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Abstract. We prove that a class of stochastic differential equations with mul-
tiplicative noise has a unique solution in a noncommutative L2 space associated
with a von Neumann algebra. As examples we consider usual L2 on a measure
space, Hilbert-Schmidt operators and a hyperfinite II1-factor. A problem of
finding an inverse of the solution is then discussed. Finally, we explain how a
stochastic differential equation can be used to construct a heat kernel measure
on an infinite dimensional group.
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1. Introduction

The main goal of this paper is to describe how a certain class of stochastic
differential equations can be solved on noncommutative L2 spaces. Our results
concern two different fields of mathematics: von Neumann algebras and stochastic
differential equations on infinite dimensional spaces.

In Section 2 we give an overview of noncommutative Lp spaces. These spaces are
completions of von Neumann algebras with respect to a norm induced by a trace.
The idea of such spaces can be traced back to I.E.Segal in [12] for L2 and L1, and
then extended and simplified by E.Nelson in [11]. Later U. Haagerup defined more
general noncommutative Lp spaces (for example, in [9]). In this paper we will use
construction which is closer to Segal’s original one. These abstract completions can
be realized as (unbounded) operators, and one of these realizations can be used
to describe examples of noncommutative Lp spaces in Section 2. In particular,
the standard Lp on a measurable space can be viewed as a particular case of this
construction for an Abelian von Neumann algebra. Another example is the space
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of Hilbert-Schmidt operators realized as a noncommutative L2 space with respect
to the ordinary trace.

The fact that a noncommutative L2 space is a Hilbert space allows us to use
stochastic differential equations in a Hilbert space. These equations are with mul-
tiplicative noise, though in the case of the ordinary trace we consider an equation
with both multiplicative and additive noises. We refer readers to [2] for a compre-
hensive review of what is known about stochastic differential equations in infinite
dimensions. The main difference from the case of a general Hilbert space is that we
use the operator composition as a multiplication on noncommutative Lp spaces. In
general a Hilbert space is not an algebra, therefore the stochastic differential equa-
tions we consider are different from ones in [2]. One of applications of stochastic
differential equations on noncommutative L2 spaces is the construction of a heat
kernel measure carried out by the author in [4], [5], [6]. This heat kernel measure
lives in some infinite dimensional Lie group, and its Lie algebra is a subspace of a
certain noncommutative L2.
Acknowledgement. The subject of this paper combines two different branches
of mathematics: noncommutative integration and infinite dimensional stochastic
analysis. Both of these topics appeared in L.Gross’ work. I thank him for intro-
ducing me to the field and encouraging my efforts. I also thank B. Driver for his
help throughout the process of preparation of this work and an anonymous referee
for useful suggestions.

2. Noncommutative Lp spaces

Let H be a separable Hilbert space, and B(H) be the space of bounded linear
operators on H. Denote by M a von Neumann algebra on the Hilbert space H, that
is, M ⊆ B(H) is a C∗-algebra closed in the weak-operator topology and contains
the identity operator I. The commutant M ′ of M is the set of those elements of
B(H) that commute with all elements of M .

Now let us define a trace on M+, the set of all positive elements of M .
Definition 2.1. Let M be a von Neumann algebra.

(1) A trace τ on M+ is a function τ : M+ → [0,∞] such that
(a) τ(A + B) = τ(A) + τ(B) for any A,B ∈ M+.
(b) τ(cA) = cτ(A) for any 0 6 c 6 ∞ and A ∈ M+ with the usual

convention 0∞ = 0.
(c) τ(UAU−1) = τ(A) for any unitary operator U in M and A ∈ M+.

This condition is equivalent to the usual trace property of being central
τ(AB) = τ(BA) for any A,B ∈ M+.

(2) A trace τ is called faithful if A ∈ M+, τ(A) = 0 imply A = 0.
(3) A trace τ is called finite if τ(A) < ∞ for any A ∈ M+.
(4) A trace τ is called normal if for any A ∈ M+ and any increasing net Aα

converging to A in the strong operator topology τ(Aα) → τ(A).
(5) A trace τ is called semifinite if τ(A) = sup{τ(B) : B ∈ M+, B 6

A, τ(B) < ∞} for any A ∈ M+.
Throughout this paper we assume that the von Neumann algebra M is equipped

with a faithful normal semifinite trace τ . Let

‖A‖p = (τ((A∗A)p/2))1/p
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for 1 6 p < ∞. Then we can define a noncommutative Lp-spaces in the following
way.
Definition 2.2. For 1 6 p < ∞ we denote by Lp(M, τ) the Banach space comple-
tion of the two-sided ideal I = {A ∈ M : ‖A‖1 < ∞}. The algebra M is equipped
with the norm ‖ · ‖∞ = ‖ · ‖, the operator norm.

Elements of the space Lp(M, τ) may be identified with certain (unbounded)
operators. In what follows D(A) denotes the domain of an operator A on H.
Definition 2.3. (1) A linear operator A on H is called affiliated with M if

UA ⊆ AU for any unitary U ∈ M ′. We will write A η M if A is affiliated
with M . The set of all closed densely defined operators affiliated with M
will be denoted by M .

(2) A subspace S of H is called τ-measurable if for any ε > 0 there exists a
projection P ∈ M such that

PH ⊆ S, τ(P⊥) 6 ε.

(3) An operator A ∈ M on H is called τ-measurable or strongly measur-
able if D(A) is τ -dense. The set of all τ -measurable operators will be
denoted by ˜M .

Note that we can extend the trace to any positive self-adjoint operator A affiliated
with M by

τ(A) = sup
n

τ
(∫ n

0
λdEλ

)

,

where A =
∫∞
0 λdEλ is the spectral resolution of A. Then the following statement

holds. A proof can be found in [7], [11], [14].
Statement 2.4. For 1 6 p < ∞

Lp(M, τ) ∼= {A ∈ M : τ(|A|p) < ∞} ⊆ ˜M.

Example 2.5. Abelian case. Let M = L∞(X, Ω, µ) for a measure space (X, Ω, µ),
where µ is a finite measure. Note that M can be identified with the multiplica-
tive algebra A = {Mf , f ∈ L∞(X, µ)} ⊆ B(L2(X, µ)), where Mfg = fg, g ∈
L2(X, µ). Define τ(f) =

∫

X fdµ. Then τ is a faithful finite normal trace on M ,
and Lp(M, τ) ∼= Lp(X, µ).
Example 2.6. Ordinary trace. Let M = B(H) and τ(A) = trA is the ordinary
operator trace. Then L1(M, τ) is the space of trace-class operators, and L2(M, τ)
is the space of Hilbert-Schmidt operators. Note that if H is finite-dimensional, then
tr is just the matrix trace.
Example 2.7. A hyperfinite II1-factor. We use a representation of a II1-factor
as the weak closure of a subalgebra of the CAR-algebra. In this description we
follow, in particular, L. Gross [8] and I. E. Segal [13]. Let H be a complex Hilbert
space with an inner product (·, ·). Denote by Λn(H) the space of skew symmetric
tensors of rank n over H. Put Λ0(H) = C and write Λ(H) = ⊕∞n=0Λ

n(H). The
“bare vacuum” Ω = 1 is the element in Λ0(H) ⊂ Λ(H). For any x in H there exists
a bounded operator Cx such that Cxu = (n + 1)

1
2 x ∧ u, u ∈ Λn(H), where x ∧ u

denotes Pa(x⊗ u) and Pa is the antisymmetric projection. If we denote Ax = C∗x,
then CxAy + AyCx = (x, y)I, which are the canonical anti-commutation relations.
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We fix a conjugation J on H, that is, J is antilinear, antiunitary and idempotent.
We will call an element x in H real with respect to J if x = Jx. Let us define
Bx

def= Cx + AJx for any x in H. Note that BxBy + ByBx = 2〈x, y〉I, where
〈x, y〉 = (x, Jy).

Let C be the smallest weakly closed algebra of operators on Λ(H) containing all
the operators Bx, x ∈ H. We consider the trace on C given by tr(u) = (uΩ, Ω).
By Corollary 3.4 of [13] the space C with this trace is a hyperfinite II1-factor, and
there is just one such a factor due to Connes’ result in [1]. By Theorem 5 of [8]
the map u 7−→ uΩ extends to a unitary map from L2(C) onto Λ(H). In particular
if we choose a real (with respect to J) orthonormal basis {x1, x2, ..., xn, ...} in H,
then {Bxi1

Bxi2
...Bxin

, i1 < i2 < ... < in, 0 6 n} is an orthonormal basis in L2(C).

3. Preliminary remarks

Let Q : L2(M, τ) → L2(M, τ) be a bounded linear symmetric nonnegative
operator, and Wt be an L2(M, τ)-valued Wiener process with Q as its covari-
ance operator. We assume that Q is a trace class operator on L2(M, τ). Let
Q1/2L2(M, τ) = L2

Q(M, τ) be a Hilbert space equipped with the norm

‖A‖L2
Q(M,τ) = ‖Q−1/2A‖L2(M,τ).

In what follows let {ξn}∞n=1 denote an orthonormal basis of L2
Q(M, τ) as a real

space. We assume that L2
Q(M, τ) is a subspace of M . We can think of Wt in terms

of the orthonormal basis {ξn}∞n=1 in the following way

Wt=
∞
∑

i=1

W i
t ξi,

where W i
t are one-dimensional independent real Wiener processes.

Several operators on H defined by the orthonormal basis {ξn}∞n=1 of L2
Q(M, τ)

play a significant role in the proof of existence and uniqueness of solutions of stochas-
tic differential equations in Section 4. The next statement about these operators
follows a similar statement from [6], where it was proved for a hyperfinite II1-factor.

Lemma 3.1. Let us assume that
∞
∑

n=1
ξ∗nξn,

∞
∑

n=1
ξnξ∗n and

∞
∑

n=1
ξ2
n are bounded oper-

ators (and the series are convergent in M), that is,

‖
∞
∑

n=1

ξ∗nξn‖ < ∞, ‖
∞
∑

n=1

ξ2
n‖ < ∞, ‖

∞
∑

n=1

ξnξ∗n‖ < ∞.(3.1)

Then the operators
∞
∑

n=1
ξ∗nξn,

∞
∑

n=1
ξnξ∗n and

∞
∑

n=1
ξ2
n are independent of the choice of

the basis {ξn}∞n=1.

Proof. Define a bilinear real form on L2(M, τ)× L2(M, τ) by

L(f, g) = τ(h∗Q1/2fQ1/2g) = 〈Q1/2g, (Q1/2f)∗h〉L2(M,τ),

for some h ∈ M , f, g ∈ L2(M, τ). Then f 7→ L(f, g) is a bounded linear functional
on L2(M, τ) and
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L(f, g) = 〈Q1/2f, h(Q1/2g)∗〉L2(M,τ) = 〈f,Q1/2(h(Q1/2g)∗)〉L2(M,τ).

Let Bg = Q1/2(h(Q1/2g)∗). Then B is a trace class operator from L2(M, τ) to
L2(M, τ) since Q1/2 is a Hilbert-Schmidt operator on L2(M, τ), and multiplication
by h is a bounded operator on L2(M, τ). The trace of B over L2(M, τ) is

TrB =
∞
∑

n=1

〈en, Ben〉L2(M,τ) =
∞
∑

n=1

L(en, en) =
∞
∑

n=1

τ(h∗ξ2
n),

and it does not depend on the choice of {ξn}∞n=1 for any h ∈ M . Use the forms
M1(f, g) = τ(h∗(Q1/2f)∗Q1/2g) and M2(f, g) = τ(h∗Q1/2f(Q1/2g)∗) to verify that
∞
∑

n=1
ξ∗nξn and

∞
∑

n=1
ξnξ∗n are independent of the choice of the basis. �

Remark 3.2. If there exists an orthonormal basis of L2(M, τ) such that its ele-
ments are uniformly bounded in the operator norm, and the operator Q is diagonal
in this basis, then condition 3.1 is satisfied (see Example 3.1).

Example 3.1. Abelian case. Let L2(M, τ) = L2(0, 1) be the Abelian L2-space
with the Lebesgue measure. Then we can choose an orthonormal basis in such a
way that the conditions on the series described above can be satisfied. For example,
take an orthonormal (real) basis of L2(0, 1) to be en =

√
2 sin(πnx) for n = 1, 2, ....

Let Q be diagonal in this basis, that is, ξi =
√

λiei, and define a function g(x) on

[0, 1] by g(x) =
∞
∑

n=1
ξ∗nξn =

∞
∑

n=1
ξnξ∗n =

∞
∑

n=1
ξ2
n. Then for any x in [0, 1] we have

0 6 ξ∗nξn = ξnξ∗n = ξnξn = λne2
n 6 λn and therefore

0 6
∞
∑

n=1

ξ2
n 6

∞
∑

n=1

λnI = trQI ∈ B(L2(0, 1)),

if Q is a trace-class operator.
In particular, if we choose Q−1 = −∆, where ∆ is the Dirichlet Laplacian, then

λn = 1/(πn)2, and the condition 3.1 is satisfied. Moreover, in this case we can
compute the series in 3.1

g(x) =
∞
∑

n=1

ξ2
n =

∞
∑

n=1

sin(πnx)2

π2n2 =
1
2
x(1− x).

This follows from Parseval’s identity for the function f(s) defined by f(s) = 1, |s| 6
|x| and f(s) = 0, |x| 6 |s| 6 1. Another way is to look at Green’s function G(x, y)
for the Dirichlet problem on [0, 1]

G(x, y) =
{

x(1− y) x 6 y
y(1− x) y 6 x ,

and expand G(x, y) as follows

G(x, y) = 2
∞
∑

n=1

〈G(x, ·), sin(nπ·)〉L2(0,1) sin(nπy) = 2
∞
∑

n=1

sin(πnx) sin(nπy)
π2n2 .
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Note that
∞
∑

n=1
ξ∗nξn = G(x, x) is the values on the diagonal of the integral kernel

G(x, y) for Q = (−∆)−1.
Example 3.2. Ordinary trace. In the case when L2(M, τ) = HS is the space of
Hilbert-Schmidt operators (see Section 2) we can actually see that the conditions
on the series described above can be satisfied. Indeed, elements of this L2(M, τ)
space can be viewed as infinite matrices whose entries form an l2-series. Take an
orthonormal basis of HS to be {ei,j}∞i,j=1, the matrix with the only nonzero entry
equal to 1 at the ijth place. We can consider Q to be diagonal in this basis. To
simplify calculations, let Qei,j = λiλjei,j , where λi > 0 and

∑∞
i=1 λi < ∞. The

last conditions makes Q a trace-class operator. In this setting ξi,j =
√

λiλjei,j and
∞
∑

i,j=1

ξ∗i,jξi,j =
∞
∑

i,j=1

ξi,jξ∗i,j =
∞
∑

i,j=1

λiλjei,i ∈ HS,
∞
∑

i,j=1

ξ2
i,j =

∞
∑

i=1

λ2
i ei,i ∈ HS.

and therefore these operators are bounded.

4. Stochastic differential equations

Let B : L2(M, τ) −→ L2(M, τ) and F : L2(M, τ) −→ L2(M, τ).

Theorem 4.1. Assume that
∞
∑

n=1
ξ∗nξn, is a bounded operator, the series is conver-

gent in M) and denote

‖
∞
∑

n=1

ξ∗nξn‖ = K1 < ∞.

Suppose that F and B are Lipschitz continuous on L2(M, τ). Then for ξ ∈ L2(M, τ)
the stochastic differential equation

dXt = F (Xt)dt + dWtB(Xt),

X0 = ξ
(4.1)

has a unique solution, up to equivalence, among the processes satisfying

P

(

∫ T

0
‖Xs‖2L2(M,τ)ds < ∞

)

= 1.

Proof of Theorem 4.1. Denote by HSQ = HS(L2
Q(M, τ), L2(M, τ)) the space of the

Hilbert-Schmidt operators from L2
Q(M, τ) to L2(M, τ) with the (Hilbert-Schmidt)

norm

‖Ψ‖2HSQ
=

∑

n

‖Ψξn‖2L2(M,τ),

where {ξn}∞n=1 is an orthonormal basis of L2
Q(M, τ) as a real space. We will use

Theorem 7.4 from the book by DaPrato and Zabczyk [2]. We will abuse notation
by treating B and C as maps from L2

Q(M, τ) to L2(M, τ) by multiplication. Here
are the conditions that we need to check to apply the results from [2]

(1) B(X)(·) is a measurable mapping from L2(M, τ) to HSQ.
(2) ‖B(X1)−B(X2)‖HSQ 6 C‖X1 −X2‖L2(M,τ) for any X1, X2 ∈ HS.
(3) ‖B(X)‖2HSQ

6 K(1 + ‖X‖2L2(M,τ)) for any X ∈ L2(M, τ).
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(4) F is Lipschitz continuous on L2(M, τ) and
‖F (X)‖2L2(M,τ) 6 L(1 + ‖X‖2L2(M,τ)) for any X ∈ L2(M, τ).

By the assumption B and F are Lipschitz continuous on L2(M, τ) with some
positive constants B and F

‖B(X1)−B(X2)‖L2(M,τ) 6 B′‖X1 −X2‖L2(M,τ),

‖F (X1)− F (X2)‖L2(M,τ) 6 F ′‖X1 −X2‖L2(M,τ)

for any X1 and X2 in L2(M, τ).
First of all, B(X)(U) ∈ L2(M, τ) for any U ∈ L2

Q(M, τ), since U ∈ L2
Q(M, τ) ⊆

M and B(X) ∈ L2(M, τ). Now let us verify that B(X) ∈ HSQ. The Hilbert-
Schmidt norm of B as an operator from L2

Q(M, τ) to L2(M, τ) can be found as
follows

‖B(X)‖2HSQ
=

∞
∑

n=1

〈ξnB(X), ξnB(X)〉L2(M,τ) =
∞
∑

n=1

τ(B(X)∗ξ∗nξnB(X)) 6

( ∞
∑

n=1

ξ∗nξn

)

τ(B(X)B(X)∗) = K1‖B(X)‖2L2(M,τ) < ∞.

Then the Lipschitz continuity of B implies that

‖B(X1)−B(X2)‖HSQ 6 K1‖B(X1)−B(X2)‖L2(M,τ) 6
√

K1B′‖X1 −X2‖L2(M,τ).

and

‖B(X)‖L2(M,τ) 6 max{B′, ‖B(0)‖L2(M,τ)}(‖X‖L2(M,τ) + 1).

Thus conditions 1, 2 and 3 are satisfied. Condition 4 can verified similarly to the
proof of 3. �

The following Proposition gives an estimate of the moments of the L2-norm of
Xt. An interesting question whether Xt is in Lp(M, τ) is still open.

Proposition 4.2. For any p > 2, t > 0

E‖Xt‖p
L2(M,τ) <

1
Cp,t

(etCp,t − 1),

where Cp,t = C p
2
M

p
2 t

p
2−1 + Lptp−12

p
2−1, Cp = (p(2p− 1))p( 2p

2p−1 )2p2
.

Proof. 1. First of all, let us estimate E‖
∫ t
0 dWsB(Xs)‖p

L2(M,τ). From part 3 of
the proof of Theorem 4.1 we know that ‖B(X)‖2HSQ

6 M(‖X‖2L2(M,τ) + 1) for a
positive constant M . In addition we will use Lemma 7.2 from the book by DaPrato
and Zabczyk [2], p.182: for any r > 1 and for an arbitrary HSQ-valued predictable
process Φ(t),

E( sup
s∈[0,t]

‖
∫ s

0
dW (u)Φ(u)‖2r

L2(M,τ)) 6 CrE(
∫ t

0
‖Φ(s)‖2HSQ

ds)r, t ∈ [0, T ],(4.2)
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where Cr = (r(2r − 1))r( 2r
2r−1 )2r2

. Thus

(4.3) E‖
∫ t

0
dWsB(Xs)‖p

L2(M,τ) 6 C p
2
E(

∫ t

0
‖B(Xs)‖2HSQ

ds)
p
2

6 C p
2
M

p
2 E(

∫ t

0
((‖X‖2L2(M,τ) + 1)ds)

p
2 6 C p

2
M

p
2 t

p
2−1E

∫ t

0
(‖X‖2L2(M,τ) + 1)

p
2 ds

Now we can use inequality (x + y)q 6 2q−1(xq + yq) for any x, y > 0 for the
estimate (4.3)

E‖
∫ t

0
dWsB(Xs)‖p

L2(M,τ) 6 C p
2
M

p
2 t

p
2−12

p
2−1E

∫ t

0
(1 + ‖Xs‖p

L2(M,τ))ds

= C p
2
M

p
2 2

p
2−1t

p
2−1(t + E

∫ t

0
‖X‖p

HSds).

2. Second, estimate

E‖
∫ t

0
F (Xs)ds‖p

L2(M,τ) 6 E
(∫ t

0
‖F (Xs)‖L2(M,τ)ds

)p

6

tp−1E
∫ t

0
‖F (Xs)‖p

L2(M,τ)ds 6 Lptp−1E
∫ t

0
(1 + ‖X‖2L2(M,τ))

p
2 ds 6

Lptp−12
p
2−1E

∫ t

0
(1 + ‖Xs‖p

L2(M,τ))ds 6 Lptp−12
p
2−1(t + E

∫ t

0
‖X‖p

HSds).

Finally,

E‖Xt‖p
L2(M,τ) 6 E‖

∫ t

0
B(Xs)dWs‖p

HS 6 Cp,t(t + E
∫ t

0
‖Xs‖p

HSds),

where Cp,t = C p
2
M

p
2 t

p
2−1 + Lptp−12

p
2−1.

Thus, E‖Xt‖p
L2(M,τ) < 1

Cp,t
(etCp,t − 1) by Gronwall’s lemma. �

The next theorem explains how to find a left inverse to solutions of a certain class
of stochastic differential equations. The particular coefficients of these equations
insure that the solution to the second stochastic equation is a left inverse of the
solution of the first equation. Note that the solutions are elements of a certain space
of unbounded operators which makes the task of finding inverses very difficult. This
inverse is double-sided if L2(M, τ) is the space of the Hilbert-Schmidt operators.

Theorem 4.3. Assume that
∞
∑

n=1
ξ∗nξn,

∞
∑

n=1
ξnξ∗n and

∞
∑

n=1
ξnξn are bounded operators

(and the series are convergent in M) and denote

‖
∞
∑

n=1

ξ∗nξn‖ = K1 < ∞, ‖
∞
∑

n=1

ξnξ∗n‖ = K2 < ∞.

Let Xt and Zt be the solutions of the stochastic differential equations

dXt = TXtdt + dWtXt,

dZt = ZtTdt− ZtdWt,

X0 = x, Z0 = z,
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where x and z are in L2(M, τ) and T = 1/2
∑∞

n=1 ξ2
n. Then ZtXt = zx with

probability 1 for any t > 0.

Proof of Theorem 4.3. First of all, note that the first equation has a unique solution
in L2(M, τ) by Theorem 4.1, and the second one has a unique solution in L2(M, τ)
by very similar arguments. To prove the statement of Theorem 4.3 we will apply
Itô’s formula to G(Zt, Xt), where G is defined as follows: G(Z, X) = λ(ZX),
where Z,X ∈ L2(M, τ) and λ is a nonzero linear real bounded functional from
L2(M, τ) × L2(M, τ) to R. Here we view G as a function on a Hilbert space
L2(M, τ)×L2(M, τ). Then ZtXt = xz if and only if λ(ZtXt−xz) = 0 for any such
λ. In order to use Itô’s formula we must verify several properties of the processes
Zt and Xt and the mapping G:

(1) B̃(X̃s) is an HSQ-valued process stochastically integrable on [0, T ]
(2) G and the derivatives Gt, GY , GY Y are uniformly continuous on bounded

subsets of [0, T ]× L2(M, τ)× L2(M, τ), where Y = (Z, X).

Proof of 1. See 1 in the proof of Theorem 4.1.

Proof of 2. Let us calculate Gt, GY , GY Y . First, Gt = 0. For any S = (S1, S2), V =
(V1, V2) ∈ L2(M, τ)× L2(M, τ) and

GY (Y )(S) = λ(S1X + ZS2), GY Y (Y )(S ⊗ T ) = λ(S1V2 + V1S2).

Thus condition 2 is satisfied. We will use the following notation

GY (Y )(S) = 〈ḠY Y , S〉L2(M,τ),

GY Y (Y )(S ⊗ V ) = 〈ḠY Y (Y )S, V 〉L2(M,τ),

where ḠY is an element of L2(M, τ) × L2(M, τ) and ḠY Y is an operator on
L2(M, τ)×L2(M, τ) corresponding to the functionals GY ∈ (L2(M, τ)×L2(M, τ))∗

and GY Y ∈ ((L2(M, τ)× L2(M, τ))⊗ (L2(M, τ)× L2(M, τ)))∗.
Now we can apply Itô’s formula to G(Zt, Xt)

G(Zt, Xt) =
∫ t

0
〈ḠY (Zs, Xs), (−ZsdWs, dWsXs)〉L2(M,τ) +

∫ t

0
〈ḠY (Zs, Xs), (ZsT, TXs)〉L2(M,τ)ds +

1
2

∫ t

0
TrL2(M,τ)[ḠY Y (Zs, Xs)(−ZsQ1/2(·), Q1/2(·)Xs)(−ZsQ1/2(·), Q1/2(·)Xs)∗)]ds.

(4.4)

Let us calculate the integrands in (4.4) separately. The first integrand is

〈ḠY (Zs, Xs), (−ZsdWs, dWsXs)〉L2(M,τ) = GY (Zs, Xs)(−ZsdWs, dWsXs)

= λ(−ZsdWsXs + ZsdWsXs) = 0.

The second integrand is

〈ḠY (Zs, Xs), (ZsT, TXs)〉L2(M,τ) = λ(ZsTXs + ZsTXs)) = 2λ(ZsTXs).
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The third integrand is

1
2

∫ t

0
TrL2(M,τ)[ḠY Y (Zs, Xs)(−ZsQ1/2(·), Q1/2(·)Xs)(−ZsQ1/2(·), Q1/2(·)Xs)∗)] =

1
2

∞
∑

n=1

GY Y (Zs, Xs)
((

−ZsQ1/2en, Q1/2(en)Xs

)

⊗
(

−ZsQ1/2en, Q1/2(en)Xs

))

=

=
1
2

∞
∑

n=1

λ
(

−Zsξ2
nXs − Zsξ2

nXs
)

= −
∞
∑

n=1

λ
(

Zsξ2
nXs

)

.

This shows that the stochastic differential of G is zero, so G(Zt, Xt) = G(Z0, X0) =
zx for any t > 0. �

Remark 4.4. As we described earlier, if we choose M = B(H) and τ(A) = trA to
be the ordinary operator trace, then L1(M, τ) is the space of trace-class operators,
and L2(M, τ) is the space of Hilbert-Schmidt operators. Consider

dXt = T (Xt + I)dt + dWt(Xt + I), X0 = 0.

Note that this equation has the additive noise as well as the multiplicative one. It
is possible to solve this equation since L2(M, τ) ⊆ M = B(H) in this case. Then
Xt is in GL(H), the invertible elements of B(H), with probability 1 for any t > 0
as was shown in [5]. This means that in this case Xt has a double-sided inverse.
The shift by the identity operator is necessary to ensure that Xt lives in GL(H)
since I is not a Hilbert-Schmidt operator.

Remark 4.5. This lemma has been proved in the case of a hyperfinite II1-factor
in[6].

Remark 4.6. In [5] and [6] the stochastic differential equations had no drift terms.
The reason for that is that in those cases Q was complex linear, and therefore

T = 1/2
∑∞

n=1 ξ2
n = 0. Indeed, Lemma 3.1 shows that

∞
∑

n=1
ξ2
n is independent of

the choice of the basis {ξn}∞n=1, and this basis can be chosen so that the sum is 0.
Namely, we can choose such a basis that ξ2k = iξ2k−1, where i =

√
−1.

5. Kolmogorov’s backward equation

First of all, the coefficient B depends only on X ∈ L2(M, τ), therefore the tran-
sition probability satisfies Ps,tf(X) = Ef(X(t, s; X)) = Pt−sf(X). Later in this
section we give Kolomogorov’s backward equation (Equation 5.2) for a stochastic
differential equation of the form 4.1. At the moment though let us look at Kolo-
mogorov’s equation in the particular case of B(X) = X and F (X) = 1/2

∑∞
n=1 ξ2

nX.
Then Equation 5.2 is the heat equation with the Laplacian which is a half of the
sum of second exponential derivatives in the directions of an orthonormal basis of
L2

Q(M, τ). This Lapalcian is an infinite dimensional analogue of the Laplacian on
a finite-dimensional Lie group. In the case of the Hilbert-Schmidt operators, this is
a Laplacian on an infinite-dimensional (Lie) group, but for a hyperfinite II1-factor
this is not so.

Let v : L2(M, τ) → R be a function and ∂nv(X) = (ξ̃nv)(X) = d
dt |t=0 v(etξnX).

Here ξ̃n is the right-invariant vector field corresponding to ξn. Then the Laplacian
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is

∆v =
1
2

∞
∑

n=1

∂2
nv =

1
2

∞
∑

n=1

ξ̃nξ̃nv,(5.1)

Let us calculate derivatives ∂n of v : L2(M, τ) → R

(∂nv)(X) = vX(X)
d
dt
|t=0 (etξnX) = vX(X)(ξnX)

and therefore

(ξ̃nξ̃nv)(X) = vXX(X)(ξnX ⊗ ξnX) + vX(ξ2
nX).

Thus the Laplacian is

(∆v)(X) =
1
2

∞
∑

n=1

[vXX(X)(ξnX ⊗ ξnX) + vX(ξ2
nX)] =

1
2
Tr[vXX(t,X)(Q1/2(·)X)(Q1/2(·)X)∗] +

1
2

∞
∑

n=1

(ξ2
nX, vX(t,X))L2(M,τ).

Therefore the Lie group Laplacian is the same differential operator that appears
in Kolmogorov’s backward equation (Equation 5.2), and so this equation can be
viewed as a heat equation. This justifies the following definition.

Definition 5.1. We define a Borel measure µt by
∫

L2(M,τ)
f(X)µt(dX) = Ef(Xt(I)) = Pt,0f(I)

for any bounded Borel function f on L2(M, τ). Then µt is called the heat kernel
measure on L2(M, τ).

Now let us look at the general case. According to Theorem 9.16 from [2] for any
ϕ ∈ C2

b (L2(M, τ)) and X ∈ L2(M, τ) the function v(t,X) = Ptϕ(X) is a unique
strict solution from C1,2

b (L2(M, τ)) for the parabolic type equation (Kolmogorov’s
backward equation)

∂
∂t

v(t,X) =
1
2
Tr[vXX(t,X)(Q1/2(·)B(X))(Q1/2(·)B(X))∗] +

(F (X), vX(t,X))L2(M,τ)

v(0, X) = ϕ(X), t > 0, X ∈ L2(M, τ).

(5.2)

Here Cn
b (L2(M, τ)) denotes the space of all functions from L2(M, τ) to R that are n-

times continuously Frechet differentiable with all derivatives up to order n bounded
and Ck,n

b (L2(M, τ)) denotes the space of all functions from [0, T ]× L2(M, τ) to R
that are k-times continuously Frechet differentiable with respect to t and n-times
continuously Frechet differentiable with respect to X with all partial derivatives
continuous in [0, T ]× L2(M, τ) and bounded.
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Let us rewrite Equation (5.2) in the following way

Tr[vXX(t,X)(Q1/2(·)B(X))(Q1/2(·)B(X))∗]

=
∞
∑

n=1

vXX(t,X)(Q1/2enB(X)⊗Q1/2enB(X))

=
∞
∑

n=1

vXX(t,X)(ξnB(X)⊗ ξnB(X)),

where vXX(t,X) is viewed as a functional on L2(M, τ) ⊗ L2(M, τ). Thus Kol-
mogorov’s backward equation is

∂
∂t

v(t,X) =
1
2

∞
∑

n=1

vXX(t,X)(ξnB(X)⊗ ξnB(X)) + (F (X), vX(t,X))L2(M,τ)

v(0, X) = ϕ(X), t > 0, X ∈ L2(M, τ),

which is a heat equation with a first order term.
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