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LIE GROUPS

SERGIO ALBEVERIO AND MARIA GORDINA

Abstract. Lévy processes in matrix Lie groups are studied. Subordination
(random time change) is used to show that quasi-invariance of the Brownian
motion in a Lie group induces absolute continuity of the laws of the corre-
sponding pure jump processes. These results are applied to several examples
which are discussed in detail.
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1. Introduction

There has been considerable interest in Lévy processes in matrix Lie groups over
the last several years. In particular, M.Liao recently published a book [13] on Lévy
processes in Lie groups. We will mention some directions in which this study has
developed. Our primary goal is to study properties of pure jump processes in Lie
groups.
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The main obstacle to understanding such processes can be easily seen by com-
paring a Brownian motion and a pure jump process in a Lie group G. For simplicity
we assume that G is a connected Lie subgroup of GLn(R). Then a Brownian mo-
tion in G can be described as the result of rolling of a Brownian motion in the
Lie algebra g of G into the group G. In other words, linearization of a Brownian
motion in G can be interpreted as a Brownian motion in g. This approach does not
really work for pure jump processes since we would like to know the size of jumps
after exponentiating of a jump process in g to G, and possibly identify the process
similarly to how it is done in the Euclidean case. For example, let us consider a
compound Poisson process of exponential type

Πt =
Nt∏

i=1

exi ,

where {N(t) : t > 0 } is a Poisson process, xi are i.i.d. random variables taking
values in g, which are also independent of {N(t) : t > 0 }. Then there is no clear
connection with an easily identifiable stochastic process in the Lie algebra as we
have in the case of a Brownian motion. Some of the classical results have been
established for Lévy processes in Lie groups. We briefly discuss them later in the
paper. First, Lévy processes in Lie groups were characterized by G. A. Hunt in
[12] as Markov processes in G with a generator having the form (2.1). In [1] D.
Applebaum and H. Kunita proved that Lévy processes give rise to solutions of a
stochastic differential equation as described in Theorem 2.3. There were numerous
works on an analogue of the classical Lévy -Khinchin formula. The original one is
due to R. Gangolli [7]. In [2] D.Applebaum obtained a Lévy -Khinchin-type rep-
resentation of a Lévy process by a stochastic differential equation. These formulae
are restricted to the case of spherically symmetric processes. We give basic facts
of these type of processes in Section 4. This restriction to spherically symmetric
processes allows not only to use an analogue of the Fourier transform, but also de-
scribes the corresponding stochastic processes in symmetric spaces. Our aim is to
study processes which are not necessarily spherically symmetric, therefore forcing
us to consider the processes in the whole group rather than in a symmetric space.

One of the main methods we use in this paper is subordination, random time-
change, of one stochastic process by another. This technique has been applied
and studied extensively in Rn. In the case of Lie groups the most closely related
paper to our results is [4]. There the author studied spherically symmetric pro-
cesses on semi-simple Lie groups. Then the Lévy -Khinchin representation and the
characteristic functions of the subordinated process are calculated in terms of the
characteristics of the original process and of the subordinator process. We study
the subordination procedure in the case where the original process is not necessarily
spherically symmetric. It is worth noting that a Brownian motion in a non-Abelian
Lie group starting at the identity is not spherically symmetric.

The use of subordination allows us to control the times of the jumps, and some-
times enables to identify the resulting process in the group. Another advantage of
subordination is used in Theorem 5.2 which shows that this procedure preserves
the property of processes having absolutely continuous laws. In particular, using
quasi-invariance of the Brownian motion in a Lie group we can explicitly write
the Radon-Nikodym derivative of the corresponding subordinated processes. This
formula involves the heat kernel for the corresponding Laplacian on G.
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Our paper is structured as follows. Section 2 gives basic definitions and facts
about Lévy processes in Lie groups. In Section 3 we prove quasi-invariance of
the heat kernel measure in two cases: compact Lie groups and semi-simple Lie
groups of non-compact type. For the original proof we refer to [19], though we
follow the proof given in [8]. Section 4 gives basic facts of spherically symmetric
processes and spherical transforms. In Section 5 we introduce the subordination
procedure. In particular, Equation (5.1) gives a way of finding the Lévy measure
for the subordinated process if we know the law of the original process and the Lévy
measure of the subordinator. Theorem 5.2 is one of the main results of the paper,
which is later used in several examples. Section 6 contains several examples of
groups: R, R+, SL(2,R), GL(n,R)+ and the Heisenberg group. For G = SL(2,R)
and G = GL(n,R)+ we describe the components of the Iwasawa decomposition of a
Brownian motion as solutions of a system of stochastic differential equations. This
allows us to identify the process which a Brownian motion in GL(n,R)+ induces in
the corresponding double cosets space SO(n,R)\GL(n,R)+/SO(n,R). In addition,
we can identify the subordinated process by reducing this example to the Euclidean
case. As one can see the distribution of the subordinated process depends very much
on the structure of the group. In addition, Theorem 6.4 gives an explicit formula
for the heat kernel in SL(2,R) which is of independent interest.

2. Lévy processes in matrix Lie groups over R

Let G be a connected Lie subgroup of GLn(R) with the identity e = I, the
identity matrix in GLn(R). We denote the dimension of G by d. Its Lie algebra
g will be identified with the left-invariant vector fields at the identity e. For any
X ∈ g we denote by X l the corresponding left-invariant vector field. In the case of
matrix Lie groups it is differentiation in the direction of X l, that is, for a function
f : G → R we define

∂f

∂X l
(g) =

d

dt

∣∣∣∣
t=0

f(etXg), g ∈ G,

if such a derivative exists.
Throughout this paper we will work with a filtered probability space (Ω,F, Ft, P ),

where (Ω, F, P ) is a probability space, Ft is a σ-field contained in F. We assume
that F = limt↑∞ Ft, and whenever necessary that all P -null sets are contained in
Ft for any t in (0,∞), and that the filtration Ft is right-continuous Ft = ∩s>tFs.

Definition 2.1. Let gt be a stochastic process with values in G, and let t be in
(0,∞).

(1) g−1
s gt is called the right increment of the process gt, and gtg

−1
s is called

the left increment of the process gt for s < t;
(2) the process gt has independent right (left) increments if for any 0 <

t1 < t2 < ... < tn

g0, g
−1
0 gt1 , g

−1
t1 gt2 , ..., g

−1
tn−1

gtn (g0, gt1g
−1
0 , gt2g

−1
t1 , ..., gtng−1

tn−1
)

are independent;
(3) the process gt with independent right (left) increments has stationary

right (left) increments if g−1
s gt

d= g−1
0 gt−s (gtg

−1
s

d= gt−sg
−1
0 ) for any s <

t;
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(4) the process gt is càdlàg if almost all of its paths are right continuous on
[0,∞) and have left limits on (0,∞);

(5) the process gt is a left (right) Lévy process in G if it is a càdlàg process
with independent and stationary right (left) increments.

Let gt be a left Lévy process in G with g0 = e. The transition probability
semigroup of this process is given by Ptf(g) = E[f(ggt)] for any non-negative Borel
function f on G. Then the distribution µt of gt is a weakly continuous convolution
semigroup of probability measures on G satisfying

Ptf(g) =
∫

G

f(gh)dµt(h), t ∈ [0,∞).

G.A.Hunt ([12]) gave a full characterization of left Lévy processes in G by describing
their generators as

(2.1) Lf(g) =
1
2

d∑

i,j=1

ai,jX
l
iX

l
jf(g) +

d∑

i=1

ciX
l
if(g)+

∫

G

[
f(gh)− f(g)−

d∑

i=1

xi(h)X l
if(g)

]
dΠ(h),

for any smooth function f on G with compact support. Here {Xi}d
i=1 is a basis

of g, xi are real-valued functions on G such that for any g ∈ G we have g =
exp

(∑d
i=1 xi(g)Xi

)
, A = {ai,j}d

i,j=1 is a non-negative definite symmetric matrix,

and Π is a measure on G satisfying Π({e}) = 0,
∫

U

∑d
i=1 x2

i dΠ < ∞, Π(G\U) < ∞
for some compact neighborhood U of e.

The Lévy measure Π can also be described as follows. Note that for any left
Lévy process we can write gt = gt−g−1

t− gt = gtg
−1
t− gt−, so we will call g−1

t− gt a right
jump, and gtg

−1
t− a left jump. Denote by N the counting measure of the right jumps

N ([0, t]×B) = #{s ∈ (0, t] : g−1
s−gs 6= e, g−1

s−gs ∈ B},
for any B ∈ B(G). According to Proposition 1.4 of [13] N is a Poisson random
measure on R+ ×G, and its characteristic measure is the Lévy measure Π of gt.

The connection between the Lévy measure Π of the process gt and its law νt(dg)
can be described as follows. Namely, according to [11], p.308, the measure Π is
uniquely determined by νt(dg) via

(2.2)
∫

G\{e}
f(g)Π(dg) = lim

t→0

1
t

∫

G

f(g)νt(dg), f ∈ C1(G\{e}).

Remark 2.2. A left Lévy process gt is continuous if and only if Π = 0. In this
case gt is a left-invariant diffusion process in G with generator

Lf(g) =
1
2

d∑

i,j=1

ai,jX
l
iX

l
jf(g) +

d∑

i=1

ciX
l
if(g).

We will say that a left Lévy process is pure jump if its diffusion part in decompo-
sition (2.1) is 0.
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Theorem 2.3 describes a stochastic differential equation corresponding to a left
Lévy process gt. For more details on the result, based on works by D. Applebaum
and H. Kunita, we refer to Theorem 1.2, p. 19 of [13].

Theorem 2.3. Let gt be a left Lévy process in G, then for any smooth real-valued
function f on G

f(gt) = f(g0) + Mf
t +

∫ t

0

Lf(gs)ds,

where

Mf
t =

d∑

i=1

∫ t

0

X l
if(gs−)dBi

s +
∫ t

0

∫

G

[f(gs−h)− f(gs−)]Ñ(dsdh)

is an L2-martingale, Bt is a d-dimensional Brownian motion with the covariance
matrix A, Ñ is the compensated random measure of N on R+ ×G, and N and Bt

are independent. The integrals in the expansion of Mf
t are understood in the Itô

sense. In addition, there is a one-to-one correspondence between left Lévy processes
in G and the following triples: a Brownian motion Bt with the covariance matrix
A, drift {ci}d

i=1 and measure N .

Remark 2.4. The Îto integrals are not intrinsic, but their use might be more
convenient if one wants to exploit some standard facts on Lévy processes.

3. Quasi-invariance for the Brownian motion in G

In this section we show quasi-invariance of the Brownian motion in G in two
cases: when G is of compact type, and when G is a semi-simple group of non-
compact type. The proof follows the one published in [8] (given there for Lie
groups of compact type), but we present the main ingredients of the exposition here
to first show how it can be extended to semi-simple groups of non-compact type,
and secondly to give the Radon-Nikodym formula to be used later. Shigekawa in
[19] gave a proof of quasi-invariance of the Brownian motion in a general Lie group,
but for our purposes it is enough to give a very explicit proof in the case of matrix
Lie groups.

3.1. The case of a Lie group of compact type. Let G be as before. We assume
that there is an AdG-invariant inner product 〈·, ·〉 on g. The corresponding norm is
denoted by | · |. The existence of an AdG-invariant inner product implies that G is
of compact type, that is, G is locally isomorphic to a compact Lie group([10]). By
dg we will denote the (bi-invariant) Haar measure on G. We will use the following
notation

Notation 3.1. (1) W (G) = {ω ∈ C([0, T ], G), ω(0) = e} is the space of all
continuous paths in G beginning at the identity e,

(2) H(G) = {h ∈ W (G), h is absolutely continuous and the norm ‖h‖2H =∫ T

0
|h(s)−1h′(s)|2ds is finite} is the Cameron-Martin (finite energy) subset

of W (G).

The Wiener measure on W (G) will be denoted by µ. It is well known (e. g. [15])
that µ is the probability distribution for the Brownian motion gt on G defined by
the Itô stochastic differential equation
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(3.1) dgt = gtdWt +
1
2
gt

d∑
1

ξ2
i dt, g0 = e,

where Wt is the Brownian motion on the Lie algebra g with the identity operator
as its covariance and {ξi}d

i=1 is an orthonormal basis of the Lie algebra g. The
process Wt can be described in terms of the basis {ξi}d

i=1 as Wt =
∑d

i=1 bt
iξi where

bt
i are real-valued Brownian motions mutually independent on a probability space

(Ω, F, P ). Equivalently the Brownian motion gt is the solution of the Stratonovich
stochastic differential equation

δgt = gtδWt, g0 = e.

Suppose g̃t is the translation of gt defined by g̃t = gth(t), where h ∈ H(G). The
translated Wiener measure µh is defined as the probability distribution of the trans-
lated process gth(t) for h ∈ H(G). Let

(3.2) Yt(x) =
∫ t

0

x(s)−1δx(s) =
∫ t

0

x(s)−1dx(s)− 1
2

∫ t

0

d∑

i=1

ξ2
i ds

for 0 6 t 6 T and x ∈ W (G).
The process g̃t satisfies the following stochastic differential equation

dg̃t = gtdWth(t) +
1
2
gt

d∑
1

ξ2
i h(t)dt + gth

′(t)dt =

g̃th(t)−1dWth(t) +
1
2
g̃t

d∑
1

(h(t)−1ξih(t))2dt + g̃th(t)−1h′(t)dt, g̃0 = e.

Note that for any f, k ∈ g according to Lévy ’s criterion

(3.3) Eµ〈
∫ t

0

h(s)−1dBsh(s), f〉〈
∫ t

0

h(s)−1dBsh(s), k〉 =

Eµ

∫ t

0

〈dBs, h(s)fh(s)−1〉
∫ t

0

〈dBs, h(s)kh(s)−1〉 =
∫ t

0

〈h(s)fh(s)−1, h(s)kh(s)−1〉ds = t〈f, k〉

since the inner product 〈·, ·〉 is Ad-invariant.
This means that dW̃t = h(t)−1dWth(t) is a Brownian motion with the same

covariance as Wt. In addition, {h(t)−1ξih(t)}d
i=1 is an orthonormal basis of g since

〈·, ·〉 is Ad-invariant. This means that we can rewrite the stochastic differential
equation for g̃t as

dg̃t = g̃tdW̃t +
1
2
g̃t

d∑

i=1

ξ2
i dt + g̃th(t)−1h′(t)dt, g̃0 = e.
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Then Girsanov’s theorem implies that the law of g̃t is absolutely continuous with
respect to the law of gt, and an L1(dµ)-Radon-Nikodym derivative D(h) can be
written as follows in Theorem 3.2.

Theorem 3.2 ([8]). Suppose h is in H(G). Then the measure µ is equivalent to
its translate µh, and the Radon-Nikodym density is given by the formula

(3.4) D(h)(x) =
dµh

dµ
(x) = exp

( ∫ T

0

〈h(s)−1h′(s), dYs(x)〉 − 1
2
‖h‖2H

)
,

x ∈ W (G).

Remark 3.3. We actually have shown that µ is quasi-invariant if and only if
the inner product 〈·, ·〉 is AdG-invariant. Indeed, the covariance of the translated
Brownian motion W̃t is the same as of the original Brownian motion Wt if and only
if the inner product is AdG-invariant as is shown by (3.3).

Corollary 3.4. Let h(t) = eξt for some ξ ∈ g with t ∈ [0, T ]. Then the Radon-
Nikodym derivative D(h) is given by

(3.5) D(h)(x) = exp
(

Y ξ
T (x)− |ξ|2T

2

)
,

x ∈ W (G), where Y ξ
t (x) = 〈ξ, Yt〉.

3.2. The case of a semi-simple Lie group of non-compact type. Let G be
a semi-simple matrix group, and g its Lie algebra. Cartan’s criterion implies then
that the Killing form B(X,Y ) on g is non-degenerate. Let Θ : G → G be a Cartan
involution, that is, a non-identity map such that Θ2g = g for any g ∈ G. For
example, Θg = (gT )−1 is such an involution. Then its differential is a Cartan
involution on g. For Θg = (gT )−1, the corresponding Lie algebra isomorphism
is θX = −XT . The Lie algebra g can be decomposed into a direct sum of the
eigenspaces k and p corresponding to the only eigenvalues of θ, 1 and −1. This
is called the Cartan decomposition of the Lie algebra g. If the Killing form is
negative definite on g, then G is of compact type. This is the case which has been
considered in the previous subsection, and in particular, it implies that there is
an AdG-invariant inner product on g. Now let us consider the case where G is of
non-compact type. The basic example of a semi-simple Lie group of non-compact
type is SL(n,R).

Notation 3.5. (1) The inner product on g is given by

〈X, Y 〉 = −B(X, θ(Y )),
where B(·, ·) is the Killing form on g;

(2) let K = {g ∈ G : Θ(g) = g};
(3) let a be a maximal Abelian subspace of p, and A be the (Abelian) Lie sub-

group of G generated by a.

Note that the inner product 〈·, ·〉 is AdK-invariant, but not AdG-invariant. It is
also clear that k is the Lie algebra of the Lie subalgebra K.

The next theorem states that the Wiener measure on a connected semi-simple
Lie group G of non-compact type is quasi-invariant, only with respect to a smaller
Cameron-Martin space, namely, H(K) as defined in Notation 3.1.
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Theorem 3.6. Suppose k is in H(K). Then the measure µ is equivalent to µk and
the Radon-Nikodym density is given by the formula

(3.6) D(k)(x) =
dµk

dµ
(x) = exp

(∫ T

0

〈k(s)−1k′(s), dYs(x)〉 − 1
2
‖k‖2H

)
,

x ∈ W (G).

Proof. The proof goes along the lines of the proof of Theorem 3.2, and uses the
fact that the inner product 〈·, ·〉 is AdK-invariant. ¤

Corollary 3.7. Let k(t) = eξt for some ξ ∈ k. Then the Radon-Nikodym derivative
D(k) is given by

D(k)(x) = exp
(

Y ξ
T (x)− |ξ|2T

2

)
,

x ∈ W (G), where Y ξ
t (x) = 〈ξ, Yt〉.

In what follows we use the direct sum Iwasawa decomposition g = n ⊕ a ⊕ k,
where n is a nilpotent Lie subalgebra of g. The subalgebra n can be described as
the projection to p of the space spanned by the root spaces of either positive or
negative roots. The corresponding Lie group is denoted by N . For the Cartan
decomposition of G we also need to fix a Weyl chamber a+ with the corresponding
Lie group A+ = exp(a+). We recall that the exponential map is a diffeomorphism
from a onto A, and therefore the closure A+ of A+ satisfies A+ = exp(a+). The
following theorem is a compilation of several results in [10]: Theorem 1.1 in Chapter
VI, Theorem 1.1 and Theorem 1.3 in Chapter IX.

Theorem 3.8 (Structure theorem for semi-simple Lie groups of non-compact type).
Let G be a connected semi-simple Lie group, and let K be defined as in Notation
3.5. Then

(1) K is a connected closed subgroup of G containing the center Z of G;
(2) K is compact if and only if the center Z of G is finite. Then K is a maximal

compact subgroup of G;
(3) the inner product 〈·, ·〉 and the space p are AdK-invariant;
(4) the map (k, X) 7→ keX is a diffeomorphism from K × p onto G;
(5) Cartan decomposition KA+K : any g ∈ G can be written as g = k1ak2,

where k1, k2 ∈ K, and a is a unique element in A+;
(6) Iwasawa decomposition NAK : the map (n, a, k) 7→ kan is a diffeomor-

phism of N ×A×K onto G.

The following result appears in Liao’s book, though the original application of
the Iwasawa decomposition to a Brownian motion in Lie groups was done by M.-P.
Malliavin and P. Malliavin in [14].

Proposition 3.9. [p. 130 in [13]] Let G be a semi-simple group of non-compact
type. Suppose gt is a Brownian motion in the group G. Choose an orthonormal
basis {ξi}d

i=1 of g in such a way that {ξi}k
i=1 is an orthonormal basis of k. Let

gt = ntatkt be the Iwasawa decomposition of gt, and gt = k
(1)
t atk

(2)
t the Cartan

decomposition of gt. Then the processes nt, at, kt and a+
t satisfy the following

Stratonovich stochastic differential equations
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δkt =
d∑

i=1

[Adkt
ξi]k kt ◦ δW i

t ,

δat =
d∑

i=k+1

at [Adkt
ξi]a δW i

t ,

δnt =
d∑

i=k+1

ntAdat
[Adkt

ξi]n δW i
t ,(3.7)

δa+
t =

d∑

i=k+1

a+
t

[
Ad

k
(2)
t

ξi

]
a
δW i

t ,

where dim k = k, dim g = d.

Proof. By the Itô formula applied to gt = ntatkt we have

δgt = δntatkt + ntδatkt + ntatδkt = gtδWt.

Then we can multiply this equation on the left by a−1
t n−1

t and on the right by k−1
t

to see that

(3.8) a−1
t n−1

t δntat + a−1
t δat + δktk

−1
t = ktδWtk

−1
t .

The invariance of the space n under the adjoint action by elements from K implies
the result. The equation for a+

t can be derived similarly. ¤

Corollary 3.10. We can write the processes at and a+
t as at = eHt and a+

t = eH+
t ,

where Ht and H+
t are the solutions to the following stochastic differential equations

(3.9) δHt =
d∑

i=k+1

[Adktξi]a δW i
t ;

(3.10) δH+
t =

d∑

i=k+1

[
Ad

k
(2)
t

ξi

]
a
δW i

t .

4. Spherically symmetric processes

This section describes a Harish-Chandra transform, i.e. a spherical Fourier trans-
form, with respect to a spherical function on G for a Brownian motion in G.

Definition 4.1. Suppose G is a connected semi-simple Lie group of non-compact
type, and K is a maximal compact subgroup of G.

(1) A function ϕ on G is called spherical if ϕ(k1gk2) = ϕ(g) for any g ∈ G,
k1, k2 ∈ K;

(2) a spherical function ϕ is an elementary spherical function if in addition
it satisfies

∫

K

ϕ(gkh)dk = ϕ(g)ϕ(h), g, h ∈ G,

where dk is the normalized Haar measure on K and ϕ(e) = 1.
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Definition 4.2. A stochastic process gt in G is spherically symmetric (or spher-
ical) if

P (gt ∈ k1Ak2) = P (gt ∈ A)

for any k1, k2 ∈ K, A ∈ B(G), t > 0.

Suppose G is a matrix Lie group which is either compact or a semi-simple group
of non-compact type. Let K be either the group G itself or a maximal compact
subgroup of G, and k its Lie algebra. We assume that k is equipped with an AdK-
invariant inner product 〈·, ·〉. By gt we denote the Brownian motion in G defined
by stochastic differential equation (3.1). Then the following holds.

Proposition 4.3. Suppose G is a matrix Lie group which is either compact or a
semi-simple group of non-compact type. Let gt be a solution to the Stratonovich
stochastic differential equation

(4.1) δgt = gtδWt,

where Wt is the Brownian motion in g described above, and g0 is assumed to have
a spherically symmetric distribution. Then gt is spherically symmetric for any t.

Proof. Let g̃t = k1gtk2 for any k1, k2 ∈ K. Then g̃t satisfies the following stochastic
differential equation

δg̃t = k1δgtk2 =
k∑

i=1

k1gtδb
t
iξik2 =

k∑

i=1

g̃tδb
t
ik
−1
2 ξik2.

Note that since the inner product on g is AdK-invariant, {k−1
2 ξik2}d

i=1 is an or-
thonormal basis of δ. Therefore gt and g̃t have the same laws for any t > 0, and g0

and g̃0 have the same distributions. ¤

Remark 4.4. Note that g0 = e is not a spherically symmetric random variable.

Definition 4.5. The spherical transform of a Lévy process gt is defined as

ĝϕ(t) = E (ϕ(gt)) ,

where ϕ is a spherical function on G.

Remark 4.6. By Propositions 3.9 and 4.3 for a spherically symmetric process gt

in Equation (4.1) we have

ĝϕ(t) = E
(
ϕ(a+

t )
)
,

where a+
t is the Abelian component of the Cartan decomposition of gt.

5. Subordination

Definition 5.1. Suppose Tt is an increasing R+-valued Lévy process, and Xt is a
Markov process with values in G. Then XTt is called a subordinated process
with the subordinator Tt.
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We always assume that Xt and Tt are independent. Note that Remark 4.6 shows
that for spherically symmetric processes the subordination procedure is reduced to
subordination of the Abelian component of the process.

It is well-known that in the case where Xt is a continuous Lévy process with the
law µt, and Tt is a pure jump (that is, it has a zero continuous part) subordinator
with the Lévy measure ν and the law νt, then the subordinated process Yt is pure
jump with the Lévy measure given by

(5.1) ΠY (B) =
∫ ∞

0

µs(B)ν(ds), B ∈ B(G \ {e}).

Indeed, by (2.2)

∫

G\{e}

∫ ∞

0

f(g)µs(dg)ν(ds) = lim
t→0

1
t

∫ ∞

0

∫

G

f(g)µs(dg)νt(ds)

= lim
t→0

1
t

∫

G

∫ ∞

0

f(g)µs(dg)νt(ds) = lim
t→0

1
t

∫

G

f(g)
∫ ∞

0

µs(dg)νt(ds),

which yields the desired result. We will apply Equation (5.1) to the case where Xt

is a Brownian motion in G in Section 6.
The next theorem shows that subordination preserves two Markov processes

having laws which are absolutely continuous with respect to each other. We also
give a formula for the Radon-Nikodym density of the subordinated processes in the
case of the initial processes being a Brownian motion in a Lie group and its shifted
version.

Theorem 5.2. Let t ∈ [0,∞).
(1) Suppose that X1(t) and X2(t) are two Markov processes with the laws in

the path spaces µ1 and µ2 respectively. If µ1 << µ2, then so are the laws of
Y1(t) = X1(Tt) and Y2(t) = X2(Tt);

(2) Let X1(t) = gt be the Brownian motion in G as defined by (3.1), and X2(t) =
gte

ξt for some ξ ∈ k. Denote by pt(g) the heat kernel corresponding to gt and by
νt the distribution of Tt. Then the Radon-Nikodym density of the laws of Y1(t) =
X1(Tt) and Y2(t) = X2(Tt) is

(5.2) D(t, gTt) =
eϕ(gTt )

∞∫
0

e−
|ξ|2x

2 px(gTt)dνt(x)

∞∫
0

px(gTt)dνt(x)
,

where ϕ(x) = Y ξ
t (x) = 〈ξ, Yt(x)〉, x ∈ W (G), where Yt(x) is defined in Equation

(3.5).

Proof. (1) Suppose first that Tt is non-random, then the statement holds. Now
let νt be the distribution of Tt in R+, then by a general theory of conditional
expectations (e.g. [5]) for any A ∈ F

P (Yi(·) ∈ A) =
∫ ∞

0

P (Yi(s) ∈ A|Tt = s)dνt(s), i = 1, 2.
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Suppose P (Yi(s) ∈ A) = 0, then P (Yi(s) ∈ A|Tt = s) = 0 P -a.s., which reduces
the question to the case where Tt is non-random. In particular, if µ1 << µ2, then
P (Y2(s) ∈ A|Tt = s) = 0 implies P (Y1(s) ∈ A|Tt = s) = 0.

(2) Recall that by Corollary 3.7 if k(t) = eξt for some ξ ∈ k, the Radon-Nikodym
derivative D(k) is given by

D(k)(x) = exp
(

Y ξ
T (x)− |ξ|2T

2

)
,

x ∈ W (G), where Y ξ
t (x) = 〈ξ, Yt(x)〉. Set ϕ(x) = Y ξ

t (x), then by Fubini’s theorem

Ef(gTt
) =

∞∫

0

∫

G

f(g)px(g)dgdνt(x) =

∫

G

f(g)

∞∫

0

px(g)dνt(x)dg;

Ef(gTte
ξTt) =

∞∫

0

∫

G

f(g)px(g)eϕ(g)e−
|ξ|2x

2 dgdνt(x) =

∫

G

f(g)eϕ(g)

∞∫

0

px(g)e−
|ξ|2x

2 dνt(x)dg,

which gives the density

D(t, g) =
eϕ(g)

∞∫
0

e−
|ξ|2x

2 px(g)dνt(x)

∞∫
0

px(g)dνt(x)
.

¤

One of the problems in dealing with subordination for stochastic processes in
Lie groups is that there is no appropriate Fourier transform for processes which are
not spherically symmetric. At the same time, a spherically symmetric process gt in
G as defined in Proposition 4.3 and the corresponding shifted process g̃t = gtk(t),
k(t) ∈ H(K) have the same spherical transforms, making them indistinguishable.
One of the possible approaches to avoid this impasse will be presented in the case
G = SL(2,R).

6. Examples

6.1. R. Let Bt be an R-valued standard Brownian motion, and γt(a, b) a Gamma-
process with mean a and variance equal to b. The density of this process with
respect to the Lebesgue measure on R+ is

gt(x) =
(a

b

) a2t
b x

a2t
b −1 exp

(−ax
b

)

Γ
(

a2t
b

) , x > 0,
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and the characteristic function is

ϕγt
(u) =

(
1

1− iu b
a

) a2t
b

.

Proposition 6.1. Let X1(t) = B(t), X2(t) = B(t) + ct, c ∈ R. Then the law of
Y1(t) = B(Tt) is absolutely continuous with respect to the law of Y2(t) = B(Tt)+cTt,
where Tt = γt(1, 1), a standard Gamma-process with the mean and variance equal
to 1. The Radon-Nikodym density for the Lévy measures of Y1(t) and Y2(t) is

pc(x) = ecxe(
√

2−√c2+2)|x|.

Proof. In this case we not only calculate the characteristic functions for the subor-
dinated processes, but actually identify the subordinated processes. We give two
proofs: one is a direct calculation using the characteristic functions, and another is
an application of Equation (5.1).

The characteristic function of the subordinated process Yt = Bγt(1,1) is

ϕYt(u) = E
[
eiuBγt(1,1)

]
= E

[
e−

u2
2 γt(1,1)

]
=

∫ ∞

0

xt−1 exp(−x)
Γ(t)

e−
u2
2 xdx =

∫ ∞

0

xt−1

Γ(t)
e−( u2

2 +1)xdx =
(

u2

2
+ 1

)−t

=
(

1 +
iu√
2

)−t (
1− iu√

2

)−t

,

so Yt = γ1
t ( 1√

2
, 1

2 )− γ2
t ( 1√

2
, 1

2 ). Now let Xt = Bt + ct for some constant c, and set
Zt = Xγt(1,1). Then

ϕZt(u) = E
[
eiuBγt(1,1)+iucγt(1,1)

]
= E

[
e

“
iuc−u2

2

”
γt(1,1)

]
=

∫ ∞

0

xt−1 exp(−x)
Γ(t)

e
−
“

u2
2 −iuc

”
x
dx =

∫ ∞

0

xt−1

Γ(t)
e−( u2

2 −iuc+1)xdx =
(

u2

2
− iuc + 1

)−t

=

(
1− iu

c +
√

c2 + 2
2

)−t (
1 + iu

√
c2 + 2− c

2

)−t

,

so Zt = γ1
t

(
c+
√

c2+2
2 ,

(
c+
√

c2+2
2

)2
)
− γ2

t

(√
c2+2−c

2 ,
(√

c2+2−c
2

)2
)

. The Lévy mea-

sure for Zt is then

gc(x)dx =





exp

„
− 2|x|√

c2+2−c

«

|x| dx, x < 0

exp

„
− 2x√

c2+2+c

«

x dx, x > 0

= ecx e−
√

c2+2|x|

|x| dx,

and for Yt

g0(x)dx =
e−
√

2|x|

|x| dx.

Thus gc(x)dx = pc(x)g0(x)dx, where
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pc(x) = ecxe(
√

2−√c2+2)|x|.

Note that Equation (5.1) gives the same answer. The Lévy measure for a standard
Gamma process is e−s

s ds, s > 0, and so the Lévy measure for the Brownian motion
subordinated by γ(1, 1) is

∫ ∞

0

e−
(x−cs)2

2s√
2πs

e−s

s
dsdx = ecx

∫ ∞

0

e−
x2
2s√

2πs

e−( c2+2
2 )s

s
dsdx = ecx e−

√
c2+2|x|

|x| dx.

In the latter equation we used the following identity

(6.1)

∞∫

0

e−
a2
s −b2s

s3/2
ds =

e−2ab

a

∞∫

−∞
e−t2

√
t2 + 4ab− t√

t2 + 4ab
dt =

e−2ab

a

√
π,

where t = b
√

s− a√
s
. ¤

6.2. R+ \ {0}. Suppose G = R+ \ {0}, then g = R. The Brownian motion on G
satisfies the stochastic differential equation

dXt = Xtdβt +
1
2
Xtdt,

where βt is a real-valued Brownian motion. The solution to this stochastic differ-
ential equation is X1(t) = eβt , the geometric Brownian motion. Now consider the
subordinated process Mt = X1(Tt) = eβTt = eNt , where Nt = βTt . We assume that
the process Tt is of the pure jump type, and therefore so is Nt.

Note that if Tt = γt(1, 1) is a standard Gamma-process with the mean and
variance 1, and X2(t) = eβt+ct, then this example reduces to the previous one since
the characteristic function of an R+-valued process At is

ϕAt(u) = E
[
eiu ln At

]
.

More generally, Theorem 3.2 says that the law of X1(t) is equivalent to the law
of Xs

t = eβt+f(t), where f is a real-valued measurable function such that f ′ ∈
L2([0, T ]), where f ′ is understood in the distributional sense. This comes from the
observation that the Cameron-Martin space in this case is

H(G) = {h(t) : [0, T ] → R+,

∫ T

0

∣∣∣∣
h′(t)
h(t)

∣∣∣∣
2

dt < ∞} = {h(t) = ef(t), f ′ ∈ L2([0, T ])}.

6.3. SL(2,R). Let G = SL(2,R). In this case we can describe the Cartan and Iwa-
sawa decompositions of a Brownian motion in G more explicitly that for a general
matrix Lie group, or even for SL(n,R) if n > 2. Let us choose an orthonormal
(with respect to the inner product 〈X, Y 〉 = Tr(XY T ) for X,Y ∈ SL(2,R) induced
by the Killing form) basis of g to be

ξ1 =
1√
2

(
0 1
−1 0

)
, ξ2 =

1√
2

(
1 0
0 −1

)
, ξ3 =

1√
2

(
0 1
1 0

)
.

An Iwasawa decomposition for SL(2,R) is
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A ={
(

eH 0
0 e−H

)
,H ∈ R};

N− ={
(

1 0
N 1

)
, N ∈ R};(6.2)

K ={
(

cos θ sin θ
− sin θ cos θ

)
, θ ∈ R},

and in the Cartan decomposition the Abelian component can be chosen as

A+ = {
(

eH 0
0 e−H

)
,H > 0};

Suppose gt is a Brownian motion in G = SL(2,R). Let Wt = b
(1)
t ξ1 + b

(2)
t ξ2 +

b
(3)
t ξ3, where b

(1)
t , b

(2)
t , b

(3)
t are independent real-valued Brownian motions. Set

kt =
(

cos θt sin θt

− sin θt cos θt

)
,

at =
(

eHt 0
0 e−Ht

)
,

nt =
(

1 0
Nt 1

)
.

Proposition 6.2. The processes θt, Ht and Nt satisfy the following system of
stochastic differential equations

δθt =
1√
2

(
δb

(1)
t + sin 2θtδb

(2)
t + cos 2θtδb

(3)
t

)
,

δHt =
1√
2

(
cos 2θtδb

(2)
t − sin 2θtδb

(3)
t

)
,(6.3)

δNt =
√

2e−2Ht

(
sin 2θtδb

(2)
t + cos 2θtδb

(3)
t

)
.

Proof. These stochastic differential equations can be derived in two ways. First, we
can write Equation (3.7) in terms of the basis {ξ1, ξ2, ξ3}. An alternative is to write
Equation (3.8) for these particular matrices nt, at, kt. We will follow the second
path.

a−1
t n−1

t δntat + a−1
t δat + δktk

−1
t = ktδWtk

−1
t .

Let us first find the adjoint action of K on the basis {ξ1, ξ2, ξ3}. For any k =(
cos θ sin θ
− sin θ cos θ

)
∈ K we have

Adkξ1 =ξ1,

Adkξ2 =
1√
2

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
,(6.4)

Adkξ3 =
1√
2

( − sin 2θ cos 2θ
cos 2θ sin 2θ

)
.

Now let us find all terms on the left hand side of Equation (3.8)
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a−1
t n−1

t δntat =
(

0 0
e2HtδNt 0

)
,

a−1
t δat =

(
δHt 0
0 −δHt

)
.

δktk
−1
t =

(
0 δθt

−δθt 0

)
,

For the right hand side of Equation (3.8) we use Equation (6.4) with k = kt

ktδWtk
−1
t =

1√
2
×

(
cos 2θtδb

(2)
t − sin 2θtδb

(3)
t δb

(1)
t + sin 2θtδb

(2)
t + cos 2θtδb

(3)
t

−δb
(1)
t + sin 2θtδb

(2)
t + cos 2θtδb

(3)
t − cos 2θtδb

(2)
t + sin 2θtδb

(3)
t

)
.

Adding these four matrices gives Equation (6.3). ¤

Proposition 6.3. The processes θt and
√

2Ht are independent real-valued Brow-
nian motions. The process Nt

L=
√

2 sinh(−2Bt), where Bt is a standard R-valued
Brownian motion.

Proof. The first part follows from the Lévy criterion once the Stratonovich integrals
in Equation (6.3) are rewritten in the Itô form. For the second part we follow [16].
This is a version of Bougerol’s identity. Define Yt = 2e−2Bt

∫ t

0
e2BsdWs, where Bs

and Ws are standard independent R-valued Brownian motions. Then
√

2Nt
L=Yt

due to the invariance of the law of a Brownian motion under time reversal at a fixed
time. Bougerol’s identity states that sinh(−2Bt)

L=Yt. Indeed, by the Itô formula

d sinh(−2Bt) =− 2 cosh(−2Bt)dBt + 2 sinh(−2Bt)dt =

− 2
√

1 + (sinh(−2Bt))2dBt + 2 sinh(−2Bt)dt,

so sinh(−2Bt) has the following generator

Lf(x) = 2(1 + x2)
d2f

dx2
+ 2x

df

dx
.

The process Yt has the same generator as can be seen from the following stochastic
differential equation

dYt = −2YtdBt + 2dWt + 2Ytdt
L=

√
4Y 2

t + 4dBt + 2Ytdt.

¤

In a similar manner we can derive a stochastic differential equation for the
Abelian component in the Cartan decomposition of gt, a Brownian motion in
G = SL(2,R). Namely, let gt = k

(1)
t a+

t k
(2)
t , where k

(1)
t , k

(2)
t ∈ K, a+

t ∈ A+,
then by the first part of this proof

(6.5) δH+
t =

1√
2

(
cos 2θtδb

2
t − sin 2θtδb

3
t

)
.
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Let k(t) =
(

cos ct sin ct
− sin ct cos ct

)
, and consider the shifted Brownian motion g̃t =

gth(t) = ntatk̃t, where k̃t = ktk(t) or k̃t =
(

cos(θt + ct) sin(θt + ct)
− sin(θt + ct) cos(θt + ct)

)
.

Note that the characters of G = SL(2,R) are determined by their values on the
elements of the one-dimensional subgroups A, N and K. Thus for any g = nak, a ∈
A,n ∈ N, k ∈ K

χ(g) = χ(n)χ(a)χ(k) = eiλnNeiλaHeiλkθ, λn, λa, λk ∈ R,

where N, H, θ ∈ R are defined as in Equation (6.2). Then the characteristic func-
tions for gt and g̃t can be found as follows

ĝt(χ) = Eµχ(gt)(λa, λn, λk) =EµeiλnNteiλaHteiλkθt ,

Eµχ(g̃t)(λa, λn, λk) =EµeiλnNteiλaHteiλk(θt+ct),

and by Equation (5.2)

̂̃gt(λa, λn, λk) = eiλkctĝt(λa, λn, λk) = e
−c2t

2 Eµ

[
χ(gt)(λa, λn, λk)ecb

(1)
t

]
.

Now we can change time by a Gamma process for the components at, nt and kt,
and use the previous examples.

For this example we can also write the heat kernel corresponding to the Brownian
motion gt, though this expansion does not allow us to use (5.1) to find the Lévy
measure for the subordinated process.

Theorem 6.4. (1) The Laplace-Beltrami operator on SL(2,R) in the coordi-
nates (N,H, θ) is

(6.6) ∆ =
1
2

∂2

∂H2
+

∂2

∂θ2
+ 2e−4H ∂2

∂N2
+ 2e−2H ∂2

∂θ∂N
+

∂

∂H
;

(2) the heat kernel on SL(2,R) is given by

pt(N, H, θ) =
∑

n∈Z
eiθn

∫ ∞

−∞
etλp

nϕp
n(N, e−2H)dp+

ei2θe−2tϕ0
2(N, e−2H) + e−i2θe−2tϕ0

−2(N, e−2H)+

∞∑
n=3

eiθn

[n
2 ]−1∑

l=0

etλl
nϕl

n(N, e−2H) +
∞∑

n=3

e−iθn

[n
2 ]−1∑

l=0

etλl
nϕl

n(N, e−2H),

where{
λp

n = −2(p2 + 1
4 + n2), p ∈ R,

λl
n = 2

(
( |n|−1

2 − l)2 − 1
4 − n2

)
, 0 6 l < |n|−1

2 , l ∈ Z,

ϕp
n(x, y) and ϕl

n(x, y) are generalized eigenfunctions for the Maass Lapla-
cian (see [17], [18]), and [k] is the largest integer smaller than k.
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Proof. First we would like to compute the differential operator

(ξ̃f)(g) =
d

dt

∣∣
t=0f(getξ)

in terms of (N,H, θ), where N, H, θ are the parameters of the Iwasawa decomposi-
tion described in Equation (6.2). For any g ∈ SL(2,R) we have

g =
(

a b
c d

)
=

(
eH cos θ eH sin θ

NeH cos θ − e−H sin θ NeH sin θ + e−H cos θ

)
.

Then for any ξ in the Lie algebra of SL(2,R) we denote by N(t),H(t), θ(t) the
parameters of the Iwasawa decomposition for getξ. Then

(ξ̃f)(g) =
∂f

∂N
(g)N ′(0) +

∂f

∂H
(g)H ′(0) +

∂f

∂θ
(g)θ′(0).

Let ξ1, ξ2, ξ3 be the same basis of the Lie algebra of SL(2,R) as before. Then for
ξ1 we have N1(t) = N1(0) = N , H1(t) = H1(0) = H, θ1(t) = θ + t√

2
, so

L1f = (ξ̃1f) =
1√
2

∂f

∂θ
.

For ξ2 we have etξ2 =

(
et/

√
2 0

0 e−t/
√

2

)
, therefore the corresponding parameters

N2(t),H2(t), θ2(t) satisfy

eH2(t) cos θ2(t) =aet/
√

2,

eH2(t) sin θ2(t) =be−t/
√

2,

N2(t)eH2(t) cos θ2(t)− e−H2(t) sin θ2(t) =cet/
√

2,

N2(t)eH(t) sin θ2 + e−H2(t) cos θ2(t) =de−t/
√

2.

Differentiating these equations at t = 0 we see that

N ′
2(0) =− 2

√
2ab

(a2 + b2)2
= −

√
2e−2H sin 2θ,

H ′
2(0) =

a2 − b2

√
2(a2 + b2)

=
cos 2θ√

2
,

θ′2(0) =−
√

2ab

(a2 + b2)
= − sin 2θ√

2
,

and therefore

L2f = (ξ̃2f) = −
√

2e−2H sin 2θ
∂f

∂N
+

cos 2θ√
2

∂f

∂H
− sin 2θ√

2
∂f

∂θ
.

Similarly

L3f = (ξ̃3f) =
√

2e−2H cos 2θ
∂f

∂N
+

sin 2θ√
2

∂f

∂H
+

cos 2θ√
2

∂f

∂θ
.

From these expressions for Li, i = 1, 2, 3 we can derive Equation (6.6) for ∆ =
L2

1 + L2
2 + L2

3.
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To find the heat kernel for this Laplacian we first look at the eigenfunctions of
∆ of the form fn(N, H, θ) = einθg(N, H), n ∈ Z

∆fn =
(

1
2

∂2g

∂H2
− n2g + 2e−4H ∂2g

∂N2
+ 2ine−2H ∂g

∂N
+

∂g

∂H

)
einθ = λnfn.

Let x = N, y = e−2H , then equivalently we would like to solve for g(x, y)

Dng = y2(gxx + gyy) + inygx = (
λn

2
+ n2)g,

where Dn is the Maass Laplacian. The spectrum of this operator has been studied
for a long time, we follow the exposition found in two papers by K. Oshima [17]
and [18]. For the original treatment of the subject one can look at [6]. Note that
usually the Maass Laplacian is labeled by ”half-integer weights”, namely, Dkg =
y2(gxx + gyy)−2ikygx. The operator Dn has both discrete and continuous spectra.
The elements in the spectrum are usually parameterized as s(s− 1), where

s =
{ 1

2 + ip, p ∈ R,
|n|
2 − l, 0 6 l < |n|

2 − 1
2 , l ∈ Z.

Explicit formulae for the corresponding generalized eigenfunctions ϕp
n(x, y) and

ϕl
n(x, y) can be found in the above mentioned papers. In particular, in these papers

it is shown that these eigenfunctions give the full spectral decomposition. Then
{

λp
n = −2(p2 + 1

4 + n2), p ∈ R,

λl
n = 2

(
( |n|−1

2 − l)2 − 1
4 − n2

)
, 0 6 l < |n|−1

2 , l ∈ Z.

Note that for n = −1, 0, 1 the operator Dn has only continuous spectrum, and
λn < 0 for any n ∈ Z. Denote by [k] the largest integer smaller than k. Thus the
heat kernel on SL(2,R) is

pt(N, H, θ) =
∑

n∈Z
eiθn

∫ ∞

−∞
etλp

nϕp
n(N, e−2H)dp+

ei2θe−2tϕ0
2(N, e−2H) + e−i2θe−2tϕ0

−2(N, e−2H)+

∞∑
n=3

eiθn

[n
2 ]−1∑

l=0

etλl
nϕl

n(N, e−2H) +
∞∑

n=3

e−iθn

[n
2 ]−1∑

l=0

etλl
nϕl

n(N, e−2H).

¤

6.4. GL(n,R)+. Let G = GL(n,R)+, the group of invertible matrices having pos-
itive determinant. This is not a semi-simple group, but one has GL(n,R)+ =
R+ × SL(n,R), and therefore GL(n,R)+ has the same Iwasawa decomposition as
SL(n,R) with K = SO(n,R), A consisting of diagonal matrices with positive di-
agonal entries, and N is the subgroup of lower triangular matrices with 1s on the
diagonal. Choose the following basis for the Lie algebra of G

Xij =
1√
2
(eij − eji), i < j, Yi = eii, Zij =

1√
2
(eij + eji), i < j,

where eij is the matrix with 1 at the ijth place, and 0s at all other places.
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Theorem 6.5. (1) Let H l
t be the lth entry of the solution to (3.9). Then

{H l
t}n

l=1 are independent Brownian motions.
(2) Let H+

t be the solution of (3.10). Then the law of H+
t is given by

(6.7) P{H+
t ∈ A ∈ B(Rn)} =

∫

f−1
n (A)

n∏

i=1

pt(xi)dx1...dxn,

where fn(x1, ...xn) = (y1, ...yn), yj = max
(i1,...,ij)

{min{ex
i1

, ..., ex
ij
}}, i1, ..., ij

are distinct, and pt(x) is the standard Gaussian density.
(3) The Brownian motion gt in GL(n,R)+ induces a stochastic process in the

double cosets space SO(n,R)\GL(n,R)+/SO(n,R) with the law given by
(6.7). The corresponding subordinated process has the following Lévy mea-
sure

∫

f−1
n (A)

∫ ∞

0

n∏

i=1

ps(xi)ν(ds)dx1...dxn, A ∈ B(Rn\{0}),

where ν is the Lévy measure of a pure jump subordinator Tt .

Proof. (1) For any k = {klm}n
l,m=1 ∈ SO(n,R) we have

AdkXij =
∑

l<m

(kilkjm − kjlkim)Xlm,

AdkYi =
∑

l,m

kilkimelm =
∑

l

k2
ilell +

∑

l<m

kilkim(elm + eml) =

∑

l

k2
ilYl +

√
2

∑

l<m

kilkimXlm + 2
√

2
∑

l<m

kilkimeml,

AdkZij =
1√
2

∑

l,m

(kilkjm + kjlkim)elm =

√
2

∑

l

kilkjlYl +
∑

l<m

(kilkjm + kimkjl)Xlm +
√

2
∑

l<m

(kilkjm + kimkjl)elm.

Then

n∑

i=1

([AdkYi]a)
2 =

n∑

i=1

(
n∑

l=1

k2
ilYl

)2

=
n∑

i=1

n∑

l=1

k4
ilYl,

n∑

i<j

(
[AdktZij ]a

)2 =
n∑

i<j

(√
2

∑

l

kilkjlYl

)2

= 2
n∑

i<j

∑

l

k2
ilk

2
jlYl.
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In particular, for H l
t , the lth entry of the solution to (3.9) we have

d
〈
H l

s,H
m
s

〉
t
=




n∑

i=1

k2
ilk

2
im + 2

n∑

i<j

kilkjlkimkjm


 dt =




n∑

i,j=1

kilkjlkimkjm


 dt =

(
n∑

i=1

kilkim

)2

dt = δkmdt,

where δkm is Kronecker’s symbol. Therefore {H l
t}n

l=1 are independent Brownian
motions.

(2) It is easy to see that for any j we have yj > yj+1. H+
t is a permutation of

entries of Ht, so if we interpret both Ht and H+
t as random vectors in Rn, we can

see that

a+
t = fn(at)

which gives the desired result.
(3) This part follows directly from part (2) and (5.1). ¤

Remark 6.6. Note that if we use the last part of Theorem 6.5 with Tt = γ(1, 1),
then we can find explicitly the Lévy measure of the subordinated process in the
double cosets space SO(n,R)\GL(n,R)+/SO(n,R) similarly to Example 6.2.

6.5. Heisenberg group. In order to fit this example into the case of matrix Lie
groups we give a description of the Heisenberg group as a matrix group as it is done
in [9]. Denote

[a, b, c] =




1 a c
0 1 b
0 0 1


 , (a, b, c) =




0 a c
0 0 b
0 0 0


 .

Then the Heisenberg group, H, can be described as H = {[a, b, c], a, b, c ∈ R} with
the group multiplication

[a1, b1, c1] · [a2, b2, c2] = [a1 + a2, b1 + b2, c1 + c2 + a1b2],
and the Heisenberg Lie algebra, h, can be described as h = {(a, b, c), a, b, c ∈ R}
with the Lie bracket

[(a1, b1, c1), (a2, b2, c2)] = (0, 0, a1b2 − a2b1),
and the inner product

〈(a1, b1, c1), (a2, b2, c2)〉 = Tr
(
(a2, b2, c2)T (a1, b1, c1)

)
= a1a2 + b1b2 + c1c2.

Then X = (1, 0, 0), Y = (0, 1, 0) and Z = (0, 0, 1) is an orthonormal basis of h.
Note that we have as usual

e(a,b,c) = [a, b, c +
ab

2
].

The inner product on h is Adg-invariant only if g = [0, 0, c], which means that
in this case the Cameron-Martin subspace H(H) is the space of curves [0, 0, k(t)],
where k(t) ∈ H(R).
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First let us consider the Brownian motion corresponding to the full Laplacian
∆ = 1

2 (X̃2 + Ỹ 2 + Z̃2). Suppose WX
t , WY

t and WZ
t are independent real-valued

Brownian motions. Then

Proposition 6.7. The process gt = [WX
t ,WY

t , WZ
t +

∫ t

0
WX

s δWY
s ] is a Brownian

motion in H, that is, gt is the solution to stochastic differential equation (3.1).

Proof. This can be verified by a direct calculation

δgt = (δWX
t , δWY

t , δWZ
t + WX

t δWY
t ),

and this is the same matrix as

gtδWt =




1 WX
t WZ

t +
∫ t

0
WX

s δWY
s

0 1 WY
t

0 0 1







0 δWX
t δWZ

t

0 0 δWY
t

0 0 0


 .

¤
Now we can apply (5.1) and (5.2). The heat kernel in this case can be written

explicitly, though it is of limited use for our purpose.
In conclusion we can add that similarly we can consider the subelliptic Laplacian

∆H = 1
2 (X̃2+Ỹ 2) and the corresponding Brownian motion gH

t = [WX
t ,WY

t ,
∫ t

0
WX

s δWY
s ].

In this case the function ϕ in (5.2) ϕ ≡ 0, and therefore the Radon-Nikodym de-
rivative has a simpler form than the one for the full Laplacian.
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Birkhäuser Boston, Boston, MA, 2001.

[4] D. Applebaum, On the subordination of spherically symmetric Lévy processes in Lie groups,
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[13] M. Liao, Lévy processes in Lie groups, Cambridge Tracts in Mathematics, 162, Cambridge

University Press, 2004.
[14] Marie-Paule Malliavin, Paul Malliavin, Factorisations et lois limites de la diffusion horizon-

tale au-dessus d’un espace riemannien symétrique, Lecture Notes in Math., 404, 164–217.
[15] H.P.McKean, Stochastic integrals, Probability and Mathematical Statistics, No. 5 Academic

Press, 1969.
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upper half-plane, J. Math. Phys., 33, 1992, 1158–1177.

[19] I. Shigekawa, Transformations of the Brownian motion on the Lie group, (Stochastic analysis,
Katata/Kyoto, 1982), North-Holland Math. Library, 32, 1984, 409–422.

(Sergio Albeverio) Institut für Angewandte Mathematik, Universität Bonn, Wegeler-
straße 6, 53115 Bonn, Germany, SFB 611 (Bonn), BiBoS (Bielefeld-Bonn)

(Maria Gordina) Department of Mathematics, University of Connecticut, Storrs, CT
06269, U.S.A.

E-mail address: gordina@math.uconn.edu


