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Abstract

In order for surface reconstruction to comprehensively
include surfaces with boundary as a complement to existing
approaches for surfaces without boundary, we report new
techniques and theory in computational topology. Our ap-
proach is motivated from differential geometry and differ-
ential topology. We have also conducted significant experi-
mental work to test our resultant implementations. We elu-
cidate some subtle issues that can arise regarding the roles
of the medial axis and sampling density. The crucial top-
ics forC2 manifolds are

1. important defining properties ofC2 manifolds with
boundary,

2. approximation of normals, particularly along the
boundary,

3. sampling density, and

4. successful practical algorithms and examples.

Keywords: surface reconstruction, twice-differentiable

manifold, differential topology, differential geometry,
medial axis.

1. Introduction and Motivation

The primary contribution of this paper is to present new
theory and techniques for topology-preserving reconstruc-
tion and approximation of surfaces. This paper reports on
mature results regarding

1. computational topology properties ofC2 manifolds
with boundary, and

2. successful practical algorithms and examples.

Partial results are reported, regarding

1. approximation of normals, particularly along the
boundary and

2. sampling density.



For each surfaceM with boundary, we construct an aux-
iliary surface, called itsenvelope. We use the envelope to
perform approximation and reconstruction of surfaces, in-
clusive of those with or without boundary. We discuss our
implementation of code that enriches the class of surfaces
that can be considered, and we articulate the supporting
practical algorithms that are derived from our theoretical
and experimental investigations.

A comparison between the images of Figure 1 and Fig-
ure 2 show the value of our method. An original trefoil sur-
face was created for these experiments by a linear extru-
sion of a trefoil curve, so as to produce no self-intersections.
This trefoil surface is like a ribbon with the correspond-
ing knot for its two boundary curves. Figure 1 is a series
of reconstructions using the envelope technique with dif-
ferent sample densities, with the density decreasing from
left to right. Figure 2 is the same using direct reconstruc-
tion from the PowerCrust algorithm. We note that, for the
same sampling densities, the method based upon use of the
envelopes in Figure 1 appears to converge nicely to the de-
sired trefoil surface, while the direct reconstruction of Fig-
ure 2 does not. We note that the Power Crust algorithm was
not designed to accept surfaces with boundary. However, in
practice, the Power Crust has been found to be useful for re-
construction of some surfaces with boundary, with possible
reliance uponad hocmodifications [6]. Hence, our interest
in our comparisons is to begin to formalize a rich admissi-
ble class of input surfaces for a provable implementation of
ambient isotopic approximations. A related example is pre-
sented for an unknot surface in Section 6.2.

Several recent approaches to topology-preserving sur-
face approximation have been restricted toC2 2-manifolds
without boundary [5, 7, 9, 15, 24]. For some practical sur-
face reconstructions, a heuristic method has proven gener-
ally successful for approximation of some manifolds with
boundary [6]. In a related article [15] on surface reconstruc-
tion for computer-aided geometric design, questions were
posed about the possibility of creating algorithms for sur-
faces with boundary. The approach offered here is respon-
sive, postulating new assumptions for input to be sufficient
for approximation of surfaces with boundary. While some
methods [3, 4, 11] have had some success reconstructing
surfaces with boundary, the scope of the class of admis-
sible surfaces with boundary was not definitively articu-
lated and was presented as a result of experimental obser-
vation. This work specifically provides new theory that all
C2 surfaces with boundary can have arbitrarily close am-
bient isotopic reconstructions (dependant, of course, upon
sufficient sampling density, corroborating other published
results [11]) and shows resultant practical implementations.

As initial motivation for the practical value of our re-
sults, we refer to Figure 3, below. The object to be recon-
structed is a cylinder with boundary curves at both ends,

having no top or bottom. The left side of Figure 3 is rep-
resentative of the results that could be expected from many
contemporary algorithms whereas the right side of Figure 3
shows our significantly improved output.

The paper is organized as follows: In Section 2, we sum-
marize related work. Section 3 provides an overview of the
theory and extensions. Implementation and graphical exper-
iments of these new techniques are presented in Section 4.
Section 5 contains a discussion of hypotheses about admis-
sible input data for our techniques. Section 6 presents obser-
vations about the influence of normal approximations and
sampling densities. Closing remarks are given in Section 7.

2. Related Work

An emphasis upon topological guarantees for surface ap-
proximants has recently appeared in the literature on surface
reconstruction [5, 7, 9, 15]. For surface reconstruction, it is
typical that only point cloud data is assumed to be available,
while the methods presented here rely formally on maximal
curvature and minimal separation distances. For our foot ex-
ample, which is based upon point cloud data, we estimated
these geometric values in order to perform an improved sur-
face reconstruction. These curvature and separation values
will often be available for reverse engineering of manufac-
tured objects [20]. While our reliance upon these values re-
mains the subject of further study, the methods presented
here will be directly applicable in many graphics applica-
tions, when the surface definitions will already be given
and the relevant problem will be to produce a topologically
correct approximation. For instance, related earlier work
by some of the present authors [10] has been used to pre-
vent undesirable topological changes during object defor-
mations [17] for animations. The methods presented here
will provide even more general criteria for an animator to
preserve the critical topological characteristics of an object
as it changes across successive frames. Some previous topo-
logical guarantees relied upon knowledge of the medial axis
[3, 4, 5, 7, 13, 15, 16], which implicitly captures this curva-
ture and separation information. We continue to look for
unifying themes, but it should be clear that some estima-
tion of a bound on surface curvature is crucial to any well-
defined surface approximation method.

The theoretical concerns in providing topological guar-
antees for surface approximations near boundaries have
been presented in the literature [6, 15, 18] within the con-
text of approximants created during surface reconstruction.
In particular, the paper [6] presents a heuristic argument to
reconstruct a surface with boundary, with a relevant exam-
ple being the reconstruction of a foot. In a different ap-
proach [15], a similar example of a foot is reconstructed
as a manifold with boundary to avoid undersampling prob-



Figure 1. Trefoil A

Figure 2. Trefoil B

Figure 3. Comparison of Methods for Cylinder



lems often experienced near the boundary. Both of these ap-
proaches for boundaries [6, 15] were pragmatic responses
to the known difficulties of reconstruction of boundaries
from unorganized sample points. As these approaches de-
pend upon an approximation of the medial axis, it is worth
noting that it has since been shown [18] that the typical sam-
pling input for surface reconstruction is not sufficient, in
general, to permit a topologically faithful reconstruction of
the medial axis of the surface with boundary.

The value in preferring ambient isotopy for topologi-
cal equivalence versus the more traditional equivalence by
homeomorphism [26] has previously been presented [9, 24]
and the interested reader is referred to those papers or to a
standard mathematical text [19] for formal definitions. In-
tuitively, two closed curves will not be ambient isotopic
if they form different knots, which can only be converted
into each other by “untying” one knot and retying it to
conform to the other, even while all knots are homeomor-
phic. For curves, a theorem has been published that pro-
vides for ambient isotopic piecewise linear (PL) approxi-
mations of a specifically described class of curves [21], in-
clusive of both those with and without boundary points, mo-
tivating the present investigation to surfaces with boundary.
Our methodology uses the concept of the envelope of a sur-
face, which has previously been presented in the context
of tool-path generation for a specialized class of paramet-
ric surfaces [23].

The present work emphasizes the integration of concepts
from low-dimensional topology and differential geometry
into the emerging sub-discipline of computational topol-
ogy, as a complementary contribution to the incorporation
of combinatorial topology and computational geometry for-
malisms that have already appeared [8, 14, 22].

3. Preliminaries and Theory

In order to keep this section short, we refer the reader
to standard definitions of a manifold with boundary [12],
which are also summarized by the present authors in techni-
cal reports available on-line [1, 2]. As an intuitive overview,
it suffices to observe that the differentiable properties along
the boundary must follow as continuous limits of the corre-
sponding differentiable properties within any neighborhood
of a point on the boundary. In essence, this means that each
compactC2 manifold M , with boundary, can be consid-
ered as a submanifold of a compactC2 manifoldN without
boundary.

The following definition of an envelope of a surface is
central to our approach. Its use was motivated by a careful
examination of the proofs previously presented [9, 24, 25]
for reconstructingC2 manifolds without boundary, which
revealed a critical reliance upon a positive minimum dis-

tance between a surface and its medial axis. This has pre-
viously been proven forC2 surfaces [9], but the extension
here required showing that there also be a positive mini-
mum between the envelope of aC2 surface (as defined be-
low) and the medial axis of this envelope. It is easy to show
that this envelope is a surface without boundary, but, in gen-
eral, the envelope will not beC2. However, we were able to
show that this envelope had sufficient smoothness to still
conclude that there was a positive minimum distance be-
tween the envelope of aC2 surface and the medial axis of
this envelope (The smoothness condition is stronger than
C1 and is known asC1,1. For more details the interested
reader is referred to our theory pre-print [2] .) While op-
timal algorithms for computing this lower bound are still
evolving, our prototype software suggests that these algo-
rithms will have many performance and stability advantages
over algorithms to approximate the medial axis. In the def-
inition of the envelope, below, the value ofρ is less than
the positive lower bound on the distance between the enve-
lope and its medial axis. A subtle distinction about the new
theory presented here is that it doesnotdepend upon anex-
plicit calculation of the medial axis.

Definition 3.1 For suitably chosen values ofρ > 0, theρ-
envelopeof M , denotedEρ(M) is defined as

Eρ(M) = {p ∈ R3 : d(p, M) = ρ} .

It is not necessary to assume thatM is orientable for our
definition of theρ-envelope, as given here. (A typical exam-
ple of a non-orientable surface with boundary is a Möbius
strip.) The following theorem justifies the role of the enve-
lope and its proof is presented in related pre-prints [1, 2],
which also provide the bounds onρ.

Theorem 3.1 If M is C2, then, for anyε > 0, there ex-
ists a sufficiently small value ofρ such that itsρ-envelope
has a minimum positive distance to its medial axis so that
it is possible to explicitly define an ambient isotopic PL ap-
proximation toM via the nearest point mapping, where the
distance betweenM and its approximation will be strictly
less thanε.

4. Computational Examples

The details of our theory presented in our pre-print [2]
show how to create approximants that are ambient iso-
topic to Eρ(M), as well as approximants that are ambi-
ent isotopic toM . The examples presented here were mo-
tivated by that theory. They were created with new code
as a pre-processing interface to the Power Crust algorithm
in order to produce ambient isotopic approximations to



Eρ(M). Complete adherence to the theory of our compan-
ion paper would have also required implementation of post-
processing code to extract a subset of the Power Crust out-
put to be ambient isotopic toM . This additional code is sub-
tle and has not yet been fully implemented. The examples
presented here demonstrate a viable alternative to that full
implementation. Namely, the component of the medial axis
of Eρ(M) that lies interior toEρ(M) is equal toM . Since
the Power Crust also produces an approximation of this in-
terior component of the medial axis ofEρ(M), this approx-
imation is taken as an approximation ofM . In the examples
presented that compare our results with direct reconstruc-
tions from the Power Crust, again remarking, in fairness,
that the Power Crust algorithm was not designed to accept
surfaces with boundary.

Initial ’proof-of-concept’ experiments were performed
on several simple NURBS surfaces, and are presented in
this paper. The techniques developed on the NURBS sur-
faces were then applied to a challenging set of point cloud
data [15] and our improvements are discussed. This ap-
proach permitted a controlled environment to analyze the
results obtain by the envelope technique. All the informa-
tion necessary to produce an envelope may be found ana-
lytically in a NURBS surface representation. The normals,
partial derivatives and maximum curvature can be readily
obtained to produce a precise envelope. This information,
together with an estimate of the minimum feature size [3],
then can guide the sampling rate to guarantee an ambient
isotopic approximation similar to techniques already dis-
cussed in the literature [9] which are extended in our com-
panion theory paper [2]. The examples presented here show
that an accurate envelope construction will yield a faithful
and desirable reconstruction.

4.1. Cylinder Example

For Figure 4, the top left is a tessellation of the quadratic
NURBS cylinder. The top right presents a graphical dis-
play of an approximation of the envelope by balls centered
at each vertex on the tessellation. The bottom left displays
points selected along the surface normals of the cylinder at
a distance equivalent to the radius of the spheres. The nor-
mals and tangents of the surface are used to define sam-
ple points on the envelope around the boundaries. The bot-
tom right shows a point cloud set of the extent for the cylin-
der envelope and completes our pre-process for refining in-
put data for the Power Crust, leading to the improved out-
put shown in the right half of Figure 3. Similar boundary
improvements are also evident in the next example.

4.2. Foot Example:

The example presented here is a challenging one already
seen in the literature, where one heuristic approach was cre-
ated to respect the boundary [6] and an alternate method
was presented to close off that boundary [15]. Here, no sur-
face definitions were known in advance (in contrast to the
other examples presented) and the point cloud data was pro-
vided by the previously cited author [15].

Figure 5 has two images. On the left is a direct recon-
struction of the foot from the sample points provided us-
ing the Power Crust algorithm. This image also has an en-
larged view of the boundary region near the ankle, where
many artifacts are clearly visible which close the surface.
The right image shows a reconstruction of the foot using
the same original sample points as input to the pre-process
that builds the envelope of this data. Again, there is a closer
view of the boundary region near the ankle, showing that
the boundary is more faithfully preserved.

Figure 6 has four images. The top left shows the orig-
inal sample points for the foot, where these points were
measured by a laser scan of the actual foot, and then their
(x, y, z) co-ordinates were recorded in a text file. The top
right shows the polar balls produced by the Power Crust,
representing the radial field of the approximated medial axis
of the point cloud. In this top-right image, noise is evident
near the toes. The bottom left shows a sampling of poles
determined from the Power Crust algorithm. The poles ap-
proximate normals to the original surface. The bottom right
shows a point cloud representation for the envelope enclo-
sure for the original point cloud. Since surface normals are
central to the definition of the envelope and none are ex-
plicitly available here, envelope points are determined along
the poles at a distance from the medial axis that is equiv-
alent to the radius of the polar balls and offset in both
directions. This foot envelope was constructed adaptively,
where we experimented with varying the radius with loca-
tion of the sample point in a modification of our definition
of the envelope. This results in a tighter envelope around the
toes and a slightly more generous envelope around the an-
kle. Along the boundary, additional points are created with
user specified normals and tangents, appropriate to the enve-
lope construction. This aspect currently remains within the
judgement of the user, but the success of these experiments
leads us to further investigate the theoretical constraints that
would be involved formalizing this adaptive technique.

4.3. Discussion of Input Needed and Final Output

Our foot reconstruction presented here significantly im-
proves the foot boundary (near the ankle) and generally
compares well with that done by hueristic methods [6]. Our
advantage is a reliance upon provable techniques and a well-



Figure 4. Cylinder

Figure 5. Comparison of Methods: Foot Data



Figure 6. Stages of Method: Foot Data



defined class of permissible input surfaces. (The other pri-
mary approach to this problem [15] is not directly compa-
rable, as it eliminated this boundary, whereas we preserve
it.) However, the results of Subsection 4.2 can be compared
to the other experiments to show that our reconstruction
still suffers in the absence of critical geometric data, which
we attribute primarily to the need to approximate normals
and ball radii to use in our envelope construction technique.
Those approximated normals are shown in the lower left of
Figure 6 in addition to the polar balls which indicate the ac-
curacy of the medial axis approximation. Artifacts in the
foot reconstruction appear in the form of holes and local
maximum/minimum that are inconsistent with the original
geometry.

5. Discussion of Hypotheses

This section presents an example that shows our reliance
upon theC2 hypothesis of Theorem 3.1. Letx = y2, for
y ∈ [0, 2] be rotated about the x-axis. The resulting surface
of revolution is shown in Figure 7 and has a boundary at its
right hand extremity.

The upper left of Figure 7 is the point cloud data sam-
pled from equations of the paraboloid. The upper right of
Figure 7 is a direct Power Crust reconstruction of previ-
ous point cloud data. Like the cylinder, this approximation
of the paraboloid has no boundary, where one should ex-
ist at its right hand extremity. The lower left image displays
a point cloud showing the envelope of the paraboloid. The
lower right displays the reconstruction created from the en-
velope techniques, where, by comparison, there is a crisp
boundary.

On the other hand, we note the importance of our
smoothness assumptions to our implementation. For in-
stance, consider the image shown in the left of Figure 8. It is
defined as a surface of revolution of the curvey = x−(3/2).
It is a surface with boundary (at the top), but it is notC2

and its resulting envelope is notC1,1 (which is our smooth-
ness hypothesis for our envelopes, as described Section 3).
Hence, artifacts appear near the base during reconstruc-
tion, as shown in the magnification at the right of Fig-
ure 8. The underlying algorithmic causes remain the subject
of further investigation.

6. Accurate Normals and Sampling Density

This section shows typical data of experiments done to
better understand the roles of accurate normals and sam-
pling density.

6.1. Approximating Normals

Figure 9 shows how the resultant surface approximation
varies with the accuracy of the approximation. The progres-
sion from left to right is of decreasingly accurate normals.
The suggestion to investigate this relationship further arose
from our previously discussed reconstruction with the foot
data. There, improving the normals along the boundary re-
sulted in significant improvements to the final surface ap-
proximation.

6.2. Sampling Density of Knots

The knot surface reconstructions of this subsection are,
aslo, all of surfaces with boundary. The intent is to create
surfaces based upon the unknot and the trefoil knot. Those
original surfaces were created by drawing each knot as a
curve and then these curves were extended into surfaces
by a linear extrusion which produced no self-intersections.
Each surface is like a ribbon with the corresponding knot
for its two boundary curves.

To indicate the type of difficulties that can occur in ap-
proximating these unknot surfaces, we first show an exam-
ple of the difficulties that can occur in merely approximat-
ing the unknot curve, as previously reported [9]. On the
left of Figure 10 is shown a particular example of the un-
knot curve, which is not planar. The resulting piecewise lin-
ear approximation on the right is no longer the unknot, but
has four essential crossings, as a result of picking sampling
points that are so far apart that the approximation no longer
has the same knot type or embedding as the original curve.
This should serve to motivate the following study of the re-
lation between sampling density and topological character-
istics in reconstruction of an unknot surface.

Figure 11 shows the expected pattern of the reconstruc-
tion improving with higher sampling density, depicted for
the unknot. In this unknot surface example, its envelope
surface was then constructed at varying radii,λ, decreas-
ing from right to left, while the sampling density of points
from each envelope was kept constant. On the extreme right
of the series of images, denote the radius of this envelope
asλ6. The value ofλ6 is sufficiently large that there is a
perceptible artifact towards the center of this image, where
there appears to be a self-intersection or an undercrossing
in R3 (as did appear in Figure10), although none should oc-
cur. Likely, this was caused by having the value ofλ6 ex-
ceed the value forρ, as given in Theorem 3.1, but more pre-
cise numerical studies are needed to verify this condition.
For comparison, if one views the images in middle of this
sequence, the smaller values ofλ yield better images of the
unknot. Proceeding to the left-most image, its radius ofλ1

is so small that the least feature size criterion of the Power
Crust algorithm would require a much finer sampling den-



Figure 7. The reconstruction of a paraboloid

Figure 8. Not C1,1

Figure 9. Noise in Normals



Figure 10. Bad Approximation of Unknot

sity of the envelope than the constant density that is being
maintained. Since the sampling density is no longer suffi-
cient, holes and other visusal artifacts begin to appear in the
resulting reconstruction. Hence, this study shows the bal-
ance required between sampling density and radius chosen
for the envelope surface.

This unknot study then led to consider the more chal-
lenging trefoil knot surface, as a comparison of our enve-
lope reconstruction method versus techniques that have al-
ready appeared in the literature. That visual comparison has
already been presented in Figures 1 and 2.

7. Concluding Remarks and Future Work

An improved surface reconstruction technique is demon-
strated forC2 manifolds with boundary, where the method
is dependant upon definition and implementation of an aux-
iliary surface, called the envelope. The promising results
achieved here were by an effective expedient. We used the
component of the medial axis of an envelope surface that
is contained in the interior of the envelope as an approxi-
mation to the original manifold. An approximation to this
component is already produced by the Power Crust algo-
rithm and the results presented here show this to be a good
approximation in practice.

It can be shown that a compactC2 manifold M , with
boundary, is equal to the interior component of the medial
axis of theρ-envelope ofM , denoted asEρ(M), for suit-
ably chosen values ofρ. Hence, in principle, the expedi-
ent used here is well-founded, but there remain some is-
sues for further investigation. Namely, the Power Crust nec-

essarily produces an approximation of the medial axis, so,
if there are any deviations of this approximation from the
true medial axis, then no formal topological guarantees can
be given for the examples presented here. This remains the
subject of further investigation, but the results presented
here are promising that more detailed investigation will be
fruitful.

The experiments conducted provide interesting informa-
tion about the role of accurate normal approximations in re-
constructing surfaces with boundary. Furthermore, the im-
ages produced of other numerical experiments help to visu-
alize the interplay between topological embedding of the
original manifold and required sampling density. Further
work needs to be done on both these subjects, towards opti-
mal sampling criteria, which is a subject of broad ongoing
interest.

8. Acknowledgements

The following funding sources are acknowledged,
with appreciation. Partial funding for K. Abe was from
NSF grants CCF 0429477 and CCR 0226504. Par-
tial funding for J. Bisceglio and D. R. Ferguson was from
NSF grant DMS-0138098. Partial funding for T.J. Pe-
ters was from NSF grants CCF 0429477, DMS 0138098
and CCR 0226504. Partial funding for A.C. Russell was
from NSF grants CCF 0429477 and CCR 0226504. Par-
tial funding for T. Sakkalis was obtained from NSF
grants DMS-0138098, CCR 0231511, CCR 0226504 and
from the Kawasaki chair endowment at MIT. All state-



Figure 11. Unknot
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