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Introduction

Work in progress

Two years ago:

Unconstrained lognormal interest rate models have too much tail
Mean-reverting ones have too little shoulder
Randomizing the reversion target �xes it
A desirable drift formula for the mean-reverting lognormal
Got stuck on drift formula with randomized target

Last year:

Drift formula with the randomized target
Asymptotic to closed forms involving Laplace transforms
Interesting probability results

This year:

Some corrections/addditions (see www.math.uconn.edu/~bridgeman)
Numerical examples
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Example: 56 Years of the 10-year Treasury Rate
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The Distribution of those Interest Rates
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Lognormal 4th Moment Is Just Too High (6th too)

Bridgeman (University of Connecticut) Illustrations ARC August 14, 2008 5 / 50



56 Years of Changes in the 10 Year Treasury Rate
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The Fix: Randomize the Reversion Target
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Lognormal Models

Unconstrained:

d ln (r t )=Dtdt + σ
p
dtNt

d ln(rt ) = Dtdt + σdWt

Mean-reverting:

d ln (r t )=
h
1� (1� F )dt

i
[ln(T0)� ln(rt�dt )]

+ (1� F )dt Dtdt + (1� F )dt σ
p
dtNt

actuarial folklore (circa 1970)
d ln(rt ) = f� ln (1� F ) [ln(T0)� ln(rt )] +Dtg dt + σdWt
Black-Karasinski (1991)

With Randomized Reversion Target

d ln (r t )=
h
1� (1� F )dt

i
[ ln(Tt )� ln(rt�dt )]

+ (1� F )dt Dtdt + (1� F )dt σ
p
dtNt , where ln(Tt ) is random
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The Target

When does it (the target; the regime) switch? At randomly chosen
times:

�
tj+1 � tj

	
1�j =a set of i.i.d. random variables with common law

gamma(α, β), the inter-arrival intervals for regime-switches
t1 =a random variable independent of

�
tj+1 � tj

	
1�j distributed

as a randomly chosen point within a gamma(α, β) interval.

What does it switch to? A lognormally distributed value:

�
Tj
	
1�j =i.i.d. lognormal mean reversion targets for the interest

rate, thus characterizing each regime by a randomly chosen
mean reversion target.
(T0 is a �xed target value for the �rst regime.)

Tt = T
1�(1�F )dt^(t�tk)

1�(1�F )dt
k

k�1
∏
j=k 0

T
(1�F )dt^(t�tj+1)�(1�F )dt^(t�tj)

1�(1�F )dt
j , where the

product is over all tj that fall in the interval [t � dt, t) plus the
immediate prior tj (see corrections to last year�s paper at
www.math.uconn.edu/~bridgeman)
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Drift Compensation: the ordinary mean-reversion case

It would be intuitive to have:

E [rt ] = r
(1�F )t
0 T

[1�(1�F )t ]
0

To �nd out what drift Dt will ensure it, you can integrate d ln(rt ) :

ln(rt ) = ln(r0) (1� F )
t
dt dt + σ

p
dt

t
dt

∑
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
h
1� (1� F )dt

i t
dt

∑
s=1
(1� F )(s�1)dt (= notice geom. series

+dt

t
dt

∑
s=1

Dt�(s�1)dt (1� F )sdt which simpli�es to:

ln(rt ) = ln(r0) (1� F )t + σ
p
dt

t
dt

∑
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
�
1� (1� F )t

�
+ dt

t
dt

∑
s=1

Dt�(s�1)dt (1� F )sdt , which is

Gaussian.
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Drift Compensation: the ordinary mean-reversion case

Since ln(rt ) is Gaussian, E [rt ] = eµ+ 1
2 σ2where the µ and σ2 are

some mess determined by the constants in the expression for ln(rt ).

If you work that mess out and set it equal to r (1�F )
t

0 T
[1�(1�F )t ]
0 ,

and require that it be true for all t, you can arrive at what the drift
compensation function Dt must be to deliver the intuitive E [rt ] :

Dt = � 12σ2
(1�F )dt

1+(1�F )dt
h
1+ (1� F )2t�dt

i
, or

Dt = � 14σ2
h
1+ (1� F )2t

i
in the continuous case

There is a similar closed form for the variance of rt
Practical work with the randomized reversion target model all but
requires you to know similar closed forms for drift compensation
(can�t do physical measure Monte Carlo without drift compensation),
but now when you integrate, no convenient geometric series appears.
Similarly for variance, which you need to calibrate a Monte Carlo.
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Drift Compensation: with randomized reversion target

In last year�s paper I showed that

ln(rt ) = ln(r0) (1� F )t + σ
p
dt

t
dt

∑
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
h
(1� F )(t�t1)+ � (1� F )t

i
+

∞

∑
j=1
ln(Tj )

h
(1� F )(t�tj+1)+ � (1� F )(t�tj )+

i

+dt

t
dt

∑
s=1

Dt�(s�1)dt (1� F )sdt (1.3)

If you condition on ftjg this is just Gaussian with parameters some
mess determined by the coe¢ cients of the Nt�(s�1)dt and the ln(Tj ).
So conditional on ftjg you can calculate the moments of rt using
knowledge of the moments of a lognormal.
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Drift Compensation: with randomized reversion target

But expressions involving ln(Tj )
h
(1� F )(t�tj+1)+ � (1� F )(t�tj )+

i
make it a nightmare to �nd the unconditioned moments of rt .

So we derived an approximation series based on the old Edgeworth
approximation:

E
h
(rt )

l
i
=

= e lµ+
1
2 (lσ)

2

(
1+ lim

N!∞

N
∑
j=2

l2j

(2j)!

h
µ2j � (2j)?σ2j

i
�

�
N�j
∑
n=0

(�1)n (2n)?
(2n)!

(lσ)2n
�

where (2n)? = (2n� 1)(2n� 3) � � � 1 and µ, σ2, and µ2j are the
mean, variance and higher central moments of ln(rt ).
The �rst approximation (beyond the lognormal) is

E
h
(rt )

l
i
� e lµ+ 1

2 (lσ)
2
n
1+ l4

4!

�
µ4 � 3σ4

�o
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Drift Compensation: with randomized reversion target

The second approximation is (correcting an embarrassing error last
year)

E
h
(rt )

l
i
� e lµ+

1
2 (lσ)

2
�
1+

l4

4!
�
µ4 � 3σ4

� �
1� 1

2!
(lσ)2

�
+
l6

6!
�
µ6 � 15σ6

��

And the third is

E
h
(rt )

l
i
� e lµ+

1
2 (lσ)

2
�
1+

l4

4!
�
µ4 � 3σ4

� �
1� 1

2!
(lσ)2

+
3
4!
(lσ)4

�
+
l6

6!
�
µ6 � 15σ6

� �
1� 1

2!
(lσ)2

�
+
l8

8!
�
µ8 � 105σ6

��
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Drift Compensation: with randomized reversion target

Now we used that conditioning on ftjg to �nd the mean and central
moments of ln(rt ) needed here.

µ = [ln (r0)� ln (T0)] (1� F )t

+

�
ln (T0)�

�
µT +

1
2

σ2T

��
(1� F )t E

h
(1� F )�t �̂d

i
+µT +

1
2

σ2T

"
1�E

"
∞

∑
j=1
e2j

##

�1
2

σ2dt (1� F )2dt 1� (1� F )
2t

1� (1� F )2dt
, where (e.3)

µT and σT are the parameters for the lognormal fTjg.
�d follows the equilibrium distribution of our gamma(α, β) interarrival

times for regime-switches and E
h
(1� F )�t �̂d

i
= L�d^t (ln (1� F ))

is a calculable Laplace transform.
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Drift Compensation: with randomized reversion target

ej =
n
(1� F )(t�tj+1)+ � (1� F )(t�tj )+

o
, and a delicate evaluation

of E

"
∞

∑
j=1
e2j

#
was the main burden of last year�s paper (and

corrections.)

E
h
fln(rt )�E [ln(rt )]g2

i
=

= σ2dt (1� F )2dt 1� (1� F )
2t

1� (1� F )2dt
+ σ2TE

"
∞

∑
j=1
e2j

#
+ (ln (T0)� µT )

2 (1� F )2t
�

E
�
(1� F )�2t1^t

�
�
�
E
�
(1� F )�t1^t

��2o (2.6.c)

is the variance of ln(rt )
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Drift Compensation: with randomized reversion target

This allows calibration of the drift compensation term as

Dt = �1
2

σ2
(1� F )dt
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1
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Higher Moments

Higher central moments of ln(rt ) are even messier, but tractable in
principle. Asymptotically, things simplify a little.

Each µ2j requires evaluation of terms such as E

" 
∞

∑
j=1
e2j

!m#
These in turn can be analyzed into terms of the form

E

"
∞

∑
j=1
e2nj

n
∏
k=1

�
E
h
e2kj
i�nk#

, where ∑n
k=1 knk � m� n.

Let ν(x) = x2n
n
∏
k=1

�
E
�
x2k
��nk for any x . As t ! ∞ E

"
∞

∑
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ν(ej )

#
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E
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ν
�
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Higher Moments

Here d follows our gamma(α, β) interarrival distribution and�d (same
as before) is its equilibrium distribution. Those expected values are
all Laplace transforms that we know how to calculate.

Using these, and the Edgeworth-based approximation, we put
together formulae for the skewness, kurtosis, and 6-thosis of the
modeled interest rate rt .
Then we played games with EXCEL Solver to �nd parameters F , σT ,
α, and β to reproduce asymptotically the historical variance, and
kurtosis of rt as well as the historical volatility (the standard deviation
of ln(rt )� ln(rt�dt ).) We set µT so that E [Tj ] equals the historical
mean of rt which, together with the drift compensation, assured that
asymptotically the model would reproduce the historical mean of rt .
Looking at results, it seems more reasonable to use parameters that
put the historical kurtosis within a sampling error, rather than forcing
equality.
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With No Regime Switching, Just Match Historical Mean
and Variance: F=.0528 (N=662)
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With No Regime Switching, Just Match Historical Mean
and Variance: F=.0528 (N=4,500)
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Match historical kurtosis:
F = .3993/α = 3/β = .5/σT = .6512 (N=662)
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Match historical kurtosis:
F = .3993/α = 3/β = .5/σT = .6512 (N=5,000)
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Kurtosis 74% of Lognormal (vs historical 58%)
F = .1813/α = 2.5/β = 1.25/σT = .6095 (N=662)
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Kurtosis 74% of Lognormal (vs historical 58%)
F = .1813/α = 2.5/β = 1.25/σT = .6095 (N=5,000)
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Kurtosis 90% of Lognormal (vs historical 58%)
F = .1136/α = 2/β = 2.07/σT = .5587 (N=662)
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