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Got stuck on drift formula with randomized target

o Last year:

o Drift formula with the randomized target
e Asymptotic to closed forms involving Laplace transforms
o Interesting probability results

@ This year:

e Some corrections/addditions (see www.math.uconn.edu/~bridgeman)
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Example: 56 Years of the 10-year Treasury Rate

10 year risk free rate 1963-2008 (monthly data)
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The Distribution of those Interest Rates
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Lognormal 4th Moment Is Just Too High (6th too)
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56 Years of Changes in the 10 Year Treasury Rate

Normalized absolute monthly log-change in 10 year risk-free rate
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The Fix: Randomize the Reversion Target
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Lognormal Models

@ Mean-reverting:

o din(r,)= {1 - (1- F)dt] [In(To) — In(re_ge)]

+ (1= F)? Didt + (1 — F)¥ o/diN,
actuarial folklore (circa 1970)

o din(rt) ={—=In(1—=F)[In(To) —In(rt)] + D¢} dt + cdW;
Black-Karasinski (1991)

@ With Randomized Reversion Target

o din(r,)= {1 —-(1- F)dt] (In(Te) = In(re—qt)]

+(1- F)dt Dedt + (1 — F)dt o+/dtN;, where In(T;) is random
o din(rt) =—In(1—F)[In(T¢) —In(r)] dt
—|—Dtdt—|—¢7th
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o {tj1— tj}1<j =a set of i.i.d. random variables with common law

gamma(w, B), the inter-arrival intervals for regime-switches
o t; =a random variable independent of {t;.; — tj}li/' distributed

as a randomly chosen point within a gamma(a, B) interval.
@ What does it switch to? A lognormally distributed value:
° {Tj}lgj =i.i.d. lognormal mean reversion targets for the interest
rate, thus characterizing each regime by a randomly chosen

mean reversion target.
o (Tp is a fixed target value for the first regime.)

1At g @ ™) g @ y)
“0_F)d —
o Tt =T, st HTj e , Where the
j=k

product is over all tj that fall in the interval [t — dt, t) plus the
immediate prior t; (see corrections to last year's paper at
www.math.uconn.edu/~bridgeman)
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Drift Compensation: the ordinary mean-reversion case

@ It would be intuitive to have:

At f1-(-F)t
]E[rt]:rél F) TO[ a-F)]

Bridgeman (University of Connecticut) Illustrations ARC August 14, 2008 12 / 50



Drift Compensation: the ordinary mean-reversion case

@ It would be intuitive to haye:
En] = =" g 0]

e To find out what drift D; will ensure it, you can integrate d In(r;) :

In(re) = In(ro) (1 — F)#% 4 ov/dt Y Ny (o 1)q (1 — F)™

+1In(Tp) [1 —(1- F)dt] (1- F)(S Ddt — notice geom. series

+dt Z D:_(s_1ya: (1 = F)*™ which simplifies to:
s=1

In(ry) = In(ry) (1 — +a\FZN (s-1)ae (1 — F)™"

q

+In(To) [L— (1~ F)'] +dt Z Di—(s—1ygt (1 — F)*™, which is
s=1
Gaussian.
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Drift Compensation: the ordinary mean-reversion case

o Since In(r;) is Gaussian, I [r;] = e#*27"where the y and ¢ are
some mess determined by the constants in the expression for In(r).
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) 1-(1-F)*
@ If you work that mess out and set it equal to r; To[ 4= ]

and require that it be true for all t, you can arrive at what the drift
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) —F)Y __[1-(1-F)*

o If you work that mess out and set it equal to ro1 F) TO[ a=F ]
and require that it be true for all t, you can arrive at what the drift
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o Since In(r;) is Gaussian, I [r;] = e#*27"where the y and ¢ are
some mess determined by the constants in the expression for In(r).

) _A) o 1-(1-F)!
o If you work that mess out and set it equal to ro1 F) To[ 4= ]

and require that it be true for all t, you can arrive at what the drift
compensation function D; must be to deliver the intuitive E [r¢] :

1+(1-F)

dt
o D; = —%027(1_5 — [1 +(1—- F)2t7dt}, or
—10? [1 +(1- F)2t] in the continuous case

o Dy =

@ There is a similar closed form for the variance of r;
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Drift Compensation: the ordinary mean-reversion case

o Since In(r;) is Gaussian, I [r;] = e#T27"where the i and o2 are
some mess determined by the constants in the expression for In(r;).

(1-F)" [1-(1=F)]

@ If you work that mess out and set it equal to r; T, ,
and require that it be true for all t, you can arrive at what the drift
compensation function D; must be to deliver the intuitive E [r¢] :
1.2 (1-F)* 2t—dt
ODt——é(fm 1+(1—F) , or

o Dy = —%02 [1 +(1- F)2t] in the continuous case

@ There is a similar closed form for the variance of r;

@ Practical work with the randomized reversion target model all but
requires you to know similar closed forms for drift compensation
(can't do physical measure Monte Carlo without drift compensation),
but now when you integrate, no convenient geometric series appeats.
Similarly for variance, which you need to calibrate a Monte Carlo.
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Drift Compensation: with randomized reversion target

@ In last year's paper | showed that

n(re) = (o) (1 )+ 0v/dE YT Np_(ogya (1 )
+In(To) [(1 = F) ™ — (1 - F)']

T [ p

di
+dt Z (s—1) dt F)Sdt (1'3)

14 / 50
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@ In last year's paper | showed that

In(re) = In(ro) (1 - +U\ﬁZN (s 1)ae (1— F)*
+In(To) [(1 - F)(Hl)+ ~(1-F)]

T [ p

di
+dt Z (s—1) dt F)Sdt (1'3)

o If you condition on {t;} this is just Gaussian with parameters some
mess determined by the coefficients of the N;_(s_1)4 and the In(T;).
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@ In last year's paper | showed that

In(re) = In(ro) (1 - +U\ﬁZN (s 1)ae (1— F)*
+In(To) [(1 - F)(Hl)+ ~(1-F)]

T [ p

di
+dt Z (s—1) dt F)Sdt (1'3)

o If you condition on {t;} this is just Gaussian with parameters some
mess determined by the coefficients of the N;_(s_1)4 and the In(T;).

@ So conditional on {t;} you can calculate the moments of r; using
knowledge of the moments of a lognormal.
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Drift Compensation: with randomized reversion target

@ But expressions involving In(T;) [(1 — Rt (1 — F)(tftfh]
make it a nightmare to find the unconditioned moments of r;.
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Drift Compensation: with randomized reversion target

@ But expressions involving In(T;) [(1 - F)(tftf“)+ —(1- F)(tftfh]
make it a nightmare to find the unconditioned moments of r;.
@ So we derived an approximation series based on the old Edgeworth

approximation:
/
B[] =

2j
In+300)* ) 4 /
e + lim Z

N~>ooj 2 (2 )

NZj(=1)"(2n)? 2n
X 20 (I7) }

where (2n)? = (2n—1)(2n—3) --- 1 and y, 0, and p,; are the
mean, variance and higher central moments of In(r;).

[l/‘zj (2 )‘TZj]'
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@ But expressions involving In(T;) [(1 - F)(tftf“)+ —(1- F)(tftfh]
make it a nightmare to find the unconditioned moments of r;.
@ So we derived an approximation series based on the old Edgeworth

approximation:
/
B[] =

2j
In+300)* ) 4 /
e + lim Z

N~>ooj 2 (2 )

[l/‘zj (2 )UZj]‘

where (2n)? = (2n—1)(2n—3) --- 1 and y, 0, and p,; are the
mean, variance and higher central moments of In(r;).
@ The first approximation (beyond the lognormal) is
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Drift Compensation: with randomized reversion target

@ The second approximation is (correcting an embarrassing error last
year)
I L(jg)? /* 1 2
]E[(I’t)} ~ e/}l+2(/0') {1‘1_4![‘“4_30'4] (1—2!(/0') )
/o 6
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Drift Compensation: with randomized reversion target

@ The second approximation is (correcting an embarrassing error last
year)

1
E [(rt)li| ~ eIPH’%(IU')2 {1 + E []44 — 304] (1 — E (/0)2>

‘|‘a []/l6 — 150’6] }

@ And the third is

N o i) 1 4 LRy
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Drift Compensation: with randomized reversion target

@ Now we used that conditioning on {t;} to find the mean and central
moments of In(r;) needed here.

Bridgeman (University of Connecticut) Illustrations ARC August 14, 2008 17 / 50



Drift Compensation: with randomized reversion target

@ Now we used that conditioning on {t;} to find the mean and central
moments of In(r;) needed here.
°

o= [In(r)—In(To)](1—F)*
+P”UN—(Vr+;ﬁ>}O—FYER1—F)mﬂ

=

2de 1— (1= F)*
1—(1—F)%®

15
+yT+§(7T

1
—5(72dt(1 —F) where (e.3)
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Drift Compensation: with randomized reversion target

@ Now we used that conditioning on {t;} to find the mean and central
moments of In(r;) needed here.
°

o= [In(r)—In(To)](1—F)*
+ ['”(To) - (VT + ;a%ﬂ (1-F)E [(1 -~ F)*W]

=

ot 1—(1— F)*
11 R
@ y; and o7 are the parameters for the lognormal {T;}.
o dfollows the equilibrium distribution of our gamma(w, B) interarrival
times for regime-switches and [E [(1 - F)fmﬂ = Lant (IN(1—F))

is a calculable Laplace transform.
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1
—502dt(1 —F) where (e.3)
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Drift Compensation: with randomized reversion target

°e = {(1 — F)(tftf“)+ —(1- F)(tftfh}, and a delicate evaluation

of E Z ejz-] was the main burden of last year's paper (and
i=1

corrections.)
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Drift Compensation: with randomized reversion target

°e = {(1 — F)(tftf“)+ —(1- F)(tftfh}, and a delicate evaluation

of E Z ejz-] was the main burden of last year's paper (and
i=1

corrections.)

E [{In(rt) —E [In(rt)]}2] -

1—-(1-F)* 0
— Uzdt (1 . F)2dt # + 0'27.]E l ef]
i=1

1—(1—F)**"
+(In(To) = pp)* (1= F)* {E [(1— F) 21"
— (E[(1-F) )7 (2.6.)

is the variance of In(r;)
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Drift Compensation: with randomized reversion target

@ This allows calibration of the drift compensation term as

1, (1-F)"

O Lwu T ] G Ut
%Uz% dt (1 i F)7 {1 -1-A"
~a-F) (E[a-A " —E[1-F) )
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Higher Moments

@ Higher central moments of In(rt) are even messier, but tractable in
principle. Asymptotically, things simplify a little.
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e Each Ho; requires evaluation of terms such as E Z ej2-
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@ These in turn can be analyzed into terms of the form

© n n
E Zejz-" IT (]E [ef-k]) ‘ , where Y0 _; kny < m—n.
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Higher Moments

@ Higher central moments of In(rt) are even messier, but tractable in
principle. Asymptotically, things simplify a little.
S m
2
Z%‘) ]
i=1

@ These in turn can be analyzed into terms of the form

E li ejz-” kﬁ[l (]E [ejz-ank] , where Y0 _; kny < m—n.

o Each p,; requires evaluation of terms such as [E

k=1
turns out to equal

E [v ((1 . F)v)} E [v (1 —(1- F)d)}
1-E [v ((1 - F)d)]

o Let v(x) = x?" ]ﬂ[ (E [x*])™ for any x. Ast— oo E li v(ej)]

+E [v (1— (1- F)T)}
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Higher M ts

o Here d follows our gamma(w, B) interarrival distribution andd(same
as before) is its equilibrium distribution. Those expected values are
all Laplace transforms that we know how to calculate.
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o Here d follows our gamma(w, B) interarrival distribution andd(same
as before) is its equilibrium distribution. Those expected values are
all Laplace transforms that we know how to calculate.

o Using these, and the Edgeworth-based approximation, we put
together formulae for the skewness, kurtosis, and 6-thosis of the
modeled interest rate r;.
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all Laplace transforms that we know how to calculate.

o Using these, and the Edgeworth-based approximation, we put
together formulae for the skewness, kurtosis, and 6-thosis of the
modeled interest rate r;.

@ Then we played games with EXCEL Solver to find parameters F, o7,
«, and B to reproduce asymptotically the historical variance, and
kurtosis of r; as well as the historical volatility (the standard deviation
of In(r;) —In(re—g¢).) We set i, so that IE [T;] equals the historical
mean of r; which, together with the drift compensation, assured that
asymptotically the model would reproduce the historical mean of r;.
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Higher Moments

Here d follows our gamma(w, B) interarrival distribution and=d (same
as before) is its equilibrium distribution. Those expected values are
all Laplace transforms that we know how to calculate.

Using these, and the Edgeworth-based approximation, we put
together formulae for the skewness, kurtosis, and 6-thosis of the
modeled interest rate r;.

Then we played games with EXCEL Solver to find parameters F, o,
«, and B to reproduce asymptotically the historical variance, and
kurtosis of r; as well as the historical volatility (the standard deviation
of In(r;) —In(re—g¢).) We set i, so that IE [T;] equals the historical
mean of r; which, together with the drift compensation, assured that
asymptotically the model would reproduce the historical mean of r;.

Looking at results, it seems more reasonable to use parameters that
put the historical kurtosis within a sampling error, rather than forcing
equality.
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With No Regime Switching, Just Match Historical Mean

and Variance: F=.0528 (N=662)

Mean and Std Dev of r(t)
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With No Regime Switching, Just Match Historical Mean

and Variance: F=.0528 (N=662)

Rate Frequency vs. Lognormal
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With No Regime Switching, Just Match Historical Mean

and Variance: F=.0528 (N=662)

Typical Path
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With No Regime Switching, Just Match Historical Mean

and Variance: F=.0528 (N=662)
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With No Regime Switching, Just Match Historical Mean

and Variance: F=.0528 (N=4,500)

Mean and Std Dev of r(t)
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With No Regime Switching, Just Match Historical Mean
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With No Regime Switching, Just Match Historical Mean

and Variance: F=.0528 (N=4,500)

Rate Frequency vs. Lognormal
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Match historical kurtosis:
F =.3993/a =3/B=.5/0cr = .6512 (N=662)

Mean and Std Dev of r(t)
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Match historical kurtosis:
F =.3993/a =3/B=.5/cr = .6512 (N=662)
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Match historical kurtosis:
F =.3993/a =3/B=.5/cr = .6512 (N=662)
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Match historical kurtosis:
F =.3993/a =3/B =.5/0cr = .6512 (N=5,000)

Mean and Std Dev of r(t)
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Match historical kurtosis:
F =.3993/a =3/B = .5/0cr = .6512 (N=5,000)
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Kurtosis 74% of Lognormal (vs historical 58%)
F=.1813/a = 25/B =1.25/c1 = .6095 (N=662)

Mean and Std Dev of r(t)
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Kurtosis 74% of Lognormal (vs historical 58%)
F = .1813/a =25/ = 1.25/07 = .6095 (N=662)
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Kurtosis 74% of Lognormal (vs historical 58%)
F=.1813/a = 25/B =1.25/c1 = .6095 (N=662)
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Kurtosis 74% of Lognormal (vs historical 58%)
F = .1813/a = 2.5/B = 1.25/01 = .6095 (N=5,000)

Mean and Std Dev of r(t)
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Kurtosis 74% of Lognormal (vs historical 58%)
F = .1813/a = 2.5/B = 1.25/01 = .6095 (N=5,000)
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Kurtosis 74% of Lognormal (vs historical 58%)
F = .1813/a =25/ =1.25/0c1 = .6095
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Kurtosis 74% of Lognormal (vs historical 58%)
F = .1813/a =25/ =1.25/0c1 = .6095
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Kurtosis 90% of Lognormal (vs historical 58%)
F = 1136/a = 2/B = 2.07/c1 = .5587 (N=662)
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Kurtosis 90% of Lognormal (vs historical 58%)
F = 1136/a = 2/B = 2.07/c1 = .5587 (N=662)
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Kurtosis 90% of Lognormal (vs historical 58%)
F = 1136/a = 2/B = 2.07/c1 = .5587 (N=662)

01

Q.08

0.06

0.04

0.02

Rate Frequency vs. Lognormal

Trirrrrrrrrrrrrrrrrrrrrrrrrrrrrrr i T TT T rrrrl

Bridgeman (University of Connecticut) Illustrations ARC August 14, 2008

45 / 50



Kurtosis 90% of Lognormal (vs historical 58%)
F = 1136/a = 2/B = 2.07/cr = .5587 (N=5,000)
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Kurtosis 90% of Lognormal (vs historical 58%)
F = 1136/a = 2/B = 2.07/cr = .5587 (N=5,000)
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Kurtosis 90% of Lognormal (vs historical 58%)
F = .1136/a =2/ =2.07/01 = .5587
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Kurtosis 90% of Lognormal (vs historical 58%)
F = .1136/a =2/ =2.07/01 = .5587
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