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THE MODEL PROCESS

� The discrete time-step version of the process (for Monte Carlo
applications) is

d ln (rt) =
h
1� (1� F )dt

i24 1X
j=0

1[j;j+1)(t) ln(Tj)� ln(rt�dt)

35
+(1� F )dtDtdt+ (1� F )dt �

p
dtNt

Where

rt is the interest rate we want to model over time
F is an annualized mean reversion factor between 0 and 1
dt is a discrete time interval
1[j;j+1) (t) is the indicator for t to be in a random interval [tj; tj+1)

ftj+1 � tjg1�j are i.i.d. random variables with common law gamma(�; �)

t1 � t0 is independent of ftj+1 � tjg1�j and distributed as a randomly
chosen point within a gamma(�; �) interval

fln(Tj)g1�j are i.i.d. normal random variables, independent of

ftj+1 � tjg0�j , making fTjg1�j i.i.d. lognormal mean reversion targets
for the interest rate and T0 is a �xed initial value of the target

Dt is an annualized drift-compensation function (available t.b.d. up front)
� is an annualized volatility parameter
fNtg0�t are i.i.d standard normal random variables independent of

all the other random variables in the process

For a continuous model just think of dt ! 0, replacing
p
dtNt with

a standard Wiener process dWt and using the Taylor expansion of
(1� F )dt, ignoring dtdWt, dt2 and higher.

d ln(rt) =

8<:� ln (1� F )
24 1X
j=0

1[j;j+1)(t) ln(Tj)� ln(rt)

35+Dt
9=; dt+ �dWt
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WHERE THIS COMES FROM

� Monte Carlo stress-testing of �nancial positions

� Virtual realities (a.k.a. risk-neutral models) are OK for pricing
�nancial positions but are not acceptable for stress-testing them

� Unconstrained lognormal models

d ln (rt) = Dtdt+ �
p
dtNt

d ln(rt) = Dtdt+ �dWt

�Too much probability in the tails of the resulting (inte-
grated) interest rate distribution

� Mean-reverting lognormal models

d ln (rt) =
h
1� (1� F )dt

i
[ln(T0)� ln(rt�dt)]

+ (1� F )dtDtdt+ (1� F )dt �
p
dtNt

(actuarial folklore, unpublished, ?�1970? )
d ln(rt) = f� ln (1� F ) [ln(T0)� ln(rt)] +Dtg dt+ �dWt

(Black-Karasinski, 1991)

�Too little probability of extended sequential runs at the
shoulders of the resulting (integrated) interest rate distrib-
ution (which bothers �nancial engineers, too)

�Too much probability in center of the integrated distribution

�Empirical �t wants slightly smaller kurtosis (not well-appreciated)

� Starting about 1994, unpublished, and continuing to B, 2002
and 2007, we attacked this problem by randomizing the mean
reversion target, now known as regime-switching

�Lognormal distribution of the mean reversion target value
was the easiest choice and we made it a random draw, not
a sequential process

� Inter-arrival times for switching to a new tarket ought look
like an event-driven process

�Erlang inter-arrival times seemed logical (gamma with inte-
ger � parameter, i.e. sum of exponentials, i.e. waiting time
for � events to occur) but having chosen a gamma inter-
arrival model, no reason to restrict to Erlang
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WARM UP EXERCISE

� A busy decision-maker could understand the ordinary mean-
reverting lognormal a lot better if you could tell her

E [rt] = r
(1�F )t
0 T

[1�(1�F )t]
0

� So integrate the di¤erence equation (just keep walking back-
wards) to get

ln(rt) = ln(r0) (1� F )
t
dtdt + �

p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
h
1� (1� F )dt

i t
dtX
s=1

(1� F )(s�1)dt (= notice geom. series

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt

= ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
h
1� (1� F )t

i
+ dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt

� This is just a sum of constants and constants times standard nor-
mal random variables, so it�s a normal random variable. That
makes rt a lognormal random variable so we know that

E [rt] = e�+
1
2�

2

where the � and �2 are some mess determined by the constants
in the expression for ln(rt). If you work that mess out and set

it equal to r(1�F )
t

0 T
[1�(1�F )t]
0 , and require that it be true for all t,

you can arrive at what the drift compensation function Dt has
to be to make our busy decision-maker happy

Dt = �1
2
�2

(1� F )dt

1 + (1� F )dt
h
1 + (1� F )2t�dt

i
, or

Dt = �1
4
�2
h
1 + (1� F )2t

i
in continuous case

� You can calculate the variance of rt in a closed form essentially
the same way to make it possible to calibrate the model against
historical data directly, with no trial and error required
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CAN WE FIND THE COMPARABLE RESULT FOR OUR
REGIME-SWITCHING MODEL?

(Or can we at least integrate it to get some insight?)

� The same approach (just walk backwards, but there�s more book-
keeping this time) gives

ln(rt) = ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+
h
1� (1� F )dt

i t
dtX
s=1

1X
j=0

1[j;j+1)(sdt) ln(Tj) (1� F )t�sdt

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt .

which doesn�t look so promising (no easy geometric series in
sight). By the way, for notational sanity this expression and
the rest of this presentation ignore the set of sample paths of
measure 0 that contain a regime-switching moment of time that
coincides with a model time-step.

� But if we change the order of summation in the middle term
and do some more book-keeping we at least get some telescoping
across every inter-arrival interval for a regime-switch

ln(rt) = ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
h
(1� F )(t�t1)+ � (1� F )t

i
+

1X
j=1

ln(Tj)
h
(1� F )(t�tj+1)+ � (1� F )(t�tj)+

i
(= after telescoping

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt

� Because of those random exponents, this isn�t going to give us a
lognormal rt; in fact, it looks like a log-log-gamma, which won�t
be pretty. Even the log-gamma is ugly. But at least we have
a cut-o¤ at t so things ought to converge

� If we condition on the ftjg, aha!, we keep a normal distribution at
least that far (notice that it�s two di¤erent sets of i.i.d. normals
in linear combination, fNtg and fln(Tj)g, but that�s still just a
normal random variable with a messy � and �)

6



How to Proceed?

� Tails of ln(rt) are supressed in favor of shoulders in our model.
This suggests that E [rt] might be approximated e¢ ciently by an
Edgeworth expansion for ln(rt): Multiply a normal density by
the Taylor expansion of (the ratio of the Fourier transform of
the ln(rt) density function to the normal density). Transform
back to a sum of Hermite polynomials times constants times
the normal density. E [rt] will be a normal expectation of some
exponential times a messy polynomial. Complete the square
in the exponents (just like when you are calculating the mean
of the lognormal) and the Hermite polynomials lead to massive
simpli�cations downstairs:

E [rt] � e�+
1
2�

2

�
1 +

1

4!

�
�4 � 3�4

�
+
1

6!

�
�6 � 15�6

�
+ :::

�
where �2, �4, �6, etc. are central moments of ln(rt) and � is
its mean (all hopefully calculable by conditioning on the ftjg,
a mess, but hopefully calculable because ln(rt) is normal, con-
ditional on the ftjg). The odd higher central moments are
zero because, conditional on the ftjg, the distribution of ln(rt) is
normal, hence symmetrical, making the conditional odd central
moments all zero, hence, so are the unconditioned ones. A sim-
ilar approach can give the variance or, indeed, higher moments
of rt

� The mean � that we need for this, remembering that conditional
on the ftjg we are looking at sums of independent normals, is

E [ln(rt)] = ln(r0) (1� F )t + ln(T0)
n
E
h
(1� F )(t�t1)+

i
� (1� F )t

o
+�TE

24 1X
j=1

h
(1� F )(t�tj+1)+ � (1� F )(t�tj)+

i35
+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt

= ln(r0) (1� F )t + ln(T0)
n
E
h
(1� F )(t�t1)+

i
� (1� F )t

o
�T

n
1� E

h
(1� F )(t�t1)+

io
(= telescoped

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt

where �T is the common mean of the fln(Tj)g, the telescoping
comes because tj � t for some j and all thereafter, and using
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monotone convergence. The remaining expectation values in
the expression work out to a constant times some value of a
Laplace transform that we can calculate, related to the random
variable t1(we�ll see that later).

� The even central moments that we need, using what we know
about the higher moments of the standard normal, conditioning
on the ftjg, using the notation (2n)? = (2n � 1)(2n � 3) � � � 1, and
summing a geometric series that appears, are

E
h
fln(rt)� E [ln(rt)]g2n

i
=

= (2n)?E

248<:�2dt (1� F )2dt 1� (1� F )2t1� (1� F )2dt
+ �2T

1X
j=1

e2j

9=;
n35

where �2T is the common variance of the fln(Tj)g and for each j

ej =
n
(1� F )(t�tj+1)+ � (1� F )(t�tj)+

o
� We can expand the nth power of the bracket binomially and take
the expectation, but that will still leave us needing to evaluate
terms of the form

E

240@ 1X
j=1

e2j

1Am35
� It can become a combinatorial nightmare but if we keep the
book-keeping straight, and note that (as we�ll see later) ej and
ei have correlation 0 for i 6= j, the most general expectation we�ll
need to be able to calculate is

E

24 1X
j=1

e2nj
nQ
k=1

�
E
�
e2kj
��nk35

where fnkg are arbitrary non-negative integers.

� An expression for this last expectation in terms of the underlying
gamma distribution for interarrival times is what we propose to
derive. Although not needed for this application, the expression
we derive will work for odd powers, too.
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THE SETUP
De�nitions and Notation

d1;d2; :::;dj ; :::are i.i.d with common law d

de�ne 0 � �d0 � d1 with �d0 ' (d1 � �d0) ' �d
where ' means "in law"

de�ne �d1 = (�d0 + t) ^ d1 � �d0
and t0 = 0; t1 = �d1, ..., tj = �d1 + d2 + :::+ dj

so tj � tj�1 = dj for j > 1
t1 � t0 = t1 = �d1

de�ne J = min fj : tj > tg
de�ne 1j<J = 0 for j � J

= 1 for j < J, a random variable for each j
de�ne �dJ = t� tJ�1

de�ne �dJ+1 = tJ � t
Key Lemmata

�d0 + �d ' d
�dJ + �dJ+1 ' d

the density for �d is =
P [d � t]
E [d]

a.k.a. "equilibrium density"

�dJ ' �d1 ' �d ^ t
E [11<J] = P

�
�d < t

��
J; �d1;d2; :::;dJ�1

	
are independent�

J;d2;d3; :::;dJ�1; �dJ; �dJ+1
	
are independent

t� tj 2 �(�d1;d2; :::;dj) for all j
t� tj 2 �(dj+1; :::;dJ�1; �dJ; �dJ+1) for 1 � j � J

tJ�1 � tj 2 �(dj+1; :::;dJ�1) for 1 � j < J
1j<J 2 �(�d1;d2; :::;dj)

We can discuss the proofs of the non-trivial ones at the end or at
another time

THE MAIN RESULT

E

24 1X
j=1

enj

35 = E h�1� (1� F )d�ni�
8<:P ��d < t� E

h�
1� (1� F )�d^t

�ni
E
h�
1� (1� F )d

�ni + P
�
�d � t

� 1� E h(1� F )n(�d^t)i
1� E

h
(1� F )nd

i
9=;
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� The Main Result will follow from a Theorem that doesn�t have
as pleasant a form

THE THEOREM

E

24 1X
j=1

enj

35 = E
h�
1� (1� F )d

�ni
1� E

h
(1� F )nd

i E
h
(1� F )n(�d^t)

i
�

P
�
�d < t

��
1�KE

��
E
h
(1� F )nd

i�J�1
j J > 1

��
+E

h�
1� (1� F )�d^t

�ni �
1� E

h
(1� F )n(t��d^t)

i�
where

K = 1�

0@1� E
h
(1� F )nd

i
E
h
(1� F )nd

i
1A0@E

h�
1� (1� F )�d^t

�ni
E
h�
1� (1� F )d

�ni � 1

1A
COMMENTS AND CONNECTION TO MAIN RESULT

� Note that in both the Theorem and the Main Result we have
something that we can calculate

E
h
(1� F )nd

i
is a Laplace transform value for the random

variable d; E
h
(1� F )n(�d^t)

i
is a Laplace transform value

for the random variable �d ^ t; everything else is of the form
of a constant times one of these (expand the binomials)

except for E
��
E
h
(1� F )nd

i�J�1
j J > 1

�
which is in

terms of a value of a conditional Laplace transform for
the random variable J (that last doesn�t sound very
promising).
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MORE COMMENTS ON THEOREM AND CONNECTION TO
MAIN RESULT

� But notice that when n = 1, inserting the de�nition of ej, the
left hand side of the Theorem reads

E

24 1X
j=1

ej

35 = E

24 1X
j=1

n
(1� F )(t�tj+1)+ � (1� F )(t�tj)+

o35
which telescopes to

E

24 1X
j=1

ej

35 = 1� E
h
(1� F )(t�t1)+

i
, which by one of the key lemmata

= 1� E
h
(1� F )t��d^t

i
, which can be expressed in terms

of one of our Laplace transform values.

The telescoping follows (using monotone convergence) from the
fact that tj � t for some j and all thereafter

� Now set this equal to the right hand side of the Theorem when
n = 1 and rearrange to get

E
��
E
h
(1� F )d

i�J�1
j J > 1

�
=

=
P
�
�d < t

�
�
�
1� E

h
(1� F )(t��d^t)

i�
P
�
�d < t

�
E
h
(1� F )�d^t

i E
h
(1� F )d

i

� But the distributions of J, d, and �d depend only on the inter-
arrival structure, not at all on (1� F ). So choose (1� F )n instead
of (1� F ):

E
��
E
h
(1� F )nd

i�J�1
j J > 1

�
=

=
P
�
�d < t

�
�
�
1� E

h
(1� F )n(t��d^t)

i�
P
�
�d < t

�
E
h
(1� F )n(�d^t)

i E
h
(1� F )nd

i
which is in terms of our Laplace Transform values and
a probability that we can calculate (see key lemmata)

� Substituting this value into the Theorem, and simplifying, pro-
duces the Main Result
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MORE COMMENTS ON THEOREM AND CONNECTION TO
MAIN RESULT

� For d a gamma random variable, and using the equilibrium den-
sity expression for �d, integration by parts will reduce the Laplace
transforms in question and the probability P

�
�d < t

�
to closed

forms involving incomplete gamma functions. Let�s spare our-
selves the details today.

DISSECTION OF THE THEOREM

� If it started at j = 0, had identical terms, and never terminated
you�d expect something like

�
1� (1� F )d

�n
multiplied by (and in-

dependent of) an in�nite geometric series of independent terms

of form
h
(1� F )nd

ij
. The expectation would sum to (montone

convergence)

E
h�
1� (1� F )d

�ni
1� E

h
(1� F )nd

i
� But it terminates after a random number J of terms:

E
h�
1� (1� F )d

�ni
1� E

h
(1� F )nd

i �
1� E

��
E
h
(1� F )nd

i�J��

� And the last term �dJ 6= dJ:

E
h�
1� (1� F )d

�ni
1� E

h
(1� F )nd

i E
h
(1� F )n(�d^t)

i
�

P
�
�d < t

��
1� E

��
E
h
(1� F )nd

i�J�1
j J > 1

��
+E

h�
1� (1� F )�d^t

�ni
� And it starts at j = 1, not 0

E
h�
1� (1� F )d

�ni
1� E

h
(1� F )nd

i E
h
(1� F )n(�d^t)

i
�

P
�
�d < t

��
1� E

��
E
h
(1� F )nd

i�J�1
j J > 1

��
+E

h�
1� (1� F )�d^t

�ni �
1� E

h
(1� F )n(t��d^t)

i�
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DISSECTION OF THE THEOREM (continued)

� And the �rst term �d1 6= d1

E
h�
1� (1� F )d

�ni
1� E

h
(1� F )nd

i E
h
(1� F )n(�d^t)

i
�

P
�
�d < t

��
1�KE

��
E
h
(1� F )nd

i�J�1
j J > 1

��
+E

h�
1� (1� F )�d^t

�ni �
1� E

h
(1� F )n(t��d^t)

i�
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PROOF OF THE THEOREM
(with thanks to de la Peña and Giné�s Decoupling monograph)

The whole trick is that
�
J; �d1;d2; :::;dJ�1; �dJ

	
has a dependence

structure owing to the cut-o¤ at t, but subsets not including both
�d1and �dJ are independent. In what follows, whenever we use 0 cor-
relation, or replace one random variable by another, refer to the key
lemmata. Whenever the reason for a step is unclear, it is trying
either to set up the conditions to apply a lemma a step or two later
or to introduce an indicator function a step or two later.

E

24 1X
j=1

enj

35 =

= E

24 1X
j=0

enj

35� E hn(1� F )(t�t1)+ � (1� F )toni , mechanically
= E

24 1X
j=0

n
(1� F )t�tj+1 � (1� F )t�tj

on
1j+1<J

35
+E

hn
1� (1� F )t�tJ�1

oni
� E

hn
(1� F )t�t1 � (1� F )t

oni
where the sum and next term are purely mechanical, and de�nition
t1 = �d1 and lemma �d1 � t justify the last term. Note that when J = 1
the indicators kill the whole sum.

=
1X
j=0

E
hn
(1� F )t�tj+1 � (1� F )t�tj j j + 1 < J

oni
E [1j+1<J]

+same, using monotone convergence

= E

24 1X
j=0

E
hn
(1� F )t�tj+1 � (1� F )t�tj

on
j j + 1 < J

i
1j+1<J

35
+same, using monotone convergence. Note that the
indicators kill the whole sum when J is 1

= E

2411<J J�2X
j=0

E
hn
(1� F )t�tj+1 � (1� F )t�tj

on
j j + 1 < J

i35
+E

hn
1� (1� F )t�tJ�1

oni
� E

hn
(1� F )t�t1 � (1� F )t

oni
purely mechanically.

14



PROOF OF THEOREM (continued)

E

24 1X
j=1

enj

35 =

= E

2411<J J�2X
j=0

E
h
(1� F )n(t�tJ�1)

n
(1� F )tJ�1�tj+1 � (1� F )tJ�1�tj

on
j j + 1 < J

i35
+E

hn
1� (1� F )t�tJ�1

oni
� E

h
(1� F )n(t�t1)

n
1� (1� F )t1

oni
= E

2411<J J�2X
j=0

E
h
(1� F )n(t�tJ�1)

i
E
hn
(1� F )tJ�1�tj+1 � (1� F )tJ�1�tj

on
j j + 1 < J

i35
+E

hn
1� (1� F )t�tJ�1

oni
� E

h
(1� F )n(t�t1)

n
1� (1� F )�d1

oni

= E

2411<J J�2X
j=0

E
h
(1� F )n�dJ

i
E
h
(1� F )n(tJ�1�tj+1)

n
1� (1� F )tj+1�tj

on
j j + 1 < J

i35
+E [f1� (1� F )�dJ gn]� E

h
(1� F )n(t�t1)

i
E
hn
1� (1� F )�d1

oni

= E

2664 11<J

J�2X
j=0

E
h
(1� F )n(�d^t)

i
E
h
(1� F )n(tJ�1�tj+1) j j + 1 < J

i
�

E
hn
1� (1� F )tj+1�tj

on
j j + 1 < J

i
3775

+E
hn
1� (1� F )�d^t

oni
� E

h
(1� F )n(t��d1)

i
E
hn
1� (1� F )�d1

oni
= E

2411<J J�2X
j=0

E
h
(1� F )n(�d^t)

i �
E
h
(1� F )nd

i�J�2�j
E
hn
1� (1� F )d

oni35
�E

2411<J E
h
(1� F )n(�d^t)

i
E
h
(1� F )nd

i �
E
h
(1� F )nd

i�J�135E hn1� (1� F )doni

+E

2411<J E
h
(1� F )n(�d^t)

i
E
h
(1� F )nd

i �
E
h
(1� F )nd

i�J�135E hn1� (1� F )�d1oni
+E

hn
1� (1� F )�d^t

oni
� E

h
(1� F )n(t��d^t)

i
E
hn
1� (1� F )�d^t

oni
where the two new terms correct for the j = 0 term in the sum (since
t1 � t0 = �d1 ' �d ^ t, not d)
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PROOF OF THEOREM (continued)

E

24 1X
j=1

enj

35 =

= E
hn
1� (1� F )d

oni
E
h
(1� F )n(�d^t)

i
E

2411<J J�2X
j=0

�
E
h
(1� F )nd

i�J�2�j 35
�
E
h
(1� F )n(�d^t)

i
E [11<J]

E
h
(1� F )nd

i E
��
E
h
(1� F )nd
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A geometric series at last! Now it looks like a generalization of

Wald�s equations (see de la Peña and Giné)

= E
hn
1� (1� F )d

oni
E
h
(1� F )n(�d^t)

i
E

26411<J � 11<J
�
E
h
(1� F )nd

i�J�1
1� E

h
(1� F )nd

i
375

+same

= E
hn
1� (1� F )d

oni
E
h
(1� F )n(�d^t)

i
E [11<J]

1� E
��
E
h
(1� F )nd

i�J�1
j 1 < J

�
1� E

h
(1� F )nd

i
+same

Remembering the lemma that E [11<J] = P
�
�d < t

�
, the theorem is

now just algebra from here.

THE FULL THEOREM

� It turns out that the foregoing proof goes through exactly in the
more general case that we need
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but it isn�t worth the notational white-out to write down even
the statement of it here. Every Laplace transform that our
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simpler statement contains will be multiplied by a product of
powers of the same Laplace transform. The only exception is
the Laplace transform of J which keeps the same value as in the
simpler statement. The whole thing now fails to simplify into
anything as clean as the Main Result
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