1.5 Method of Least Squares

Best Fit line

Least Squares Error

method of Least Squares

Key concept

Appln

\[y = 1.5x + 3 \]

<table>
<thead>
<tr>
<th>Data Point</th>
<th>Point on line</th>
<th>Vertical Dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 6</td>
<td>1, 4.5</td>
<td>1.5</td>
</tr>
<tr>
<td>4, 5</td>
<td>4, 9</td>
<td>4</td>
</tr>
<tr>
<td>6, 14</td>
<td>6, 12</td>
<td>2</td>
</tr>
</tbody>
</table>
\[d = d_1^2 + d_2^2 + d_3^2 \]
\[= 1.5^2 + 4^2 + 2^2 = 22.25 \]

Finding Best Fit line using Linear regression operation

\[m = \frac{N \cdot \Sigma xy - \Sigma x \cdot \Sigma y}{N \cdot \Sigma x^2 - (\Sigma x)^2} \]
\[b = \frac{\Sigma y - m \cdot \Sigma x}{N} \]

<table>
<thead>
<tr>
<th>(X_i)</th>
<th>(Y_i)</th>
<th>(X_i^2)</th>
<th>(X_i \cdot Y_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>81</td>
<td>45</td>
</tr>
</tbody>
</table>

Sum: 20 39 120 132
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X Y</th>
<th>X²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>220</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>205</td>
<td>205</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>195</td>
<td>390</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>180</td>
<td>540</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>187</td>
<td>748</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>987</td>
<td>1883</td>
<td>30</td>
</tr>
</tbody>
</table>

\[
\frac{5(1883) - 10(987)}{5(30) - (10)^2} = -9.1
\]
<table>
<thead>
<tr>
<th>Year</th>
<th>(x)</th>
<th>(y)</th>
<th>(x^2)</th>
<th>(xy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1704</td>
<td>4000000</td>
<td>3408000</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>1923</td>
<td>4008004</td>
<td>3849846</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>2014</td>
<td>4012009</td>
<td>4034042</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>2105</td>
<td>4016016</td>
<td>4218420</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>7746</td>
<td>16036029</td>
<td>15510308</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
4 \left(\frac{(15510308) - (8009)(7746)}{4(16036029) - (8009)^2} \right) &= 100.51 \\
\cdot b &= \frac{7746 - 100.51(8009)}{4}
\end{align*}
\]
1.5 Method of Least Squares

In 1995, Cohen published a study correlating corporate spending on communications and computers (as a percent of all spending on equipment) with annual productivity growth. He collected data on 11 companies for the period from 1985-1989. This data is found in the following table.

<table>
<thead>
<tr>
<th>x</th>
<th>0.06</th>
<th>0.11</th>
<th>0.16</th>
<th>0.20</th>
<th>0.22</th>
<th>0.25</th>
<th>0.33</th>
<th>0.33</th>
<th>0.47</th>
<th>0.62</th>
<th>0.78</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-1.0</td>
<td>4.5</td>
<td>-0.6</td>
<td>4.2</td>
<td>0.4</td>
<td>0.1</td>
<td>0.4</td>
<td>1.4</td>
<td>1.1</td>
<td>3.4</td>
<td>5.5</td>
</tr>
</tbody>
</table>

x is the spending on communications and computers as a percent of all spending on equipment, and y is the annual productivity growth as a percent.

What is the equation of a line that best approximates this data? What can you conclude about the relationship between spending on communications and computers and annual productivity growth? See Example 3 for the answer.

Source: Cohen 1995

ше The Method of Least Squares

Let x be the number of insulated mugs produced and sold, and let p be the price of each mug. Suppose x₁ mugs were sold at a price of p₁ and x₂ mugs were sold at a price of p₂. If we then assume that the demand equation is linear, then of course there is only one straight line through these two points, and we can easily calculate the equation y = ax + b of this line.

What if we have more than two data points? Suppose, as shown in Table 1.3, that we have five points available. Here, p₁ are the prices in dollars for insulated mugs, and x₁ is the corresponding demand for these insulated mugs in thousands of mugs sold per day.

<table>
<thead>
<tr>
<th>x₁</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>p₁</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 1.3

These are plotted in Figure 1.26, which is called a scatter diagram.

If we examine the scatter diagram, we see clearly that the points do not lie on any single straight line but seem to be scattered in a more or less linear fashion. Under such circumstances we might be justified in assuming that the demand equation was more or less a straight line. But what straight line? Any line that we draw will miss most of the points. We might then think to draw a line that is somehow closest to the data points. To actually follow such a procedure, we need to state exactly how we are to measure this closeness. We will measure this closeness in a manner that will lead us to the method of least squares.
First notice that to be given a non-vertical straight line is the same as to be given two numbers \(a\) and \(b\) with the equation of the straight line given as \(y = ax + b\). Suppose now we are given \(n\) data points \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) and a line \(y = ax + b\). We then define \(d_1 = y_1 - (ax_1 + b)\), and note from the figure that \(|d_1|\) is just the vertical distance from the first data point \((x_1, y_1)\) to the line \(y = ax + b\). Doing the same for all the data points, we then have

\[
d_1 = y_1 - (ax_1 + b) \\
d_2 = y_2 - (ax_2 + b) \\
\vdots \\
d_n = y_n - (ax_n + b)
\]

where \(|d_2|\) is the vertical distance from the second data point \((x_2, y_2)\) to the line \(y = ax + b\), and so on. Refer to Figure 1.27.

Now if all the data points were on the line \(y = ax + b\), then all the distances \(|d_1|, |d_2|, \ldots, |d_n|\) would be zero. Unfortunately, this will rarely be the case. We then use the sum of the squares of these distances

\[
d = d_1^2 + d_2^2 + \cdots + d_n^2
\]

as a measure of how close the set of data points is to the line \(y = ax + b\). Notice that this number \(d\) will be different for different straight lines: large if the straight line is far removed from the data points and small if the straight line passes close to all the data points. We then seek this line; that is, we need to find the two numbers \(a\) and \(b\) that will make this sum of squares the least. Thus the name least squares.

EXAMPLE 1 A Demand Function Find the best-fitting line through the data points in Table 1.3 and thus find a linear demand function. Then use the linear demand function to estimate the price if the demand is 6000 mugs. Finally, if the price is \$8.00 per mug, use the linear demand function to estimate the number of mugs that will be sold.

Solution Find the best-fitting line using the linear regression operation on a spreadsheet or graphing calculator. The steps are detailed in Technology Notes 1 and 2. You will find that \(a = -0.6\) and \(b = 10.2\). Thus, the equation of the best-fitting straight line that we are seeking is

\[
y = p(x) = -0.6x + 10.2
\]

The graph is shown in Figure 1.28. If technology is unavailable, the best-fitting line can be found by hand.

In general, the line \(y = ax + b\) closest to the data points \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) can be found by solving the following two linear equations for \(a\) and \(b\):

\[
(x_1^2 + \cdots + x_n^2)a + (x_1 + \cdots + x_n)b = x_1y_1 + \cdots + x_ny_n \\
(x_1 + \cdots + x_n)a + nb = y_1 + \cdots + y_n
\]

For our example we indicate these calculations by the following table.
\[N = \text{no of data points} \]
\[N = 5 \]
\[m = \frac{5 \cdot (132) - 20 \cdot (39)}{5 \cdot (120) - (20)^2} = -0.6 \]
\[b = \frac{39 - (-0.6)(20)}{5} = 10.2 \]
\[y = mx + b \]
\[y = -0.6x + 10.2 \]
\[x\text{- represents thousands of mugs} \]
\[= 6000 \text{ mugs} \quad x = 6 \]
\[y = -0.6(6) + 10.2 = 6.6 \]
\[p = 8 = -0.6x + 10.2 \]
\[x = 3.667 \]
\[\text{which means 3667 thousand mugs} \]
We then have the system of two equations in the two unknowns a and b.

$$120a + 20b = 132$$
$$20a + 5b = 39$$

These equations can be readily solved using the techniques we used in the last several sections.

To find the price for 6000 mugs, we will use $x = 6$ in the demand equation.

$$p(6) = (-0.6)(6) + 10.2 = 6.6$$

That is, if 6000 mugs are to be sold, then the price should be $6.60 each.

For a price of $8.00 we set $p = 8$ and solve for x,

$$8 = -0.6x + 10.2$$
$$0.6x = 2.2$$
$$x = \frac{2.2}{0.6} = \frac{11}{3} \approx 3.6667$$

Next note that since x represents thousands of mugs, we will expect to sell 3667 mugs at a price of $8.00 each.

\[\text{Correlation}\]

We have just seen how to determine a functional relationship between two variables. This is called regression analysis. We now wish to determine the strength or degree of association between two variables. This is referred to as correlation analysis. The strength of association is measured by the correlation coefficient which is defined as

$$r = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{\sqrt{[n \sum x_i^2 - (\sum x_i)^2][n \sum y_i^2 - (\sum y_i)^2]}}$$

where $\sum y_i$, for example, is $y_1 + y_2 + \cdots + y_n$. The value of this correlation coefficient ranges from +1 for two variables with perfect positive correlation to −1 for two variables with perfect negative correlation. See Figure 1.29 for examples.
EXAMPLE 2 Correlation Find the correlation coefficient for the data in Table 1.3.

Solution We can use the above formula or let our computers or graphing calculators do the work. In doing Example 1 you will find that \(r \approx -0.99 \). This indicates a high negative correlation, which can easily be seen by observing the original data in Figure 1.26. We conclude that there is a strong negative correlation between price and demand in this instance. Thus, we expect increases in prices to lead to decreases in demand.

Additional Examples

There has been a debate recently as to whether corporate investment in computers has a positive effect on productivity. Some suggest that worker difficulties in adjusting to using computers might actually hinder productivity. The paper mentioned in the following example explores this question.

EXAMPLE 3 Technology and Productivity In 1995 Cohen published a study correlating corporate spending on communications and computers (as a percent of all spending on equipment) with annual productivity growth. He collected data on 11 companies for the period from 1985-1989. This data is found in the following table.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.06</th>
<th>0.11</th>
<th>0.16</th>
<th>0.20</th>
<th>0.22</th>
<th>0.25</th>
<th>0.33</th>
<th>0.33</th>
<th>0.47</th>
<th>0.62</th>
<th>0.78</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-1.0</td>
<td>4.5</td>
<td>-0.6</td>
<td>4.2</td>
<td>0.4</td>
<td>0.1</td>
<td>0.4</td>
<td>1.4</td>
<td>1.1</td>
<td>3.4</td>
<td>5.5</td>
</tr>
</tbody>
</table>

\(x \) is the spending on communications and computers as a percent of all spending on equipment, and \(y \) is the annual productivity growth as a percent.

Determine the best-fitting line using least squares and find the correlation coefficient. Discuss the results.

Source: Cohen 1995

Solution Using a spreadsheet or a graphing calculator, we find that \(a \approx 5.246 \), \(b \approx 0.080 \), and \(r \approx 0.518 \). Thus, the best-fitting straight line is

\[
y = ax + b = 5.246x + 0.080
\]
Example 1 with Microsoft Excel

Begin by opening a new worksheet. Label Column A with an x and Column B with a p. Enter the data from Table 1.3 as shown in Worksheet 1.1. Highlight the data and choose Chart Wizard from the tool bar or insert and then Chart, if the Chart Wizard is not on the toolbar. Then pick the XY (Scatter) graph and choose the first chart type, Scatter. Compares pairs of values. Continue clicking Next until the chart is complete, adding titles and labels as needed. When the scatter plot is complete, click on the graph and then on Chart in the tool bar. Choose Add Trendline... Pick the linear trend line and under the options menu, choose Display equation on chart and Display R-squared value on chart. The completed graph is shown below:

![Graph showing linear trendline with equation y = -0.6x + 10.2 and R^2 = 0.973.]

Technology Note 3 Correlation Coefficient

If your calculator does not display the correlation coefficient, r, it can be enabled by going to the CATALOG menu (above the w) and scroll down to DiagnosticOn (see Screen 9) and press ENTER. Press ENTER again on the homescreen to enable the diagnostic. Next time a regression is done, the correlation coefficient, r, and the square of the correlation coefficient, r^2, will automatically be displayed. The correlation coefficient will be displayed on the Excel chart when this option is enabled. See Worksheet 1.

Technology Note 4 Example 4 on a Graphing Calculator

Enter the data into lists L1 and L2. Then, as in Technology Note 2, find the regression equation and enter it into Y1= for our cost equation. In Y2= enter the revenue equation, 55.45X, as shown in Screen 10. Screen 11 has the graph.

![Graph showing linear trendline and intersection with coordinates (-2, 10) and (-100, 500).]
Self-Help Exercises 1.5

1. Using the method of least squares, find the best-fitting line through the three points \((0, 0), (2, 2),\) and \((3, 2)\). Find the correlation coefficient.

2. The table below shows \(x\), the number of boxes of cereal in thousands that will be supplied at a price \(y\), in dollars. Use the method of least squares and the supply information in the table to determine how many boxes of cereal will be supplied at a price of $3.75.

\[
\begin{array}{cccccc}
\hline
x & 9 & 7 & 6 & 4 & 3 \\
y & 4.49 & 3.05 & 2.49 & 2.10 & 1.92 \\
\hline
\end{array}
\]

1.5 Exercises

In Exercises 1 through 8, find the best-fitting straight line to the given set of data, using the method of least squares. Graph this straight line on a scatter diagram. Find the correlation coefficient.

1. \((0, 0), (1, 2), (2, 1)\)
2. \((0, 1), (1, 2), (2, 2)\)
3. \((0, 0), (1, 1), (2, 3), (3, 3)\)
4. \((0, 0), (1, 2), (2, 2), (3, 0)\)
5. \((1, 4), (2, 2), (3, 2), (4, 1)\)
6. \((0, 0), (1, 1), (2, 2), (3, 4)\)
7. \((0, 4), (1, 2), (2, 2), (3, 1), (4, 1)\)

Applications

8. Selling Strawberries The table below shows \(x\), the number cartons of strawberries, that a fruit stand can sell at different prices \(y\) in dollars. Find the demand equation for strawberries using linear regression. Using the demand equation, find the price the stand should charge if they wish to sell 35 cartons of strawberries.

\[
\begin{array}{cccccc}
\hline
x & 12 & 15 & 20 & 27 & 44 & 60 \\
y & 5.00 & 4.00 & 3.50 & 3.00 & 2.50 & 2.00 \\
\hline
\end{array}
\]

9. Selling Puzzles The table below shows \(x\), the number of puzzles (in thousands), that the A-Mart company can sell at different prices, \(y\) in dollars. Find the demand equation for these puzzles using linear regression. Using that demand equation, find the price that A-Mart should charge if they wish to sell 10,000 puzzles.

10. Supply of Mugs The table below shows \(x\), the number of mugs in thousands supplied by the Big Mug company for different prices in euros \((y)\). Using linear regression find the supply equation and use it to determine the number of mugs that the Big Mug company will supply when the price is 3 euros.

\[
\begin{array}{cccccc}
\hline
x & 8 & 5 & 12 & 3 & 15 \\
y & 5.00 & 6.00 & 3.50 & 8.00 & 3.00 \\
\hline
\end{array}
\]

11. Purchase Price of a Car The value of a 1998 car is given in the table below (value is in thousands of dollars). Find the depreciation equation using linear regression and use it to estimate to the nearest dollar the purchase price of this car.

\[
\begin{array}{ccccccc}
\hline
Value & 19 & 15 & 12 & 9 & 7 \\
\hline
\end{array}
\]

12. Purchase Price of a Machine The value in the table below is the value of a milling machine in thousands of dollars and the number of years since the item was purchased. Use linear regression to estimate the purchase price of this milling machine to the nearest dollar.

\[
\begin{array}{ccccccc}
\hline
\text{years since purchase} & 1 & 2 & 4 & 6 & 7 \\
\text{value in dollars} & 3.9 & 3.2 & 2.5 & 2 & 1.8 \\
\hline
\end{array}
\]
13. Deer Population and Deer-Vehicle Accidents
Rondeau and Conrad studied the relationship of deer population in urban areas to accidents with vehicles on roads. Below is the data where \(x \) is the deer population in Irondequoit, NY, and \(y \) is the number of collisions with deer in the same city.

\[
\begin{array}{cccccccc}
 x & 340 & 350 & 480 & 510 & 515 & 600 & 650 \\
 y & 150 & 60 & 90 & 130 & 120 & 110 & 140 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
 x & 700 & 760 & 785 & 820 & 850 \\
 y & 120 & 210 & 170 & 180 & 230 \\
\end{array}
\]

(a) Determine the best-fitting line using least squares and the correlation coefficient.
(b) Explain what the linear model is saying about the deer population and collisions.

Source: Rondeau and Conrad 2003

14. Economies of Scale in Plant Size
Strategic Management relates a study in economies of scale in the machine-tool industry. The data is found in the following table,

\[
\begin{array}{cccccccc}
 x & 70 & 115 & 130 & 190 & 195 & 400 & 450 \\
 y & 1.1 & 1.0 & 0.85 & 0.75 & 0.85 & 0.67 & 0.50 \\
\end{array}
\]

where \(x \) is the plant capacity in thousands of units, and \(y \) is the employee-hours per unit.

(a) Determine the best-fitting line using least squares and the correlation coefficient.
(b) Is there an advantage in having a large plant? Explain.
(c) What does this model predict the employee-hours per unit will be when the plant capacity is 300,000 units?
(d) What does this model predict the plant capacity will be if the employee-hours per unit is 0.90?

Source: Rowe, Mason, Dickel, Mann, and Mockler 1994

15. Cost Curve
Dean made a statistical estimation of the cost-output relationship in a hosiery mill. The data is given in the following table,

\[
\begin{array}{cccccccc}
 x & 16 & 31 & 48 & 57 & 63 & 103 & 110 \\
 y & 30 & 60 & 100 & 130 & 135 & 230 & 230 \\
\end{array}
\]

where \(x \) is the output in thousands of dozens and \(y \) is the total cost in thousands of dollars.

(a) Determine the best-fitting line using least squares and find the correlation coefficient. Graph.
(b) What does this model predict the total cost will be when the output is 100,000 dozen?
(c) What does this model predict the output will be if the total cost is $125,000?

Source: Dean 1976

16. Cost Curve
Johnston estimated the cost-output relationship for 40 firms. The data for the fifth firm is given in the following table where \(x \) is the output in millions of units and \(y \) is the total cost in thousands of pounds sterling.

\[
\begin{array}{cccccccc}
 x & 180 & 210 & 215 & 230 & 260 & 290 & 340 & 400 \\
 y & 130 & 180 & 205 & 190 & 215 & 220 & 250 & 300 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
 x & 405 & 430 & 430 & 450 & 470 & 490 & 510 \\
 y & 285 & 305 & 325 & 330 & 330 & 340 & 375 \\
\end{array}
\]

(a) Determine the best-fitting line using least squares and find the correlation coefficient. Graph.
(b) What does this model predict the total cost will be when the output is 300 million units?
(c) What does this model predict the output will be if the total cost is 200,000 of pounds sterling?

Source: Johnston 1960

17. Productivity
Bernstein studied the correlation between productivity growth and gross national product (GNP) growth of six countries. The countries were France (F), Germany (G), Italy (I), Japan (J), the United Kingdom (UK), and the United States (US). Productivity is given as output per employee-hour in manufacturing. The data they collected for the years 1950–1977 is given in the following table where \(x \) is the productivity growth (%) and \(y \) is the GNP growth (%).

\[
\begin{array}{cccccccc}
 US & UK & F & I & G & J \\
 x & 2.5 & 2.7 & 5.2 & 5.6 & 5.7 & 9.0 \\
 y & 3.5 & 2.3 & 4.9 & 4.9 & 5.7 & 8.5 \\
\end{array}
\]
Example 8

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>(X_i)</th>
<th>(X_i) Y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5.58</td>
<td>64</td>
<td>44.64</td>
</tr>
<tr>
<td>11</td>
<td>4.63</td>
<td>121</td>
<td>50.93</td>
</tr>
<tr>
<td>12</td>
<td>4.0</td>
<td>144</td>
<td>48.00</td>
</tr>
<tr>
<td>13</td>
<td>3.58</td>
<td>169</td>
<td>46.54</td>
</tr>
<tr>
<td>16</td>
<td>2.83</td>
<td>256</td>
<td>45.28</td>
</tr>
<tr>
<td>20</td>
<td>2.39</td>
<td>400</td>
<td>47.80</td>
</tr>
</tbody>
</table>

\[2 \times 80 = 23.01 \times 1154 = 283.19 \]

\[M = \frac{6(283.19) - (80)(23.01)}{6(1154) - (80)^2} \]

\[= -0.2703 \]

\[b = \frac{23.01 - (-0.2703) \times 80}{6} \]

\[= 7.4390 \]

\[-0.2703x + 7.4390 \]

\[P(15) = -0.2703(15) + 7.4390 = 3.38 \]
\[
\sum_{i=1}^{3} x_i = x_1 + x_2 + x_3
\]

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>X</th>
<th>X^2</th>
<th>XY</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>5</td>
<td>144</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>225</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.5</td>
<td>400</td>
<td>70.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3.0</td>
<td>729</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>2.5</td>
<td>1936</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>2.0</td>
<td>3600</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

\[\sum 78 \quad 20 \quad 7034 \quad 501 \quad \text{Sum}\]
\[N = 6 \]
\[\sum x = 178 \]
\[\sum y = 20 \]
\[\sum xy = 501 \]
\[\sum x^2 = 7034 \]

\[m = \frac{6 \cdot (501) - 178 \cdot (20)}{6 \cdot (7034) - (178)^2} = -0.05 \]

\[b = \frac{4.82}{4.89} \]

\[y = mx + b \]

\[D(x) = -0.05x + 4.82 \]
H.W. 1.5

1) Graphing

2) Questions 28, 30 From the book

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>XY</th>
<th>X²</th>
</tr>
</thead>
</table>

\[y = mx + b \]

\[y = 3x + 2 \]

\[y = 3x + 2 \]

<table>
<thead>
<tr>
<th>X</th>
<th>2</th>
<th>5</th>
<th>-1</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>2</td>
</tr>
</tbody>
</table>
\[R = \frac{n \sum x_i y_i - \overline{x} \overline{y}}{\sqrt{[n \sum x_i^2 - (\overline{x})^2][n \sum y_i^2 - (\overline{y})^2]}} \]

\[n = \text{No of data points} \]