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INTRODUCTION - RISK MODELING

Often, we model risk with the same models as for
pricing, planning, forecasting and reserving.

In risk modeling we just assume extreme inputs, or
look at the tails of randomly generated outcomes, or
maybe even use statistical extreme value theory

But we �ne-tune pricing, planning, forecasting and
reserving models to work well on typical inputs; can
this foreclose good risk modeling in a holistic sense?

Maybe risk needs radically di¤erent models; but
somehow related to usual models, grounded in them,
perhaps a formal duality?
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MODELING ASSET-LIABILITY INTEREST RATE RISK

Traditionally we model known cash �ows and take
present values - a balance sheet view

Ignore future cash unless implied by balance sheet
Test future interest rates�e¤ect on present values:

duration/convexity etc.
stochastic future interest rates
risk-neutral calibrations to market values

A radically di¤erent model could start with going
concern assumptions - an income view

Embrace future cash �ow - on some normalized, on-going
basis
Test future interest rates�e¤ect on future spreads between
asset earnings and liability requirements

Strictly a work-in-progress: what tools would give a model
dual to the balance sheet?
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A SIMPLE GOING CONCERN WITH A-L MISMATCH

Take in a steady stream of 10-year bullet liabilities and
invest steadily in 15 year ladder asset maturities.
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A SIMPLE GOING CONCERN WITH A-L MISMATCH

Let interest rates increase steadily:
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A SIMPLE GOING CONCERN WITH A-L MISMATCH

Take in a steady stream of 10-year bullet liabilities and
invest steadily in 15 year ladder asset maturities. The
following spreads result if interest rates increase steadily:
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Linear Inputs Gave Oscillating Output - What�s Going On?

In signal analysis �electronics or optics �this would be the clue
to something called an "Edge E¤ect" or a "Gibbs�Phenomenon"

Essentially, the linear inputs have encountered or involve some
sort of underlying process that combines a jumble of hidden
oscillating pieces

Some beginning (or ending) of the linear inputs splatters the
underlying oscillations into the output piecemeal so we can see
some of them

Fourier analysis is the technical tool to explore this

REALLY?? For ALM Work?

Maybe there is a simpler explanation?
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Linear Input Gave Oscillating Output - Why?

Maturity mismatch creates investment mismatch in going
concern �early asset maturities need reinvesting
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Linear Input Gave Oscillating Output - Why?

And looking backwards even in steady state the net
survivors still at each past rate oscillates, too �12 and 9.5
year cycles observable
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OK, BUT THIS STILL CRIES OUT FOR FOURIER
ANALYSIS

A �nancial institution is a receiver of a stream of interest
rates that modulates them into an output stream of
interest spreads (gain/loss)
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THIS STILL CRIES OUT FOR FOURIER ANALYSIS

The interest rate stream consists of component signals
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THIS STILL CRIES OUT FOR FOURIER ANALYSIS

Suppose we know how the �nancial institution modulates
each component of the input signal into an output
response
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THIS STILL CRIES OUT FOR FOURIER ANALYSIS

Then we can reconstruct the total response (the spread)
to the original interest rate stream
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FOURIER ANALYSIS JUST CODIFIES THIS
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THIS IS THE DUAL VIEW OF INTEREST RATE RISK

It looks at the institutional response to the entire
spectrum of interest rate volatility

Dual to duration, etc. which puts most focus on the lowest
frequency component(s) of the interest rate spectrum

It looks at the going-concern interest rate spread
(income statement)

Dual to the balance-sheet view of traditional immunization
Like the duality between position and momentum in physics

Area under the spectrum is the proper risk measure
If random phases align against you the whole area
contributes to your woe
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CAN�T GET THIS FROM YOUR USUAL MODELS

(Or at least not directly from them)

WHAT WE NEED IS
A model of the external interest rate spectrum

As an abstract random phenomenon, not just past x years or
a �tted time series
FORECASTING DISTRACTS FROM RISK ANALYSIS!

A model of the modulation process
Unique to each �nancial institution
Applicable to all possible external signals

And, of course, the Fourier Analysis technique
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Fourier Transform

Given a function r (t), say the interest rate over time, you can write it
as a sum of oscillating components

r (t) =

∞Z
�∞

FT [r ] (f ) e2πiftdf

where FT [r ] (f ), called the Fourier Transform of r (t) at f , determines
the component of r (t) that oscillates with frequency f .

The standard oscillation with frequency f is e2πift .

Note, e2πift is a complex number at each time t that corkscrews
around the complex unit circle as time passes.

The frequency f determines how fast and in which direction it spins.
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Fourier Transform

r (t) =

∞Z
�∞

FT [r ] (f ) e2πiftdf

So FT [r ] (f ) is a complex number

Whose modulus jFT [r ] (f )j at each frequency f tells us how large
e2πift looms inside r (t) for that f

Whose phase at each frequency f tells us how much the version of
e2πift inside r (t) is rotated from its usual starting point (at t = 0)
for that f .

With all these complex numbers spinning around, how can we get a
real function r (t) back out of the formula?

It just requires that FT [r ] (f ) and FT [r ] (�f ) be complex
conjugates for each frequency f .
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Fourier Transform Properties

There is a formula for FT [r ] (f ) =
Z ∞

�∞
r (t) e�2πiftdf . It just

"unscrews" the corkscrew at frequency f so we can see it

If a (t) and b (t) are two functions of t, and k and j are constants,
then for each frequency f we have

FT [ka+ jb] (f ) = kFT [a] (f ) + jFT [b] (f )

If we de�ne (a � b) (t) =
Z ∞

�∞
a (t � s) b (s) ds ("convolution") then

FT [a � b] (f ) = FT [a] (f ) FT [b] (f )
FT [a � b] (f ) = FT [a] (f ) � FT [b] (f )

If we de�ne ∆(t) = 1 for t � 0 and = 0 for t < 0 then
FT [∆] (f ) = 1

2πif 1f 6=0+
1
2 δ (f ), for δ = impulse at 0

Note:(∆ � b) (t) =
Z t

�∞
b (s) ds = B(t), etc. for any b, B
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START WITH THE MODULATION PROCESS

Let r(s) = the interest rate at time s
∆B (s) = new Liabilities taken on at time s
(Assume ∆B (s) takes a simple going-concern form)
B(s, t) = Liabilities matured out of r(s) by time t
b(s, t) = ∂

∂tB(s, t) the rate of Liabilities maturing out of r(s) at time t
∆(s, t) = 1 for t � s and = 0 for t < s
(∆� B)(s, t) = Liabilities still owed r(s) at time t = survival function of
B(s, t) viewed as a cdf.

This gives a crude going-concern model of interest
requirements on the Liabilities

Rate of interest required (at time t) = [(∆�B )�(r∆B )](t)
[(∆�B )�∆B ](t)
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START WITH THE MODULATION PROCESS

Interest requirements on the Liabilities (going concern)
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START WITH THE MODULATION PROCESS

That�s a generalization of the usual de�nition of convolution and it won�t
be commutative

A Few Other Things We Need

a�k = a � a � ... � a k times makes sense and we will use it

When we need it, δ = Dirac delta function (impulse at 0)

In particular, a�(0) = δ and

FT [δ] (f ) = 1 for all f and FT [k ] (f ) = kδ (f ) for all constants k
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START WITH THE MODULATION PROCESS

If ∆A(s) = new Assets taken on at time s then ∆A(s) will be a function of
everything else in the model

In fact, ∆A(s) =

  
∞

∑
k=0

a�k
!
� (δ� b) � ∆B

!
(s)

A(s, t) = Assets matured out of r(s) by time t
a(s, t) = ∂

∂tA(s, t) the rate of Assets maturing out of r(s) at time t
(∆� A)(s, t) = Assets still earning r(s) at time t = survival function of
A(s, t) viewed as a cdf.

Rate of interest available (at time t) =

"
(∆�A)�

 
r

" ∞

∑
k=0

a�k
!
�(δ�b)�∆B

#!#
(t)"

(∆�A)�
  ∞

∑
k=0

a�k
!
�(δ�b)�∆B

!#
(t)
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START WITH THE MODULATION PROCESS

Interest generated by the Assets (going concern)

(University of St.Thomas Center for Applied Mathematics Seminar)Dual ALM April 15, 2016 24 / 71



START WITH THE MODULATION PROCESS

Going concern interest rate spread s at time t is the di¤erence

s (t) =

"
(∆�A)�

 
r

" ∞

∑
k=0

a�k
!
�(δ�b)�∆B

#!#
(t)"

(∆�A)�
  ∞

∑
k=0

a�k
!
�(δ�b)�∆B

!#
(t)

� [(∆�B )�(r∆B )](t)
[(∆�B )�∆B ](t)

where the denominators are equal (a good test of your convolution algebra)

At this point I don�t know how to progress without assuming
homogeneous business strategy, ie. B(s, t) = B(t � s),
A(s, t) = A(t � s), ∆ (s, t) = ∆ (t � s) etc. for all s and t
Among other things this makes the convolutions the usual
commutative de�nition.
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CONTINUING WITH THE MODULATION PROCESS

Some useful facts are

(∆� A) �
 

∞

∑
k=0

a�k
!

= ∆ � (δ� a) �
 

∞

∑
k=0

a�k
!

= ∆ � δ

= ∆

and limt!∞

 
∞

∑
k=0

a�k
!
(t) = 1

µA
where µA is the mean of A considered as

a cdf.

Also, those survival functions (∆� A) and (∆� B) involved in
convolutions (= integrals) suggests that some more means are lurking in
these formulas, for example ∆ � (∆� A) (t)! µA for t ! ∞, called "the
surface interpretation of the mean"
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CONTINUING WITH THE MODULATION PROCESS

If we assume a level stream of new Liabilities ∆B = ∆ the formula for
the spread s is (after a lot of algebra to get a term with r alone)

s =

h
µB
µA
(∆� A)� (∆� B)

i
� r

[(∆� B) � ∆]

�
(∆� A) �

(" 
∞

∑
k=0

a�k
!
�
�

µB
µA
(∆� A)� (∆� B)

�#
r

)
[(∆� B) � ∆]

Amazingly, the messy term is a transient that goes to 0 as the
homogenous going-concern reaches steady-state. It is the exact
formula for that oscillation we saw at the beginning.
In the permanent steady state, the denominator [(∆� B) � ∆]! µB
For stable growing new Liabilities you just use distortions of A, B, a,
b, µA and µB .
The permanent steady-state term is made-to-order for a Fourier
Transform
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CONCLUSION FOR THE MODULATION PROCESS

For each frequency f the Fourier transform of the steady-state
going-concern spread with a level stream of new liabilities is

FT [s ] (f ) = FT
�

∆� A
µA

� ∆� B
µB

�
(f ) FT [r ] (f )

= FT
�

∆ �
�

δ� a
µA

� δ� b
µB

��
(f ) FT [r ] (f )

= FT [∆] (f ) FT
�

δ� a
µA

� δ� b
µB

�
(f ) FT [r ] (f )

=

�
1
2πif

1f 6=0+
1
2

δ (f )
��

1� FT [a] (f )
µA

� 1� FT [b] (f )
µB

�
�

�FT [r ] (f )

=
1
2πif

�
1� FT [a] (f )

µA
� 1� FT [b] (f )

µB

�
FT [r ] (f ) if f 6= 0

(University of St.Thomas Center for Applied Mathematics Seminar)Dual ALM April 15, 2016 28 / 71



CONCLUSION FOR THE MODULATION PROCESS

In other words 1
2πif

�
1�FT [a](f )

µA
� 1�FT [b](f )

µB

�
represents how the

�nancial institution modulates the external interest rate frequency
strengths FT [r ] (f ) into interest spread frequency responses
FT [s ] (f ) when there is a level stream of new liabilities.
We should note that if the new liability stream ∆B grows at a stable
rate g the Fourier Transform of the interest rate spread works out to
FT [s ] (f ) = 1

ln(1+g )+2πif

�
1�FT [a](f )

µA
� 1�FT [b](f )

µB

�
FT [r ] (f ) where

the distorted versions of the functions and means must be used if the
assumed growth g is not 0, and also in that case the equation works
for f = 0 too.
The factor 1

ln(1+g )+2πif in the modulation already teaches an
important lesson for risk management: a stable, well-managed level of
growth is a very e¤ective risk-control mechanism.
But let�s illustrate the basic modulation for our simple �nancial
institution with 15-year ladder assets and 10-year bullet liabilities.
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ASSET MODULATION SPECTRUM (15 Year Ladder)

Modulus
��� 1
2πif

�
1�FT [a](f )

µA

����; don�t forget there�s a phase, too

Horizontal axis labeled by wavelength ( 1f ) on a logarithmic scale.
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NOW THE LIABILITY SPECTRUM (10 Year Bullet)

Modulus
��� 1
2πif

�
1�FT [a](f )

µA

���� and ��� 1
2πif

�
1�FT [b](f )

µB

����; don�t forget phases

Horizontal axis labeled by wavelength on a logarithmic scale.
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SUBTRACT FOR THE NET MODULATION SPECTRUM

Modulus
��� 1�FT [a](f )2πif µA

� 1�FT [b](f )
2πif µB

���; phases matter!

Wavelength on a logarithmic scale from 100 years to 0.25 years
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NET SPECTRUM = RISK CONTROL PROFILE

Modulus
��� 1�FT [a](f )2πif µA

� 1�FT [b](f )
2πif µB

���; phases matter!

Risk max�s at 12 year interest rate cycle (!); next 5.4 (= 1
2
12+9.5
2 )

But true risk exposure is the entire area under curve - what if the
phases all line up?
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A SLIGHTLY DIFFERENT FINANCIAL INSTITUTION

Steady stream of Liabilities that mature straight-line 9 to 11 years
Assets straight line 0 to 15 years
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A DIFFERENT GOING CONCERN WITH A-L
MISMATCH

Take in a steady stream of 9-11 year st. line liabilities and
invest steadily in 0-15 year st.line asset maturities. The
following spreads result if interest rates increase steadily:

Steady-state pro�t, not loss
(University of St.Thomas Center for Applied Mathematics Seminar)Dual ALM April 15, 2016 35 / 71



ASSET SPECTRUM (15 Year Straight Line)
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LIABILITY SPECTRUM (9 to 11 Year Straight Line)
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NET SPECTRUM
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COMPARATIVE NET SPECTRA
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PART TWO

WHAT CAN WE SAY ABOUT THE

EXTERNAL INTEREST RATE SPECTRUM

FT[r](f) ?
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FINGER EXERCISE - STRAIGHT LINE INCREASE

If r (t) is linear with constant slope r 0 then dr
dt (t) = r

0, so
r (t) =

�
∆ � drdt

�
(t) and FT [r ] (f ) = FT [∆] (f ) FT

� dr
dt

�
(f )
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SPECTRUM OF STRAIGHT LINE INCREASE

FT [r ] (f ) = FT [∆] (f ) FT
�
dr
dt

�
(f )

=

�
1f 6=0
2πif

+
1
2

δ (f )
�
FT
�
r 0
�
(f )

=

�
1f 6=0
2πif

+
1
2

δ (f )
�
r 0δ (f )

because FT [constant] =constant�δ.
Thus FT [r ] (f ) = 0 unless f = 0, in which case it�s an impulse function.
For interest rate spread s (t) we know that

FT [s ] (f ) =
h
1�FT [a](f )
2πif µA

� 1�FT [b](f )
2πif µB

i
FT [r ] (f ) buth

1�FT [a](f )
2πif µA

� 1�FT [b](f )
2πif µB

i
= 0 when f = 0, so we�ll need l�Hôpital�s help

to unravel FT [s ] (0) = 0 �∞.
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SPECTRUM OF SPREAD FROM STRAIGHT LINE

FT [s ] (0) =

= lim
f!0

�
1� FT [a] (f )
2πif µA

� 1� FT [b] (f )
2πif µB

� �
1f 6=0
2πif

+
1
2

δ (f )
�
r 0δ (f )

= lim
f!0

"
1� FT [a] (f )
(2πif )2 µA

� 1� FT [b] (f )
(2πif )2 µB

#
2πif

�
1f 6=0
2πif

+
1
2

δ (f )
�
r 0δ (f )

= lim
f!0

"
1� FT [a] (f )
(2πif )2 µA

� 1� FT [b] (f )
(2πif )2 µB

# �
1f 6=0 + πif δ (f )

�
r 0δ (f )

= lim
f!0

"
1� FT [a] (f )
(2πif )2 µA

� 1� FT [b] (f )
(2πif )2 µB

#
1f 6=0r

0δ (0)

= lim
f!0

"
1� FT [a] (f )
(2πif )2 µA

� 1� FT [b] (f )
(2πif )2 µB

#
r 0δ (0)

because limf!0 1f 6=0 = 1
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SPECTRUM OF SPREAD FROM STRAIGHT LINE

Now use l�Hôpital twice

FT [s ] (0) = lim
f!0

"
1� FT [a] (f )
(2πif )2 µA

� 1� FT [b] (f )
(2πif )2 µB

#
r 0δ (0)

= lim
f!0

"
�

d 2
df 2 FT [a] (f )
d 2
df 2 (2πif )2 µA

+
d 2
df 2 FT [b] (f )
d 2
df 2 (2πif )2 µB

#
r 0δ (0)

=

24� FT
h
(2πi)2 t2a (t)

i
(0)

2 (2πi)2 µA
+
FT
h
(2πi)2 t2b (t)

i
(0)

2 (2πi)2 µB

35 r 0δ (0)
because for any density h (t) (for example, h = a or b) it�s true that
d
df FT [h (t)] (f ) = �FT [2πith (t)] (f ). Now 2nd moments appear

FT
h
(2πi)2 t2h (t)

i
(0) =

Z ∞

�∞
(2πi)2 t2h (t) e�2πit �0dt

= (2πi)2
Z ∞

�∞
t2h (t) dt = (2πi)2 µ0H2
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SPECTRUM OF SPREAD FROM STRAIGHT LINE

So

FT [s ] (0) = �1
2

�
µ0A2
µA

� µ0B2
µB

�
r 0δ (0)

is the impulse function at f = 0 that constitutes the entire spectrum
of the stable state interest rate spead s (t) caused by a straight line
movement of the external interest rate r (t).
This spectrum implies that s (t) is a constant

s (t) = �1
2

�
µ0A2
µA

� µ0B2
µB

�
r 0

If we calculate ratios of second to �rst moments for the simple asset
and liability maturity schedules that we showed earlier, this formula
gives exactly the small constant steady-state loss (or gain) that we
saw earlier by brute force calculation..
1
2

µ0H2
µH

is the mean of what risk theory calls "the equilibrium

distribution" of the distribution H, with density SH (t)
µH

, H = A or B
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1ST CONCLUSION FOR THE MODULATED PROCESS

This rather specialized result at f = 0 generalizes to any external
interest rate process r (t):

jFT [s ] (0)j = 1
2

����µ0A2µA
� µ0B2

µB

���� jFT [dr ] (0)j
where jFT [dr ] (0)j is the frequency 0 (i.e. drift) component of the
Fourier Transform of the process dr (t) that generates r (t).

If the model has growing new liabilities ∆B (t) then distortions of
both the means and the second moments must be used

It should be no surprise that these equilibrium distribution means
1
2

µ0A2
µA
and 1

2
µ0B2
µB

can be formally related (a duality) with the traditional
duration concept.

All of the risk area beyond f = 0 still remains, however, untouched by
this dual version of "duration".
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1ST CONCLUSION FOR THE MODULATED PROCESS
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NOW THE EXTERNAL INTEREST RATE SPECTRUM

Assume that Brownian motion drives whatever process we end up with
dW (t) is the random Brownian increment at each time t;
fdW (t)g� 1

2dt<t�
1
2dt
are 1

dt independent N (0, dt) RVs

A �xed world runs from � 1
2dt to

1
2dt ; Brownian sampling happens to

be the mechanism that gives a dW (t) at each of the 1
dt values of t

which then is �xed once and for all. This amounts to random choice
of a single Brownian sample path.

We are using actual in�nitesimals and in�nites, following Robinson�s
Non-Standard Analysis
Usual Fourier analysis gets around the in�nities by weaving together
locally �nite measures based on the Fourier transform (called the
"spectral density") of the autocovariance function of the Brownian
process and taking a limit. Brémaud�s Fourier Analysis and Stochastic
Processes gives a good account of this way of coming at it.
It seems less distracting to just go ahead and use Robinson�s actual
in�nites and in�nitesimals.

(University of St.Thomas Center for Applied Mathematics Seminar)Dual ALM April 15, 2016 48 / 71



THE SPECTRUM OF dW(t)

FT [dW ] (f ) =
Z ∞

�∞
e�2πiftdW (t) = e2πiφ(f )N

�
0, 1dt

�
with uniformly

random phase φ (f ).

Why is that?

E [FT [dW ] (f )] =
Z 1

2dt

� 1
2dt

e�2πiftE [dW (t)] = 0

E
h
jFT [dW ] (f )j2

i
= E [FT [dW ] (f ) FT [dW ] (�f )] (conjugates)

=
Z 1

2dt

� 1
2dt

E
�
dW 2 (t)

�
(dW (t1) independent of dW (t2) for t1 6= t2)

=
Z 1

2dt

� 1
2dt

dt = 1
2dt �

�
� 1
2dt

�
= 1

dt
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THE SPECTRUM OF dW(t)

We even can identify the speci�c N
�
0, 1dt

�
RV in the expression for

FT [dW ] (f )

jFT [dW ] (f )j2 = FT [dW ] (f ) FT [dW ] (�f ) =
Z 1

2dt

� 1
2dt

dW 2 (t) =

(FT [dW ] (0))2, where the �nal two =�s are because dW (t1)
independent of dW (t2) for t1 6= t2
So jFT [dW ] (f )j = jFT [dW ] (0)j, same value for all f , and the
phase of FT [dW ] (f ) is totally random in f (and unknowable)

FT [dW ] (f ) = e2πiφ(f )FT [dW ] (0) with φ (f ) a uniformly random
phase and FT [dW ] (0) a random real number, drawn from N

�
0, 1dt

�
φ (f ) and FT [dW ] (0) are unknowable, random, and �xed
(randomly) for all time when we drew our fdW (t)g� 1

2dt<t�
1
2dt
world,

i.e. by the random Brownian sample path we chose (see picture)
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SPECTRUM OF THE BROWNIAN INCREMENT
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THE SPECTRUM OF dW(t)

This unknowable FT [dW ] (0) is a little like renormalization in
physics. It sounds strange but it works since everything we actually
observe will just be relative to this unknowable thing FT [dW ] (0)

Remember, we promised that true risk models will be very di¤erent
from our usual pricing, planning, forecasting, and reserving models!

All of the Fourier frequencies are equally represented in FT [dW ] (f )

Random walk comes from randomized phase relationships.
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THE SPECTRUM OF BROWNIAN MOTION W(t)

Now we know everything we need to get from FT [dW ] to FT [W ]

W (t) = (∆ � dW ) (t) so

FT [W ] (f ) = FT [∆ � dW ] (f )
= FT [∆] (f ) FT [dW ] (f )

=

�
1f 6=0
2πif

+
1
2

δ (f )
�
e2πiφ(f )FT [dW ] (0)

where φ (f ) is a totally random phase. This gives

jFT [W ] (f )j =

����1f 6=02πif
+
1
2

δ (f )

���� jFT [dW ] (0)j
=

jFT [dW ] (0)j
2π jf j 1f 6=0 +

jFT [dW ] (0)j
2

δ (f )

with phases totally randomized (note: last step required 1f 6=0 � δ (f ) = 0).
The random phases are what makes a random walk random.
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THE SPECTRUM OF BROWNIAN MOTION
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MEAN-REVERTING GEOMETRIC BROWNIAN MOTION

The external interest rate r (t) is likely to have a mean-reversion of
some kind and a zero-avoidance of some kind.

An example is mean-reverting Geometric Brownian Motion
(Black-Karisinski). It looks like:

dr(t) = (R(lnT � ln r(t))+ 1
2σ2�D)r(t)dt + σr(t)dW (t)

Decoding:

σ is a volatility factor that brings the random dW (t) into play
R is a mean-reversion factor that tends to pull r(t) back toward a
target level T
D is a drift compensation factor that will make E [r(t)] = T
This assumes we start process at r(� 1

2dt ) = T
Drift compensation is very important when R = 0
r(t)dW (t) and r(t)dt keep the process from hitting r(t) = 0
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MEAN-REVERTING GEOMETRIC BROWNIAN MOTION

So, just like we did to go from FT [dW ] to FT [W ]

r(t) = (∆ � dr)(t)
FT [r ](f ) = FT [∆](f )FT [dr ](f ), and o¤ we go
Alas, dr(t) = (R(lnT � ln r(t)) + 1

2σ2 �D)r(t)dt + σr(t)dW (t)

So FT [dr ](f ) has FT [r ](f ) in it and also FT [ln r ] in it

So the expression for FT [r ](f ) is circular

We have to do some real work to get a solution

Strategy is to set up equations from which we can eliminate FT [dr ]
and FT [d ln r ]
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MEAN-REVERTING GEOMETRIC BROWNIAN MOTION

Set up an integration by parts:

d [e�2πift r(t)] = e�2πiftdr(t)� 2πife�2πift r(t)dt
e�2πiftdr(t) = 2πife�2πift r(t)dt + d [e�2πift r(t)]

Integrate from � 1
2dt to

1
2dt

FT [dr ](f ) = 2πifFT [r ](f ) + e�2πif 1
2dt r( 1

2dt ) + e
2πif 1

2dt r(� 1
2dt )

We can rigorously ignore the two in�nite spinning variables if we stay
away from f = 0 which we will do from now on

It requires an argument, but isn�t worth belaboring the details

This leaves us with Equation I

FT [dr ](f ) = 2πifFT [r ](f )

An exactly parallel integration by parts gives Equation II

FT [d ln r ](f ) = 2πifFT [ln r ](f )
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MEAN-REVERTING GEOMETRIC BROWNIAN MOTION

Now we look for two other expressions for FT [dr ](f ) and FT [d ln r ](f )

Itô Lemma gives d ln r(t) = 1
r (t)dr(t)�

1
2

1
r 2(t)dr(t)dr(t)

Make the de�nition (MRGBM)

d ln r(t) = (R(lnT � ln r(t))�D)dt + σdW (t)

Equate, rearrange, and multiply through by r(t)

dr(t) = (R(lnT � ln r(t))�D)r(t)dt + σr(t)dW (t)+ 1
2
1
r (t)dr(t)dr(t)

dr(t)dr(t) = σ2r2(t)dt by the usual Itô calculus rules

So dr(t) = (R(lnT � ln r(t)) + 1
2σ2 �D)r(t)dt + σr(t)dW (t)

Integrate against e�2πift to get Equation III

FT [dr ] (f ) =
(R lnT + 1

2σ2 �D)FT [r ] (f )� R � FT [r ln r ] + σFT [rdW ] (f )
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MEAN-REVERTING GEOMETRIC BROWNIAN MOTION

Equation III

FT [dr ] (f ) =
(R lnT + 1

2σ2 �D)FT [r ] (f )� R � FT [r ln r ] + σFT [rdW ] (f )

Go back to the MRGBM de�nition

d ln r(t) = (R(lnT � ln r(t))�D)dt + σdW (t)

Integrate against e�2πift to get Equation IV

FT [d ln r ] (f ) = (R lnT �D)δ(f )� R � FT [ln r ] (f ) + σFT [dW ] (f )

An important step in there was

FT [(R lnT �D)] (f ) = (R lnT �D)δ(f ) which is true for any constant.
Now we can equate RHS Equation I and Equation III and RHS
Equation II and Equation IV to eliminate FT [dr ] and FT [d ln r ]
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MEAN-REVERTING GEOMETRIC BROWNIAN MOTION

Equating I and III
2πifFT [r ](f ) = (R lnT + 1

2σ2 �D)FT [r ] (f )� R � FT [r ln r ] +
σFT [rdW ] (f )

FT [r ](f ) = σFT [rdW ](f )�R �FT [r ln r ]
2πif �(R lnT+ 1

2 σ2�D ) & use FT [ab] = FT [a] � FT [b]

FT [r ](f ) = σ(FT [r ]�FT [dW ])(f )�R (FT [r ]�FT [ln r ])(f )
2πif �(R lnT+ 1

2 σ2�D )

Now equate II and IV

2πifFT [ln r ](f ) = (R lnT �D)δ(f )� R � FT [ln r ] (f ) + σFT [dW ] (f )

FT [ln r ](f ) = σFT [dW ](f )+(R lnT�D )δ(f )
2πif +R

Substitute into the expression for FT [r ](f )

FT [r ](f ) =
σ(FT [r ]�FT [dW ])(f )�R

h�
FT [r ]� σFT [dW ]

2πif +R

�
(f )+ FT [r ](f )(R lnT�D )

R

i
2πif �(R lnT+ 1

2 σ2�D ) , & solve

FT [r ](f ) =
σ[(FT [r ]�FT [dW ])(f )�(FT [r ]�( R

2πif +R FT [dW ]))(f )]
2πif � 1

2 σ2
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MEAN-REVERTING GEOMETRIC BROWNIAN MOTION

This still appears to be circular

FT [r ](f ) =
σ[(FT [r ]�FT [dW ])(f )�(FT [r ]�( R

2πif +R FT [dW ]))(f )]
2πif � 1

2 σ2

But there is a big di¤erence: FT [r ] appears on the RHS only within
convolutions that involve all values of FT [r ](g), not the speci�c
value FT [r ](f ) on the LHS (although 2nd term concentrates there.)
Moreover, the convolutions are against the randomized phases in
FT [dW ] (g) = e2πiφ(g )FT [dW ] (0)
This takes some delicate analysis but allows an approximation:

FT [r ](f )� σ[r̃ (f )FT [dW ](0)� 1
2R �FT [r ](f )]

2πif � 1
2 σ2

with r̃(f ) a random phase on jr̃(f )j a random draw (for each f ) from
the set of "r(0)" over all the random fdW (t)g� 1

2dt<t�
1
2dt
worlds

(sample paths) from which we �rst sampled
think of FT [r ] � e2πiφ(g ) as integrating an alternate version of FT [r ]

with randomly scrambled phases
Z
FT [r̄ ] (g) dg = r̄(0) , r̃(f )
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MEAN-REVERTING GEOMETRIC BROWNIAN MOTION

The approximation comes in the second term

(FT [r ] � ( R
2πif +R FT [dW ]))(f ) �

1
2R � FT [r ] (f )

The idea is that in the convolution integral the term
FT [r ] (g) R

2πi (f �g )+R concentrates on values near FT [r ] (f ), so

FT [r ] (f ) approximately factors out; 12R is the value of the remaining
integral

Now FT [r ](f )� σ[r̃ (f )FT [dW ](0)� 1
2R �FT [r ](f )]

2πif � 1
2 σ2

solves to

FT [r ](f )� σr̃ (f )FT [dW ](0)
2πif � 1

2 σ(σ�R )

This is the Fourier Spectrum for the external interest rate r(t)

The randomness in the modulus and phase of r̃(f ) is implied in our
original random choice of a fdW (t)g� 1

2dt<t�
1
2dt
world, a sample path

Let�s see what it looks like and how our institution�s risk pro�le fares
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SPECTRUM FOR EXTERNAL INTEREST RATE

FT [r ](f )� σr̃ (f )FT [dW ](0)
2πif � 1

2 σ(σ�R )

We need parameters.
60 years�history of the 10 year US Treasure rate suggest σ = .16 and
R = .08 and E [jr̃(f )j] = .06 with standard deviation .028

jFT [r ](f )j � .0096FT [dW ](0)
2πif �.0064 � .00448FT [dW ](0)

2πif �.0064

� .00448FT [dW ](0)
2πif �.0064 is a random density (in f ) of actual values for

jFT [r ](f )j, not some approximation error.
This expression for FT [r ](f ) is completely useless for forecasting
because of the randomized phases and, to some extent, the random
� density. You can�t even estimate the current phases because you
need t ! ∞ to calculate a phase.
But jFT [r ](f )j carries the full potential risk exposure to random
interest rate �uctuation. Here is a graph of the central values of the
density:
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SPECTRUM FOR EXTERNAL INTEREST RATE
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MODULATED RISK SPECTRUM

Now we need to multiply by the risk-control spectrum in our
asset-liability structure�

1�FT [a](f )
2πif µA

� 1�FT [b](f )
2πif µB

�
FT [s ](f ) =

�
1�FT [a](f )
2πif µA

� 1�FT [b](f )
2πif µB

�
FT [r ](f ) shows the modulated

Fourier Spectrum for the interest rate spread s(t) that results when
the external interest rate r(t) hits our asset and liability structure

Again it is useless for forecasting but its modulus expresses the full
potential interest rate �uctuation exposure of the asset and liability
structure

jFT [s ](f )j �
���� 1�FT [a](f )2πif µA

� 1�FT [b](f )
2πif µB

� �
.0096FT [dW ](0)
2πif �.0064 � .00448FT [dW ](0)

2πif �.0064

����
Let�s illustrate with the �rst asset-liability structure we looked at
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RISK CONTROL PROFILE

Modulus
��� 1�FT [a](f )2πif µA

� 1�FT [b](f )
2πif µB
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RESULTING MODULATED RISK SPECTRUM���� 1�FT [a](f )2πif µA
� 1�FT [b](f )

2πif µB

� �
.0096FT [dW ](0)
2πif �.0064 � .00448FT [dW ](0)

2πif �.0064

����
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CONCLUDING REMARKS

Low frequencies dominate even in Geometric and/or Mean-Reverting
Banks avoid those frequencies; bond market hedges them (but fragile
hedges can rupture and FT [r ] (f ) gives huge stress at small f !)
Justi�es traditional insurance attention to duration as �rst-order
priority

Our �rst order 12

��� µ0A2
µA
� µ0B2

µB

��� at f = 0 may be an improvement
Still just a toy:
Interest rate model should be at least 4 dimensional (time, maturity,
currency, credit); 4 dimensional Fourier analysis can be done.
Even a time-only model probably should be multi-scaled (more than
one σ? beyond FT to wavelets?)
Modulation structure should re�ect time-varying asset-liability
strategies (treat this model as a local tanget and integrate?); we
already have exact formulas for a constant growth strategy
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TECHNICAL NOTE

In FT [r ](f )� σr̃ (f )FT [dW ](0)
2πif � 1

2 σ(σ�R ) , what happened to the T and D

parameters in the Mean Reverting Geometric Brownian Motion
dr(t) = (R(lnT � ln r(t)) + 1

2σ2 �D)r(t)dt + σr(t)dW (t)?
It turned out that, from the Fourier Analysis perspective, the only
roles T and D played were to prevent (almost always) random
excursions from escaping to in�nity and to ensure that E [r (t)] = T ,
for some value T (rather than vanishing or oscillating.)
Given σ and R (even the case R = 0), the suppression of unbounded
random excursions together with any particular E [r (t)] = T turned
out to have the same e¤ect on the oscillation structure encoded in
FT [r ](f ) as for any other value of T and the only role for D was to
make the suppression precise, given σ, R, and T .
Having performed their jobs, T and D disappear from the oscillation
scene, their presence encoded in the σ and R that determined them
together with the precise absence of unbounded excursions, precise in
the sense that E [r (t)] neither vanishes nor oscillates nor explodes.
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link at bottom of
www.math.uconn.edu/~bridgeman/Papers_and_Presentations/index.htm
Gives details of the modulation process; but anyone who has programmed
an ALM model has done this, whether they know it or not

For the Fourier Analysis - any good text:
for theory I like

Rudin�s Real and Complex Analysis
Brémaud�s Fourier Analysis and Stochastic Processes

for visualization I like
Brigham�s Fast Fourier Transform
Meikle�s A New Twist To Fourier Transforms

For actual in�nites and in�nitesimals
Robinson�s Non-Standard Analysis
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THANKS
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