
POWER SERIES — A BRIEF SUMMARY

1. The basic definitions

Weierstrass approached complex variable using power series. It is the way that Cartan
starts his book.

Definition 1.1. A formal power series is an expression
∞∑
k=0

anZ
k.

C[[Z]] denotes the vector space of formal power series with coefficients an in C.

Our goal is to be able to give complex values to certain series when we substitute a
complex number for the indeterminate Z.

Definition 1.2. A sequence in a set X is a map

( ) : N → X
n 7→ an

The sequence is usually denoted (an). Here N is called the index set. Often it is replaced
by N ∪ {0}. (We wont be very fussy about this.)

A sequence (an) in C (respectively, in any metric space (X, d)) converges to L if, for any
ε > 0, there is an N0 ∈ N so that |an − L| (respectively, d(an, L)) < ε whenever n ≥ N0.
We write an → L.

Next, we gather together a whole lot of definitions.

Definition 1.3. Let (ck) be a sequence in C.
(1) A series of complex numbers is a formal expression

∞∑
k=0

ck.

(2) The n-th partial sum of
∑∞

k=0 ck is the complex number

sn =
n∑
k=0

ck.

(3)
∑∞

0 ck converges to C ∈ C if the sequence (sn) converges to C. We then say that∑
ck has sum or limit C; we even write that

∑
ck = C.
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(4) If
∑
ck converges to some C ∈ C then we say that

∑
ck is convergent; otherwise,

it is divergent .
(5)

∑
ck is Cauchy convergent if, for each ε > 0, there is a number N0 ∈ N so that

|sn − sm| < ε when n,m ≥ N0.

(6)
∑
ck is absolutely convergent if the series

∑
|ck| is convergent.

(7) If
∑
ck is convergent but not absolutely convergent, it is called conditionally con-

vergent .

2. Properties of series

This is just a list of properties of series.
(1) Suppose ck = rk + itk with rk, tk ∈ R, then

∑
ck is convergent if and only if both∑

rk and
∑
tk are convergent and, in that case,

∑
ck =

∑
rk + i

∑
tk.

(2) If
∑
ck is convergent, then ck → 0. The converse is false.

(3) If
∑
ck is absolutely convergent, then

∑
ck is convergent. Again the converse is

false.
(4) If

∑
ck is absolutely convergent, you can rearrange the order of the terms and still

get the same sum.
(5) A conditionally convergent series with real coefficients can be rearranged so that it

converges to any real number or to ±∞. (Conditionally convergent series are hard
to deal with.)

(6) If
∑
ak and

∑
bk are series, then the Cauchy product of

∑
ak and

∑
bk is the series∑

ak ∗
∑

bk :=
∞∑
n=0

(
n∑
k=0

akbn−k

)
.

(7) If
∑
ak = A and

∑
bk = B and both series are absolutely convergent, then the

Cauchy product of
∑
ak and

∑
bk is absolutely convergent to AB.

Most important to us is the following

Theorem 2.1. Absolutely convergent series with complex coefficients form an algebra over
C. You can add them, multiply by constants and multiply them by each other just as you
would do with polynomials.

2.1. Two basic tests for convergence of series. Suppose we are given a series
∑
ck.

Theorem 2.2 (The Root Test). Let γ = lim sup k
√
|ck|. If γ < 1, then the series converges.

If γ > 1, then the series diverges.

Theorem 2.3 (The Ratio Test). Let

γ = lim sup
|ck+1|
|ck|

.

If γ < 1, then the series converges. If γ > 1, then the series diverges.

Blue Rudin has proofs of both theorems.
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3. functions defined by series

Everything above can be thought of as the value at a point, call it z0 of a sum of functions
uk. Even if we have some form of convergence at z0, we might need to know what happens
when we wiggle z0 to a nearby point z1 or just call it z.

Here’s Weierstrass’ idea:
Assume ∑

k=0

Mk = M

is a convergent series of non-negative real numbers.

Theorem 3.1. (The Weierstrass M-test) Suppose un : S → C is a collection of functions
with |un| ≤ Mn for all z ∈ S and

∑
Mn is convergent. Then

∑
uk(z) is absolutely

convergent.

Proof.
∑
Mn is convergent hence it is Cauchy convergent. It follows that, for all ε > 0,

there is a number N0 so that, for n.m ≥ N0 with, say n > m,
n∑

m+1

Mk < ε.

But
n∑

m+1

|uk(z)| ≤
n∑

m+1

Mk < ε.

It follows that, everywhere on S,

σ =
∞∑
k=0

|uk(z)|

is absolutely Cauchy convergent hence is absolutely convergent. �

An Aside — When we write |uk(z)| ≤Mk, we are not only making a statement about the
behavior of uk at the one point z. It is a statement about every point in the set S. i.e. it
is a uniform statement about the sums on S. In particular, the Weierstrass criterion tells
us that the partial sums converge uniformly and absolutely on S.

4. Back to Power Series

Suppose
∑
akZ

k is a formal power series. Then, for any fixed z and z0,∑
ak(z − z0)k

is a formal series and we should discuss its convergence behavior. Suppose it converges for
some z 6= z0. That means the series

∑
aku

k has that convergence behavior when we make
the substitution u = z − z0. So, most often, we can assume that z0 = 0 — it makes most
computations easier.

We’ve discussed the convergence, even absolute convergence and Cauchy convergence, of
series. These are meaningful when we plug in some value for z in

∑
anZ

n. Those values of
z which give us a convergent series form the convergence set X of the power series

∑
anz

n.
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5. The convergence properties of complex power series

We need estimates to develop the theory of complex power series. The starting point
always seems to be the geometric series. Let’s recall its properties.

5.1. The geometric series. When we divide complex polynomials we find that, for z 6= 1,

1
1− z

=

(
n∑
k=0

zk

)
+
zn+1

1− z
.

The last term is a remainder and goes to zero precisely when |z| < 1.
I would put a proof here but you should have seen it many times.

5.2. Abel’s Theorem and its consequences. Suppose
∑
cnZ

n is a formal power series.
If we substitute Z = 0, we can evaluate it as a function and the only term that doesn’t get
killed is the term c000. In this context, 00 is defined to be 1 and the value of the series is
c0. The value of the series at zero is overwhelmingly uninteresting. So we’ll assume there
is a point z1 6= 0 where our series converges. Here’s what Abel taught us:

Theorem 5.1. Suppose
∑
cnZ

n converges for some z1 6= 0. Then, for all z ∈ C with
|z| < |z1|,

∑
cnz

n converges absolutely.

Proof. there should be a picture here.
Since

∑
cnz

n
1 converges, there is a number M ∈ R+ so that

|cnzn1 | ≤M

for n ≥M — that’s what we mean by cnzn1 → 0. It follows that

|cnzn| ≤M
∣∣∣∣ zz1
∣∣∣∣n .

It follows that ∑
|cnzn| ≤

∑
M
(∣∣∣z
z̄

∣∣∣)n = M
∑

rn

where r < 1. �

Note: — Each term in
∑
Mn is non-negative. It follows that the partial sums are

increasing. If they don’t diverge to infinity, they converge to some finite positive number.

Definition 5.2. Let
∑
cnz

n be a power series which converges for some z1 6= 0. Let ρ be
defined by

ρ = lim sup{R :
∑

cnz
nconverges in BR(0)}.

Then ρ is called the radius of convergence of the series
∑
cnz

n. If no z1 6= 0 lies in the
convergence set of the series, we say ρ = 0. If the series converges for all z1 ∈ C, we write
ρ =∞.

The root test implies
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Theorem 5.3. Given a formal power series
∑
cnZ

n. Then its radius of convergence ρ
satisifes

1
ρ

= lim sup n
√
|cn|.

In the set B = Bρ(0), the series converges absolutely and, on compact subsets of B, the
series converges uniformly. If |z1| > ρ, then the series

∑
cnz

n
1 diverges.

5.3. Analytic/Holomorphic functions and their basic properties. The word ana-
lytic is used in so many different contexts that it almost becomes meaningless. Unfor-
tunately, it is commonly used in complex analysis. Let me offer a few definitions that,
hopefully, will make sense of the concept. X will be a set, often in a vector space, where
these definitions can be made meaningful — ask if they’re not clear.

Definition 5.4. Suppose f is a real or complex-valued function — call the target F ; we
can write

(1) f : X → F
x 7→ f(z)

Then we say that f ∈ Ck = Ck(X) = Ck(X,K) if f has a continuous k-th derivative at
every point in X. f is C∞ if f is in Ck for all k and we write that f is infinitely differentiable.
f is real analytic in X if f can be written as a power series, with real coefficients,

which is convergent near any point of X. f is complex analytic or, more frequently called,
analytic if near each point of x, f can be written as a convergent power series with complex
coefficients. We then write f ∈ Cω(X,R) or f ∈ Cω(X,C). The later case is the classical
definition of an analytic function. If X ⊂ C is open and f is complex analytic in x, we
will call f holomorphic in X. The set of holomorphic functions in an open set D ∈ C is
denoted O(D). Usually D is taken to be a domain.

Here’s a summary of what we’ve proved.

Theorem 5.5. Suppose
∑
cnz

n has radius of convergence ρ > 0, then there is a function

f : Bρ(0) → C
z 7→

∑
cnz

n

which, on any disk where |z| < r < ρ is the uniform limit of
∑
cnz

n, hence is continuous
on Bρ(0).

An essential property of of f(z) =
∑
cnz

n on Bρ(0) is

Theorem 5.6. Suppose
∑
cnz

n is convergent on B := Bρ)(0) and

f(z) =
∑

cnz
n.

Then f is differentiable on B and

f ′(z) =
∑

ncnz
n−1.
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We can repeat this process and obtain

Corollary 5.7. If f(z) =
∑
cnz

n is convergent on B = Bρ(0) then the k-th derivative of
f is also absolutely convergent on B and

f (k)(z) =
∑

n(n− 1)(n− 2) · · · (n− (k + 1))cnzn−k.


