Derivation of the Chain Rule

Suppose y = f o g(z). Assuming f and g have derivatives where appropriate, the Chain Rule says that

(fog) = (f og)-g. In more practical language, if we write y = f(u) and v = g(z), it comes out as
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To see why, go back to the definition of a derivative and write
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We’d like to write this as

: flglz +h)) = flg(x)) gz +h) - g(x) , :
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imy, 0 J@ T h) — () W ut it’s possible that g(z ) = g(x), and hence the
denominator g(x + h) — g(x) = 0, for some h # 0, so we consider two separate cases.

If there are arbitrarily small values of h for which g(z + h) = g(x«), then both (f o g)'(z) and ¢'(x) will
have to equal 0 and the Chain Rule certainly holds in a trivial fashion.

So we need only verify the Chain Rule in the remaining case where g(x + h) # g(x) is h is close to 0. For
this case, we write

u=g(x), g(x+h)=g(x)+k k=glx+h)—gl)

We can then write
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Since the limit of a product is equal to the product of limits, we have
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Since k ~ 0 when h ~ 0, the limit limj, o w will equal the limit limg_g w,
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which is equal to f'(u) or d—y, while limy,_.q M is, by definition, equal to ¢'(z) = d—u
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This demonstrates that @ _dy . du

dx = du dz’



