z u

0

r(v)dv

� (u) dBQ (u)+r (u)V (u; S (u)) du (��)
Now if we assume that Q is a local Martingale Measure then by section IX we
can write

dBQ (u) =
� (u; S (u))� r (u)S (u)

� (u; S (u))
du+ dB (u) so

dB (u) = dBQ (u)�
� (u; S (u))� r (u)S (u)

� (u; S (u))
du and then

dS (u) = � (u; S (u)) du+ � (u; S (u)) dB (u)

= r (u)S (u) du+ � (u; S (u)) dBQ (u) and �nally

� (u; S (u)) dBQ (u) = dS (u)� r (u)S (u) du (� � �)

Now we can make the de�nition of �(t; S (t)):

�(t; S (t)) = e

Z t

0

r(u)du � (t)

� (t; S (t))
and in (��) this gives

dV (u; S (u)) = � (u; S (u))� (u; S (u)) dBQ (u) + r (u)V (u; S (u)) du
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So by (� � �)

dV (u; S (u)) = � (u; S (u)) dS (u)��(u; S (u)) r (u)S (u) du+ r (u)V (u; S (u)) du
= �(u; S (u)) dS (u) + [V (u; S (u))��(u; S (u))S (u)] r (u) du

which is exactly what is required by section V to make our function V (t; S (t))
actually be a Portfolio (hence, a Replicating Portfolio.)

To sum up: In a one dimensional model, there is a local Martingale Measure
(by section IX, which also says it is unique), the existence of that local Mar-
tingale Measure implies that the market model is Arbitrage-Free (by section
XI) and that in this one-dimensional Complete Market a Replicating Portfolio
exists for any future Payo¤ (by this section, XIII), which in turn guarantees
(by section XII) that the Martingale Value (unique in this case) is the correct
value at any t < T for any future Payo¤ at T .

XIV. MORE COMPLICATED MODEL IN DIMENSION > 1

If more than one independent Brownian Motions drives the market model,
label them dB1 (u), ... , dBd (u) and call it a d-dimensional market model. Use
vector notation

dB (u) =

8>><>>:
dB1 (u)
dB2 (u)
:::

dBd (u)

9>>=>>;
In such a model, the d independent Brownian Motions will drive n (not

necessarily independent) Risky Assets S1 (t), ... , Sn (t). Again use vector
notation

S (t) =

8>><>>:
S1 (t)
S2 (t)
:::

Sn (t)

9>>=>>;
The dynamics of this model are

dS (u) = � (u;S (u)) du+ � (u;S (u)) � dB (u)

where � (u;S (u)) is an n-dimensional Drift Vector process

� (u;S (u)) =

8>><>>:
�1 (u;S (u))
�2 (u;S (u))

:::
�n (u;S (u))

9>>=>>;

20



and � (u;S (u)) is an n� d-dimensional Volatility Matrix process

� (u;S (u)) =

8>><>>:
�11 (u;S (u)) �12 (u;S (u)) ::: �1d (u;S (u))
�21 (u;S (u)) �22 (u;S (u)) ::: �2d (u;S (u))

::: ::: ::: :::
�n1 (u;S (u)) �n2 (u;S (u)) ::: �nd (u;S (u))

9>>=>>;
Note that the Volatility Matrix � (u;S (u)) encodes the covariance among the
components of dS (u). They are not necessarily independent, and if n > d they
cannot be independent.

A Portfolio in this market model is determined by an n-dimensional row
vector process

� (t; S (t)) =
�
�1 (t;S (t)) �2 (t;S (t)) ::: �n (t;S (t))

	
giving the Portfolio composition

V (t;S (t)) =� (t; S (t)) � S (t) +

26664V (t;S (t))�� (t; S (t)) � S (t)
e

Z t

0

r(u)du

37775 e
Z t

0

r(u)du

together with Portfolio Dynamics

dV (u;S (u)) =� (u; S (u)) � dS (u) + [V (t;S (t))�� (t; S (t)) � S (t)] r (u) du

XV. MORE COMPLICATED PROPERTIES IN DIMENSION >1

In dimension > 1 the results of sections I-VI, VIII and X-XII remain valid
after appropriate restatement into vector-matrix terms along the lines of the
formulation in section XIV.

The results of sections VII, IX and XIII, however, do not always remain
valid in dimension > 1.

We cannot always concludeVII that a Replicating Portfolio exists for a given
Payo¤ if and only if there is a solution to the Black-Scholes Partial Di¤erential
equation in (n+ 1) variables (1 time variable and n risky asset variables) with
terminal values equal to the given Payo¤ values.
We cannot conclude IX that a local Martingale Measure always exists and,

even if one does exist, we cannot conclude automatically that it is unique.
We cannot conclude XIII that the market model is always a Complete Mar-

ket. As a consequence we cannot always be sure that the present value of a
future Payo¤ is given by a Martingale Value or, even if a Martingale Value for
the Payo¤ exists, we cannot conclude automatically that it is a unique value (as
a present value needs to be).
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The problem is that to prove the results in sections VII, IX and XIII at
some step in the derivation we had to divide by � (u; S (u)) (which was assumed
6= 0). In the vector-matrix formulation for dimension > 1 in section XIV,
however, � (u;S (u)) is now an n � d matrix. We can�t just divide both sides
of an equation by such a matrix.
In order to cancel out a matrix multiplication by � (u;S (u)) on both sides

of an equation we need the matrix � (u;S (u)) to be of full rank, in this case
rank d. That means that � (u;S (u)) needs to contain a d� d submatrix that
is invertible so that vector equality after multiplication by � (u;S (u)) implies
vector equality before multiplication. So now we always assume that the matrix
� (u;S (u)) is of full rank d for all u.

The problem goes deeper, so that we cannot even restore fully the results
of IX, and XIII by just assuming that the matrix � (u;S (u)) is of full rank d.
The problem is that � (u;S (u)) can be of full rank at each time u while having
di¤erent rows constituting the required d�d invertible matrix at di¤erent times.
This prevents picking the same d Risky Assets (out of the n Risky Assets in the
model in total) at di¤erent times u to put in a Portfolio carrying the relevant
information about the market model across time.

Rather than try to restrict market models to the case where it is possible
to specify exactly how this matrix rank problem can be resolved, it is more
common to identify more general properties of a market model that capture the
required conclusions precisely. We�ll state these here without proof:

1. First Fundamental Theorem of Asset Pricing

A local Martingale Measure exists for a Market Model if and only if the
model contains No Free Lunch with Vanishing Risk.

A Free Lunch with Vanishing Risk is a sequence of pairs of Portfolios
Vn (t;S (t)) and Un (t;S (t)) such that

P
h
lim
n!1

fVn (T;S (T ))� Un (T;S (T ))g � 0
i
= 1 and

P
h
lim
n!1

fVn (T;S (T ))� Un (T;S (T ))g > 0
i
> 0, but for each n

P [jVn (t;S (t))� Un (t;S (t))j 6= 0] = 0 for some t < T

and where also Vn (u;S (u))� Un (u;S (u)) � C for t < u < T

for all n for some constant C independent of n, where limn!1 fVn (T;S (T ))� Un (T;S (T ))g
is the random variable whose maximum di¤erence (in absolute value) from
the random variable Vn (T;S (T ))�Un (T;S (T )) at each given n converges
to 0 as n ! 1. The existence of a local Martingale Measure is equiva-
lent to there being no such sequences of pairs of Portfolios possible. The
proof is delicate. See Delbaen and Schachermayer, The Mathematics of
Arbitrage. This result is consistent with XI, the existence of a local
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Martingale Measure implies No Arbitrage, because No Free Lunch with
Vanishing Risk implies, as a simple consequence, No Arbitrage. (Just let
Vn (t;S (t)) and Un (t;S (t)) be the Arbitrage V (t;S (t)) and U (t;S (t))
for all n.)

2. Second Fundamental Theorem of Asset Pricing

Assuming that a local Martingale Measure exists, then that local Mar-
tingale Measure is unique if and only if the market model is a Complete
Market.

When Replicating Portfolios exist (a Complete Market) in the presence
of a local Martingale Measure then all Replicating Portfolios have the
same value at any given time (because in the presence of a local Martin-
gale Measure there is No Arbitrage) and both the Replicating Portfolio
value and the Martingale Value give the present value for any Payo¤, so
there cannot be di¤erent Martingale Values. Conversely, when the local
Martingale Measure is unique the unique Martingale Value can be used
to de�ne a Replicating Portfolio for any Payo¤, using a careful analysis
of how the properties of the full rank matrix � (u;S (u)) across di¤erent
times u relate to uniqueness of the local Martingale Measure.

3. Black-Scholes Partial Di¤erential Equation

If there is a solution V (t; s) to the Black-Scholes Partial Di¤erential equa-
tion in (n+ 1) variables (1 time variable and n risky asset variables) with
terminal values equal to the given Payo¤ values of some Claiim then a
Replicating Portfolio exists with

� (t; S (t))) = grads V (t; s) jt;S(t) ,

the vector of partial derivatives of the solution V (t; s) with respect to the
n variables s1, ... , sn evaluated at the point t;S (t), making the Claim a
Replicable one.

Conversely, however, the existence of a Replicating Portfolio with the
given Payo¤ values of some Replicable Claim does not guarantee a so-
lution V (t; s) to the Black-Scholes Partial Di¤erential equation in (n+ 1)
variables (1 time variable and n risky asset variables) with terminal values
equal to the given Payo¤ values of the Replicable Claim, not even in the
case that the matrix � (u;S (u)) is of full rank, d. The best that can be
guaranteed is that the portfolio � (t; S (t))) vector will determine d of the
n components in the gradient vector grads V (t; s) jt;S(t) for each t;S (t)
and it might not be the same d components at di¤erent times t, with no
guarantee that they will integrate together to a solution of the multivari-
ate Black-Scholes Partial Di¤erential equation over all components at all
times.
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