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Abstract. This paper presents computational topology techniques for reconstruc-
tion of surfaces with boundary, where all manifolds considered are assumed to be
embedded in R3. The focus here is upon examples and applications, with the
theoretical basis being presented in a companion paper. As a step towards these
results, we consider any C2 compact 2-manifold M with boundary and then we
define and construct its envelope E(M), such that E(M) has no boundary. Then
E(M) can be used to approximate M , even though E(M) need not be C2. This
construction supports extensions of many previous results on surface reconstruc-
tion, where the assumption of an empty boundary of M had been crucial. Note,
also that the original surface M need not be orientable, again extending previously
known techniques. Our prototype code is discussed and examples are shown to
demonstrate the effectivenss of this approach, with specific demonstration of re-
construction improvements along a boundary where refined normal approximations
have been crucial.
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1. Introduction and Motivation

The state of the art in topology-preserving surface approximation has been re-
stricted to 2-manifolds without boundary which are also C2 [4, 6, 8, 13, 24]. How-
ever, practical surface reconstruction also requires consideration of manifolds with
boundary, where a heuristic method has been successfully used in some cases [5]. The
primary new contribution of this article is to show how the theory of its companion
paper [1] can be adapted to develop practical new algorithms which produce better
boudaries during surface reconstruction.

While the examples presented rely upon software integration with a specific im-
plementation, we expect these new techniques to also apply to other surface recon-
struction algorithms, which presently assume the absence of boundary and output a
piecewise-linear approximation. For the examples presented here, the implementation
of a pre-processing interface was the only new code required. The examples presented
rely upon some expediencies for computational efficiency, as is discussed.

In a related article [13] on surface reconstruction for computer-aided geometric
design, general questions were posed about the possibility of creating algorithms
which could handle surfaces with boundary. The approach offered here is responsive,
postulating new assumptions for input to be sufficient for approximation of surfaces
with boundary.

The paper is organized as follows: In Section 2, we summarize related work. Sec-
tion 3 provides an overview of the theory needed for the extensions presented. Sec-
tion 4 contains the discussion of implementation and presents graphical examples of
these new techniques. Closing remarks are given in Section 5.

2. Related Work

An emphasis upon topological guarantees for surface approximants has recently
appeared in the literature on surface reconstruction [4, 6, 8, 13]. For surface recon-
struction, it is typical that only point cloud data is assumed to be available. The
methods presented here rely formally on maximal curvature and minimal separation
distances. For our foot example, which is based upon point cloud data, we used
additional known characteristics of the object to approximate these geometric values
in order to perform an improved surface reconstruction. This practice remains the
subject of further study to minimize the additional user-specific knowledge required
for execution. Furthermore, these curvature and separation values are often available.
This will be true for many graphics applications, where the surface definitions will
already be given and the problem is to produce a topologically correct approxima-
tion, rather than a reconstruction. It will also often be true for reverse engineering of
manufactured objects [20]. Some previous methods relied upon an approximation of
the medial axis [4, 6, 11, 14], which implicitly captures this curvature and separation
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information. The overview is that it should be clear that some estimation of a bound
on surface curvature is crucial to any well-defined surface approximation method.

The theoretical concerns in providing topological guarantees for surface approxi-
mations near boundaries have been presented in the literature [5, 13, 17] within the
context of approximants created during surface reconstruction. In particular, the pa-
per [5] presents a heuristic argument to reconstruct a surface with boundary. This
is presented under the terminology of ‘holes’, with a relevant example being the re-
construction of a surface for a foot, where data was only sampled below the ankle.
In a different approach [13], a similar example of a foot is reconstructed as a mani-
fold without boundary to avoid undersampling problems often experienced near the
boundary. Both of these approaches for boundaries [5, 13] were pragmatic responses
to the known difficulties of reconstruction of boundaries from unorganized sample
points. Many surface reconstruction methods [2, 3, 4, 5, 13] rely upon creation of
an approximation of the medial axis of M , which is often assumed to be topologi-
cally correct. Hence, it is relevant that it has since been shown [17] that the typical
sampling input for surface reconstruction is not sufficient, in general, to permit a
topologically faithful reconstruction of the medial axis of the surface, M .

For curves, a theorem has been published that provides for ambient isotopic piece-
wise linear (PL) approximations of a specifically described class of curves [21]. The
proof utilizes the notion of ‘pipe surfaces’ from classical differential geometry [23].
The curves to which this method is applicable includes both those with and without
boundary points, motivating the present extension to surfaces with boundary. This
previous work for curves [21] relied upon geometric properties of the curve, as op-
posed to any consideration of the medial axis. Similarly, the approach taken here
relies only upon the medial axis to the extent that it is used within the Power Crust
algorithm, which is utilized here for convenience. However, the theory presented in
the companion paper [1] does not specifically require the creation of an approxima-
tion of the medial axis, but, instead relies upon geometric characteristics that can be
computed from the surface, namely curvature and global separation. These geometric
parameters are sufficient for constructing a very specifically defined surface without
boundary, which we call the envelope. The envelope can then be used to obtain an
ambient approximation of the original surface.

The value in preferring ambient isotopy for topological equivalence [8, 24] versus the
more traditional equivalence by homeomorphism [26] has previously been presented
[8, 24] and the interested reader is referred to those papers for formal definitions.
Intuitively, two closed curves will not be ambient isotopic if they form different knots,
which can only be converted into each other by untying one knot and retying it to
conform to the other. It has been shown that approximants can change knot type [8,
24] or, correspondingly, the way a surface is embedded in R3, but the work presented
here can prevent these difficulties by appropriately constraining the approximations
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produced. A formal definition of isotopy is given in recent computational application
papers [8, 24] or in a standard mathematical text [19].

The work presented here will be of interest to the computer graphics community,
for generating approximations with appropriate topology. For instance, related ear-
lier work by some of the present authors [9] has been used to prevent undesirable
topological changes during object deformations [16] for animations. The methods
presented here will provide even more general criteria for an animator to preserve the
critical topological characteristics of an object as it changes across successive frames.

The present work emphasizes the integration of concepts from low-dimensional
topology and differential geometry into the emerging sub-discipline of computational
topology, as a complementary contribution to the incorporation of combinatorial
topology and computational geometry formalisms that have already appeared [7, 12,
22] within the computational topology literature.

3. Approximating Manifolds

A careful examination of the proofs previously presented [8, 24, 25] for reconstruct-
ing C2 manifolds without boundary reveals that a critical property was a positive
minimum distance between the surface and its medial axis. While the details are
contained in the companion theory paper [1], this aspect underlies the following prac-
tical algorithm that is presented in this section. A subtle distinction about the new
theory is that it does not depend upon an explicit calculation of the medial axis.
In particular, it is not necessary to determine the distance from the medial axis to
the surface. As a temporary practical coding expedient, the current examples were
produced by implemented code that does rely upon a construction of the medial axis,
but the theory and the case studies presented here show promise for elimination of
this medial axis dependancy.

It is essential to the supporting theory that there be careful definitions of the differ-
entiable properties of the boundary, as given in the texts [18, 10] and summarizeded
in our companion paper [1]. Once this is established, the methods presented here are
possible, which generalize techniques that had previously appeared in the literature
[2, 3, 4, 5, 13]. The theorems that are supportive of the methods presented here
are explicated in the companion paper [1]. The following defintion is central to our
approach.

Definition 3.1. For suitably chosen values of ρ, the ρ-envelope of M , denoted Eρ(M)
is defined1 as

Eρ(M) = {p ∈ R3 : d(p, M) = ρ} .

1The definition given here is not exactly the same as presented in the companion theory paper [1],
but it follows from the results in the companion paper that the different wordings yield equivalent
definitions.
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It is not necessary to assume that M is orientable for our definition of the ρ-envelope,
as given here. The following lemma is key to the usefulness of the envelope and its
proof is deferred to the companion theory paper [1], which also provides the bounds
on ρ.

Lemma 3.1. If M is C2, then, for sufficiently small values of ρ, its ρ-envelope admits
an ambient isotopic PL approximation via the nearest point mapping.

4. Extending Known Reconstruction Algorithms

We remark that the theory presented in our companion paper shows how to create
approximants that are ambient isotopic to Eρ(M), as well as approximants that are
ambient isotopic to M . The examples presented here were motivated by that theory.
They were created with new code as a pre-processing interface to the Power Crust
algorithm in order to produce ambient isotopic approximations to Eρ(M). Complete
adherence to the theory of our companion paper would have also required implemen-
tation of post-processing code to extract a subset of the Power Crust output to be
ambient isotopic to M . This additional code is subtle and has not yet been fully
implemented. The examples presented here demonstrate a viable alternative to that
full implementation. Namely, the component of the medial axis of Eρ(M) that lies
interior to Eρ(M) is equal to M . Since the Power Crust algorithm also produces
an approximation of this interior component of the medial axis of Eρ(M), this ap-
proximation is taken as an approximation of M . The implications regarding ambient
isotopy are discussed further in the next section. In the examples presented that
contrast our results with direct reconstructions from the Power Crust, we note, in
fairness, that the Power Crust algorithm was not designed to accept surfaces with
boundary. However, in practice, the Power Crust has been found to be useful for
reconstruction of some surfaces with boundary, with possible reliance upon ad hoc
modifications [5]. Hence, our interest here in this comparison is to begin to formal-
ize an admissible class of input surfaces for a provable implementation of ambient
isotopic approximation of a rich class of surfaces. The algorithm used is presented,
below, in pseudocode. We then offer several examples as representative of the scope
of our new techniques.

4.1. Reconstruction Algorithm Pseudocode. We first present the algorithm with-
out any reliance upon any calculation of the medial axis and then discuss why the
medial axis is used here as a means to interface with existing code that has already
gained wide acceptance. The time lag for code to gain acceptance in practice is
non-trivial and the pragmatic approach taken here leverages existing user acceptance
while proceding to develop further innovations. One of the delicate open issues is the
efficient, accurate approximation of normals along a boundary when only point cloud
data is available. This is discussed further in Subsection 4.5.
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For a compact, C2 manifold, denote as follows:

• S = a set of sample points from M , with density ε > 0, appropriately chosen,
(The density requirement is that for every point x ∈ M , there exists a point
s ∈ S within ε of s, denoted as d(x, s) < ε.)

• λ = the minimum positive distance between M and its medial axis,
• Br(x) = the 3-ball of radius r centered at x, with r ∈ (0,∞),
• np to abbreviate the nearest point mapping over a domain to be stated.

The pseduocode now follows.

Pseudocode:

Input: S

Choose ρ such that ρ ∈ (2ε, λ);

For each x ∈ S, create Bρ(x);

Let D =
⋃

x∈S Bρ(x);

Find ∂D as an approximation to Eρ(M);

Using S and approximations of normals for M , derive a sample set Ŝ for Eρ(M);

Use Ŝ as input to an algorithm for an approximation K of Eρ(M)
// Relies upon np : M → Eρ(M) being a homeomorphism //
// Set K = np(M) //

Use K to obtain a PL approximation, L of M .

Output: L, a PL ambient isotopic approximation of M , as proven in [1].

Discussion: The value for ρ is, of course, estimated. When surface defintions are
available, such as the widely-used splines, this can be done quite accurately via com-
putation of curvature on C2 surfaces together with standard numerical methods to
estimate minimal point separations, where these values are fully explained in the
companion theory paper [1]. Of course, there is some error associated with each of
these numerical computations, but the expectation is that these computations will
be much better conditioned and more stable than approximations of the medial axis.
Hence, the promise is to replace dependancy upon medial axis algorithms with these
other numerical techniques. In the pseudocode, all the steps until the last can be
done merely by writing new code to create Ŝ, whereupon Ŝ can be used as input to
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an existing implementation, such as the Power Crust algorithm. This was exactly the
approach taken on the examples given here. The last steps lie in the construction of
L, since np(M) is guaranteed to be ambient isotopic to M , but is not necessarily PL.
Indeed, if one were satisfied with non-PL approximations, then the algorithm could
terminate upon computation of np(M). The component of the medial axis of Eρ(M)
that lies in the bounded portion of R3 relative to Eρ(M) is M . Hence, the approxi-
mation of this component of the medial axis of Eρ(M) that is created by the Power
Crust was used to generate the approximations here. There remains more work to
study their topological properties versus those of M , but these experimental results
are promising case studies toward resolving any disparities that may arise between
these practical computations and the associated theory.

Notes:

• The sampling densities for S and Ŝ are related and this remains the subject
of further investigation.

• Previously, the surface M had been assumed to be C2 to ensure that λ was
positive. The companion theory paper shows that weaker conditions on M are
sufficient, as well as how to compute bounds on λ. The choice of ρ should be
sufficiently small to provide an appropriate sampling density, but large enough
to yield acceptable performance. Work continues on balancing those criteria.

• The creation of an accurate Ŝ is dependant upon the approximation of surface
normals and that relation is continuing to be explored.

4.2. Simple Example: Cylinder. A cylinder is chosen as a simple example of a
2-manifold with boundary to illustrate the techniques of our reconstruction process.

First, in Figure 1, there are four images that depict the process of constructing
an envelope. The top left is a tesselation of the quadratic NURBS cylinder. The
top right presents a graphical display of an approximation of the envelope by balls
centered at each vertex on the tesselation. The bottom left displays points selected
along the surface normals of the cylinder at a distance equivalent to the radius of the
spheres. The normals and tangents of the surface are used to define sample points
on the envelope around the boundaries. The bottom right shows a point cloud set of
the extent for the cylinder envelope and completes our pre-process for refining input
data for the Power Crust.

Second, in Figure 2, there are two images, providing a comparison between a direct
Power Crust reconstruction of points sampled directly from the cylinder surface (left),
and our reconstruction of the cylinder relying upon input from sampled points from
the envelope of the cylinder (right). It is of particular interest to note, that the
modest additional code can provide the crisp image seen on the right, with no visibly
apparent artifacts along the boundaries. We remark that since the Power Crust is
designed to produce a closed surface, its output on the left is not surprising.
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Figure 1. Cylinder

Figure 2. Comparison of Methods: Cylinder

4.3. Difficult Example: Foot Data. The example presented here is a challenging
one already seen in the literature, where one heuristic approach was created to respect
the boundary [5] and an alternate method was presented to close off that boundary
[13]. Here, no surface definitions were known in advance (in contrast to the other
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examples presented) and the point cloud data was provided by the previously cited
author [13].

Figure 3 has two images. On the left is a direct reconstruction of the foot from
the sample points provided using the Power Crust algorithm. This image also has
an enlarged view of the boundary region near the ankle, where many artifacts are
clearly visible which close the surface. The right image shows a reconstruction of the
foot using the same original sample points as input to the pre-process that builds the
envelope of this data. Again, there is a closer view of the boundary region near the
ankle, showing that the boundary is more faithfully preserved. It is our conjecture
that these results could be further improved by better approximations of the normals.

Figure 3. Comparison of Methods: Foot Data

Figure 4 has four images. The top left shows the original sample points for the
foot, where these points were measured by a laser scan of the actual foot, and then
their (x, y, z) co-ordinates were recorded in a text file. The top right shows the polar
balls produced by the Power Crust, representing the radial field of the approximated
medial axis of the point cloud, where noise is evident near the toes. The bottom left
shows a sampling of poles determined from the Power Crust algorithm. The poles
approximate normals to the original surface. The bottom right shows a point cloud
representation for the envelope enclosure for the original point cloud. Since surface
normals are central to the definition of the envelope and none are explicitly available
here, envelope points are determined along the poles at a distance from the medial
axis that is equivalent to the radius of the polar balls and offset in both directions.
This foot envelope was constructed adaptively, where the radius used to construct the
envelope varies with location of the sample point. This results in a tighter envelope
around the toes and a slightly more generous envelope around the ankle. Along the
boundary, additional points are created with user specified normals and tangents,
appropriate to the envelope construction. This aspect remains within the judgement
of the user. The careful investigation of 2-manifolds with boundary that appears
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Figure 4. Stages of Method: Foot Data

in the companion paper [1] and the resultant experiments reported here provided
crucial guidance in our refinement of these normal estimates, leading to the topology
improvements shown in the boundary.
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4.4. Nonorientable Example: Möbius Strip. The Möbius strip is the classical
example of a non-orientable surface with boundary that can be embedded in R3. We
know of no other technique that can produce such PL approximations of the Möbius
strip, within error bounds chosen by the user. Our techniques readily handle this
case.

Figure 5. Möbius Strip

The images warrant some explanation. First, in Figure 5 there are three images.
The left one shows the original surface as a tessellated graphics display of a Möbius
strip. The middle image is a graphical display of many balls, centered at each vertex
of the Möbius strip tesselation, to give a visual representation of the surface envelope.
The right shows a point cloud of the extent of the envelope of the Möbius strip.

Next, in Figure 6, there are four images. The top left is a reconstruction of the
Möbius strip reconstructed merely by feeding the sampled point cloud data directly to
the Power Crust algorithm. Although not designed to directly accept such input (as
already mentioned), we judged this to be valuable to include as a basis of comparison.
The top right image shows the approximation of the medial axis of the Möbius strip
that is generated by the Power Crust algorithm. The lower left shows the envelope
of the Möbius strip, as reconstructed by the Power Crust. The lower right shows the
final reconstruction of this non-orientable surface as the internal medial axis of the
reconstructed envelope.

4.5. Discussion of Input Needed and Final Output. Throughout, it was nec-
essary to make judicious choices about the radii for the balls used. In the case of the
cylinder, this is trivial, as the only variable that needed to be considered is the radius
of the cylinder. The foot was more complex, but the minimum feature size (in the
sense of Amenta et al [2]) has been discussed in the literature as being related to the
minimum separation between the toes. Hence, an estimate was made of this value.
For the Möbius strip, an estimate was easily obtained. The simplicity of the cylinder
and Möbius strip examples was specifically chosen to demonstrate the key processes
involved, while the significantly more complex foot example shows the power of this
method and its advantage over existing techniques. Our use of estimates regarding
the point cloud data is consistent with many discussions at a recent DIMACS confer-
ence [15] on surface reconstruction which expressed that practical implementations
also used pragmatic estimates of feature sizes.
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Figure 6. Comparison of Methods: Möbius Strip

The companion theory paper [1], presents a guarantee of an ambient isotopic ap-
proximation to the original manifold with boundary by extraction of a subset from
PL approximations which are homeomorphic to M via the least distance map. The
implementation of the supporting code for this extraction remains an ongoing task,
but the promising results achieved here were by an effective expedient that did not
depend upon the existence of this post-processing code. Namely, the component of
the medial axis of an envelope surface that is contained in the interior of the enve-
lope was selected as an approximation to the original manifold. An approximation
to this component is already produced by the Power Crust algorithm and the results
presented here show this to be a good approximation in practice. Further theoretical
work is needed to integrate these empirical findings with the conditions needed to
guarantee ambient isotopy of the approximation [1].

As previously noted, M is equal to the interior component of the medial axis
of Eρ(M). Hence, in principle, the expedient used here is well-founded, but there
remain some issues for further investigation. Namely, the Power Crust necessarily
produces an approximation of the medial axis, so, if there are any deviations of
this approximation from the true medial axis, then no formal topological guarantees
can be given for the examples presented here. This remains the subject of futher
investigation. Furthermore, since previously published theory [8] proving an ambient
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isotopy approximation relied only upon a positive distance from the medial axis,
it is expected that the corresponding implementation similarly does not need the
previously stipulated condition of the surface being C2, where, again, these results
corroborate the correctness of that assumption.

Initial ’proof-of-concept’ experiments were performed on several simple NURBS
surfaces, some of which are illustrated in Subsections 4.2 and 4.4. This permited
a controlled environment to analyze the results obtain by the envelope technique.
All the information necessary to produce an envelope may be found analytically in
a NURBS surface representation. The normals, partial derivatives and maximum
curvature can be readily obtained to produce a precise envelope. This information,
together with an estimate of the minimum feature size [2], then can guide the sampling
rate to guarantee an ambient isotopic approximation similar to techniques already
discussed in the literature [8] which are extended in our companion theory paper [1].
The examples presented here show that an accurate envelope construction will yield
a faithful and desirable reconstruction.

The foot example is, of course, more challenging, already having been used in the
literature as an important test case [5, 13]. Our reconstruction presented compares
well with that done by heurisitc methods [5], where our advantage is a reliance upon
provable techniques and a well-defined class of permissible input surfaces. (The other
primary approach to this problem [13] is not directly comparable, as it eliminated
this boundary, whereas we preserve it.) However, the results of Subsection 4.3 can
be compared to the other subsections to see that our reconstruction still suffers in
the absence of critical geometric data, which we attribute primarily to the need to
approximate normals from the foot point cloud data to use in our envelope construc-
tion technique. Those approximated normals are shown in Figure 4 in addition to the
polar balls which indicate the accuracy of the medial axis approximation. Artifacts
in the foot reconstruction appear in the form of holes and local maximum/minimum
that are inconsistent with the original geometry. Hence, we stress the need for further
investigation of techniques for approximating surface information from point cloud
data to support accurate construction of envelopes for manifolds with boundary.

5. Concluding Remarks

In this paper we present a method for establishing surfaces which can approximate
a given C2 compact manifold M , where our fundamental contribution is that M can
be with boundary, thereby extending past results which applied only to manifolds
without boundary. The results presented here start from considerations of curvature.
While curvature and the medial axis are closely related, there will be advantages
to our input requirements, as it is known that it is not always possible to create a
topologically correct approximation of the medial axis, if only sampled point data is
available. Hence, these theoretical results will be useful in extending existing surface
reconstruction algorithms, particularly as our experimental observations indicate that
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sampling density is not the only factor regarding current limitations on reconstruction
of surfaces with boundaries.

The theory is sufficiently general for ambient isotopic approximation that need
not be piecewise linear, although the examples presented here rely on the Power
Crust software to produce piecewise linear approximations. However, higher order
approximations may be particularly useful in engineering applications where spline
geometry dominates, so this option merits further investigation. Furthermore, we
have defined the envelope of a C2 surface with boundary. In our companion paper we
show that this envelope is a surface without boundary, which sufficiently smooth to
permit topologically correct surface reconstruction. (The envelope will not be C2.)
This led to our prototype code that extends the Power Crust software to accept even
surfaces with boundary. We show examples of how that modification can be effective
and discuss the further integration and testing that should be undertaken.

As an unexpected side-effect of these investigations into surfaces with boundary, we
have also discovered that previous hypotheses on differentiability for surfaces without
boundary were overly restrictive in their focus upon C2 surfaces. This observation now
affords the opportunity to consider reconstruction of surfaces that are commonly used
in engineering design, where fillets and blends are functionally crucial but preclude
C2 continuity. More details are provided in the companion theory paper.
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