THEOREM 0.1 (The Binomial Theorem). Suppose a,b € R and n € NU{0}. Then
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PROOF. The proof is by induction.

First suppose n = 1. Then
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hence 1 lies in the truth set T of the binomial theorem.

Now we must shows that ¢ € T implies that £ + 1 € T. So we assume that ¢ € T or,
equivalently, that
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Next we multiply both sides by (a 4+ b) and see whether we get the formula for n = ¢ + 1.
The left hand side is
(a + b)é—f—l.

The question is whether the right hand side becomes the right hand side of the previous
equality with ¢ replaced by ¢ + 1.

Here’s the computation:
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We split off the first and last terms of this sum and leave the rest. The first is
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The last is
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Next we look at the other terms in the sum. They are II and III as given by:
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It remains to show that
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Here we use a trick. The counter (k) is a dummy. Substitute j = k + 1 in III. So we get
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Or, using k as a counter instead of j:
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Then:
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where the last equality follows from the property of binomial coefficients shown in class —
the property that defines Pascal’s triangle. 0
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