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Introduction
What is the Esscher Approximation?

A series expansion for any probability density function with �nite
moments

possible convergence questions but manageable in practice

Known to actuaries by Esscher�s name (1932)

Known to statisticians as the saddlepoint approximation (Daniels
1954)

Integrate the series to get approximate probability values under the
density

A location parameter in the expansion can be chosen arbitrarily

Choose a value for it that speeds up the convergence of the
integrated series
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Introduction
How can the Esscher Approximation give Maximum Likelihood Values?

Try to approximate the point where the derivative of the probability
density function is 0

Either: take the derivative of the series expansion for the density

Or: make a series expansion for the derivative of the density

Or: take a weighted average of the two

If the limits exist they will be same in all cases but the partial sums
will not be the same! Maybe one will converge faster than another

Find the value for the random variable that minimizes the absolute
value of the partial sum (or sums)

Assume that the arbitrary location parameter is the unknown point of
maximum likelihood

Vastly simpli�es the minimization problem
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What Does the Esscher Look Like?
For a random variable X and an arbitrary location parameter a the density of X can be
represented as

fX (x) =

dfX�a(ih)
c eh(x�a)ϕ

� x�a
c

�
8>>>><>>>>:
1+ limN!∞

N

∑
j=3

1
j !

�
i j dfX�a (j)(ih)
c j dfX�a(ih) � j?

�
�

b N�j2 c
∑
n=0

(�1)n(2n)?
(2n)! H2n+j

� x�a
c

�
9>>>>=>>>>;

where dfX�a (t) is the Fourier transform E
h
e�it(X�a))

i
of the density for

the random variable X � a
so dfX�a (ih) is the moment generating function of X � a evaluated at h
ϕ (z) is the standard normal densitydfX�a(j) (t) is the jth derivative of the Fourier transform for X � a
so i j dfX�a(j) (ih) is the jth derivative of the moment generating function
of X � a, evaluated at h
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What Does the Esscher Look Like?
For a random variable X and an arbitrary location parameter a the density of X can be
represented as

fX (x) =

dfX�a(ih)
c eh(x�a)ϕ

� x�a
c

�
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(�1)j
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c j dfX�a(ih) � j?
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where j? = 0 for odd j and j? = (j � 1) (j � 3) � � � (1) for even j

h is chosen so that i dfX�a(1) (ih) = 0 (eliminating the j = 1 term)
c is chosen so that i

2 dfX�a (2)(ih)
c2 dfX�a(ih) � 1 = 0 (eliminating the j = 2 term)

(note that if a = µX then the choices are h = 0 and c = σX )

Hm (z) =
bm2 c
∑
k=0

(�1)k m!(2k )?
(m�2k )!(2k )!z

m�2k =the mth Hermite polynomial

In the literature the the order of summation is n �rst, then j
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What Does the Esscher Look Like?
To �nd the probability that u<X<v just integrateZ v

u
fX (x) dx =

dfX�a(ih)
c

8>>>><>>>>:

Z v

u
eh(x�a)ϕ

� x�a
c

�
dx + limN!∞

N

∑
j=3

1
j !

�
i j dfX�a (j)(ih)
c j dfX�a(ih) � j?

�
�

b N�j2 c
∑
n=0

(�1)n(2n)?
(2n)!

Z v

u
eh(x�a)H2n+j

� x�a
c

�
ϕ
� x�a
c

�
dx

9>>>>=>>>>;
The integrals have been codi�ed as "Esscher functions" and can be
handled numerically

It turns out that this integrated series has far faster convergence
when the location parameter a is chosen to be either u or v

Even better when the other limit is ∞

The proper choices for h and c allow any choice needed for the
location parameter a

Bridgeman (University of Connecticut) Esscher August 12, 2011 6 / 14



Where Does the Esscher Come From?
Work in Fourier Transform Space and Use Taylor�s Series

First use just some algebra and the usual rules for Fourier TransformsbfX (t) = e�iat dfX�a(t)
\ϕ( xc )(t�ih)

\ϕ
� x
c

�
(t � ih)

= 1
c e
�iat

n dfX�a(t)bϕ(c (t�ih))
o
\ϕ
� x
c

�
(t � ih) and now use Taylor�s Series

= 1
c e
�iat

(
∞

∑
n=0

1
n!

h dfX�a(t)bϕ(c (t�ih))
i(n)
t=ih

(t � ih)n
)
\ϕ
� x
c

�
(t � ih)

Now use the usual Fourier Transform rules and more algebra to get

bfX (t) = 1
c

∞

∑
n=0

1
n!

h dfX�a(t+ih)bϕ(ct)
i(n)
t=0

i�n
cn

\z }| {
eh(x�a)ϕ(n)

�
x � a
c

�
(t)

And just invert the Fourier Transform to get fX (x) back in density space
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Where Does the Esscher Come From?
Invert the Fourier Transform

Back in density space

fX (x) = 1
c e
h(x�a)

∞

∑
n=0

1
n!

h dfX�a(t+ih)bϕ(ct)
i(n)
t=0

i�n
cn ϕ(n)

� x�a
c

�
which

= 1
c e
h(x�a)ϕ

� x�a
c

� ∞

∑
n=0

1
n!

h dfX�a(t+ih)bϕ(ct)
i(n)
t=0

in
cnHn

� x�a
c

�
because
ϕ(n)

� x�a
c

�
= (�1)n ϕ

� x�a
c

�
Hn
� x�a
c

�
Now use Leibniz�s product rule creatively to unravel the coe¢ cient
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Where Does the Esscher Come From?
Use Leibniz�s Product Rule to get the Coe¢ cient

For n > 0h dfX�a(t+ih)bϕ(ct)
i(n)
t=0

= dfX�a (ih) h 1bϕ(ct)
i(n)
t=0

+
n

∑
j=1

n!
j !(n�j)!

dfX�a(j) (ih) h 1bϕ(ct)
i(n�j)
t=0

0 =
h bϕ(ct)bϕ(ct)

i(n)
t=0

= bϕ (0) h 1bϕ(ct)
i(n)
t=0

+
n

∑
j=1

n!
j !(n�j)!c

j bϕ(j) (ct) jt=0 h 1bϕ(ct)
i(n�j)
t=0

Now multiply by dfX�a (ih), subtract and simplifyh dfX�a(t+ih)bϕ(ct)
i(n)
t=0

= n!cn dfX�a (ih) n

∑
j=1

1
j !

�
i j dfX�a (j)(ih)
c J dfX�a(ih) � j?

�
(n�j)?
(n�j)! i

�j

�
note that bϕ(j) (0) = i�j j?and h 1bϕ(ct)

i(n�j)
t=0

= cn�j (n� j)?
�

If you plug this expression for
h dfX�a(t+ih)bϕ(ct)

i(n)
t=0

into the formula for fX (x),

change the order of summation and simplify then you get the Esscher
expansion we were looking for.
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How To Use Esscher for Maximum Likelihood
3 Ways: (1) Derivative of the Esscher (2) Esscher of the Derivative (3) Weighted Average
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How To Use Esscher for Maximum Likelihood
Whichever Way: For a given N, minimize over a, h, and c

Maximum Likelihood occurs at a value xm where f
(1)
X (xm) = 0

Try to approximate xm given only N terms in the sums:

Try to minimize j(1)j, j(2)j, or jθ (1) + (1� θ) (2)j over xm , a, h, c ,
and (maybe) θ using a numerical tool such as SOLVER

But with so many variables it might not be stable or fast

Try to minimize j(1)j over xm and a using the usual Esscher values
for h and c corresponding to each trial value of a

But this may be unstable, slow, or wrong because the derivative of an
approximation may not converge, or not quickly, to the derivative when
the approximation is oscillatory as ours is (coming from Fourier space).

Try to minimize j(2)j over xm and a using the usual Esscher values
for h and c corresponding to each trial value of a

But this may be slow because i2 [fX�a
(2)
(ih) hasn�t been eliminated
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How To Use Esscher for Maximum Likelihood
Instead, Choose a to be the Unknown Point of Maximum Likelihood
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How To Use Esscher for Maximum Likelihood
Choose h and c to Eliminate the First Two Derivatives of Moment Generating Function
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What if No/No Known Moment Generating Function?
Approximate it Using a Taylor�s Series Involving Moments as Coe¢ cients

The method needs derivatives of the moment generating function.
What if the moment generating function is unknown?

Approximate any derivative of the moment generating function by

i j dfX�a(j) (ih) = limM!∞

M

∑
m=0

i j+m
m!

dfX�a(j+m) (0) hm where
i j+m dfX�a(j+m) (0) is the (j +m)th moment of X � a

What if that Taylor�s series doesn�t converge (i.e. what if the Fourier
Transform is not analytic so there is no moment generating function)?

As long as you know the moments themselves, use the same series up
to a value m = M representing the order of approximation you want.
By Carleman�s Condition, to any order there is a density with a moment
generating function and moments matching X � a to that order
For a maximum likelihood estimate, far from the tails, error introduced
by discrepancies at higher moments should be tolerable
Maximum likelihood for the non-oscillatory density with given moments
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