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Goals
I SVD-decomposition.

I Solving LLS with SVD-decomposition.
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SVD Decomposition.

For any matrix A ∈ Rm×n there exist orthogonal matrices U ∈ Rm×m,
V ∈ Rn×n and a ’diagonal’ matrix Σ ∈ Rm×n, i.e.,

Σ =



σ1 0 . . . 0
. . .

σr
0

. . .

0 . . . 0


for m ≤ n

with diagonal entries

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σmin {m,n} = 0

such that A = UΣV T
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SVD Decomposition.

I The decomposition
A = UΣV T

is called Singular Value Decomposition (SVD). It is very
important decomposition of a matrix and tells us a lot about its
structure.

I It can be computed using the Matlab command svd.

I The diagonal entries σi of Σ are called the singular values of A. The
columns of U are called left singular vectors and the columns of V
are called right singular vectors.

I Using the orthogonality of V we can write it in the form

AV = UΣ

We can interpret it as follows: there exists a special orthonormal set
of vectors (i.e. the columns of V ), that is mapped by the matrix A
into an orthonormal set of vectors (i.e. the columns of U).
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Applications of SVD Decomposition.

Given the SVD-Decomposition of A,

A = UΣV T

with
σ1 ≥ · · · ≥ σr > σr+1 = · · · = σmin {m,n} = 0

one may conclude the following:

I rank(A) = r,

I R(A) = R([u1, . . . , ur]),
I N(A) = R([vr+1, . . . , vn]),
I R(AT ) = R([v1, . . . , vr]),
I N(AT ) = R([ur+1, . . . , um]).
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Applications of SVD Decomposition.

Moreover if we denote

Ur = [u1, . . . , ur], Σr = diag(σ1, . . . , σr), Vr = [v1, . . . , vr],

then we have

A = UrΣrV Tr =
r∑
i=1

σiuiv
T
i

This is called the dyadic decomposition of A, decomposes the matrix A
of rank r into sum of r matrices of rank 1.
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Applications of SVD Decomposition.

I The 2-norm and the Frobenius norm of A can be easily computed
from the SVD decomposition

‖A‖2 = sup
x 6=0

‖Ax‖2
‖x‖2

= σ1

‖A‖F =
m∑
i=1

n∑
j=1

a2
ij =

√
σ2

1 + · · ·+ σ2
p, p = min {m,n}.

I From the SVD decomposition of A it also follows that

ATA = V ΣTΣV T and AAT = UΣΣTUT .

Thus, σ2
i , i = 1, . . . , p are the eigenvalues of symmetric matrices

ATA and AAT and vi and ui are the corresponding eigenvectors.
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Applications of SVD Decomposition.
Theorem
Let the SVD of A ∈ Rm×n be given by

A = UrΣrV Tr =
r∑
i=1

σiuiv
T
i

with r = rank(A). If k < r

Ak =
k∑
i=1

σiuiv
T
i ,

then
min

rank(D)=k
‖A−D‖2 = ‖A−Ak‖2 = σk+1,

and

min
rank(D)=k

‖A−D‖F = ‖A−Ak‖F =

√√√√ p∑
k+1

σ2
i , p = min {m,n}.
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Solving LLS with SVD Decomposition.

I Consider the LLS
min
x
‖Ax− b‖22

I Let A = UΣV T be the SVD of A ∈ Rm×n.

I Using the orthogonality of U and V we have

‖Ax− b‖22 = ‖UT (AV V Tx− b)‖22 = ‖ΣV Tx︸︷︷︸
=z

−UT b)‖22

=
r∑
i=1

(σizi − uTi b)2 +
m∑

i=r+1

(uTi b)
2.
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Solving LLS with SVD Decomposition.

I Thus,

min
x
‖Ax− b‖22 =

r∑
i=1

(σizi − uTi b)2 +
m∑

i=r+1

(uTi b)
2.

I The solution is given

zi =
uTi b

σi
, i = 1, . . . , r,

zi = arbitrary, i = r + 1, . . . , n.

I As a result

min
x
‖Ax− b‖22 =

m∑
i=r+1

(uTi b)
2.
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Solving LLS with SVD Decomposition.

Recall that z = V Tx. Since V is orthogonal, we find that

‖x‖2 = ‖V V Tx‖2 = ‖V Tx‖2 = ‖z‖2.

All solutions of the linear least squares problem are given by z = V Tx
with

zi =
uTi b

σi
, i = 1, . . . , r,

zi = arbitrary, i = r + 1, . . . , n.
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Solving LLS with SVD Decomposition. Minimum norm
solution

The minimum norm solution of the linear least squares problem is given
by

x† = V z†,

where z† ∈ Rn is the vector with entries

z†i =
uTi b

σi
, i = 1, . . . , r,

z†i = 0, i = r + 1, . . . , n.

The minimum norm solution is

x† =
r∑
i=1

uTi b

σi
vi
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Solving LLS with SVD Decomposition. MATLAB code.

% compute the SVD:
[U,S,V] = svd(A);

s = diag(S);
% determine the effective rank r of A using singular values
r = 1;
while( r < size(A,2) & s(r+1) >= max(size(A))*eps*s(1) )

r = r+1;
end
d = U’*b;
x = V* ( [d(1:r)./s(1:r); zeros(n-r,1) ] );
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Conditioning of a Linear Least Squares Problem.

I Suppose that the data b are

b = bex + δb,

where δb represents the measurement error.

I The minimum norm solution of min ‖Ax− (bex + δb)‖22 is

x† =
r∑
i=1

uTi b

σi
vi =

r∑
i=1

(
uTi b

σi
+
uTi δb

σi

)
vi.

I If a singular value σi is small, then
uT

i (δb)
σi

could be large, even if

uTi (δb) is small. This shows that errors δb in the data can be
magnified by small singular values σi.
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Conditioning of a Linear Least Squares Problem.

% Compute A
t = 10.^(0:-1:-10)’;
A = [ ones(size(t)) t t.^2 t.^3 t.^4 t.^5];
% compute SVD of A
[U,S,V] = svd(A); sigma = diag(S);
% compute exact data
xex = ones(6,1); bex = A*xex;
for i = 1:10

% data perturbation
deltab = 10^(-i)*(0.5-rand(size(bex))).*bex;
b = bex+deltab;
% solution of perturbed linear least squares problem
w = U’*b;
x = V * (w(1:6) ./ sigma);
errx(i+1) = norm(x - xex); errb(i+1) = norm(deltab);

end
loglog(errb,errx,’*’);
ylabel(’||x^{ex} - x||_2’); xlabel(’||\delta b||_2’)
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Conditioning of a Linear Least Squares Problem.
I The singular values of A in the above Matlab example are:

σ1 ≈ 3.4 σ4 ≈ 7.2 ∗ 10−4

σ2 ≈ 2.1 σ5 ≈ 6.6 ∗ 10−7

σ3 ≈ 8.2 ∗ 10−2 σ6 ≈ 5.5 ∗ 10−11

I The error ‖xex − x‖2 for different values of ‖δb‖2 (loglog-scale):

I We see that small perturbations δb in the measurements can lead to
large errors in the solution x of the linear least squares problem if
the singular values of A are small.
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