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In order for surface reconstruction to comprehensively
include surfaces with boundary as a complement to existing
approaches for surfaces without boundary, we report new
techniques and theory in computational topology. Our ap- 1. Introduction and Motivation
proach is motivated from differential geometry and differ-

ential topology. We have also conducted significant experi- . _— . .
The primary contribution of this paper is to present new

mental work to test our resultant implementations. We elu- h d techni ¢ | )
cidate some subtle issues that can arise regarding the rolesth€0ry and techniques for topology-preserving reconstruc-

of the medial axis and sampling density. The crucial top- tion and approxmatpn of surfaces. This paper reports on
ics for 2 manifolds are mature results regarding

1. important defining properties af? manifolds with 1. computational topology properties 6f> manifolds
boundary, with boundary, and

2. approximation of normals, particularly along the 2. successful practical algorithms and examples.

boundary, ) )
. ) Partial results are reported, regarding
3. sampling density, and

1. approximation of normals, particularly along the

4. successful practical algorithms and examples.
boundary and

Keywords: surface reconstruction, twice-differentiable 2. sampling density.



For each surfac&/ with boundary, we construct an aux- having no top or bottom. The left side of Figure 3 is rep-
iliary surface, called itenvelope We use the envelope to resentative of the results that could be expected from many
perform approximation and reconstruction of surfaces, in- contemporary algorithms whereas the right side of Figure 3
clusive of those with or without boundary. We discuss our shows our significantly improved output.
implementation of code that enriches the class of surfaces The paper is organized as follows: In Section 2, we sum-
that can be considered, and we articulate the supportingmarize related work. Section 3 provides an overview of the
practical algorithms that are derived from our theoretical theory and extensions. Implementation and graphical exper-
and experimental investigations. iments of these new techniques are presented in Section 4.

A comparison between the images of Figure 1 and Fig- Section 5 contains a discussion of hypotheses about admis-
ure 2 show the value of our method. An original trefoil sur- sible input data for our techniques. Section 6 presents obser-
face was created for these experiments by a linear extru-vations about the influence of normal approximations and
sion of a trefoil curve, so as to produce no self-intersections.sampling densities. Closing remarks are given in Section 7.
This trefoil surface is like a ribbon with the correspond-
ing knot for its two boundary curves. Figure 1 is a series
of reconstructions using the envelope technique with dif-
ferent sample densities, with the density decreasing from

I(_eft to right. Figure 2 is the same using direct reconstruc-  pp, emphasis upon topological guarantees for surface ap-
tion from the PowerCrust algorithm. We note that, for the oyimants has recently appeared in the literature on surface
same sampling densities, the method based upon use of thg,construction [5, 7, 9, 15]. For surface reconstruction, it is
envelopes in Figure 1 appears to converge nicely to the deyyica| that only point cloud data is assumed to be available,

sired trefoil surface, while the direct reconstruction of Fig- \ynhile the methods presented here rely formally on maximal
ure 2 does not. We note that the Power Crust algorithm wasgrature and minimal separation distances. For our foot ex-

not dgsigned to accept surfaces with boundary. However, i”ample, which is based upon point cloud data, we estimated
practice, the Power Crust has been found to be useful for reyhege geometric values in order to perform an improved sur-
construction of some surfaces with boundary, with possible ¢5ce reconstruction. These curvature and separation values
reliance uporad hocmodifications [6]. Hence, our interest iy often be available for reverse engineering of manufac-
in our comparisons is to begin to formalize a rich admissi- ,req objects [20]. While our reliance upon these values re-
ble class of input surfaces for a provable implementation of ,5ins the subject of further study, the methods presented
ambient isotopic approximatic_)ns. A r.eIated example is pre- nare will be directly applicable in many graphics applica-
sented for an unknot surface in Section 6.2. tions, when the surface definitions will already be given
Several recent approaches to topology-preserving sur-and the relevant problem will be to produce a topologically
face approximation have been restricted’tb2-manifolds  correct approximation. For instance, related earlier work
without boundary [5, 7, 9, 15, 24]. For some practical sur- by some of the present authors [10] has been used to pre-
face reconstructions, a heuristic method has proven generyvent undesirable topological changes during object defor-
ally successful for approximation of some manifolds with mations [17] for animations. The methods presented here
boundary [6]. In a related article [15] on surface reconstruc- will provide even more general criteria for an animator to
tion for computer-aided geometric design, questions werepreserve the critical topological characteristics of an object
posed about the possibility of creating algorithms for sur- as it changes across successive frames. Some previous topo-
faces with boundary. The approach offered here is respondogical guarantees relied upon knowledge of the medial axis
sive, postulating new assumptions for input to be sufficient [3, 4, 5, 7, 13, 15, 16], which implicitly captures this curva-
for approximation of surfaces with boundary. While some ture and separation information. We continue to look for
methods [3, 4, 11] have had some success reconstructinginifying themes, but it should be clear that some estima-
surfaces with boundary, the scope of the class of admis-tion of a bound on surface curvature is crucial to any well-
sible surfaces with boundary was not definitively articu- defined surface approximation method.
lated and was presented as a result of experimental obser- The theoretical concerns in providing topo'ogica' guar-
vation. This work specifically provides new theory that all antees for surface approximations near boundaries have
C? surfaces with boundary can have arbitrarily close am- peen presented in the literature [6, 15, 18] within the con-
bient isotopic reconstructions (dependant, of course, uportext of approximants created during surface reconstruction.
sufficient sampling density, corroborating other published |n particular, the paper [6] presents a heuristic argument to
results [11]) and shows resultant practical implementations.reconstruct a surface with boundary, with a relevant exam-
As initial motivation for the practical value of our re- ple being the reconstruction of a foot. In a different ap-
sults, we refer to Figure 3, below. The object to be recon- proach [15], a similar example of a foot is reconstructed
structed is a cylinder with boundary curves at both ends, as a manifold with boundary to avoid undersampling prob-

2. Related Work
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Figure 1. Trefoil A
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Figure 2. Trefoil B

Figure 3. Comparison of Methods for Cylinder




lems often experienced near the boundary. Both of these aptance between a surface and its medial axis. This has pre-
proaches for boundaries [6, 15] were pragmatic responsewiously been proven fo€? surfaces [9], but the extension

to the known difficulties of reconstruction of boundaries here required showing that there also be a positive mini-
from unorganized sample points. As these approaches demum between the envelope of ® surface (as defined be-
pend upon an approximation of the medial axis, it is worth low) and the medial axis of this envelope. It is easy to show
noting that it has since been shown [18] that the typical sam-that this envelope is a surface without boundary, but, in gen-
pling input for surface reconstruction is not sufficient, in eral, the envelope will not bé2. However, we were able to
general, to permit a topologically faithful reconstruction of show that this envelope had sufficient smoothness to still
the medial axis of the surface with boundary. conclude that there was a positive minimum distance be-

The value in preferring ambient isotopy for topologi- tween the envelope of @ surface and the medial axis of
cal equivalence versus the more traditional equivalence bythis envelope (The smoothness condition is stronger than
homeomorphism [26] has previously been presented [9, 24]C* and is known ag>":*. For more details the interested
and the interested reader is referred to those papers or to s&eader is referred to our theory pre-print [2] .) While op-
standard mathematical text [19] for formal definitions. In- timal algorithms for computing this lower bound are still
tuitively, two closed curves will not be ambient isotopic evolving, our prototype software suggests that these algo-
if they form different knots, which can only be converted rithms will have many performance and stability advantages
into each other by “untying” one knot and retying it to over algorithms to approximate the medial axis. In the def-
conform to the other, even while all knots are homeomor- inition of the envelope, below, the value pfis less than
phic. For curves, a theorem has been published that prothe positive lower bound on the distance between the enve-
vides for ambient isotopic piecewise linear (PL) approxi- lope and its medial axis. A subtle distinction about the new
mations of a specifically described class of curves [21], in- theory presented here is that it does depend upon aex-
clusive of both those with and without boundary points, mo- plicit calculation of the medial axis.
tivating the present investigation to surfaces with boundary. .

Our methodology uses the concept of the envelope of a sur.Pefinition 3.1 For suitably chosen values pf> 0, the -
face, which has previously been presented in the contextenvelopeof M, denotedt, (1) is defined as

of tool-path generation for a specialized class of paramet-
ric surfaces [23].

The present work emphasizes the integration of concepts
from low-dimensional topology and differential geometry Itis notnecessary to assume thidtis orientable for our
into the emerging sub-discipline of computational topol- definition of thep-envelope, as given here. (A typical exam-
ogy, as a complementary contribution to the incorporation ple of a non-orientable surface with boundary is ablis
of combinatorial topology and computational geometry for- strip.) The following theorem justifies the role of the enve-
malisms that have already appeared [8, 14, 22]. lope and its proof is presented in related pre-prints [1, 2],

which also provide the bounds gn

E,(M)={peR’:d(p,M)=p} .

3. Preliminaries and Theory Theorem 3.1 If M is C?, then, for anye > 0, there ex-

ists a sufficiently small value @f such that itsp-envelope

In order to keep this section short, we refer the reader N@s @ minimum positive distance to its medial axis so that
to standard definitions of a manifold with boundary [12], itiS possible to explicitly define an ambient isotopic PL ap-
which are also summarized by the present authors in techni{roximation to} via the nearest point mapping, where the
cal reports available on-line [1, 2]. As an intuitive overview, distance betweed/ and its approximation will be strictly
it suffices to observe that the differentiable properties along €SS thare.
the boundary must follow as continuous limits of the corre-
sponding differentiable properties within any neighborhood 4 Computational Examples
of a point on the boundary. In essence, this means that each
compactC? manifold M, with boundary, can be consid-
ered as a submanifold of a comp&tt manifold N without The details of our theory presented in our pre-print [2]
boundary. show how to create approximants that are ambient iso-

The following definition of an envelope of a surface is topic to E,(M), as well as approximants that are ambi-
central to our approach. Its use was motivated by a carefulent isotopic tod. The examples presented here were mo-
examination of the proofs previously presented [9, 24, 25] tivated by that theory. They were created with new code
for reconstructing”? manifolds without boundary, which  as a pre-processing interface to the Power Crust algorithm
revealed a critical reliance upon a positive minimum dis- in order to produce ambient isotopic approximations to



E,(M). Complete adherence to the theory of our compan-4.2. Foot Example:

ion paper would have also required implementation of post-

processing code to extract a subset of the Power Crust out- The example presented here is a challenging one already
put to be ambient isotopic t/. This additional code is sub-  seen in the literature, where one heuristic approach was cre-
tle and has not yet been fully implemented. The examplesated to respect the boundary [6] and an alternate method
presented here demonstrate a viable alternative to that fullwas presented to close off that boundary [15]. Here, no sur-
implementation. Namely, the component of the medial axis face definitions were known in advance (in contrast to the
of E,(M) that lies interior toF, (M) is equal to)M . Since other examples presented) and the point cloud data was pro-
the Power Crust also produces an approximation of this in-vided by the previously cited author [15].

terior component of the medial axis B%,()M), this approx- Figure 5 has two images. On the left is a direct recon-
imation is taken as an approximation/ef. In the examples  struction of the foot from the sample points provided us-
presented that compare our results with direct reconstruc-ing the Power Crust algorithm. This image also has an en-
tions from the Power Crust, again remarking, in fairness, larged view of the boundary region near the ankle, where
that the Power Crust algorithm was not designed to acceptmany artifacts are clearly visible which close the surface.
surfaces with boundary. The right image shows a reconstruction of the foot using
e , . the same original sample points as input to the pre-process
Initial "proof-of-concept’ experiments were performed . . . .

on several simple NURBS surfaces, and are presented iry_]at builds the envelope of this data. Again, there is a closer
this paper. The techniques developed on the NURBS sur-ew of the bc_)undary région near the ankle, showing that
faces were then applied to a challenging set of point cloudthe poundary IS more-fa|thfully preserved. .
data [15] and our improvements are discussed. This ap-. Figure 6 has_ four images. The top left shows .the org-
proach permitted a controlled environment to analyze themaI sample points for the foot, where these points were
results obtain by the envelope technique. All the informa- measured by a laser scan of the aCt'.“'aI foot, a_nd then their
tion necessary to produce an envelope may be found anag_x,y,z) co-ordinates were recorded in a text file. The top
Iytically in a NURBS surface representation. The normals, right ShOV.VS the polgr b.alls produced by_ the Power.Crus_t,
partial derivatives and maximum curvature can be readily representing the radial field of the approximated medial axis

obtained to produce a precise envelope. This information,Of thetk;])mtnt Clo{_:_?]' Inbtr:;s to;l)—]qgh; Image, n0|s? 'S e\;'deTt
together with an estimate of the minimum feature size [3], near the toes. The hotlom et Shows a sampling ot poles

then can guide the sampling rate to guarantee an ambiengem_rmlned from the Power_C_rust algorithm. The poles_ ap-
isotopic approximation similar to techniques already dis- proximate n.ormals to the ongma[ surface. The bottom right
cussed in the literature [9] which are extended in our com- shows a pomt.cl_oud re.presentatm.n for the envelope enclo-
panion theory paper [2]. The examples presented here showure for the original point cloud. Since surface normals are

that an accurate envelope construction will yield a faithful ce'n'tral to 'the definition of the enyelope and none are ex-
and desirable reconstruction. plicitly available here, envelope points are determined along

the poles at a distance from the medial axis that is equiv-
alent to the radius of the polar balls and offset in both
directions. This foot envelope was constructed adaptively,
where we experimented with varying the radius with loca-
tion of the sample point in a modification of our definition
of the envelope. This results in a tighter envelope around the
toes and a slightly more generous envelope around the an-
kle. Along the boundary, additional points are created with

For Figure 4, the top left is a tessellation of the quadratic . ;
NURBS cylinder. The top right presents a graphical dis- user specified _normal; and tangents, approprlgte to'th.e enve-
play of an appro>'<imation of the envelope by balls centered lope construction. This aspect currently remains within the

at each vertex on the tessellation. The bottom left displaysJLJOIgement of the user, but the success of these experiments
points selected along the surface .normals of the cylinder atleads us to further investigate the theoretical constraints that

a distance equivalent to the radius of the spheres. The norWOUId be involved formalizing this adaptive technique.

mals and tangents of the surface are used to define sam-

ple points on the envelope around the boundaries. The bot4.3. Discussion of Input Needed and Final Output

tom right shows a point cloud set of the extent for the cylin-

der envelope and completes our pre-process for refining in-  Our foot reconstruction presented here significantly im-
put data for the Power Crust, leading to the improved out- proves the foot boundary (near the ankle) and generally
put shown in the right half of Figure 3. Similar boundary compares well with that done by hueristic methods [6]. Our
improvements are also evident in the next example. advantage is areliance upon provable techniques and a well-

4.1. Cylinder Example



Figure 4. Cylinder
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Figure 5. Comparison of Methods: Foot Data




Figure 6. Stages of Method: Foot Data




defined class of permissible input surfaces. (The other pri-6.1. Approximating Normals

mary approach to this problem [15] is not directly compa-

rable, as it eliminated this boundary, whereas we preserve Figure 9 shows how the resultant surface approximation
it.) However, the results of Subsection 4.2 can be comparedvaries with the accuracy of the approximation. The progres-
to the other experiments to show that our reconstructionsion from left to right is of decreasingly accurate normals.

still suffers in the absence of critical geometric data, which The suggestion to investigate this relationship further arose
we attribute primarily to the need to approximate normals from our previously discussed reconstruction with the foot

and ball radii to use in our envelope construction technique. data. There, improving the normals along the boundary re-
Those approximated normals are shown in the lower left of sulted in significant improvements to the final surface ap-
Figure 6 in addition to the polar balls which indicate the ac- proximation.

curacy of the medial axis approximation. Artifacts in the
foot reconstruction appear in the form of holes and local
maximum/minimum that are inconsistent with the original
geometry.

6.2. Sampling Density of Knots

The knot surface reconstructions of this subsection are,
aslo, all of surfaces with boundary. The intent is to create
surfaces based upon the unknot and the trefoil knot. Those
original surfaces were created by drawing each knot as a
curve and then these curves were extended into surfaces
by a linear extrusion which produced no self-intersections.
%ach surface is like a ribbon with the corresponding knot
for its two boundary curves.

To indicate the type of difficulties that can occur in ap-
proximating these unknot surfaces, we first show an exam-
ple of the difficulties that can occur in merely approximat-

The upper left of Figure 7 is the point cloud data sam- jng the unknot curve, as previously reported [9]. On the
pled from equations of the paraboloid. The upper right of |eft of Figure 10 is shown a particular example of the un-
Figure 7 is a direct Power Crust reconstruction of previ- ot curve, which is not planar. The resulting piecewise lin-
ous point cloud data. Like the cylinder, this approximation ggy approximation on the right is no longer the unknot, but
of the paraboloid has no boundary, where one should ex-nas four essential crossings, as a result of picking sampling
ist at its right hand extremity. The lower left image displays points that are so far apart that the approximation no longer
a point cloud showing the envelope of the paraboloid. The pas the same knot type or embedding as the original curve.
lower right displays the reconstruction created from the en- Thjs should serve to motivate the following study of the re-
velope techniques, where, by comparison, there is a crispation between sampling density and topological character-

5. Discussion of Hypotheses

This section presents an example that shows our relianc
upon theC? hypothesis of Theorem 3.1. Let = 2, for
y € [0, 2] be rotated about the x-axis. The resulting surface
of revolution is shown in Figure 7 and has a boundary at its
right hand extremity.

boundary.
On the other hand, we note the importance of our

smoothness assumptions to our implementation. For in-

istics in reconstruction of an unknot surface.
Figure 11 shows the expected pattern of the reconstruc-
tion improving with higher sampling density, depicted for

stance, consider the image shown in the left of Figure 8. Itisthe unknot. In this unknot surface example, its envelope

defined as a surface of revolution of the cupve: z—(3/2),
It is a surface with boundary (at the top), but it is ot
and its resulting envelope is n6t! (which is our smooth-

surface was then constructed at varying radjidecreas-
ing from right to left, while the sampling density of points
from each envelope was kept constant. On the extreme right

ness hypothesis for our envelopes, as described Section 3)pf the series of images, denote the radius of this envelope
Hence, artifacts appear near the base during reconstrucas \¢. The value of\g is sufficiently large that there is a
tion, as shown in the magnification at the right of Fig- perceptible artifact towards the center of this image, where
ure 8. The underlying algorithmic causes remain the subjectthere appears to be a self-intersection or an undercrossing
of further investigation. in R? (as did appear in Figure10), although none should oc-
cur. Likely, this was caused by having the value\gfex-
ceed the value fop, as given in Theorem 3.1, but more pre-
cise numerical studies are needed to verify this condition.
For comparison, if one views the images in middle of this
seguence, the smaller valuesofield better images of the
This section shows typical data of experiments done to unknot. Proceeding to the left-most image, its radiuga of
better understand the roles of accurate normals and samis so small that the least feature size criterion of the Power
pling density. Crust algorithm would require a much finer sampling den-

6. Accurate Normals and Sampling Density



Figure 7. The reconstruction of a paraboloid

Figure 8. Not C'1!
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Figure 9. Noise in Normals




Figure 10. Bad Approximation of Unknot

sity of the envelope than the constant density that is beingessarily produces an approximation of the medial axis, so,
maintained. Since the sampling density is no longer suffi- if there are any deviations of this approximation from the
cient, holes and other visusal artifacts begin to appear in thetrue medial axis, then no formal topological guarantees can
resulting reconstruction. Hence, this study shows the bal-be given for the examples presented here. This remains the
ance required between sampling density and radius chosesubject of further investigation, but the results presented
for the envelope surface. here are promising that more detailed investigation will be
This unknot study then led to consider the more chal- fruitful.
lenging trefoil knot surface, as a comparison of our enve-  The experiments conducted provide interesting informa-
lope reconstruction method versus techniques that have altion about the role of accurate normal approximations in re-
ready appeared in the literature. That visual comparison hasonstructing surfaces with boundary. Furthermore, the im-

already been presented in Figures 1 and 2. ages produced of other numerical experiments help to visu-
alize the interplay between topological embedding of the
7. Concluding Remarks and Future Work original manifold and required sampling density. Further

work needs to be done on both these subjects, towards opti-
An improved surface reconstruction technique is demon- mal sampling criteria, which is a subject of broad ongoing
strated forC? manifolds with boundary, where the method Interest.
is dependant upon definition and implementation of an aux-
iliary surface, called the envelope. The promising results
achieved here were by an effective expedient. We used theé8. Acknowledgements
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Figure 11. Unknot

ments in this publication are the responsibility of the au- [14] T. K. Dey, H. Edelsbrunner, and S. Guha. Computational
thors,not of these funding sources.

References

(1]

(2]

(3]

(4]

(5]

(7]

(8]

9]

(10]

(11]

(12]

(13]

topology. InAdvances in Discrete and Computational Ge-
ometry (Contemporary Mathematics 22%ages 109-143.
American Mathematical Society, 1999.

[15] T. K. Dey and S. Goswami. Tight cocone: a water-tight sur-

K. Abe et al. Computational topology for reconstruction
of surfaces with boundary, part i: Application®re-print,
www.cse.uconn.edufpeters pages 1-23, 2004.

K. Abe et al. Computational topology for reconstruction of
surfaces with boundary, part ii: Mathematical foundations.
Pre-print, www.cse.uconn.edupeters pages 1-15, 2004.

N. Amenta and M. Bern. Surface reconstruction by voronoi
filtering. Discrete and Computational Geometr32:481—
504, 1999.

N. Amenta, M. Bern, and M. Kamvysselis. A new voronoi-
based surface reconstruction algorithm.Pioc. ACM SIG-
GRAPH pages 415 — 421. ACM, 1998.

N. Amenta, S. Choi, T. Dey, and N. Leekha. A simple al-
gorithm for homeomaorphic surface reconstruction.AldM
Symposium on Computational Geometpages 213-222,
2000.

N. Amenta, S. Choi, and R. Kolluri. The power crust. In
Sixth ACM Symposium on Solid Modelinmpges 249-260.
ACM, June 2001.

N. Amenta, S. Choi, and R. Kolluri. The power crust, union
of balls and the medial axis transfornrComputational Ge-
ometry: Theory and Application49:127-173, 2001.

N. Amenta et al. Emerging challenges in computational
topology. InWorkshop Report on Computational Topology
NSF, June 1999.

N. Amenta, T. J. Peters, and A. C. Russell. Computational
topology: ambient isotopic approximation of 2-manifolds.
Theoretical Computer Sciencg05:3-15, 2003.

L.-E. Andersson, T. J. Peters, and N. F. Stewatrt. Equivalence[25]

of topological form for curvilinear geometric objectsiter-
national Journal of Computational Geometry and Applica-
tions 10(6):609-622, 2000.

J.-D. Boissonnat and S. Oudot. Provably good surface sam-
pling and approximation. IfEurographics Symposium on
Geometry Processingages 9-18, 2003.

W. M. Boothby. An introduction to Differentiable Manifolds
and Riemannian Geometry-Second Editidnademic Press,
New York, 1986.

T. Culver, J. Keyser, and D. Manocha. Accurate computation
of the medial axis of a polyhedron. Proceedings of Fifth
Symposium on Solid Modeling and Applicatiopages 179—
190. ACM, June 1999.

[18] M. Gopi.

(22]

(23]

[24

(26]

face reconstructor. IRighth ACM Symposium on Solid Mod-
eling and Applicationspages 127-134. ACM, June 2003.

[16] T. K. Dey, H. Woo, and W. Zhao. Approximate medial axis

for cad models. IrfEigth ACM Symposium on Solid Model-
ing and Applicationspages 280-285. ACM, June 2003.

[17] A. Gain and A. Dodgson. Preventing self-intersection un-

der free-form deformatioEEE Trans. on Visualization and
Computer Graphics7(4):289-298, 2001.

On sampling and reconstructing surfaces with
boundariesYes 13(1):43-72, 2002.

[19] M. W. Hirsch. Differential Topology Springer-Verlag, New

York, 1976.

[20] W. Macy. Personal communication. 2003.
[21] T. Maekawa, N. M. Patrikalakis, T. Sakkalis, and G. Yu.

Analysis and applications of pipe surfac&omputer Aided
Geometric Designl5(5):437-458, 1998.

M. Mantyla. Computational topology: A study on topo-
logical manipulations and interrogations in computer graph-
ics and geometric modeling.Acta Polytechnica Scandi-
navica, Mathematics and Computer Science Series. Finnish
Academy of Technical Sciences, HelsiBki, 1983.

H. Pottmann and M. Peternell. Envelopes computational
theory and applications. 18pring Conference on Com-
puter Graphics 2000pages 3-23. Comenius University,
Bratislava, May 2000.

T. Sakkalis and T. J. Peters. Ambient isotopic approxima-
tions for surface reconstruction and interval solidsEighth
ACM Symposium on Solid Modeling and Applicatiqreyes
176-184. ACM, June 2003.

T. Sakkalis, T. J. Peters, and J. Bisceglio. Isotopic approxi-
mations and interval solid<AD, 36 (11):1089-1100, 2004.
S. Willard. General Topology Addison-Wesley Publishing
Company, Reading, MA, 1970.



