MATH 3795
Lecture 9. Linear Least Squares. Using SVD
Decomposition.

Dmitriy Leykekhman

Fall 2008

Goals

» SVD-decomposition.
» Solving LLS with SVD-decomposition.
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SVD Decomposition.

For any matrix A € R"™*" there exist orthogonal matrices U € R™*™,
V € R™ ™ and a 'diagonal’ matrix ¥ € R™*" ie.,

g1 0 ... 0

o
" for m<n

with diagonal entries
012" 20> 0p41= * " = Omin {m,n} =0

such that A =UXVT
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SVD Decomposition.

» The decomposition
A=UxvT

is called Singular Value Decomposition (SVD). It is very
important decomposition of a matrix and tells us a lot about its
structure.

» |t can be computed using the Matlab command svd.

> The diagonal entries o; of X are called the singular values of A. The
columns of U are called left singular vectors and the columns of V
are called right singular vectors.
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SVD Decomposition.

» The decomposition
A=UxvT

is called Singular Value Decomposition (SVD). It is very
important decomposition of a matrix and tells us a lot about its
structure.

» |t can be computed using the Matlab command svd.

> The diagonal entries o; of X are called the singular values of A. The
columns of U are called left singular vectors and the columns of V
are called right singular vectors.

» Using the orthogonality of V' we can write it in the form
AV =U%

We can interpret it as follows: there exists a special orthonormal set
of vectors (i.e. the columns of V'), that is mapped by the matrix A
into an orthonormal set of vectors (i.e. the columns of U).
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Applications of SVD Decomposition.

Given the SVD-Decomposition of A,
A=UxvT

with
012+ 20p > 0p41 =+ = Omin {mn} =0

one may conclude the following:

> rank(A) =r,

> R(A) = R([u1,...,ur]),

> N(A) = R([vr41,- -, Un]),

» R(AT) = R([vy,-..,v]),

» N(AT) = R([urs1, - -+ Um)).
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Applications of SVD Decomposition.

Moreover if we denote
Ur=[u1,...,u], X.=diag(or,...,00), Vi=lv1,...,0.],
then we have

A=U23, VI = ZaiuiviT
i=1

This is called the dyadic decomposition of A, decomposes the matrix A
of rank 7 into sum of r matrices of rank 1.
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Applications of SVD Decomposition.

» The 2-norm and the Frobenius norm of A can be easily computed
from the SVD decomposition

Ax
s = sup 1472 _
e#0 ||z[]2
m n
IAlr =Y al =/o}+---+02, p=min{m,n}.
i=1 j=1

» From the SVD decomposition of A it also follows that
ATA=VSTsVT and AAT =Uxy’UT.

Thus, 02, i =1,...,p are the eigenvalues of symmetric matrices
AT A and AAT and v; and u; are the corresponding eigenvectors.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics Linear Least Squares - 6



Applications of SVD Decomposition.

Theorem
Let the SVD of A € R™*"™ be given by

A=U23, VI = ZaiuiviT
i=1
with r = rank(A). If k <r

k

E : T
Ak = o;uv;

i=1

then

' A— Dl = ||A— A2 =
ranllgl[)n):kH ”2 || kHQ Ok+1,

and

p
i A-Dlrp=]A-A = 2 = mi N
i A= Dl = 1A= Al = | 3%, p = i .}
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Solving LLS with SVD Decomposition.

» Consider the LLS
min || Az — b||2

» Let A=UXVT be the SVD of A € R™*™,
» Using the orthogonality of U and V we have

[Az = b3 = [UT(AVV Tz = b)[3 = BV 2 -UTb)|3

=z

= (oiz —ub)?+ > (ul'b)%.
i=1 i=r+1
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Solving LLS with SVD Decomposition.

» Thus,
min || Az — b3 = Z(aizi —ul'b)? + Z (ul'b)?.
i=1 i=r+1
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Solving LLS with SVD Decomposition.

» Thus,

T

m

min || Az — b3 = Z(aizi —ul'b)? + Z (ul'b)?.

=1 1=r+1
» The solution is given
ul'b
Zi = ) 1= 17 T
Oi
z; = arbitrary, i=7r+1,...,n.
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Solving LLS with SVD Decomposition.

» Thus,
T m
min | Az = b[}3 = D (002 —ufb) + D (ufb)*.
i=1 i=r+1

» The solution is given

T

u; b

z’L = ! b 1= 17 7T7
oi

z; = arbitrary, i=7r+1,...,n.

» As a result
m

min Az = b]3 = > (ub)>.
1=r+1
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Solving LLS with SVD Decomposition.

Recall that z = V7x. Since V is orthogonal, we find that
lzllz = IVVTzlla = [V ]2 = ||2]l2.

All solutions of the linear least squares problem are given by z = V1'x
with -
u; b
zi=——, 1=1,...,m1,
i

z; = arbitrary, i=r+4+1,...,n.
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Solving LLS with SVD Decomposition. Minimum norm
solution

The minimum norm solution of the linear least squares problem is given
by
Ty = VZT7

where z; € R™ is the vector with entries

z;r:(), i=r+1,...,n.

The minimum norm solution is
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Solving LLS with SVD Decomposition. MATLAB code.

% compute the SVD:
[U,S,V] = svd(A);

s = diag(8);
% determine the effective rank r of A using singular values
r =1;
while( r < size(A,2) & s(r+1) >= max(size(A))*epsxs(1) )

r = r+l;

end
d = U’%b;
x =Vx ( [d(1:r)./s(1l:r); zeros(n-r,1) ] );
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Conditioning of a Linear Least Squares Problem.

» Suppose that the data b are
b = be, + 0,

where §b represents the measurement error.

» The minimum norm solution of min ||Az — (be, + 6b)|3 is

N TN RTENY
=Y = Y (B )
3 K3

i=1 ' i=1
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Conditioning of a Linear Least Squares Problem.

» Suppose that the data b are
b = be, + 0,

where §b represents the measurement error.

» The minimum norm solution of min ||Az — (be, + 6b)|3 is

" uTy TN RTENY
o =30 Ul =30 (M R
3 K3

i=1 ' i=1

T

) . T (5b .

» If a singular value o; is small, then 7“"0(_ ) could be large, even if
k2

u? (6b) is small. This shows that errors §b in the data can be
magnified by small singular values o;.
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Conditioning of a Linear Least Squares Problem.

% Compute A
t = 10.7(0:-1:-10)°;
A = [ ones(size(t)) t t.”2 t.”3 t.74 t.7°5];
% compute SVD of A
[U,S,V] = svd(A); sigma = diag(S);
% compute exact data
xex = ones(6,1); bex = Axxex;
for i = 1:10
% data perturbation
deltab = 10" (-i)*(0.5-rand(size(bex))) .*bex;
b = bex+deltab;
% solution of perturbed linear least squares problem
w = U’*b;
x =V x (w(1:6) ./ sigma);
errx(i+1) = norm(x - xex); errb(i+1) = norm(deltab);

end
loglog(errb,errx,’*’);
ylabel(’ | [x"{ex} - x|[_2’); xlabel(’||\delta bl|_2")
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Conditioning of a Linear Least Squares Problem.

» The singular values of A in the above Matlab example are:

o1~ 3.4 o4~ T2%107%
g9 2 2.1 o5~ 6.6%1077
o5 7~ 8.2 %1072 o6 ~ 5.5 %1071

> The error ||ze, — z||2 for different values of ||0b]|2 (loglog-scale):

¥

I
.
107

lIsbil,

» We see that small perturbations db in the measurements can lead to
large errors in the solution x of the linear least squares problem if
the singular values of A are small.
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