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INTRODUCTION - RISK MODELING

Often, we model risk with the same models as for
pricing, planning and forecasting

In risk modeling we just assume extreme inputs, or
look at the tails of random outcomes, or maybe even
use statistical extreme value theory

But we �ne-tune pricing, planning and forecasting
models to work well on normal inputs; can this
foreclose good risk modeling in a holistic sense?

Maybe risk needs radically di¤erent models; but
somehow related to normal models, grounded in them,
perhaps a formal duality?
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MODELING ASSET-LIABILITY INTEREST RATE RISK

Traditionally we model known cash �ows and take
present values - a balance sheet view

Ignore future cash unless implied by balance sheet
Test future interest rates�e¤ect on present values:

duration/convexity etc.
stochastic future interest rates
risk-neutral calibrations to market values

A radically di¤erent model could start with going
concern assumptions - an income view

Embrace future cash �ow - on some normalized, on-going
basis
Test future interest rates�e¤ect on future spreads between
asset earnings and liability requirements

Strictly a work-in-progress: what tools would give a dual
model to the balance sheet?
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A SIMPLE GOING CONCERN WITH A-L MISMATCH

Take in a steady stream of 10-year bullet liabilities and
invest steadily in 15 year ladder asset maturities.
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A SIMPLE GOING CONCERN WITH A-L MISMATCH

Let interest rates increase steadily:
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A SIMPLE GOING CONCERN WITH A-L MISMATCH

Take in a steady stream of 10-year bullet liabilities and
invest steadily in 15 year ladder asset maturities. The
following spreads result if interest rates increase steadily:
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Linear Inputs Gave Oscillating Output - What�s Going On?

In signal analysis �electronics or optics �this would be the clue
to something called an "Edge E¤ect" or a "Gibbs�Phenomenon"

Essentially, the linear inputs have encountered or involve some
sort of underlying process that combines a jumble of hidden
oscillating pieces

The beginning (or ending) of the linear inputs splatters the
underlying oscillations into the output piecemeal so we can see
some of them

Fourier analysis is the technical tool to explore this

REALLY?? For ALM Work?

Maybe there is a simpler explanation?
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Linear Input Gave Oscillating Output - Why?

Maturity mismatch creates investment mismatch in going
concern �early asset maturities need reinvesting
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Linear Input Gave Oscillating Output - Why?

And looking backwards even in steady state the net
survivors still at each past rate oscillates, too �12 and 9.5
year cycles observable
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OK, BUT THIS STILL CRIES OUT FOR FOURIER
ANALYSIS

A �nancial institution is a receiver of a stream of interest
rates that modulates them into an output stream of
interest spreads (gain/loss)
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THIS STILL CRIES OUT FOR FOURIER ANALYSIS

The interest rate stream consists of component signals
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THIS STILL CRIES OUT FOR FOURIER ANALYSIS

Suppose we know how the �nancial institution modulates
each component of the input signal into an output
response
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THIS STILL CRIES OUT FOR FOURIER ANALYSIS

Then we can reconstruct the total response (the spread)
to the original interest rate stream
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FOURIER ANALYSIS JUST CODIFIES THIS
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THIS IS THE DUAL VIEW OF INTEREST RATE RISK

It looks at the institutional response to the entire
spectrum of interest rate volatility

Dual to duration, etc. which puts most focus on the lowest
frequency component(s) of the interest rate spectrum

It looks at the going-concern interest rate spread
(income statement)

Dual to the balance-sheet view of traditional immunization
Like the duality between position and momentum in physics

Area under the spectrum is the proper risk measure
If random phases align against you the whole area
contributes to your woe
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CAN�T GET THIS FROM YOUR NORMAL MODELS

(Or at least not directly from them)

WHAT WE NEED IS
A model of the external interest rate spectrum

As an abstract random phenomenon, not just past x years or
a closed time series
FORECASTING DISTRACTS FROM RISK ANALYSIS!

A model of the modulation process
Unique to each �nancial institution
Applicable to all possible external signals

And, of course, the Fourier Analysis technique
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Fourier Transform

Given a function r (t), say the interest rate over time, you can write it
as a sum of oscillating components

r (t) =

∞Z
�∞

FT [r ] (f ) e2πiftdf

where FT [r ] (f ), called the Fourier Transform of r (t) at f , determines
the component of r (t) that oscillates with frequency f .

The standard oscillation with frequency f is e2πift .

Note, e2πift is a complex number at each time t that corkscrews
around the complex unit circle as time passes.

The frequency f determines how fast and in which direction it spins.
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Fourier Transform

r (t) =

∞Z
�∞

FT [r ] (f ) e2πiftdf

So FT [r ] (f ) is a complex number

Whose modulus jFT [r ] (f )j at each frequency f tells us how large
e2πift looms inside r (t) for that f

Whose phase at each frequency f tells us how much the version of
e2πift inside r (t) is rotated from its usual starting point (at t = 0)
for that f .

With all these complex numbers spinning around, how can we get a
real function r (t) back out of the formula?

It just requires that FT [r ] (f ) and FT [r ] (�f ) be complex
conjugates for each frequency f .
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Fourier Transform Properties

There is a formula for FT [r ] (f ) =
Z ∞

�∞
r (t) e�2πiftdf

If a (t) and b (t) are two functions of t, and k and j are constants,
then for each frequency f we have

FT [ka+ jb] (f ) = kFT [a] (f ) + jFT [b] (f )

If we de�ne (a � b) (t) =
Z ∞

�∞
a (t � s) b (s) ds (the "convolution")

then

FT [a � b] (f ) = FT [a] (f ) FT [b] (f )
If we de�ne ∆(t) = 1 for t � 0 and = 0 for t < 0 then

FT [∆] (f ) = 1
2πif 1f 6=0+

1
2 δ (f ), for δ = impulse at 0

Note:(∆ � b) (t) =
Z t

�∞
b (s) ds = B(t), etc. for any b, B
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START WITH THE MODULATION PROCESS

Let r(s) = the interest rate at time s
∆B (s) = new Liabilities taken on at time s
(Assume ∆B (s) takes a simple going-concern form)
B(s, t) = Liabilities matured out of r(s) by time t
b(s, t) = ∂

∂tB(s, t) the rate of Liabilities maturing out of r(s) at time t
∆(s) = 1 for s � 0 and = 0 for s < 0
(∆� B)(s, t) = Liabilities still owed r(s) at time t = survival function of
B(s, t) viewed as a cdf.

This gives a crude going-concern model of interest
requirements on the Liabilities

Rate of interest required (at time t) = [(∆�B )�(r∆B )](t)
[(∆�B )�∆B ](t)
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START WITH THE MODULATION PROCESS

Interest requirements on the Liabilities (going concern)
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START WITH THE MODULATION PROCESS

That�s a generalization of the usual de�nition of convolution and it won�t
be commutative

A Few Other Things We Need

a�k = a � a � ... � a k times makes sense and we will use it

When we need it, δ = Dirac delta function (impulse at 0)

In particular, a�(0) = δ

Also, FT [δ] (f ) = 1 for all f
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START WITH THE MODULATION PROCESS

If ∆A(s) = new Assets taken on at time s then ∆A(s) will be a function of
everything else in the model

In fact, ∆A(s) =

  
∞

∑
k=0

a�k
!
� (δ� b) � ∆B

!
(s)

A(s, t) = Assets matured out of r(s) by time t
a(s, t) = ∂

∂tA(s, t) the rate of Assets maturing out of r(s) at time t
(∆� A)(s, t) = Assets still earning r(s) at time t = survival function of
A(s, t) viewed as a cdf.

Rate of interest available (at time t) =

"
(∆�A)�

 
r

" ∞

∑
k=0

a�k
!
�(δ�b)�∆B

#!#
(t)"

(∆�A)�
  ∞

∑
k=0

a�k
!
�(δ�b)�∆B

!#
(t)
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START WITH THE MODULATION PROCESS

Interest generated by the Assets (going concern)
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START WITH THE MODULATION PROCESS

Going concern interest rate spread s at time t is the di¤erence

s (t) =

"
(∆�A)�

 
r

" ∞

∑
k=0

a�k
!
�(δ�b)�∆B

#!#
(t)"

(∆�A)�
  ∞

∑
k=0

a�k
!
�(δ�b)�∆B

!#
(t)

� [(∆�B )�(r∆B )](t)
[(∆�B )�∆B ](t)

where the denominators are equal (a good test of your convolution algebra)

At this point I don�t know how to progress without assuming
homogeneous business strategy, ie. B(s, t) = B(t � s),
A(s, t) = A(t � s), etc. for all s and t
Among other things this makes the convolutions the usual
commutative de�nition.
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CONTINUING WITH THE MODULATION PROCESS

Some useful facts are

(∆� A) �
 

∞

∑
k=0

a�k
!

= ∆ � (δ� a) �
 

∞

∑
k=0

a�k
!

= ∆ � δ

= ∆

and limt!∞

 
∞

∑
k=0

a�k
!
(t) = 1

µA
where µA is the mean of A considered as

a cdf.

Also, those survival functions (∆� A) and (∆� B) involved in
convolutions (= integrals) suggests that some more means are lurking in
these formulas, for example ∆ � (∆� A) (t)! µA for t ! ∞, called "the
surface interpretation of the mean"
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CONTINUING WITH THE MODULATION PROCESS

If we assume a level stream of new Liabilities ∆B = ∆ the formula for
the spread s is (after a lot of algebra to get r alone)

s =

h
µB
µA
(∆� A)� (∆� B)

i
� r

[(∆� B) � ∆]

�
(∆� A) �

(" 
∞

∑
k=0

a�k
!
�
�

µB
µA
(∆� A)� (∆� B)

�#
r

)
[(∆� B) � ∆]

Amazingly, the messy term is a transient that goes to 0 as the
homogenous going-concern reaches steady-state.
In the permanent steady state, the denominator [(∆� B) � ∆]! µB
For stable growing new Liabilities you just use distortions of A, B, a,
b, µA and µB .
The permanent steady-state term is made-to-order for a Fourier
Transform
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CONCLUSION FOR THE MODULATION PROCESS

For each frequency f the Fourier transform of the steady-state
going-concern spread with a level stream of new liabilities is

FT [s ] (f ) = FT
�

∆� A
µA

� ∆� B
µB

�
(f ) FT [r ] (f )

= FT
�

∆ �
�

δ� a
µA

� δ� b
µB

��
(f ) FT [r ] (f )

= FT [∆] (f ) FT
�

δ� a
µA

� δ� b
µB

�
(f ) FT [r ] (f )

=

�
1
2πif

1f 6=0+
1
2

δ (f )
��

1� FT [a] (f )
µA

� 1� FT [b] (f )
µB

�
�

�FT [r ] (f )

=
1
2πif

�
1� FT [a] (f )

µA
� 1� FT [b] (f )

µB

�
FT [r ] (f ) if f 6= 0
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CONCLUSION FOR THE MODULATION PROCESS

In other words 1
2πif

�
1�FT [a](f )

µA
� 1�FT [b](f )

µB

�
represents how the

�nancial institution modulates the external interest rate frequency
strengths FT [r ] (f ) into interest spread frequency responses
FT [s ] (f ) when there is a level stream of new liabilities.
We should note that if the new liability stream ∆B grows at a stable
rate g the Fourier Transform of the interest rate spread works out to
FT [s ] (f ) = 1

ln(1+g )+2πif

�
1�FT [a](f )

µA
� 1�FT [b](f )

µB

�
FT [r ] (f ) where

the distorted versions of the functions and means must be used if the
assumed growth g is not 0, and also in that case the equation works
for f = 0 too.
The factor 1

ln(1+g )+2πif in the modulation already teaches an
important lesson for risk management: a stable, well-managed level of
growth is a very e¤ective risk-control mechanism.
But let�s illustrate the basic modulation for our simple �nancial
institution with 15-year ladder assets and 10-year bullet liabilities.
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ASSET MODULATION SPECTRUM (15 Year Ladder)

Modulus
��� 1
2πif

�
1�FT [a](f )

µA

����; don�t forget there�s a phase, too

Horizontal axis labeled by wavelength ( 1f ) on a logarithmic scale.
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NOW THE LIABILITY SPECTRUM (10 Year Bullet)

Modulus
��� 1
2πif

�
1�FT [a](f )

µA

���� and ��� 1
2πif

�
1�FT [b](f )

µB

����; don�t forget phases

Horizontal axis labeled by wavelength on a logarithmic scale.
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SUBTRACT FOR THE NET MODULATION SPECTRUM

Modulus
��� 1�FT [a](f )2πif µA

� 1�FT [b](f )
2πif µB

���; phases matter!

Wavelength on a logarithmic scale from 100 years to 0.25 years
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NET SPECTRUM = RISK CONTROL PROFILE

Modulus
��� 1�FT [a](f )2πif µA

� 1�FT [b](f )
2πif µB

���; phases matter!

Risk max�s at 12 year interest rate cycle (!); next 5.4 (= 1
2
12+9.5
2 )

But true risk exposure is the entire area under curve - what if the
phases all line up?
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A SLIGHTLY DIFFERENT FINANCIAL INSTITUTION

Steady stream of Liabilities that mature straight-line 9 to 11 years
Assets straight line 0 to 15 years
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A DIFFERENT GOING CONCERN WITH A-L
MISMATCH

Take in a steady stream of 9-11 year st. line liabilities and
invest steadily in 0-15 year st.line asset maturities. The
following spreads result if interest rates increase steadily:

Steady-state pro�t, not loss
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ASSET SPECTRUM (15 Year Straight Line)
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LIABILITY SPECTRUM (9 to 11 Year Straight Line)
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NET SPECTRUM
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COMPARATIVE NET SPECTRA
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THIS WEEK

WHAT CAN WE SAY ABOUT THE

EXTERNAL INTEREST RATE SPECTRUM

FT[r](f) ?
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FINGER EXERCISE - STRAIGHT LINE INCREASE

If r (t) is linear with constant slope r 0 then dr
dt (t) = r

0, so
r (t) =

�
∆ � drdt

�
(t) and FT [r ] (f ) = FT [∆] (f ) FT

� dr
dt

�
(f )
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SPECTRUM OF STRAIGHT LINE INCREASE

FT [r ] (f ) = FT [∆] (f ) FT
�
dr
dt

�
(f )

=

�
1f 6=0
2πif

+
1
2

δ (f )
�
FT
�
r 0
�
(f )

=

�
1f 6=0
2πif

+
1
2

δ (f )
�
r 0δ (f )

because FT [constant] =constant�δ.
Thus FT [r ] (f ) = 0 unless f = 0, in which case it�s an impulse function.
For interest rate spread s (t) we know that

FT [s ] (f ) =
h
1�FT [a](f )
2πif µA

� 1�FT [b](f )
2πif µB

i
FT [r ] (f ) buth

1�FT [a](f )
2πif µA

� 1�FT [b](f )
2πif µB

i
= 0 when f = 0, so we�ll need l�Hôpital�s help

to unravel FT [s ] (0) = 0 �∞.
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SPECTRUM OF SPREAD FROM STRAIGHT LINE

FT [s ] (0) =

= lim
f!0

�
1� FT [a] (f )
2πif µA

� 1� FT [b] (f )
2πif µB

� �
1f 6=0
2πif

+
1
2

δ (f )
�
r 0δ (f )

= lim
f!0

"
1� FT [a] (f )
(2πif )2 µA

� 1� FT [b] (f )
(2πif )2 µB

#
2πif

�
1f 6=0
2πif

+
1
2

δ (f )
�
r 0δ (f )

= lim
f!0

"
1� FT [a] (f )
(2πif )2 µA

� 1� FT [b] (f )
(2πif )2 µB

# �
1f 6=0 + πif δ (f )

�
r 0δ (f )

= lim
f!0

"
1� FT [a] (f )
(2πif )2 µA

� 1� FT [b] (f )
(2πif )2 µB

#
1f 6=0r

0δ (0)

= lim
f!0

"
1� FT [a] (f )
(2πif )2 µA

� 1� FT [b] (f )
(2πif )2 µB

#
r 0δ (0)

because limf!0 1f 6=0 = 1
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SPECTRUM OF SPREAD FROM STRAIGHT LINE

Now use l�Hôpital twice

FT [s ] (0) = lim
f!0

"
1� FT [a] (f )
(2πif )2 µA

� 1� FT [b] (f )
(2πif )2 µB

#
r 0δ (0)

= lim
f!0

"
�

d 2
df 2 FT [a] (f )
d 2
df 2 (2πif )2 µA

+
d 2
df 2 FT [b] (f )
d 2
df 2 (2πif )2 µB

#
r 0δ (0)

=

24� FT
h
(2πi)2 t2a (t)

i
(0)

2 (2πi)2 µA
+
FT
h
(2πi)2 t2b (t)

i
(0)

2 (2πi)2 µB

35 r 0δ (0)
because for any density h (t) it�s true that
d
df FT [h (t)] (f ) = �FT [2πith (t)] (f ). Now 2nd moments appear

FT
h
(2πi)2 t2h (t)

i
(0) =

Z ∞

�∞
(2πi)2 t2h (t) e�2πit �0dt

= (2πi)2
Z ∞

�∞
t2h (t) dt = (2πi)2 µ0H2
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SPECTRUM OF SPREAD FROM STRAIGHT LINE

So

FT [s ] (0) = �1
2

�
µ0A2
µA

� µ0B2
µB

�
r 0δ (0)

is the impulse function at f = 0 that constitutes the entire spectrum
of the stable state interest rate spead s (t) caused by a straight line
movement of the external interest rate r (t).
This spectrum implies that s (t) is a constant

s (t) = �1
2

�
µ0A2
µA

� µ0B2
µB

�
r 0

If we calculate ratios of second to �rst moments for the simple asset
and liability maturity schedules that we showed earlier, this formula
gives exactly the small constant steady-state loss (or gain) that we
saw earlier by brute force calculation.
1
2

µ0H2
µH

is the mean of what risk theory calls "the equilibrium

distribution" of the distribution H, with density SH (t)
µH

, H = A or B
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1ST CONCLUSION FOR THE MODULATED PROCESS

This rather specialized result at f = 0 generalizes to any external
interest rate process r (t):

jFT [s ] (0)j = 1
2

����µ0A2µA
� µ0B2

µB

���� jFT [dr ] (0)j
where jFT [dr ] (0)j is the frequency 0 (i.e. drift) component of the
Fourier Transform of the process dr (t) that generates r (t).

If the model has growing new liabilities ∆B (t) then distortions of
both the means and the second moments must be used

It should be no surprise that these equilibrium distribution means
1
2

µ0A2
µA
and 1

2
µ0B2
µB

can be formally related (a duality) with the traditional
duration concept.

All of the risk area beyond f = 0 still remains, however, untouched by
this dual version of "duration".
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1ST CONCLUSION FOR THE MODULATED PROCESS
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NOW THE EXTERNAL INTEREST RATE SPECTRUM

Assume that Brownian motion drives whatever process we end up with
dW (t) is the random Brownian increment at each time t;
fdW (t)g� 1

2dt�t�
1
2dt
are 1

dt independent N (0, dt) RVs

A �xed world runs from � 1
2dt to

1
2dt ; Brownian sampling gives the

dW (t) at each t which then is �xed once and for all

FT [dW ] (f ) =
Z ∞

�∞
e�2πiftdW (t) = e2πiφ(f )N

�
0, 1dt

�
with random

phase φ (f ). Why?
fdW (t)g is a set of 1

dt independent samples from N (0, dt) soZ 1
2dt

� 1
2dt

e�2πiftdW (t) is normal with E = 0,V =
�
1
dt

�2
dt = 1

dt , i.e.

E
h
jFT [dW ] (f )j2

i
= E [FT [dW ] (f ) FT [dW ] (�f )] (conjugates)

=
Z 1

2dt

� 1
2dt

E
�
dW 2 (t)

�
(independent)

=
Z 1

2dt

� 1
2dt

dt = 1
2dt �

�
� 1
2dt

�
= 1

dt
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THE SPECTRUM OF dW(t)

We even can identify the speci�c N
�
0, 1dt

�
RV: jFT [dW ] (f )j2 =

FT [dW ] (f ) FT [dW ] (�f ) =
Z 1

2dt

� 1
2dt

dW 2 (t) = (FT [dW ] (0))2

So jFT [dW ] (f )j = jFT [dW ] (0)j, same value for all f , and the
phase of FT [dW ] (f ) is totally random in f (and unknowable)

FT [dW ] (0) is a random real number, drawn from N
�
0, 1dt

�
, �xed

for all time, and unknowable (see picture)

This is a little like renormalization in physics. It sounds strange but it
works since everything we actually observe will just be relative to this
unknowable thing.

Remember, we promised that true risk models will be very di¤erent
from our usual models!

All of the Fourier frequencies are equally represented in FT [dW ] (f )

Random walk comes from randomized phase relationships.
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SPECTRUM OF THE BROWNIAN INCREMENT
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THE SPECTRUM OF BROWNIAN MOTION W(t)

Now we know everything we need to get from FT [dW ] to FT [W ]

W (t) = (∆ � dW ) (t) so

FT [W ] (f ) = FT [∆ � dW ] (f )
= FT [∆] (f ) FT [dW ] (f )

=

�
1f 6=0
2πif

+
1
2

δ (f )
�
e2πiφ(f )FT [dW ] (0)

where φ (f ) is a totally random phase. This gives

jFT [W ] (f )j =

����1f 6=02πif
+
1
2

δ (f )

���� jFT [dW ] (0)j
=

jFT [dW ] (0)j
2π jf j 1f 6=0 +

jFT [dW ] (0)j
2

δ (f )

with phases totally randomized (note: last step required 1f 6=0 � δ (f ) = 0).
The random phases are what makes the walk random.
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THE SPECTRUM OF BROWNIAN MOTION
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MEAN-REVERTING GEOMETRIC BROWNIAN MOTION

The external interest rate r (t) is likely to have a mean-reversion of
some kind and a zero-avoidance of some kind.
Mean-reverting Geometric Brownian (Black-Karisinski) looks like:

dr(t) = f 12σ2� ln (1� F )[ lnT� ln r(t)]� 1
4σ2[1+ 1F=0]gr(t)dt + σr(t)dW (t)

i.e. dr(t) = (L+ ln(1� F ) ln(r)(t))r(t)dt + σr(t)dW (t)
with L = 1

2σ2 � ln(1� F ) lnT� 1
4σ2[1+ 1F=0]

Decoding:
0 � F � 1 is an annualized mean-reversion strength
1F=0 picks up the (little-known) need to change drift compensation
from � 12σ2 toward � 14σ2 when there�s mean-reversion
With this drift compensation E [r (t)] = T in the steady-state
Start process at r(� 1

2dt ) = T ; drift comp. important when F = 0

r(t) = (∆ � dr)(t) so FT [r ](f ) = FT [∆](f )FT [dr ](f ) and o¤ we go
Alas, FT [dr ](f ) has FT [r ](f ) in it and also FT [ln r ] in it.
We have to work for a solution
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MEAN-REVERTING GEOMETRIC BROWNIAN MOTION

Start with an integration by parts:

d [e�2πift r(t)] = e�2πiftdr(t)� 2πife�2πift r(t)dt

2πife�2πift r(t)dt = e�2πiftdr(t)� d [e�2πift r(t)] and now
Z 1

2dt

� 1
2dt

dt

2πifFT [r ](f ) = FT [dr ](f )� e�2πif 1
2dt r( 1

2dt ) + e
2πif 1

2dt T

= FT [dr ](f )� e�2πif 1
2dt [T + FT [dr ](0)] + e2πif 1

2dt T

= FT [dr ](f )� e�2πif 1
2dt FT [dr ](0) + 2πifT δ(f )

by a careful application of l�Hôpital�s rule

Now substitute

FT [dr ](f ) = L � FT [r ](f ) + ln(1� F )FT [ln(r) � r ](f ) + σFT [r � dW ](f )
= L � FT [r ](f ) + ln(1� F )[FT [ln r ] � FT [r ]](f ) + σ[FT [r ] � FT [dW ]](f )
and solve for FT [r ](f ):
FT [r ](f ) = 1

2πif �Lfln(1� F )[FT [ln r ] � FT [r ]](f )
+σ[FT [r ] � FT [dW ]](f )� e�2πif 1

2dt FT [dr ](0) + 2πifT δ(f )g
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MEAN-REVERTING GEOMETRIC BROWNIAN MOTION

A similar calculation gives an expression for FT [ln r ] using:

d [e�2πift ln r(t)] = e�2πiftd ln r(t)� 2πife�2πift ln r(t)dt to integrate by
parts

d ln r(t) = �Kdt + σdW (t) for

K = f ln (1� F )[ lnT� ln r(t)] +� 1
4σ2[1+ 1F=0]g to substitute in

the resulting integral, giving

FT [ln r ](f ) = 1
2πif �ln(1�F )f�Kδ(f ) + σFT [dW ](f )

�e�2πif 1
2dt FT [d ln r ](0) + 2πif δ(f )g

That can be substituted into the expression for FT [r ](f )

The resulting expression takes a lot of work but leads to
FT [r ](f ) = σ[FT [r ]�FT [dW ]](f )�FT [dr ](0)1f =0+2πifT δ(f )

2πif � 1
2 σ21F 6=0�Q [r ](f )σ[FT [r ]�FT [dW ]](f )
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MEAN-REVERTING GEOMETRIC BROWNIAN MOTION

In FT [r ](f ) = σ[FT [r ]�FT [dW ]](f )�FT [dr ](0)1f =0+2πifT δ(f )
2πif � 1

2 σ21F 6=0�Q [r ](f )σ[FT [r ]�FT [dW ]](f )
it looks like we

have we FT [r ](f ) on both sides of the equation (it is part of those
convolutions.)
However, we can interpret the expression [FT [r ] � FT [dW ]](f ) to be
a randomly weighted average of FT [r ](h) over all values of h with
the speci�c value f contributing primarily a random phase and
perhaps (needs more analysis) a small random �uctuation in the
modulus as f varies.
Speci�cally, [FT [r ] � FT [dW ]](f ) = FT [dW ](0) � (factor)(f ) where
the factor depends upon f only for a phase and at most a small
random �uctuation in modulus
The expression Q [r ](f )σ[FT [r ] � FT [dW ]](f ) is a real number.
Q [r ](f ) depends upon f only for a phase and (perhaps) a randomly
�uctuating modulus < 1
Q [r ](f ) = 0 when F=0
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SPECTRUM FOR EXTERNAL INTEREST RATE

For its modulus,
jFT [r ] (f )j 1f 6=0=

σj[FT (r )�FT (dW )](f )j1f 6=0+2πfT δ(f )

j2πif �f 12 σ2+Q (f )σ[FT (r )�FT (dW )](f )g1F 6=0j with totally
randomized phase.

The expression for FT [r ] (f ) is completely useless for
forecasting because of the phase randomization. You
can�t even estimate the current phases because you need
t ! ∞ to calculate a phase.

But the modulus carries the full risk exposure.

Note that when F = 0 this looks a lot like Brownian
Motion (goes to ∞ when f = 0, but mean reversion sets a
maximum on value at f = 0)
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THE EXTERNAL RATE SPECTRUM (F not 0)
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THAT�S OUR DUAL MODEL FOR INTEREST RISK

So the interest rate spread in our going-concern has a risk
spectrum of:
jFT [s ] (f )j =

��� 1
ln(1+g )+2πif

�
1�FT [a](f )

µA
� 1�FT [b](f )

µB

�
FT [r ] (f )

��� where
the phase is totally randomized, where the distorted
versions of the functions and means must be used if the
assumed growth g is not 0, and where

jFT [r ] (f )j = σj[FT (r )�FT (dW )](f )j1f 6=0+2πfT δ(f )

j2πif �f 12 σ2+Q (f )σ[FT (r )�FT (dW )](f )g1F 6=0j is the external
rate spectrum.

I�m still working on numerical illustration of the external
rate spectrum, which is needed to get a feel for where on
the going-concern risk spectrum we most need to
compress the response.
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References

For the modulation process
My paper at the 1998 International Congress of Actuaries

link to it at bottom of
http://www.math.uconn.edu/~bridgeman/Papers_and_Presentations/index.htm

But really, anyone who has programmed an ALM model has
done this, whether they know it or not

For the Fourier Analysis - any good text; I like
Rudin�s Real and Complex Analysis
Brigham�s Fast Fourier Transform
Meikle�s A New Twist To Fourier Transforms

For the application to random walk - you need to be
careful; I used an actual-in�nitesimals approach
following the ideas in

Robinson�s Non-Standard Analysis
But he didn�t apply it to random walk ... I did and am con�dent I got
it right
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