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BRUCE K. DRIVER† AND MARIA GORDINA∗

Abstract. We introduce a class of non-commutative, complex, infinite-
dimensional Heisenberg like Lie groups based on an abstract Wiener space.
The holomorphic functions which are also square integrable with respect to a
heat kernel measure µ on these groups are studied. In particular, we establish
a unitary equivalence between the square integrable holomorphic functions and
a certain completion of the universal enveloping algebra of the “Lie algebra”
of this class of groups. Using quasi-invariance of the heat kernel measure,
we also construct a skeleton map which characterizes globally defined func-
tions from the L2 (ν)-closure of holomorphic polynomials by their values on
the Cameron-Martin subgroup.
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1. Introduction

The aim of this paper is to study spaces of holomorphic functions on an infinite-
dimensional Heisenberg like group based on a complex abstract Wiener space. In
particular, we prove Taylor, skeleton, and holomorphic chaos isomorphism theo-
rems. The tools we use come from properties of heat kernel measures on such
groups which have been constructed and studied in [4]. We will state the main
results of our paper and then conclude this introduction with a brief discussion of
how our results relate to the existing literature.

1.1. Statements of the main results.

1.1.1. The Heisenberg like groups and heat kernel measures. The basic input to our
theory is a complex abstract Wiener space, (W,H, µ), as in Notation 2.4 which is
equipped with a continuous skew-symmetric bi-linear form ω : W ×W → C as in
Notation 3.1. Here and throughout this paper, C is a finite dimensional complex
inner product space. The space, G := W × C, becomes an infinite-dimensional
“Heisenberg like” group when equipped with the following multiplication rule

(1.1) (w1, c1) · (w2, c2) =
(

w1 + w2, c1 + c2 +
1
2
ω (w1, w2)

)
.

A typical example of such a group is the Heisenberg group of a symplectic vector
space, but in our setting we have an additional structure of an abstract Wiener
space to carry out the heat kernel measure analysis.

The group G contains the Cameron–Martin group, GCM := H × C, as a sub-
group. The Lie algebras of G and GCM will be denoted by g and gCM respectively
which, as sets, may be identified with G and GCM respectively — see Definition
3.2, Notation 3.3, and Proposition 3.5 for more details.

Let b (t) = (B (t) , B0 (t)) be a Brownian motion on g associated to the natural
Hilbertian structure on gCM as described in Eq. (4.1). The Brownian motion
{g (t)}t≥0 on G is then the solution to the stochastic differential equation,

(1.2) dg (t) = g (t) ◦ db (t) with g (0) = e = (0, 0) .

The explicit solution to Eq. (1.2) may be found in Eq. (4.2). For each T > 0 we
let νT := Law (g (T )) be the heat kernel measure on G at time T as explained in
Definitions 4.1 and 4.2. Analogous to the abstract Wiener space setting, νT is left
(right) quasi-invariant by an element, h ∈ G, iff h ∈ GCM , while νT (GCM ) = 0,
see Theorem 4.5, Proposition 4.6, and [4, Proposition 6.3].

In addition to the above infinite-dimensional structures we will need correspond-
ing finite dimensional approximations. These approximations will be indexed by
Proj (W ) which we now define.
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Notation 1.1. Let Proj (W )denote the collection of finite rank continuous linear
maps, P : W → H, such that P |H is an orthogonal projection. (Explicitly, P must
be as in Eq. (2.17) below.) Further, let GP := PW ×C (a subgroup of GCM ) and
πP : G → GP be the projection map defined by πP (w, c) := (Pw, c).

To each P ∈ Proj (W ), GP is a finite dimensional Lie group. The Brownian mo-
tions and heat kernel measures,

{
νP

t

}
t>0

, on GP are constructed similarly to those
on G–see Definition 4.10. We will use

{(
GP , νP

T

)}
P∈Proj(W )

as finite dimensional
approximations to (G, νT ).

1.1.2. The Taylor isomorphism theorem. The Taylor map, TT , is a unitary map
relating the “square integrable” holomorphic functions on GCM with the collection
of their derivatives at e ∈GCM . Before we can state this theorem we need to
introduce the two Hilbert spaces involved.

In what follows, H (GCM ) and H (G) will denote the space of holomorphic func-
tions on GCM and G respectively. (See Section 5 for the properties of these function
spaces which are used throughout this paper.) We also let T := T (gCM ) be the
algebraic tensor algebra over gCM , T′ be its algebraic dual, J be the two-sided
ideal in T generated by

(1.3) {h⊗ k − k ⊗ h− [h, k] : h, k ∈ gCM},
and J0 = {α ∈ T′ : α (J) = 0} be the backwards annihilator of J–see Notation 6.1.
Given f ∈ H (G) we let α := T f denote the element of J0 defined by 〈α, 1〉 = f (e)
and

〈α, h1 ⊗ · · · ⊗ hn〉 :=
(
h̃1 . . . h̃nf

)
(e)

where hi ∈ gCM and h̃i is the left invariant vector field on GCM agreeing with
hi at e–see Proposition 3.5 and Definition 6.2. We call T the Taylor map since
T f ∈ J0 (gCM ) encodes all of the derivatives of f at e.

Definition 1.2 (L2–holomorphic functions on GCM ). For T > 0, let

‖f‖H2
T (GCM ) = sup

P∈Proj(W )

‖f |GP
‖L2(GP ,νP

T ) for all f ∈ H (GCM ) , and(1.4)

H2
T (GCM ) :=

{
f ∈ H (GCM ) : ‖f‖H2

T (GCM ) < ∞
}

.(1.5)

In Corollary 6.6 below, we will see that H2
T (GCM ) is not empty and in fact

contains the space of holomorphic cylinder polynomials (PCM )on GCM described
in Eq. (1.7) below. Despite the fact that νT (GCM ) = 0, H2

T (GCM ) should roughly
be thought of as the νT –square integrable holomorphic functions on GCM .

Definition 1.3 (Non-commutative Fock space). Let T > 0 and

‖α‖2J0
T (gCM ) :=

∞∑
n=0

Tn

n!

∑

h1,...,hn∈S

|〈α, h1 ⊗ · · · ⊗ hn〉|2 for all α ∈ J0 (gCM ) ,

where S is any orthonormal basis for gCM . The non-commutative Fock space is
defined as

J0
T (gCM ) :=

{
α ∈ J0 (gCM ) : ‖α‖2J0

T (gCM ) < ∞
}

.

It is easy to see that ‖·‖J0
T (gCM ) is a Hilbertian norm on J0

T (gCM )–see Definition
6.4 and Eq. (6.8). For a detailed introduction to such Fock spaces we refer to [13].
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Remark 1.4. When ω = 0, G (ω) is commutative and the Fock space, J0
T (gCM ),

becomes the standard commutative bosonic Fock space of symmetric tensors over
g∗CM .

The following theorem is proved in Section 6–see Theorem 6.10.

Theorem 1.5 (The Taylor isomorphism). For all T > 0, T (H2
T (GCM )

) ⊂
J0

T (gCM ) and the linear map,

(1.6) TT := T |H2
T (GCM ) : H2

T (GCM ) → J0
T (gCM ) ,

is unitary.

Associated to this theorem is an analogue of Bargmann’s pointwise bounds which
appear in Theorem 6.11 below.

1.1.3. The skeleton isomorphism theorem. Similarly to how it has been done on a
complex abstract Wiener space by H. Sugita in [27, 26], the quasi-invariance of the
heat kernel measure νT allows us to define the skeleton map from Lp (G, νT ) to a
space of functions on the Cameron-Martin subgroup GCM , a set of νT -measure 0.

Definition 1.6. A holomorphic cylinder polynomial on G is a holomorphic
cylinder function (see Definition 4.3) of the form, f = F ◦ πP : G → C, where
P ∈ Proj (W ) and F : PW × C→ C is a holomorphic polynomial. The space of
holomorphic cylinder polynomials will be denoted by P.

The “Gaussian” heat kernel bounds in Theorem 4.11 easily imply that P ⊂
Lp (νT ) for all p < ∞–see Corollary 5.10.

Definition 1.7 (Holomorphic Lp–functions). For T > 0 and 1 6 p < ∞, let
Hp

T (G) denote the Lp (νT ) – closure of P ⊂ Lp (νT ).

From Corollary 4.8 below, if T > 0, p ∈ (1,∞], f ∈ Lp (G, νT ), and h ∈ GCM ,
then

∫
G
|f (h · g)| dνT (g) < ∞. Thus, if f ∈ H2

T (G) we may define the skeleton
map (see Definition 4.7) by

(ST f) (h) :=
∫

G

f (h · g) dνT (g) .

It is shown in Theorem 5.12 that ST

(H2
T (G)

) ⊂ H2
T (GCM ) for all T > 0.

Theorem 1.8 (The skeleton isomorphism). For each T > 0, the skeleton map,
ST : H2

T (G) → H2
T (GCM ), is unitary.

Following Sugita’s results [27, 26] in the case of an abstract Wiener space, we
call ST |H2

T (G) the skeleton map since it characterizes f ∈ H2
T (G) by its “values”,

ST f , on GCM . Sugita would refer to GCM as the skeleton of G (ω) owing to the
fact that νT (GCM ) = 0 as we show in Proposition 4.6.

Theorem 1.8 is proved in Section 8 and relies on two key density results from
Section 7. The first is Lemma 7.3 (an infinite-dimensional version of [7, Lemma
3.5]) which states that the finite rank tensors (see Definition 7.2) are dense inside
of J0

T (gCM ). The second is Theorem 7.1 which states that

(1.7) PCM := {p|GCM
: p ∈ P}

is a dense subspace of H2
T (GCM ). Matt Cecil [2] has modified the arguments

presented in Section 7 to cover the situation of path groups over graded nilpotent
Lie groups. Cecil’s arguments are necessarily much more involved because his Lie
groups have nilpotency of arbitrary step.
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1.1.4. The holomorphic chaos expansion. So far we have produced (for each T > 0)
two unitary isomorphisms, the skeleton map ST and the Taylor isomorphism TT ,

H2
T (G) ST−→∼= H2

T (GCM ) TT−→∼= J0
T (gCM ) .

The next theorem gives an explicit formula for (TT ◦ ST )−1 : J0
T (gCM ) → H2

T (G).

Theorem 1.9 (The holomorphic chaos expansion). If f ∈ H2
T (G) and αf :=

TT ST f , then

(1.8) f (g (T )) =
∞∑

n=0

〈
αf ,

∫

0≤s1≤s2≤···≤sn≤T

db (s1)⊗ · · · ⊗ db (sn)
〉

where b (t) and g (t) are related as in Eq. (1.2) or equivalently as in Eq. (4.2).

This result is proved in Section 9 and in particular, see Theorem 9.10. The
precise meaning of the right hand side of Eq. (1.8) is also described there.

1.2. Discussion. As we noticed in Remark 1.4 when the form ω ≡ 0 the Fock
space J0

T (gCM ) is the standard commutative bosonic Fock space [9]. In this case
the Taylor map is one of three isomorphisms between different representations of
a Fock space, one other being the Segal-Bargmann transform. The history of the
latter is described in [13] beginning with works of V. Bargmann [1] and I. Segal in
[24]. For other relevant results see [14, 8].

To put our results into perspective, recall that the classical Segal-Bargmann
space is the Hilbert space of holomorphic functions on Cn that are square-
integrable with respect to the Gaussian measure dµn(z) = π−ne−|z|

2
dz, where

dz is the 2n–dimensional Lebesgue measure. One of the features of functions
in the Segal-Bargmann space is that they satisfy the pointwise bounds |f(z)| 6
‖f‖L2(µn) exp(|z|2/2) (compare with Theorem 6.11). As it is described in [13], if
Cn is replaced by an infinite-dimensional complex Hilbert space H, one of the first
difficulties is to find a suitable version of the Gaussian measure. It can be achieved,
but only on a certain extension W of H, which leads one to consider the complex
abstract Wiener space setting. From H. Sugita’s [27, 26] work on holomorphic func-
tions over a complex abstract Wiener space, it is known that the pointwise bounds
control only the values of the holomorphic functions on H. This difficulty explains,
in part, the need to consider two function spaces: one is of holomorphic functions
on H (or GCM in our case) versus the square-integrable (weakly) holomorphic
functions on W (or G in our case).

The Taylor map has also been studied in other non-commutative infinite-
dimensional settings. M. Gordina [11, 10, 12] considered the Taylor isomorphism
in the context of Hilbert-Schmidt groups, while M. Cecil [2] considered the Taylor
isomorphism for path groups over stratified Lie groups. The nilpotentcy of the
Heisenberg like groups studied in this paper allow us to give a more complete de-
scription of the square integrable holomorphic function spaces than was possible in
[11, 10, 12] for the Hilbert-Schmidt groups.

Complex analysis in infinite dimensions in a somewhat different setting has been
studied by L. Lempert (e.g.[20]), and for more results on Gaussian-like measures
on infinite-dimensional curved spaces see papers by D. Pickrell (e.g.[22, 23]). For
another view of different representations of Fock space, one can look at results
in the field of white noise, as presented in the book by N. Obata [21]. The map
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between an L2-space and a space of symmetric tensors sometimes is called the Segal
isomorphism as in [18, 19]. For more background on this and related topics see [16].

2. Complex abstract Wiener spaces

Suppose that W is a complex separable Banach space and BW is the Borel σ–
algebra on W . Let WRe denote W thought of as a real Banach space. For λ ∈ C,
let Mλ : W → W be the operation of multiplication by λ.

Definition 2.1. A measure µ on (W,BW ) is called a (mean zero, non-degenerate)
Gaussian measure provided that its characteristic functional is given by

(2.1) µ̂(u) :=
∫

W

eiu(w)dµ (w) = e−
1
2 q(u,u) for all u ∈ W ∗

Re,

where q = qµ : W ∗
Re × W ∗

Re → R is an inner product on W ∗
Re. If in addition, µ

is invariant under multiplication by i, that is, µ ◦ M−1
i = µ, we say that µ is a

complex Gaussian measure on W .

Remark 2.2. Suppose W = Cd and let us write w ∈ W as w = x + iy with
x, y ∈ Rd. Then the most general Gaussian measure on W is of the form

dµ (w) =
1
Z

exp
(
−1

2
Q

[
x
y

]
·
[

x
y

])
dx dy

where Q is a real positive definite 2d×2d matrix and Z is a normalization constant.
The matrix Q may be written in 2× 2 block form as

Q =
[

A B
Btr C

]
.

A simple exercise shows µ = µ ◦ M−1
i iff B = 0 and A = C. Thus the general

complex Gaussian measure on Cd is of the form

dµ (w) =
1
Z

exp
(
−1

2
(Ax · x + Ay · y)

)
dx dy

=
1
Z

exp
(
−1

2
Aw · w̄

)
dx dy,

where A is a real positive definite matrix.

Given a complex Gaussian measure µ as in Definition 2.1, let

(2.2) ‖w‖H := sup
u∈W∗

Re\{0}

|u(w)|√
q(u, u)

for all w ∈ W,

and define the Cameron-Martin subspace, H ⊂ W , by

(2.3) H = {h ∈ W : ‖h‖H < ∞} .

The following theorem summarizes some of the standard properties of the triple
(W,H, µ).

Theorem 2.3. Let (W,H, µ) be as above, where µ is a complex Gaussian measure
on (W,BW ). Then

(1) H is a dense complex subspace of W .
(2) There exists a unique inner product, 〈·, ·〉H , on H such that ‖h‖2H = 〈h, h〉

for all h ∈ H. Moreover, with this inner product H is a complete separable
complex Hilbert space.



SQUARE INTEGRABLE HOLOMORPHIC FUNCTIONS 7

(3) There exists C < ∞ such that

(2.4) ‖h‖W 6 C ‖h‖H for any h ∈ H.

(4) If {ej}∞j=1 is an orthonormal basis for H and u, v ∈ W ∗
Re, then

(2.5) q (u, v) = 〈u, v〉H∗
Re

=
∞∑

j=1

[u (ej) v (ej) + u (iej) v (iej)] .

(5) µ ◦M−1
λ = µ for all λ ∈ C with |λ| = 1.

Proof. We will begin with the proof of item 5. From Eq. (2.1), the invariance
of µ under multiplication by i ( µ ◦ M−1

i = µ ) is equivalent to assuming that
q (u ◦Mi, u ◦Mi) = q (u, u) for all u ∈ W ∗

Re. By polarization, we may further
conclude that

(2.6) q (u ◦Mi, v ◦Mi) = q (u, v) for all u, v ∈ W ∗
Re.

Taking v = u ◦ Mi in this identity then shows that q (u ◦Mi,−u) = q (u, u ◦Mi)
and hence that

(2.7) q (u, u ◦Mi) = 0 for any u ∈ W ∗
Re.

Therefore if λ = a + ib with a, b ∈ R, we see that

q (u ◦Mλ, u ◦Mλ) = q (au + bu ◦Mi, au + bu ◦Mi)

=
(
a2 + b2

)
q (u, u) = |λ|2 q (u, u) ,(2.8)

from which it follows that q (u ◦Mλ, u ◦Mλ) = q (u, u) for all u ∈ W ∗
Re and |λ| = 1.

Coupling this observation with Eq. (2.1) implies µ ◦M−1
λ = µ for all |λ| = 1. If

|λ| = 1, from Eqs. (2.2) and (2.8), it follows that

‖λw‖H = sup
u∈W∗

Re\{0}

|u (λw)|√
q (u, u)

= sup
u∈W∗

Re\{0}

|u ◦Mλ (w)|√
q (u ◦Mλ, u ◦Mλ)

= sup
u∈W∗

Re\{0}

|u (w)|√
q (u, u)

= ‖w‖H for all w ∈ W.

In particular, if ‖h‖H < ∞ and |λ| = 1, then ‖λh‖H = ‖h‖H < ∞ and hence
λH ⊂ H which shows that H is a complex subspace of W . From [4, Theorem 2.3]
summarizing some well-known properties of Gaussian measures, we know that item
3. holds, H is a dense subspace of WRe, and there exists a unique real Hilbertian
inner product, 〈·, ·〉HRe

, on H such that ‖h‖2H = 〈h, h〉HRe
for all h ∈ H. Polarizing

the identity ‖λh‖H = ‖h‖H implies 〈λh, λk〉HRe
= 〈h, k〉HRe

for all h, k ∈ H. Taking
λ = i and k = −ih then shows 〈ih, h〉Re = 〈h,−ih〉Re, and hence that 〈ih, h〉Re = 0
for all h ∈ H. Using this information it is a simple matter to check that

(2.9) 〈h, k〉H := 〈h, k〉HRe
+ i 〈h, ik〉HRe

for all h, k ∈ H,

is the unique complex inner product on H such that Re 〈·, ·〉H = 〈·, ·〉HRe
.

So it only remains to prove Eq. (2.5). For a proof of the first equality in Eq. (2.5),
see [4, Theorem 2.3]. To prove the second equality in this equation, it suffices to
observe that {ej , iej}∞j=1 is an orthonormal basis for

(
HRe, 〈·, ·〉HRe

)
and therefore,

〈u, v〉H∗
Re

=
∞∑

j=1

[u (ej) v (ej) + u (iej) v (iej)] for any u, v ∈ H∗
Re.
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¤

Notation 2.4. The triple, (W,H, µ), appearing in Theorem 2.3 will be called a
complex abstract Wiener space. (Notice that there is redundancy in this nota-
tion since µ is determined by H, and H is determined by µ.)

Lemma 2.5. Suppose that u, v ∈ W ∗
Re and a, b ∈ C, then

(2.10)
∫

W

eau+bvdµ = exp
(

1
2

(
a2q (u, u) + b2q (v, v) + 2abq (u, v)

))
.

Proof. Equation (2.10) is easily verified when both a and b are real. This suffices
to complete the proof, since both sides of Eq. (2.10) are analytic functions of
a, b ∈ C. ¤

Lemma 2.6. Let (W,H, µ) be a complex abstract Wiener space, then for any ϕ ∈
W ∗, we have

(2.11)
∫

W

eϕ(w)dµ (w) = 1 =
∫

W

eϕ(w)dµ (w) ,

(2.12)
∫

W

|Re ϕ (w)|2 dµ (w) =
∫

W

|Imϕ (w)|2 dµ (w) = ‖ϕ‖2H∗ ,

and

(2.13)
∫

W

|ϕ (w)|2 dµ (w) = 2 ‖ϕ‖2H∗ .

More generally, if C is another complex Hilbert space and ϕ ∈ L (W,C), then

(2.14)
∫

W

‖ϕ (w)‖2C dµ (w) = 2 ‖ϕ‖2H∗⊗C .

Proof. If u = Re ϕ, then ϕ (w) = u (w) − iu (iw). Therefore by Eqs. (2.6), (2.7),
and (2.10),

∫

W

eϕdµ =
∫

W

eu−iu◦Midµ

= exp
(

1
2

(q (u, u)− q (u ◦Mi, u ◦Mi)− 2iq (u, u ◦Mi))
)

= 1.

Taking the complex conjugation of this identity shows
∫

W
eϕ(w)dµ (w) = 1. Also

using Lemma 2.5, we have
∫

W

|Re ϕ (w)|2 dµ (w) = q (u, u) and
∫

W

|Imϕ (w)|2 dµ (w) =
∫

W

|u (iw)|2 dµ (w) = q (u ◦Mi, u ◦Mi) = q (u, u) .

To evaluate q (u, u), let {ek}∞k=1 be an orthonormal basis for H so that {ek, iek}∞k=1

is an orthonormal basis for (HRe, Re 〈·, ·〉H). Then by Eq. (2.5),

q (u, u) =
∞∑

k=1

[
|u (ek)|2 + |u (iek)|2

]
=

∞∑

k=1

|ϕ (ek)|2 = ‖ϕ‖2H∗ .
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To prove Eq. (2.14), apply [4, Eq. (2.13)] to find
∫

W

‖ϕ (w)‖2C dµ (w) =
∞∑

k=1

[
‖ϕ (ek)‖2C + ‖ϕ (iek)‖2C

]

= 2
∞∑

k=1

‖ϕ (ek)‖2C = 2 ‖ϕ‖2H∗⊗C .

¤
Remark 2.7 (Heat kernel interpretation of Lemma 2.6). The measure µ formally
satisfies ∫

W

f (w) dµ (w) =
(
e

1
2∆HRe f

)
(0) ,

where ∆HRe =
∑∞

j=1 ∂2
ej

and {ej}∞j=1 is an orthonormal basis for HRe. If f is
holomorphic or anti-holomorphic, then f is harmonic and therefore∫

W

f (w) dµ (w) =
(
e

1
2∆HRe f

)
(0) = f (0) .

Applying this identity to f (w) = eϕ(w) or f (w) = eϕ(w) with ϕ ∈ W ∗ gives Eq.
(2.11). If u ∈ W ∗

Re, we have
∫

W

u2 (w) dµ (w) =
(
e

1
2∆HRe u2

)
(0) =

∞∑
n=0

1
2nn!

(
∆n

HRe
u2

)
(0)

=
1
2

(
∆HReu

2
)
(0) =

1
2

∞∑

j=1

(
∂2

ej
u2

)
(0)

=
∞∑

j=1

u (ej)
2 = ‖u‖2HRe

.

Eqs. (2.12) and (2.13) now follow easily from this identity.

2.1. The structure of the projections. Let i : H → W be the inclusion map
and i∗ : W ∗ → H∗ be its transpose, i.e. i∗` := ` ◦ i for all ` ∈ W ∗. Also let

(2.15) H∗ := {h ∈ H : 〈·, h〉H ∈ Ran (i∗) ⊂ H∗}
or in other words, h ∈ H is in H∗ iff 〈·, h〉H ∈ H∗ extends to a continuous linear
functional on W . (We will continue to denote the continuous extension of 〈·, h〉H
to W by 〈·, h〉H .) Because H is a dense subspace of W , i∗ is injective, and because
i is injective, i∗ has a dense range. Since h ∈ H → 〈·, h〉H ∈ H∗ is a conjugate
linear isometric isomorphism, it follows from the above comments that H∗ 3 h →
〈·, h〉H ∈ W ∗ is a conjugate linear isomorphism too, and that H∗ is a dense subspace
of H.

Lemma 2.8. There is a one to one correspondence between Proj (W ) (see Notation
1.1) and the collection of finite rank orthogonal projections, P , on H such that
PH ⊂ H∗.

Proof. If P ∈ Proj (W ) and u ∈ PW ⊂ H, then, because P |H is an orthogonal
projection, we have

(2.16) 〈Ph, u〉H = 〈h, Pu〉H = 〈h, u〉H for all h ∈ H.

Since P : W → H is continuous, it follows that u ∈ H∗, i.e. PW ⊂ H∗.
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Conversely, suppose that P : H → H is a finite rank orthogonal projection such
that PH ⊂ H∗. Let {ej}n

j=1 be an orthonormal basis for PH and `j ∈ W ∗ such
that `j |H = 〈·, ej〉H . Then we may extend P uniquely to a continuous operator
from W to H (still denoted by P ) by letting

(2.17) Pw :=
n∑

j=1

`j (w) ej =
n∑

j=1

〈w, ej〉H ej for all w ∈ W.

From [4, Eq. 3.43], there exists C = C (P ) < ∞ such that

(2.18) ‖Pw‖H 6 C ‖w‖W for all w ∈ W.

¤

3. Complex Heisenberg like groups

In this section we review the infinite-dimensional Heisenberg like groups and Lie
algebras which were introduced in [4, Section 3].

Notation 3.1. Let (W,H, µ) be a complex abstract Wiener space, C be a complex
finite dimensional inner product space, and ω : W ×W → C be a continuous skew
symmetric bilinear quadratic form on W . Further, let

(3.1) ‖ω‖0 := sup {‖ω (w1, w2)‖C : w1, w2 ∈ W with ‖w1‖W = ‖w2‖W = 1}
be the uniform norm on ω which is finite by the assumed continuity of ω.

Definition 3.2. Let g denote W × C when thought of as a Lie algebra with the
Lie bracket operation given by

(3.2) [(A, a) , (B, b)] := (0, ω (A,B)) .

Let G = G (ω) denote W ×C when thought of as a group with the multiplication
law given by

(3.3) g1g2 = g1 + g2 +
1
2

[g1, g2] for any g1, g2 ∈ G

or equivalently by Eq. (1.1).

It is easily verified that g is a Lie algebra and G is a group. The identity of G is
the zero element, e : = (0, 0).

Notation 3.3. Let gCM denote H ×C when viewed as a Lie subalgebra of g and
GCM denote H × C when viewed as a subgroup of G = G (ω). We will refer to
gCM (GCM ) as the Cameron–Martin subalgebra (subgroup) of g (G). (For
explicit examples of such (W,H,C, ω), see [4].)

We equip G = g = W ×C with the Banach space norm

(3.4) ‖(w, c)‖g := ‖w‖W + ‖c‖C
and GCM = gCM = H ×C with the Hilbert space inner product,

(3.5) 〈(A, a) , (B, b)〉gCM
:= 〈A, B〉H + 〈a, b〉C .

The associate Hilbertian norm is given by

(3.6) ‖(A, δ)‖gCM
:=

√
‖A‖2H + ‖δ‖2C.

As was shown in [4, Lemma 3.3], these Banach space topologies on W × C and
H ×C make G and GCM into topological groups.
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Notation 3.4 (Linear differentials). Suppose f : G → C, is a Frechét smooth
function. For g ∈ G and h, k ∈ g let

f ′ (g)h := ∂hf (g) =
d

dt

∣∣∣
0
f (g + th)

and
f ′′ (g) (h⊗ k) := ∂h∂kf (g) .

(Here and in the sequel a prime on a symbol will be used to denote its derivative or
differential.)

As G itself is a vector space, the tangent space, TgG, to G at g is naturally
isomorphic to G. Indeed, if v, g ∈ G, then we may define a tangent vector vg ∈ TgG
by vgf = f ′ (g) v for all Frechét smooth functions f : G → C. We will identify g
with TeG and gCM with TeGCM . Recall that as sets g = G and gCM = GCM . For
g ∈ G, let lg : G → G be the left translation by g. For h ∈ g, let h̃ be the left
invariant vector field on G such that h̃ (g) = h when g = e. More precisely, if
σ (t) ∈ G is any smooth curve such that σ (0) = e and σ̇ (0) = h (e.g. σ (t) = th),
then

(3.7) h̃ (g) =, lg∗h :=
d

dt
|0 g · σ (t) .

As usual, we view h̃ as a first order differential operator acting on smooth functions,
f : G → C, by

(3.8)
(
h̃f

)
(g) =

d

dt

∣∣∣
0
f (g · σ (t)) .

The proof of the following easy proposition may be found in [4, Proposition 3.7].

Proposition 3.5. Let f : G → C be a smooth function, h = (A, a) ∈ g and
g = (w, c) ∈ G. Then

(3.9) h̃ (g) :=, lg∗h =
(

A, a +
1
2
ω (w,A)

)
for any g = (w, c) ∈ G

and, in particular,

(3.10) (̃A, a)f (g) = f ′ (g)
(

A, a +
1
2
ω (w, A)

)
.

If h, k ∈ g, then

(3.11)
(
h̃k̃f − k̃h̃f

)
= [̃h, k]f.

The one parameter group in G, eth, determined by h = (A, a) ∈ g, is given by
eth = th = t (A, δ).

4. Brownian motion and heat kernel measures

This section will closely follow [4, Section 4] except for the introduction of a
certain factor of 1/2 into the formalism which will simplify later formulas. Let
{b (t) = (B (t) , B0 (t))}t>0 be a Brownian motion on g = W ×C with the variance
determined by

(4.1) E
[
Re 〈b (s) , h〉gCM

· Re 〈b (t) , k〉gCM

]
=

1
2

Re 〈h, k〉gCM
s ∧ t
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for all s, t ∈ [0,∞), h = (A, a), and k:= (C, c), where A, C ∈ H∗ and a, c ∈ C.
(Recall the definition of H∗ from Eq. (2.15).)

Definition 4.1. The associated Brownian motion on G starting at e = (0, 0) ∈ G
is defined to be the process

(4.2) g (t) =
(

B (t) , B0 (t) +
1
2

∫ t

0

ω (B (τ) , dB (τ))
)

.

More generally, if h ∈ G, we let gh (t) := h·g (t), the Brownian motion on G starting
at h.

Definition 4.2. Let BG be the Borel σ–algebra on G and for any T > 0, let
νT : BG → [0, 1] be the distribution of g (T ). We will call νT the heat kernel
measure on G.

To be more explicit, the measure νT is the unique measure on (G,BG) such that

(4.3) νT (f) :=
∫

G

fdνT = E [f (g (T ))]

for all bounded measurable functions f : G → C. Our next goal is to describe the
generator of the process {gh (t)}t>0.

Definition 4.3. A function f : G → C is said to be a cylinder function if it may
be written as f = F ◦ πP for some P ∈ Proj (W ) and some function F : GP → C,
where GP is defined as in Notation 1.1. We say that f is a holomorphic (smooth)
cylinder function if F : GP → C is holomorphic (smooth). We will denote the space
of holomorphic (analytic) cylinder functions by A.

Proposition 4.4 (Generator of gh). If f : G → C is a smooth cylinder function,
let

(4.4) Lf :=
∞∑

j=1

[
(̃ej , 0)

2

+ (̃iej , 0)
2
]

f +
d∑

j=1

[
(̃0, fj)

2

+ (̃0, ifj)
2
]

f,

where {ej}∞j=1 and {fj}d
j=1 are complex orthonormal bases for (H, 〈·, ·〉H) and

(C, 〈·, ·〉C) respectively. Then Lf is well defined, i.e. the sums in Eq. (4.4) are
convergent and independent of the choice of bases. Moreover, for all h ∈ G, 1

4L is
the generator for {gh (t)}t>0. More precisely,

(4.5) Mf
t := f (gh (t))− 1

4

∫ t

0

Lf (gh (τ)) dτ

is a local martingale for any smooth cylinder function, f : G → C.

Proof. After bearing in mind the factor of 1/2 used in defining the Brownian motion
b (t) in Eq. (4.1), this proposition becomes a direct consequence of Proposition 3.29
and Theorem 4.4 of [4]. Indeed, the Brownian motions in this paper are equal in
distribution to the Brownian motions used in [4] after making the time change,
t → t/2. It is this time change that is responsible for the 1/4 factor (rather than
1/2) in Eq. (4.5). ¤
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4.1. Heat kernel quasi-invariance properties. In this subsection we are going
to recall one of the key theorems from [4]. We first need a little more notation.

Let C1
CM denote the collection of C1-paths, g : [0, 1] → GCM . The length of g

is defined as

(4.6) `GCM (g) =
∫ 1

0

∥∥ lg−1(s)∗g
′ (s)

∥∥
gCM

ds.

As usual, the Riemannian distance between x, y ∈ GCM is defined as

(4.7) dGCM
(x, y) = inf

{
`GCM

(g) : g ∈ C1
CM 3 g (0) = x and g (1) = y

}
.

Let us also recall the definition of k (ω) from [4, Eq. 7.6];

k (ω) = −1
2

sup
‖A‖HRe

=1

‖ω (·, A)‖2H∗
Re⊗CRe

= − sup
‖A‖H=1

‖ω (·, A)‖2H∗⊗C > −‖ω‖2H∗⊗H∗⊗C > −∞,(4.8)

wherein we have used [4, Lemma 3.17] in the second equality. It is known by Fer-
nique’s or Skhorohod’s theorem that ‖ω‖22 = ‖ω‖2H∗⊗H∗⊗C < ∞, see [4, Proposition
3.14] for details.

Theorem 4.5. For all h ∈ GCM and T > 0, the measures, νT ◦ l−1
h and νT ◦ r−1

h ,

are absolutely continuous relative to νT . Let Zl
h :=

d(νT ◦ l−1
h )

dνT
and Zr

h :=
d(νT ◦r−1

h )
dνT

be the respective Randon-Nikodym derivatives, k (ω) is given in Eq. (4.8), and

c (t) :=
t

et − 1
for any t ∈ R

with the convention that c (0) = 1. Then for all 1 6 p < ∞, Zl
h and Zr

h are both
in Lp (νT ) and satisfy the estimate

(4.9) ‖Z∗h‖Lp(νT ) 6 exp
(

c (k (ω) T/2) (p− 1)
T

d2
GCM

(e, h)
)

,

where ∗ = l or ∗ = r.

Proof. This is [4, Theorem 8.1] (also see [4, Corollary 7.3]) with the modification
that T should be replaced by T/2. This is again due to the fact that the Brownian
motions in this paper are equal in distribution to those in [4] after making the time
change, t → t/2. ¤

It might be enlightening to note here that we call GCM the Cameron-Martin
subgroup not only because it is constructed from the Cameron-Martin subspace,
H, but also because it has properties similar to H. In particular, the following
statement holds.

Proposition 4.6. The heat kernel measure does not charge GCM , i.e. νT (GCM ) =
0.

Proof. Note that for a bounded measurable function f : W ×C → C that depends
only on the the first component in W × C, that is, f (w, c) = f (w) we have

∫

G

f (w) dνT (w, c) = E [f (B (T ))] =
∫

W

f (w) dµT (w) .
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Note that for the projection π : W ×C → W , π (w, c) = w we have π∗νT = µT and
therefore

νT (GCM ) = νT

(
π−1 (H)

)
= π∗νT (H) = µT (H) = 0.

¤

For later purposes, we would like to introduce the heat operator, ST := eTL/4,
acting on Lp (G, νT ). To motivate our definition, suppose f : G → C is a smooth
cylinder function and suppose we can make sense of u (t, y) =

(
e(T−t)L/4f

)
(y).

Then working formally, by Itô’s formula, Eq. (4.5), and the left invariance of L, we
expect u (t, hg (t)) to be a martingale for 0 6 t 6 T and in particular,

(4.10) E [f (hg (T ))] = E [u (T, hg (T ))] = E [u (0, hg (0))] =
(
eTL/4f

)
(h) .

Definition 4.7. For T > 0, p ∈ (1,∞], and f ∈ Lp (G, νT ), let ST f : GCM → C
be defined by

(4.11) (ST f) (h) =
∫

G

f (h · g) dνT (g) = E [f (hg (T ))] .

The following result is a simple corollary of Theorem 4.5 and Hölder’s inequality
along with the observation that p′ − 1 = (p− 1)−1, where p′ is the conjugate
exponent to p ∈ (1,∞].

Corollary 4.8. If p > 1, T > 0, f ∈ Lp (G, νT ), h ∈ GCM , and

(4.12) Zl
h ∈ L∞− (νT ) := ∩16q<∞Lq (νT )

is as in Theorem 4.5, then ST f is well defined and may be computed as

(4.13) (ST f) (h) =
∫

G

f (g) Zl
h (g) dνT (g) .

Moreover, we have the following pointwise “Gaussian” bounds

(4.14) |(ST f) (h)| 6 ‖f‖Lp(νT ) exp
(

c (k (ω)T/2)
T (p− 1)

d2
GCM

(e, h)
)

.

We will see later that when f is “holomorphic” and p = 2, the above estimate
in Eq. (4.14) may be improved to

(4.15) |(ST f) (h)| 6 ‖f‖L2(νT ) exp
(

1
2T

d2
GCM

(e, h)
)

for any h ∈ GCM .

This bound is a variant of Bargmann’s pointwise bounds (see [1, Eq. (1.7)] and [6,
Eq. (5.4)]).

Lemma 4.9. Let T > 0 and suppose that f : G → C is a continuous and in Lp (νT )
for some p > 1. Then ST f : GCM → C is continuous.

Proof. For q ∈ (1, p) and h ∈ GCM we have by Hölder’s inequality and Theorem
4.5 that

E |f (hg (T ))|q = vT

(|f |q Zl
h

)
6 ‖f‖q/p

Lp(νT ) ·
∥∥Zl

hn

∥∥
L

p
p−q (νT )

6 ‖f‖q/p
Lp(νT ) exp

(
c (k (ω) T/2) q

T (p− q)
d2

GCM
(e, h)

)
(4.16)
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Hence if {hn}∞n=1 ⊂ GCM is a sequence converging to h ∈ GCM , it follows that
(4.17)

sup
n
E |f (hng (T ))|q 6 ‖f‖q/p

Lp(νT ) exp
(

c (k (ω)T/2) q

T (p− q)
sup

n
d2

GCM
(e, hn)

)
< ∞,

which implies that {f (hng (T ))}∞n=1 is uniformly integrable. Since by continuity of
f , limn→∞ f (hng (T )) = f (hg (T )), we may pass to the limit under the expectation
to find

lim
n→∞

ST f (hn) = lim
n→∞

Ef (hng (T )) = E [f (hg (T ))] = ST f (h) .

¤

4.2. Finite dimensional approximations.

Notation 4.10. For each P ∈ Proj (W ), let gP (t) denote the GP –valued Brownian
motion defined by

(4.18) gP (t) =
(

PB (t) , B0 (t) +
1
2

∫ t

0

ω (PB (τ) , dPB (τ))
)

.

Also, for any t > 0, let νP
t := Law (gP (t)) be the corresponding heat kernel measure

on GP .

The following Theorem is a restatement of [4, Theorem 4.16].

Theorem 4.11 (Integrated heat kernel bounds). Suppose that ρ2 : G → [0,∞) be
defined as

(4.19) ρ2 (w, c) := ‖w‖2W + ‖c‖C .

Then there exists a δ > 0 such that for all ε ∈ (0, δ) and T > 0

(4.20) sup
P∈Proj(W )

E
[
e

ε
T ρ2(gP (T ))

]
< ∞ and

∫

G

e
ε
T ρ2(g)dνT (g) < ∞.

Proposition 4.12. Let Pn ∈ Proj (W ) such that Pn|H ↑ IH on H and let gn (T ) :=
gPn (T ). Further suppose that δ > 0 is as in Theorem 4.11, p ∈ [1,∞), and f :
G → C is a continuous function such that

(4.21) |f (g)| 6 Ceερ2(g)/(pT ) for all g ∈ G

for some ε ∈ (0, δ). Then f ∈ Lp (νT ) and for all h ∈ G we have

(4.22) lim
n→∞

E |f (hg (T ))− f (hgn (T ))|p = 0,

and

(4.23) lim
n→∞

E |f (g (T )h)− f (gn (T )h)|p = 0.

Proof. If q ∈ (p,∞) is sufficiently close to p so that qp−1ε < δ, then

sup
n
E |f (gn (T ))|q 6 Cq sup

n
E

[
ep−1qερ2(g)/T

]

which is finite by Theorem 4.11. This shows that {|f (gn (T ))|p}∞n=1 is uniformly
integrable. As a consequence of [4, Lemma 4.7] and the continuity of f , we also
know that f (gn (T )) → f (g (T )) in probability as n → ∞. Thus we have shown
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Eqs. (4.22) and (4.23) hold when h = e = 0. Now suppose that g = (w, c) and
h = (A, a) are in G. Then for all α > 0,

ρ2 (gh) = ‖w + A‖2W +
∥∥∥∥a + c +

1
2
ω (w, A)

∥∥∥∥
C

6 ‖w‖2W + ‖A‖2W + 2 ‖A‖W ‖w‖W + ‖a‖C + ‖c‖C +
1
2
‖ω (w,A)‖C

6 ρ2 (g) + ρ2 (h) + C ‖A‖W ‖w‖W(4.24)

6 ρ2 (g) + ρ2 (h) +
C

2

[
α−1 ‖A‖2W + α ‖w‖2W

]

6
(

1 +
Cα

2

)
ρ2 (g) +

(
1 +

C

2α

)
ρ2 (h) ,

where C :=
(
2 + 1

2 ‖ω‖0
)
. As Eq. (4.24) is invariant under interchanging g and h

the same bound also hold for ρ2 (hg). By choosing α > 0 sufficiently small so that(
1 + Cα

2

)
ε < δ, we see that g → f (gh) and g → f (hg) satisfy the same type of

bound as in Eq. (4.21) for g → f (g). Therefore, by the first paragraph, we have
now verified Eqs. (4.22) and (4.23) hold for any h ∈ G. ¤

5. Holomorphic functions on G and GCM

We will begin with a short summary of the results about holomorphic functions
on Banach spaces that will be needed in this paper.

5.1. Holomorphic functions on Banach spaces. Let X and Y be two complex
Banach space and for a ∈ X and δ > 0 let

BX (a, δ) := {x ∈ X : ‖x− a‖X < δ}
be the open ball in X with center a and radius δ.

Definition 5.1 (Hille and Phillips [17, Definition 3.17.2, p. 112.]). Let D be an
open subset of X. A function u : D → Y is said to be holomorphic (or analytic)
if the following two conditions hold.

(1) u is locally bounded, namely for all a ∈ D there exists an ra > 0 such that

Ma := sup {‖u (x)‖Y : x ∈ BX (a, ra)} < ∞.

(2) The function u is complex Gâteaux differentiable on D, i.e. for each a ∈ D
and h ∈ X, the function λ → u (a + λh) is complex differentiable at λ =
0 ∈ C.

(Holomorphic and analytic will be considered to be synonymous terms for the
purposes of this paper.)

The next theorem gathers together a number of basic properties of holomorphic
functions which may be found in [17]. (Also see [15].) One of the key ingredients
to all of these results is Hartog’s theorem, see [17, Theorem 3.15.1].

Theorem 5.2. If u : D → Y is holomorphic, then there exists a function u′ :
D → Hom(X, Y ), the space of bounded complex linear operators from X to Y ,
satisfying
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(1) If a ∈ D, x ∈ BX (a, ra/2), and h ∈ BX (0, ra/2), then

(5.1) ‖u (x + h)− u (x)− u′ (x) h‖Y 6 4Ma

ra (ra − 2 ‖h‖X)
‖h‖2X .

In particular, u is continuous and Frechét differentiable on D.
(2) The function u′ : D → Hom (X, Y ) is holomorphic.

Remark 5.3. By applying Theorem 5.2 repeatedly, it follows that any holomorphic
function, u : D → Y is Frechét differentiable to all orders and each of the Frechét
differentials are again holomorphic functions on D.

Proof. By [17, Theorem 26.3.2 on p. 766.], for each a ∈ D there is a linear operator,
u′ (a) : X → Y such that du (a + λh) /dλ|λ=0 = u′ (a)h. The Cauchy estimate in
Theorem 3.16.3 (with n = 1) of [17] implies that if a ∈ D, x ∈ BX (a, ra/2) and
h ∈ BX (0, ra/2) (so that x + h ∈ BX (a, ra)), then ‖u′ (x) h‖Y 6 Ma. It follows
from this estimate that

(5.2) sup
{
‖u′ (x)‖Hom(X,Y ) : x ∈ BX (a, ra/2)

}
6 2Ma/ra.

and hence that u′ : D → Hom(X, Y ) is a locally bounded function. The estimate
in Eq. (5.1) appears in the proof of the Theorem 3.17.1 in [17] which completes the
proof of item 1.

To prove item 2. we must show u′ is Gâteaux differentiable on D. We will in
fact show more, namely, that u′ is Frechét differentiable on D. Given h ∈ X, let
Fh : D → Y be defined by Fh (x) := u′ (x)h. According to [17, Theorem 26.3.6],
Fh is holomorphic on D as well. Moreover, if a ∈ D and x ∈ B (a, ra/2) we have
by Eq. (5.2) that

‖Fh (x)‖Y 6 2Ma ‖h‖X /ra.

So applying the estimate in Eq. (5.1) to Fh, we learn that

(5.3) ‖Fh (x + k)− Fh (x)− F ′h (x) k‖Y 6 4 (2Ma ‖h‖X /ra)
ra

2

(
ra

2 − 2 ‖k‖X

) · ‖k‖2X

for x ∈ B (a, ra/4) and ‖k‖X < ra/4, where

F ′h (x) k =
d

dλ
|0Fh (x + λk) =

d

dλ
|0u′ (x + λk)h =:

(
δ2u

)
(x;h, k) .

Again by [17, Theorem 26.3.6], for each fixed x ∈ D,
(
δ2u

)
(x; h, k) is a continuous

symmetric bilinear form in (h, k) ∈ X×X. Taking the supremum of Eq. (5.3) over
those h ∈ X with ‖h‖X = 1, we may conclude that

∥∥u′ (x + k)− u′ (x)− δ2u (x; ·, k)
∥∥

Hom(X,Y )

= sup
‖h‖X=1

‖Fh (x + k)− Fh (x)− F ′h (x) k‖Y

6 4 (2Ma/ra)
ra

2

(
ra

2 − 2 ‖k‖X

) ‖k‖2X .

This estimate shows u′ is Frechét differentiable with u′′ (x) ∈ Hom(X, Hom(X, Y ))
being given by u′′ (x) k =

(
δ2u

)
(x; ·, k) ∈ Hom(X, Y ) for all k ∈ X and x ∈ D. ¤
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5.2. Holomorphic functions on G and GCM . For the purposes of this section,
let G0 = G and g0 = g or G0 = GCM and g0 = gCM . Also for g, h ∈ g, let (as
usual) adgh := [g, h].

Lemma 5.4. For each g ∈ G0, lg : G0 → G0 is holomorphic in the ‖·‖g0
–topology.

Moreover, a function u : G0 → C defined in a neighborhood of g ∈ G0 is Gâteaux
(Frechét) differentiable at g iff u◦ lg is Gâteaux (Frechét) differentiable at 0. In
addition, if u is Frechét differentiable at g, then

(5.4) (u ◦ lg)
′ (0)h = u′ (g)

(
h +

1
2

[g, h]
)

.

(See [13, Theorem 5.7] for an analogous result in the context of path groups.)

Proof. Since

lg (h) = gh = g + h +
1
2

[g, h] = g +
(

Idg0 +
1
2
adg

)
h,

it is easy to see that lg is holomorphic and l′g is the constant function equal to
Idg0 + 1

2adg ∈ End (g0). Using ad2
g = 0 or the fact that l−1

g = lg−1 , we see that l′g
is invertible and that

l′g
−1 =

(
Idg0 +

1
2
adg

)−1

= Idg0 −
1
2
adg.

These observations along with the chain rule imply the Frechét differentiability
statements of the lemma and the identity in Eq. (5.4).

If u is Gâteaux differentiable at g, h ∈ g0, and k := h + 1
2 [g, h], then

d

dλ
|0u ◦ lg (λh) =

d

dλ
|0u (g · (λh)) =

d

dλ
|0u (g + λk)

and the existence of d
dλ |0u (g + λk) implies the existence of d

dλ |0u◦ lg (λh). Con-
versely, if u◦ lg is Gâteaux differentiable at 0, h ∈ g0, and

k := h− 1
2

[g, h] =
(

Idg0 +
1
2
adg

)−1

h,

then

lg (λk) = g + λ

(
Idg0 +

1
2
adg

)
k = g + λh.

So the existence of d
dλ |0 (u ◦ lg) (λk) implies the existence of d

dλ |0u (g + λh). ¤

Corollary 5.5. A function u : G0 → C is holomorphic iff it is locally bounded
and h → u

(
geh

)
= u (g · h) is Gâteaux (Frechét) differentiable at 0 for all g ∈ G0.

Moreover, if u is holomorphic and h ∈ g0, then
(
h̃u

)
(g) =

d

dλ
|0u

(
geλh

)
= u′ (g) (h + [g, h])

is holomorphic as well.

Notation 5.6. The space of globally defined holomorphic functions on G and GCM

will be denoted by H (G) and H (GCM ) respectively.
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Notice that the space A of holomorphic cylinder functions as described in Defini-
tion 4.3 is contained in H (G). Also observe that a simple induction argument using
Corollary 5.5 allows us to conclude that h̃1 . . . h̃nu ∈ H (G0) for all u ∈ H (G0) and
h1, . . . , hn ∈ g0.

Proposition 5.7. If f ∈ H (G) and h ∈ g, then ĩhf = ih̃f , ĩhf̄ = −ih̃f̄ ,
[(

ĩh
)2

+ h̃2

]
f = 0, and(5.5)

(
h̃2 + ĩh

2
)
|f |2 = 4

∣∣∣h̃f
∣∣∣
2

.(5.6)

Proof. The first assertions are directly related to the definition of f being holo-
morphic. Using the identity ĩhf = ih̃f twice implies Eq. (5.5). Eq.(5.6) is a
consequence of summing the following two identities

h̃2 |f |2 = h̃
(
f · f̄)

= h̃2f · f̄ + f · h̃2f̄ + 2h̃f · h̃f̄

and

ĩh
2 |f |2 = ĩh

(
f · f̄)

= ĩh
2
f · f̄ + f · ĩh2

f̄ + 2ĩhf · ĩhf̄

= −h̃2f · f̄ − f · h̃2f̄ + 2h̃f · h̃f̄ ,

and using h̃f̄ = h̃f . ¤

Corollary 5.8. Let L be as in Proposition 4.4. Suppose that f : G → C is a
holomorphic cylinder function (i.e. f ∈ A), then Lf = 0 and

(5.7) L |f |2 =
∑

h∈Γ

∣∣∣h̃f
∣∣∣
2

,

where Γ is an orthonormal basis for gCM of the form

(5.8) Γ = Γe ∪ Γf = {(ej , 0)}∞j=1 ∪ {(0, fj)}d
j=1

with {ej}∞j=1 and {fj}d
j=1 being complex orthonormal bases for H and C respec-

tively.

Proof. These assertions follow directly form Eqs. (4.4), (5.5), and (5.6). ¤

Formally, if f : G → C is a holomorphic function, then eTL/4f = f and therefore
we should expect ST f = f |GCM

where ST is defined in Definition 4.7. Theorem 5.9
below is a precise version of this heuristic.

Theorem 5.9. Suppose p ∈ (1,∞) and f : G → C is a continuous function such
that f |GCM

∈ H (GCM ) and there exists Pn ∈ Proj (W ) such that Pn|H ↑ IH , then

(5.9) ‖f‖Lp(νT ) 6 sup
n
‖f‖Lp(GPn ,νPn

T ) .

If we further assume that

(5.10) sup
n
‖f‖Lp(GPn ,νPn

T ) < ∞,

then f ∈ Lp (νT ), ST f = f |GCM , and f satisfies the Gaussian bounds

(5.11) |f (h)| 6 ‖f‖Lp(νT ) exp
(

c (k (ω)T/2)
T (p− 1)

d2
GCM

(e, h)
)

for any h ∈ GCM .
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Proof. According to [4, Lemma 4.7], by passing to a subsequence if necessary, we
may assume that gPn

(T ) → g (T ) almost surely. Hence an application of Fatou’s
lemma implies Eq. (5.9). In particular, if we assume Eq. (5.10) holds, then
f ∈ Lp (νT ) and so ST f is well defined.

Now suppose that P ∈ Proj (W ) and h ∈ GP . Working exactly as in the proof
of Lemma 4.9, we find for any q ∈ (1, p) that

(5.12) E |f (hgP (T ))|q 6 ‖f‖q/p

Lp(GP ,νP
T ) exp

(
c (kP (ω)T/2) q

T (q − p)
d2

GP
(e, h)

)
,

where dGP
(·, ·) is the Riemannian distance on GP and (see [4, Eq. (5.13)]),

(5.13) kP (ω) := −1
2

sup
{
‖ω (·, A)‖2(PH)∗⊗C : A ∈ PH, ‖A‖PH = 1

}
.

Observe that kP (ω) > k (ω) and therefore, as c is a decreasing function, c (k (ω)) >
c (kP (ω)). Let m ∈ N be given and h ∈ GPm . Then for n > m we have from Eq.
(5.12) that

E |f (hgPn (T ))|q 6 ‖f‖q/p

Lp(GPn ,νPn
T ) exp

(
c (kPn (ω)T/2) q

T (q − p)
d2

GPn
(e, h)

)

6 ‖f‖q/p

Lp(GPn ,νPn
T ) exp

(
c (k (ω)T/2) q

T (q − p)
d2

GPm
(e, h)

)

wherein in the last inequality we have used c (k (ω)) > c (kP (ω)) and the fact that
d2

GPn
(e, h) is decreasing in n > m. Hence it follows that supn>m E |f (hgPn (T ))|q <

∞ and thus that {f (hgPn (T ))}n>m is uniformly integrable. Therefore,

(5.14) ST f (h) = Ef (hg (T )) = lim
n→∞

Ef (hgPn (T )) = lim
n→∞

∫

GPn

f (hx) dνPn

T (x) .

On the other hand by [4, Lemma 4.8] (with T replaced by T/2 because of our
normalization in Eq. (4.1)), νPn

T is the heat kernel measure on GPn based at
e ∈ GPn , i.e. νPn

T (dx) = pPn

T/2 (e, x) dx, where dx is the Riemannian volume measure

(equal to a Haar measure) on GPn and pPn

T (x, y) is the heat kernel on GPn . Since
f |GPn

is holomorphic, the previous observations allow us to apply [5, Proposition
1.8] to conclude that

(5.15)
∫

GPn

f (hx) dνPn

T (x) = f (e) for all n > m.

As m ∈ N was arbitrary, combining Eqs. (5.14) and (5.15) implies that ST f (h) =
f (h) for all h ∈ G0 := ∪m∈NGPm . Recall from Lemma 4.9 that ST f : GCM → C
is continuous and from the proof of [4, Theorem 8.1] that G0 is a dense subgroup
of GCM . Therefore we may conclude that in fact ST f (h) = f (h) for all h ∈ GCM .
The Gaussian bound now follows immediately from Corollary 4.8. ¤

Corollary 5.10. Suppose that δ > 0 is as in Theorem 4.11 and f : G → C is a
continuous function such that f |GCM is holomorphic and |f | 6 Ceερ2/(pT ) for some
ε ∈ [0, δ). Then f ∈ Lp (νT ), ST f = f , and the Gaussian bounds in Eq. (5.11)
hold.

Proof. By Theorem 4.11, the given function f verifies Eq. (5.10) for any choice
of {Pn}∞n=1 ⊂ Proj (W ) with Pn|H ↑ P strongly as n ↑ ∞. Hence Theorem 5.9 is
applicable. ¤
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As a simple consequence of Corollary 5.10, we know that P ⊂ Lp (νT ) (see
Definition 1.6) and that (ST p) (h) = p (h) for all h ∈ GCM and p ∈ P.

Notation 5.11. For T > 0 and 1 6 p < ∞, let Ap
T and Hp

T (G) denote the
Lp (νT ) – closure of A ∩ Lp (νT ) and P, where A and P denote the holomorphic
cylinder functions (see Definition 4.3) and holomorphic cylinder polynomials on G
respectively.

Theorem 5.12. For all T > 0 and p ∈ (1,∞), we have ST (Hp
T (G)) ⊂ H (GCM ).

Proof. Let f ∈ Hp
T (G) and pn ∈ P such that limn→∞ ‖f − pn‖Lp(νT ) = 0. If

h ∈ GCM , then by Corollary 4.8

|ST f (h)− pn (h)| = |ST (f − pn) (h)|

6 ‖f − pn‖Lp(νT ) exp
(

c (k (ω)T/2)
T (p− 1)

d2
GCM

(e, h)
)

.

This shows that ST f is the limit of pn|GCM
∈ H (GCM ) with the limit being uniform

over any bounded subset of h’s contained in GCM . This is sufficient to show that
ST f ∈ H (GCM ) via an application of [17, Theorem 3.18.1]. ¤

Remark 5.13. It seems reasonable to conjecture that A2
T = H2

T (G), nevertheless
we do not know if these two spaces are equal! We also do not know if ST f = f
for every f ∈ A ∩ L2 (νT ). However, Theorem 5.9 does show that ST f = f for all
f ∈ A ∩P∈Proj(W ) Lp

(
νP

T

)
with Lp

(
νP

T

)
–norms of f being bounded.

6. The Taylor isomorphism theorem

The main purpose of this section is to prove the Taylor isomorphism Theorem 1.5
(or Theorem 6.10). We begin with the formal development of the algebraic setup.
In what follows below for a vector space V we will denote the algebraic dual to V
by V ′. If V happens to be a normed space, we will let V ∗ denote the topological
dual of V .

6.1. A non-commutative Fock space.

Notation 6.1. For n ∈ N let g⊗n
CM denote the n–fold algebraic tensor product of

gCM with itself, and by convention let g⊗0
CM := C. Also let

T := T (gCM ) = C⊕ gCM ⊕ g⊗2
CM ⊕ g⊗3

CM ⊕ . . .

be the algebraic tensor algebra over gCM , T′ be its algebraic dual, and J be the two-
sided ideal in T generated by the elements in Eq. (1.3). The backwards annihilator
of J is

(6.1) J0 = {α ∈ T′ : α (J) = 0}.
For any α ∈ T′ and n ∈ N∪{0}, we let αn := α|g⊗n

CM
∈ (

g⊗n
CM

)′
.

After the next definition we will be able to give numerous examples of elements
in J0.

Definition 6.2 (Left differentials). For f ∈ H (GCM ), n ∈ N∪{0}, and g ∈ GCM ,
define f̂n (g) := Dnf (g) ∈ (

g⊗n
CM

)′
by

(
D0f

)
(g) = f (g) and
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〈Dnf (g) , h1 ⊗ · · · ⊗ hn〉 =
(
h̃1 . . . h̃nf

)
(g)(6.2)

for all and h1, ..., hn ∈ g0, where h̃f is given as in Eq. (3.8) or Eq. (3.10). We will
write Df for D1f and f̂ (g) to be the element of T (gCM )′ determined by

(6.3)
〈
f̂ (g) , β

〉
=

〈
f̂n (g) , β

〉
for all β ∈ g⊗n

CM and n ∈ N0.

Example 6.3. As a consequence of Eq. (3.11), f̂ (g) ∈ J0 for all f ∈ H (GCM )
and g ∈ GCM .

In order to put norms on J0, let us equip g⊗n
CM with the usual inner product

determined by

(6.4) 〈h1 ⊗ · · · ⊗ hn, k1 ⊗ · · · ⊗ kn〉g⊗n
CM

=
n∏

j=1

〈hj , kj〉gCM
for any hi, kj ∈ gCM .

For n = 0 we let 〈z, w〉g⊗0
CM

:= zw̄ for all z, w ∈ g⊗0
CM = C. The inner product

〈·, ·〉g⊗n
CM

induces a dual inner product on
(
g⊗n

CM

)∗
which we will denote by 〈·, ·〉n.

The associated norm on
(
g⊗n

CM

)∗
will be denoted by ‖·‖n. We extend ‖·‖n to all

of
(
g⊗n

CM

)′
by setting ‖β‖n = ∞ if β ∈ (

g⊗n
CM

)′ \ (
g⊗n

CM

)∗
. If Γ is any orthonormal

basis for gCM , then ‖β‖n may be computed using

(6.5) ‖β‖2g⊗n
CM

:=
∑

h1,...,hn∈Γ

|〈β, h1 ⊗ · · · ⊗ hn〉|2 .

Definition 6.4 (Non-commutative Fock space). Given T > 0 and α ∈ J0 (gCM ),
let

(6.6) ‖α‖2J0
T (gCM ) :=

∞∑
n=0

Tn

n!
‖αn‖2n .

Further let

(6.7) J0
T (gCM ) :=

{
α ∈ J0 (gCM ) : ‖α‖2J0

T (gCM ) < ∞
}

.

The space, J0
T (gCM ), is then a Hilbert space when equipped with the inner

product

(6.8) 〈α, β〉J0
T (gCM ) =

∞∑
n=0

Tn

n!
〈αn, βn〉n for any α, β ∈ J0

T (gCM ) .

6.2. The Taylor isomorphism.

Lemma 6.5. Let f ∈ H (GCM ) and T > 0 and suppose that {Pn}∞n=1 ⊂ Proj (W )
is a sequence such that Pn|gCM ↑ IgCM as n →∞. Then
(6.9)

lim
n→∞

∥∥∥f̂ (e)
∥∥∥

J0
T (gPn )

=
∥∥∥f̂ (e)

∥∥∥
J0

T (gCM )
= ‖f‖H2

T (GCM ) = lim
n→∞

‖f‖L2(GPn ,νPn
T ) ,

where ‖·‖H2
T (GCM ) is defined in Eq. (1.4).

Proof. By Theorem 5.1 of [6], for all P ∈ Proj (W ),

(6.10) ‖f‖L2(GP ,νP
T ) =

∥∥∥f̂ (e)
∥∥∥

J0
T (gP )

,
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where

(6.11)
∥∥∥f̂ (e)

∥∥∥
2

J0
T (gP )

=
∞∑

n=0

Tn

n!

∑

{hj}n
j=1⊂ΓP

∣∣∣
〈
f̂ (e) , h1 ⊗ · · · ⊗ hn

〉∣∣∣
2

and ΓP is an orthonormal basis for gP . In particular, it follows that

(6.12) ‖f‖H2
T (GCM ) = sup

P∈Proj(W )

∥∥∥f̂ (e)
∥∥∥

J0
T (gP )

and hence we must now show

(6.13) sup
P∈Proj(W )

∥∥∥f̂ (e)
∥∥∥

J0
T (gP )

=
∥∥∥f̂ (e)

∥∥∥
J0

T (gCM )
.

If Γ is an orthonormal basis for gCM containing ΓP , it follows that
∥∥∥f̂ (e)

∥∥∥
2

J0
T (gP )

=
∞∑

n=0

Tn

n!

∑

{hj}n
j=1⊂Γ

∣∣∣
〈
f̂ (e) , h1 ⊗ · · · ⊗ hn

〉∣∣∣
2

=
∥∥∥f̂ (e)

∥∥∥
2

J0
T (gCM )

,

which shows that supP∈Proj(W )

∥∥∥f̂ (e)
∥∥∥

J0
T (gP )

6
∥∥∥f̂ (e)

∥∥∥
J0

T (gCM )
. We may choose

orthonormal bases, ΓPn , for gPn such that ΓPn ↑ Γ as n ↑ ∞. Then it is easy to
show that

lim
n→∞

‖f‖L2(GPn ,νPn
T ) = lim

n→∞

∥∥∥f̂ (e)
∥∥∥

J0
T (gPn )

= lim
n→∞

∞∑
n=0

Tn

n!

∑

{hj}n
j=1⊂ΓPn

∣∣∣
〈
f̂ (e) , h1 ⊗ · · · ⊗ hn

〉∣∣∣
2

=
∞∑

n=0

Tn

n!

∑

{hj}n
j=1⊂Γ

∣∣∣
〈
f̂ (e) , h1 ⊗ · · · ⊗ hn

〉∣∣∣
2

=
∥∥∥f̂ (e)

∥∥∥
J0

T (gCM )

from which it follows that supP∈Proj(W )

∥∥∥f̂ (e)
∥∥∥

J0
T (gP )

>
∥∥∥f̂ (e)

∥∥∥
J0

T (gCM )
. ¤

For the next corollary, recall that P and PCM denote the spaces of holomorphic
cylinder polynomials on G and GCM respectively, see Definition 1.6 and Eq. (1.7).

Corollary 6.6. If f : G → C is a continuous function satisfying the bounds in
Proposition 4.12 with p = 2, then f |GCM ∈ H2

T (GCM ) and f̂ (e) ∈ J0
T (gCM ). In

particular, for all T > 0, PCM ⊂ H2
T (GCM ) and for any p ∈ P, p̂ (e) ∈ J0

T (gCM ).
This shows that H2

T (GCM ) and J0
T (gCM ) are non-trivial spaces.

Definition 6.7. For each T > 0, the Taylor map is the linear map, TT :
H2

T (GCM ) → J0
T (gCM ), defined by TT f := f̂ (e).

Corollary 6.8. The Taylor map, TT : H2
T (GCM ) → J0

T (gCM ), is injective. More-
over, the function ‖·‖H2

T (GCM ) is a norm on H2
T (GCM ) which is induced by the

inner product on H2
T (GCM ) defined by

(6.14) 〈u, v〉H2
T (GCM ) := 〈û (e) , v̂ (e)〉J0

T (gCM ) for any u, v ∈ H2
T (GCM ) .

Proof. If f̂ (e) = 0, then ‖f‖H2
T (GCM ) = 0 which then implies that f |GP ≡ 0 for

all P ∈ Proj (W ). As f : GCM → C is continuous and ∪P∈Proj(W )GP is dense in
GCM (see the end of the proof of Theorem 5.9), it follows that f ≡ 0. Hence we
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have shown TT injective. Since ‖·‖J0
T (gCM ) is a Hilbert norm and, by Lemma 6.9,

‖f‖H2
T (GCM ) = ‖TT f‖J0

T (gCM ), it follows that ‖·‖H2
T (GCM ) is the norm onH2

T (GCM )
induced by the inner product defined in Eq. (6.14). ¤

Our next goal is to show that the Taylor map, TT , is surjective. The following
lemma motivates the construction of the inverse of the Taylor map.

Lemma 6.9. For every f ∈ H (GCM ) ,

(6.15) f (g) =
∞∑

n=0

1
n!

〈
f̂n (e) , g⊗n

〉
for any g ∈ GCM ,

where the above sum is absolutely convergent. By convention, g⊗0 = 1 ∈ C. (For a
more general version of this Lemma, see Proposition 5.1 in [3].)

Proof. The function u (z) := f (zg) is a holomorphic function of z ∈ C. Therefore,

f (g) = u (1) =
∞∑

n=0

1
n!

u(n) (0)

and the above sum is absolutely convergent. In fact, one easily sees that for all
R > 0 there exists C (R) < ∞ such that 1

n!

∣∣u(n) (0)
∣∣ 6 C (R)R−n for all n ∈ N.

The proof is now completed upon observing

u(n) (0) =
(

d

dt

)n

u (t) |t=0 =
(

d

dt

)n

f (tg) |t=0

=
(

d

dt

)n

f
(
etg

) |t=0 = (g̃nf) (e) =
〈
f̂n (e) , g⊗n

〉
.

¤

The next theorem is a more precise version of Theorem 1.5.

Theorem 6.10 (Taylor isomorphism theorem). For all T > 0, the space H2
T (GCM )

equipped with the inner product 〈·, ·〉H2
T (GCM ) is a Hilbert space, T (H2

T (GCM )
) ⊂

J0
T (gCM ), and TT := T |H2

T (GCM ) : H2
T (GCM ) → J0

T (gCM ) is a unitary transfor-
mation.

Proof. Given Corollary 6.8, it only remains to prove TT is surjective. So let α ∈
J0

T (gCM ). By Lemma 6.9, if f = T −1
T α exists it must be given by

(6.16) f (g) :=
∞∑

n=0

1
n!

〈
αn, g⊗n

〉
for any g ∈ GCM .

We now have to check that the sum is convergent, the resulting function f is in
H (GCM ), and f̂ (e) = α. Once this is done, we may apply Lemma 6.5 to conclude
that ‖f‖H2

T (GCM ) = ‖α‖J0
T (gCM ) < ∞ and hence we will have shown that f ∈

H2
T (GCM ) and TT f = α. For each n ∈ N∪{0}, the function un (g) := 1

n! 〈αn, g⊗n〉
is a continuous complex n–linear form in g ∈ GCM and therefore holomorphic.
Since |〈αn, g⊗n〉| 6 ‖αn‖n ‖g‖n

gCM
, then for R > 0

sup
{
|un (g)| : ‖g‖gCM

6 R
}

6 ‖αn‖n Rn.
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Therefore it follows that
∞∑

n=0

sup
{
|un (g)| : ‖g‖gCM

6 R
}

6
∞∑

n=0

Tn

n!
‖αn‖n

Rn

Tn

6

√√√√
∞∑

n=0

Tn

n!
‖αn‖2n

√√√√
∞∑

n=0

Tn

n!

(
Rn

Tn

)2

= ‖α‖J0
T (gCM ) eR2/(2T ) < ∞.(6.17)

This shows f (g) = limN→∞
∑N

n=0 un (g) with the limit being uniform over g in
bounded subsets of gCM . Hence, the sum in Eq. (6.16) is convergent and (see [17,
Theorem 3.18.1]) the resulting function, f , is in H (GCM ). Since

f (zh) =
∞∑

n=0

zn

n!
〈
αn, h⊗n

〉
for any z ∈ C and h ∈ gCM ,

it follows that
〈
αn, h⊗n

〉
=

(
d

dz

)n

f (zh) |z=0 =
(

d

dt

)n

f
(
eth

) |t=0 =
〈
f̂n (e) , h⊗n

〉
.

This is true for all n and h ∈ gCM , so we may use the argument following Eq.
(6.13) in [3] (or see the proof of Theorem 2.5 in [7]) to show f̂ (e) = α. ¤

As a consequence of Eq. (6.17) we see that if f ∈ H2
T (GCM ) then

(6.18) |f (g)| 6 ‖f‖H2
T (GCM ) e

‖g‖2gCM
/(2T ) for any g ∈ GCM .

The next theorem, which is an analogue of Bargmann’s pointwise bounds (see [1,
Eq. (1.7)] and [6, Eq. (5.4)]), improves upon the estimate in Eq. (6.18).

Theorem 6.11 (Pointwise bounds). If f ∈ H2
T (GCM ) and g ∈ GCM , then for all

g ∈ GCM ,

(6.19) |f (g)| 6 ‖f‖H2
T (GCM ) ed2

CM (e,g)/(2T ),

where d2
CM (·, ·) is the distance function on GCM defined in Eq. (4.7).

Proof. Let Pn ∈ Proj (W ) be chosen so that Pn|gCM
↑ IgCM

as n → ∞ and recall
that G0 := ∪∞n=1GPn is a dense subgroup of GCM as explained in the proof of
Theorem 5.9. Let g ∈ GPm for some m ∈ N and let σ : [0, 1] → GCM be a C1–curve
such that σ (0) = e and σ (1) = g. Then for n > m, σn (t) := πPn (σ (t)) is a C1

curve in Gn such that σn (0) = e and σn (1) = g. Therefore by [6, Eq. (5.4)], we
have
(6.20)

|f (g)| 6
∥∥f |GPn

∥∥
L2(GPn ,νPn

T ) · e
d2

GPn
(e,g)/(2T ) 6 ‖f‖H2

T (GCM ) · e`2GCM
(σn)/(2T ),

where `GCM
(σn) is the length of σn as in Eq. (4.6). In the proof [4, Theorem 8.1],

it was shown that limn→∞ `GCM (σn) = `GCM (σ). Hence we may pass to the limit
in Eq. (6.20) to find, |f (g)| 6 ‖f‖H2

T (GCM ) · e`2GCM
(σ)/(2T ). Optimizing this last

inequality over all σ joining e to g then shows that Eq. (6.19) holds for all g ∈ G0.
This suffices to prove Eq. (6.19) as both sides of this inequality are continuous in
g ∈ GCM and G0 is dense in GCM . ¤
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7. Density theorems

The following density result is the main theorem of this section and is crucial to
the next section. Techniques similar to those used in this section have appeared in
Cecil [2] to prove an analogous result for path groups over stratified Lie groups.

Theorem 7.1 (Density theorem). For all T > 0, PCM defined by Eq. (1.7) is a
dense subspace of H2

T (GCM ).

Proof. This theorem is a consequence of Corollary 7.4 and Proposition 7.12 below.
¤

The remainder of this section will be devoted to proving the results used in the
proof of the theorem. We will start by constructing some auxiliary dense subspaces
of J0

T (gCM ) and H2
T (GCM ).

7.1. Finite rank subspaces.

Definition 7.2. A tensor, α ∈ J0 (gCM ), is said to have finite rank if αn = 0 for
all but finitely many n ∈ N.

The next lemma is essentially a special case of [7, Lemma 3.5].

Lemma 7.3 (Finite Rank Density Lemma). The finite rank tensors in J0
T (gCM )

are dense in J0
T (gCM ).

Proof. For θ ∈ R, let ϕθ : gCM → gCM be defined by

ϕθ (A, a) =
(
eiθA, ei2θa

)
.

Since

[ϕθ (A, a) , ϕθ (B, b)] =
[(

eiθA, ei2θa
)
,
(
eiθB, ei2θb

)]

=
(
0, ω

(
eiθA, eiθB

))
=

(
0, ei2θω (A,B)

)
= ϕθ [(A, a) , (B, b)]

we see that ϕθ is a Lie algebra homomorphism.
Now let Φθ : T (gCM ) → T (gCM ) be defined by Φθ1 = 1 and

Φθ (h1 ⊗ · · · ⊗ hn) = ϕθh1 ⊗ · · · ⊗ ϕθhn for all hi ∈ gCM and n ∈ N.

If we write ξ ∧ η for ξ ⊗ η − η ⊗ ξ, then

Φθ(ξ ∧ η − [ξ, η]) = (ϕeiθξ) ∧ (ϕeiθη)− ϕeiθ [ξ, η]

= (ϕeiθξ) ∧ (ϕeiθη)− [ϕeiθξ, ϕeiθη].

From this it follows that Φθ (J) ⊂ J and therefore if α ∈ J0 (gCM ), then α ◦ Φθ ∈
J0 (gCM ). Letting Γ be an orthonormal basis as in Eq. (5.8), we have ϕθh = ei2θh
or ϕθh = eiθh for all h ∈ Γ. Therefore it follows that

|〈α ◦ Φθ, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2 = |〈α,ϕθk1 ⊗ ϕθk2 ⊗ · · · ⊗ ϕθkn〉|2

= |〈α, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2

and hence that

‖α ◦ Φθ‖2J0
T (gCM ) =

∞∑
n=0

Tn

n!

∑

k1,k2,...,kn∈Γ

|〈α ◦ Φθ, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2

=
∞∑

n=0

Tn

n!

∑

k1,k2,...,kn∈Γ

|〈α, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2 = ‖α‖2J0
T (gCM ) .
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So the map α ∈ J0
T (gCM ) → α ◦ Φθ ∈ J0

T (gCM ) is unitary. Moreover, since

|〈α, ϕθk1 ⊗ ϕθk2 ⊗ · · · ⊗ ϕθkn〉 − 〈α, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2 6 2 |〈α, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2

we may apply the dominated convergence theorem to conclude

lim
θ→0

‖α ◦ Φθ − α‖2J0
T (gCM )

=
∞∑

n=0

Tn

n!

∑

k1,k2,...,kn∈Γ

lim
θ→0

|〈α,ϕθk1 ⊗ ϕθk2 ⊗ · · · ⊗ ϕθkn〉 − 〈α, k1 ⊗ k2 ⊗ · · · ⊗ kn〉|2

= 0,

so that α → α ◦ Φθ is continuous. (Notice that Φθ ◦ Φα = Φθ+α, so it suffices to
check continuity at θ = 0.)

Let

Fn(θ) =
1

2πn

n−1∑

k=0

k∑

`=−k

ei`θ =
1

2πn

sin2(kθ/2)
sin2(θ/2)

denote Fejer’s kernel [28, p. 143]. Then
∫ π

−π
Fn(θ)dθ = 1 for all n and

lim
n→∞

∫ π

−π

Fn(θ)u(θ)dθ = u (0) for all u ∈ C ([−π, π],C) .

We now let

α (n) :=
∫ π

−π

α ◦ ΦθFn (θ) dθ.

Then

lim sup
n→∞

‖α− α (n)‖2J0
T (gCM ) 6 lim sup

n→∞

∥∥∥∥
∫ π

−π

[α− α ◦ Φθ]Fn (θ) dθ

∥∥∥∥
J0

T (gCM )

6 lim sup
n→∞

∫ π

−π

‖α− α ◦ Φθ‖J0
T (gCM ) Fn (θ) dθ = 0.

Moreover if β := k1, . . . , km ∈ gCM with m > n, then there exits βl ∈ g⊗m
CM such

that

Φθβ =
2m∑

l=m

eilθβl.

From this it follows that

〈α (n) , β〉 :=
∫ π

−π

〈α, Φθβ〉Fn (θ) dθ =
2m∑

l=m

〈α, βl〉
∫ π

−π

eilθFn (θ) dθ = 0

from which it follows that α (n)m ≡ 0 for all m > n. Thus α (n) is a finite rank
tensor for all n ∈ N and lim supn→∞ ‖α− α (n)‖2J0

T (gCM ) = 0. ¤

Corollary 7.4. The vector space,

(7.1) H2
T,fin (GCM ) :=

{
u ∈ H2

T (GCM ) : û (e) ∈ J0
T (gCM ) has a finite rank

}

is a dense subspace of H2
T (GCM ).

Proof. This follows directly from Lemma 7.3 and the Taylor isomorphism Theorem
6.10. ¤
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7.2. Polynomial approximations. To prove Theorem 7.1, it suffices to show
that every element u ∈ H2

T,fin (GCM ) may be well approximated by an element
from H2

T (G). In order to do this, let {ej : j = 1, 2, } ⊂ H∗ be an orthonormal basis
for H and for N ∈ N, define PN ∈ Proj (W ) as in Eq. (2.17), i.e.

(7.2) PN (w) =
N∑

j=1

〈w, ej〉H ej for all w ∈ W.

Let us further define πN := πPN
and

(7.3) uN := u ◦ πN for all N ∈ N.

We are going to prove Theorem 7.1 by showing uN ∈ P and uN → u in H2
T (GCM ).

Remark 7.5. A complicating factor in showing uN |GCM
→ u in H2

T (GCM ) is the
fact that for general ω and P ∈ Proj (W ), πP : G → GP ⊂ GCM is not a group
homomorphism. In fact we have,

(7.4) πP [(w, c) · (w′, c′)]− πP (w, c) · πP (w′, c′) = ΓP (w, w′)

where

(7.5) ΓP (w,w′) =
1
2

(0, ω (w,w′)− ω (Pw, Pw′))

So unless ω is “supported” on the range of P , πP is not a group homomorphism.
Since, (w, b) + (0, c) = (w, b) · (0, c) for all w ∈ W and b, c ∈ C, we may also write
equation 7.4 as

(7.6) πP [(w, c) · (w′, c′)] = πP (w, c) · πP (w′, c′) · ΓP (w,w′) .

Lemma 7.6. To each k := (A, a) ∈ gCM , g = (w, c) ∈ G, and P ∈ Proj (W ), let

(7.7) kP (g) = kP (w, c) := πP k + ΓP (w,A) ∈ gP

where ΓP is defined in Eq. (7.5) above. If u : GCM → C is a holomorphic function
and g ∈ G, then

(7.8)
(
k̃ (u ◦ πP )

)
(g) =

〈
Du (πP (g)) , kP (g)

〉

or equivalently put,

(7.9)
〈
û ◦ πP (g) , k

〉
= 〈D (u ◦ πP ) (g) , k〉 =

〈
Du (πP (g)) , kP (g)

〉
.

Proof. By direct computation,
(
k̃ (u ◦ πP )

)
(g) =

d

dt

∣∣∣
0
u

(
πP

(
g · etk

))

=
d

dt

∣∣∣
0

〈
Du (πP (g)) , [πP (g)]−1 · πP

(
g · etk

)〉

where by Eq. (7.6),

d

dt

∣∣∣
0

(
[πP (g)]−1 · πP

(
g · etk

))
=

d

dt

∣∣∣
0

(
P (tA) , a +

1
2
ω (w, tA)− ω (Pw, tPA)

)

=
(

PA, a +
1
2
ω (w, A)− ω (Pw, PA)

)

= πP k + ΓP (w,A) .

¤
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Notation 7.7. Given P ∈ Proj (W ) and kj = (Aj , cj) ∈ gCM , let Kj := kP
j :

GCM → gCM and κn : GCM → ⊕n
j=1g

⊗j
CM be defined by

κn =
(
k̃n + Kn⊗

)(
k̃n−1 + Kn−1⊗

)
. . .

(
k̃1 + K1⊗

)
1

=
(
k̃n + Kn⊗

)(
k̃n−1 + Kn−1⊗

)
. . .

(
k̃2 + K2⊗

)
K1.(7.10)

In these expressions, Kj⊗ denotes operation of left tensor multiplication by Kj.

Example 7.8. The functions κn are determined recursively by κ1 = K1 and then

(7.11) κn =
(
Kn ⊗+k̃n

)
κn−1 = Kn ⊗ κn−1 + k̃nκn−1 for all n > 2.

The first four κn are easily seen to be given by, κ1 = K1,

κ2 = K2 ⊗K1 + k̃2K1 = K2 ⊗K1 + ΓP (A2, A1) ,

κ3 =
(
K3 ⊗+k̃3

)
(K2 ⊗K1 + ΓP (A2, A1))

= K3 ⊗K2 ⊗K1 + K3 ⊗ ΓP (A2, A1) + ΓP (A3, A2)⊗K1 + K2 ⊗ ΓP (A3, A1) ,

and

κ4 = K4 ⊗K3 ⊗K2 ⊗K1

+
(

K4 ⊗K3 ⊗ ΓP (A2, A1) + K4 ⊗ ΓP (A3, A2)⊗K1 + K4 ⊗K2 ⊗ ΓP (A3, A1)
+ΓP (A4, A3)⊗K2 ⊗K1 + K3 ⊗ ΓP (A4, A2)⊗K1 + K3 ⊗K2 ⊗ ΓP (A4, A1)

)

+ ΓP (A4, A3)⊗ ΓP (A2, A1) + ΓP (A3, A2)⊗ ΓP (A4, A1) + ΓP (A4, A2)⊗ ΓP (A3, A1) .

At the end we will only use κn evaluated at e ∈ GCM . Evaluating the above expres-
sions at e amounts to replacing Kj by πP kj in all of the previous formulas.

Proposition 7.9. If u ∈ H (GCM ), then, with the setup in Notation 7.7, we have

(7.12)
〈
û ◦ πP , kn ⊗ · · · ⊗ k1

〉
= 〈û ◦ πP , κn〉 for any n ∈ N,

where both sides of this equation are holomorphic functions on GCM .

Proof. The proof is by induction with the case n = 1 already completed via Equa-
tion (7.9). To proceed with the induction argument, suppose that Eq. (7.12) holds
for some n ∈ N. Then by induction and the product rule

〈
û ◦ πP , kn+1 ⊗ kn ⊗ · · · ⊗ k1

〉
= k̃n+1

〈
û ◦ πP , kn+1 ⊗ kn ⊗ · · · ⊗ k1

〉

= k̃n+1 〈û ◦ πP , κn〉
=

〈
û ◦ πP , k̃n+1κn

〉
+

〈
k̃n+1 [û ◦ πP ] , κn

〉
.(7.13)

To evaluate k̃n+1 [û ◦ πP ] let v ∈ T (gCM ) and let ṽ denote the corresponding left
invariant differential operator on GCM . Then〈

k̃n+1 [û ◦ πP ] , v
〉

(g) =
(
k̃n+1 〈[û ◦ πP ] , v〉

)
(g)

=
(
k̃n+1 [(ṽu) ◦ πP ]

)
(g)

=
〈
D (ṽu) (πP (g)) , kP

n+1 (g)
〉

=
(
˜kP
n+1 (g)ṽu

)
(πP (g))
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=
〈
û (πP (g)) , kP

n+1 (g)⊗ v
〉
.(7.14)

Combining Eqs. (7.13) and (7.14) shows,
〈
û ◦ πP , kn+1 ⊗ kn ⊗ · · · ⊗ k1

〉
=

〈
û ◦ πP , k̃n+1κn

〉
+

〈
û ◦ πP , kP

n+1 ⊗ κn

〉

=
〈
û ◦ πP , k̃n+1κn + kP

n+1 ⊗ κn

〉
= 〈û ◦ πP , κn+1〉

wherein we have used Eq. (7.11) for the last equality. ¤

The induction proof of the following lemma will be left to the reader with Ex-
ample 7.8 as a guide.

Lemma 7.10. Let kj = (Aj , cj) ∈ gCM for 1 6 j 6 n,
⌊

n
2

⌋
= n/2 if n is even and

(n− 1) /2 if n is odd, and κn be as in Eq. (7.10). Then

(7.15) κn (e) = πP kn ⊗ · · · ⊗ πP k2 ⊗ πP k1 + R (P : kn, . . . , k1) ,

where

(7.16) R (P : kn, , . . . , k1) =
bn

2 c∑

j=1

Rj (P : kn, , . . . , k1)

with Rj (P : k1, . . . , kn) ∈ g
⊗(n−j)
CM . Each remainder term, Rj (P : k1, . . . , kn), is a

linear combination (with coefficients coming from {±1, 0}) of homogenous tensors
which are permutations of the indices and order of the terms in the tensor product
of the form

(7.17) ΓP (A1, A2)⊗ · · · ⊗ ΓP (A2j−1, A2j)⊗ k2j+1 ⊗ · · · ⊗ kn.

Proposition 7.11. Let PN ∈ Proj (W ) and πN := πPN
be as in Notation 1.1 and

suppose that u ∈ H (GCM ) satisfies ‖ûn (e)‖n < ∞ for all n. Then

(7.18) lim
N→∞

∥∥ûn (e)− [
û ◦ πN (e)

]
n

∥∥
n

= 0 for n = 0, 1, 2, . . . ..

Proof. To simplify notation, let αn := ûn (e) and αn (N) :=
[
û ◦ πN (e)

]
n
. Let Γ be

an orthonormal basis for gCM of the form in Eq. (5.8) and let k := (k1, k2, . . . , kn) ∈
Γn. Then

〈α− α (N) , k1 ⊗ · · · ⊗ kn〉 = 〈α, k1 ⊗ · · · ⊗ kn − πNk1 ⊗ · · · ⊗ πNkn〉+〈α, R (PN : k)〉
where R (PN : k) is as in Lemma 7.10. Therefore, ‖αn − αn (N)‖n 6 CN + DN

where

CN :=
√ ∑

k∈Γn

|〈α,R (PN : k)〉|2 and

DN :=
√ ∑

k∈Γn

|〈αn, k1 ⊗ · · · ⊗ kn − πNk1 ⊗ · · · ⊗ πNkn〉|2.

We will complete the proof by showing that, limN→∞ CN = 0 = limN→∞DN . To
estimate CN , use Lemma 7.10 and the triangle inequality for `2 (Γn) to find,

CN =

√√√√√√
∑

k∈Γn

∣∣∣∣∣∣∣

bn
2 c∑

j=1

〈α, Rj (PN : k)〉

∣∣∣∣∣∣∣

2

6
bn

2 c∑

j=1

√ ∑

k∈Γn

|〈α,Rj (PN : k)〉|2.
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But
∑

k∈Γn |〈α, Rj (PN : k)〉|2 is bounded by a sum of terms (the number of these
terms depends only on j and n and not N) of which a typical term (see Eq. (7.17))
is;

(7.19)
∑

k∈Γn

|〈αn−j ,ΓPN
(A1, A2)⊗ · · · ⊗ ΓPN

(A2j−1, A2j)⊗ k2j+1 ⊗ · · · ⊗ kn〉|2 .

The sum in Eq. (7.19) may be estimated by,

‖αn−j‖n−j

∞∑

l1,...,l2j=1

‖ΓPN (el1 , el2)‖2gCM
. . .

∥∥ΓPN

(
el2j−1 , el2j

)∥∥2

gCM
= ‖αn−j‖2n−j εj

N ,

where

εN =
1
4

∞∑

k,l=1

‖ω (ek, el)− ω (PNek, PNel)‖2C

=
1
4

∞∑

max(k,l)>N

‖ω (ek, el)− ω (PNek, PNel)‖2C

6 1
2

∞∑

max(k,l)>N

‖ω (ek, el)‖2C → 0 and N →∞.

Thus we have shown limN→∞ CN = 0
For N ∈ N, let ΓN = {(0, fj)}d

j=1 ∪ {(ej , 0)}N
j=1. Since k1 ⊗ · · · ⊗ kn = πNk1 ⊗

· · · ⊗ πNkn if k := (k1, k2, . . . , kn) ∈ Γn
N , it follows that

D2
N =

∑

k∈Γn\Γn
N

|〈αn, k1 ⊗ · · · ⊗ kn − πNk1 ⊗ · · · ⊗ πNkn〉|2

6 2
∑

k∈Γn\Γn
N

|〈αn, k1 ⊗ · · · ⊗ kn〉|2 .(7.20)

Because ∑

k∈Γn

|〈αn, k1 ⊗ · · · ⊗ kn〉|2 = ‖αn‖2n < ∞

and Γn
N ↑ ΓN as N ↑ ∞, the sum in Eq. (7.20) tends to zero as N → ∞. Thus

limN→∞DN = 0 and the proof is complete. ¤

Proposition 7.12. If u ∈ H2
T,fin (GCM ) and uN := u ◦ πN as in Eq. (7.3), then

uN ∈ P and uN |GCM
→ u in H2

T (GCM ).

Proof. Suppose m ∈ N is chosen so that ûn (e) = 0 if n > m. According to
Proposition 7.9,

〈ûN (e) , kn ⊗ · · · ⊗ k1〉 = 〈û (e) , κn (e)〉

where κn (e) ∈ ⊕bn
2 c

j=1 g
⊗(n−j)
CM . From this it follows that 〈ûN (e) , kn ⊗ · · · ⊗ k1〉 = 0

if n > 2m + 2. Therefore, uN restricted to PNH ×C is a holomorphic polynomial
and since uN = uN |PN H×C ◦ πN , it follows that uN ∈ P. Moreover,

lim
N→∞

‖û (e)− ûN (e)‖2J0
T (gCM ) = lim

N→∞

2m+2∑
n=0

Tn

n!
‖ûn (e)− [ûN (e)]n‖2n = 0,



32 DRIVER AND GORDINA

wherein we have used Proposition 7.11 to conclude limN→∞ ‖ûn (e)− [ûN (e)]n‖n =
0 for all n. It then follows by the Taylor isomorphism Theorem 6.10 that
limN→∞ ‖u− uN‖H2

T (GCM ) = 0. ¤

8. The skeleton isomorphism

This section is devoted to the proof of the skeleton Theorem 1.8. Let us begin
by gathering together a couple of results that we have already proved.

Proposition 8.1. If f : G → C is a continuous function such that f |GCM
is

holomorphic, then

(8.1) ‖f‖L2(νT ) 6 ‖f |GCM ‖H2
T (GCM ) =

∥∥∥f̂ (e)
∥∥∥

J0
T (gCM )

.

If ‖f |GCM ‖2H2
T (GCM ) < ∞, then ST f = f and f satisfies the Gaussian pointwise

bounds in Eq. (6.19). (See Corollary 8.3 for a more sophisticated version of this
proposition.)

Proof. See Theorems 5.9 and 6.11. ¤
Lemma 8.2. Let f : G → C be a continuous function such that f |GCM is holo-
morphic and let δ > 0 be as in Theorem 4.11. If there exists an ε ∈ (0, δ) such that
|f (·)| 6 Ceερ2(·)/(2T ) on G, then

(8.2) ‖f‖L2(νT ) = ‖f‖H2
T (GCM ) =

∥∥∥f̂ (e)
∥∥∥

J0
T (gCM )

< ∞.

(It will be shown in Corollary 8.4 that f is actually in H2
T (G).) In particular, Eq.

(8.2) holds for all f ∈ P.

Proof. Let {Pn}∞n=1 ⊂ Proj (W ) be a sequence such that Pn|gCM
↑ IgCM

as n →∞.
Then, by Lemma 6.5 and Proposition 4.12 with h = 0,

∞ > ‖f‖L2(νT ) = lim
n→∞

‖f‖L2(GPn νPn
T ) = ‖f‖H2

T (GCM ) =
∥∥∥f̂ (e)

∥∥∥
J0

T (gCM )
.

¤
We are now ready to complete the proof of the Skeleton isomorphism Theorem

1.8.

8.1. Proof of Theorem 1.8.

Proof. By Corollary 5.10, ST f = f |GCM for all f ∈ P and hence by Lemma 8.2,
‖ST f‖H2

T (GCM ) = ‖f‖L2(νT ). It therefore follows that ST |P extends uniquely to
an isometry, S̄T , from H2

T (G) to H2
T (GCM ) such that S̄T (P) = PCM . Since S̄T

is isometric and PCM is dense in H2
T (GCM ), it follows that S̄T is surjective, i.e.

S̄T : H2
T (G) → H2

T (GCM ) is a unitary map. To finish the proof we only need to
show ST f = S̄T f for all f ∈ H2

T (G). Let pn ∈ P such that pn → f in L2 (νT ). Then
pn = ST pn → S̄T f in H2

T (GCM ) and hence by the Gaussian pointwise bounds in
Eq. (6.19), S̄T f (g) = limn→∞ pn (g) for all g ∈ GCM . Similarly, using the Gaussian
bounds in Corollary 4.8, it follows that

|ST f (g)− pn (g)| = |ST (f − pn) (g)|

6 ‖f − pn‖L2(νT ) exp
(

c (k (ω) T/2)
T

d2
GCM

(e, g)
)

(8.3)



SQUARE INTEGRABLE HOLOMORPHIC FUNCTIONS 33

and hence we also have, ST f (g) = limn→∞ pn (g) for all g ∈ GCM . Therefore,
ST f = S̄T f as was to be shown. ¤

Corollary 8.3. If f : G → C is a continuous function such that f |GCM
∈

H2
T (GCM ), then f ∈ H2

T (G), ST f = f |GCM
, and ‖f‖L2(νT ) = ‖f‖H2

T (GCM ).

Proof. By Proposition 8.1 we already know that ST f = f |GCM . By Theorem 1.8,
there exists u ∈ H2

T (G) such that f |GCM
= ST u. Let pn ∈ P be chosen so that

pn → u in L2 (νT ) and hence pn|GCM
= ST pn → ST u = ST f in H2

T (GCM ) as
n →∞. Hence it follows from Proposition 8.1 that

‖f − pn‖L2(νT ) 6 ‖(f − pn) |GCM
‖H2

T (GCM ) = ‖ST (f − pn)‖H2
T (GCM ) ,

and therefore, limn→∞ ‖f − pn‖L2(νT ) = 0, i.e. pn → f in L2 (νT ). Since pn → u

in L2 (νT ) as well, we may conclude that f = u ∈ H2
T (G). ¤

Corollary 8.4. Suppose that f : G → C is a continuous function such that |f | 6
Ceερ2/(2T ) and f |GCM

is holomorphic, then f ∈ H2
T (G) and ST f = f .

Proof. This is a consequence of Lemma 8.2 and Corollary 8.3. ¤

9. The holomorphic chaos expansion

This section is devoted to the proof of the holomorphic chaos expansion Theorem
1.9 (or equivalently Theorem 9.10). Before going to the proof we will develop the
machinery necessary in order to properly define the right side of Eq. (1.8).

9.1. Generalities about multiple Itô integrals. Let (H,W) be a complex ab-
stract Wiener space. Analogous to the notation used in Subsection 6.1 we will
denote the norm on H∗⊗n by ‖ · ‖n.

Notation 9.1. For α ∈ H∗⊗n and P ∈ Proj (W), let αP := α ◦ P⊗n ∈ H∗⊗n.

Proposition 9.2. Let n ∈ N and α ∈ H∗⊗n and Pk ∈ Proj (W) with Pk|H ↑ I|H.
Then αPk

→ α in H∗⊗n.

Proof. Let Λ := ∪kΛk be an orthonormal basis for H where Λk is chosen to be an
orthonormal basis for Ran (Pk) such that Λk ⊂ Λk+1 for all k. Since Pku = u or
Pku = 0 for all u ∈ Λ and k ∈ N, we have

|〈α, u1 ⊗ · · · ⊗ un − Pku1 ⊗ · · · ⊗ Pkun〉|2 ≤ |〈α, u1 ⊗ · · · ⊗ un〉|2

where ∑

u1,...,un∈Λ

|〈α, u1 ⊗ · · · ⊗ un〉|2 = ‖α‖2n < ∞.

An application of the dominated convergence theorem then implies,

lim
k→∞

‖α− αPk
‖2n = lim

k→∞

∑

u1,...,un∈Λ

|〈α, u1 ⊗ · · · ⊗ un − Pku1 ⊗ · · · ⊗ Pkun〉|2

=
∑

u1,...,un∈Λ

lim
k→∞

|〈α, u1 ⊗ · · · ⊗ un − Pku1 ⊗ · · · ⊗ Pkun〉|2 = 0.

¤
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Lemma 9.3. Suppose that {b (t)}t≥0 is a W–valued Brownian motion normalized
by

(9.1) E [`1 (b (t)) `2 (b (s))] =
1
2
s ∧ t (`1, `2)H∗Re

for all `1, `2 ∈W∗
Re.

If P ∈ Proj (W), T > 0, and {fs}s≥0 is a (PH)∗–valued continuous adapted process,

such that E
∫ T

0
|fs|2(PH)∗ ds < ∞, then

(9.2) E

∣∣∣∣∣
∫ T

0

〈fs, d (Pb) (s)〉
∣∣∣∣∣

2

=
∫ T

0

E |fs|2(PH)∗ ds.

Proof. Let {ej}d
j=1 be an orthonormal basis for PH and write

Pb (s) =
d∑

j=1

[Xj (s) ej + Yj (s) iej ]

where Xj (s) = Re (Pb (s) , ej) and Yj (s) = Im (Pb (s) , ej). From the normalization

in Eq. (9.1) it follows that
{√

2Xj ,
√

2Yj

}d

j=1
is a sequence of independent standard

Brownian motions, and therefore the quadratic covariations of these processes are
given by:

(9.3) dXjdYk = 0 and dXjdXk = dYjdYk =
1
2
δjkdt for all j, k = 1, . . . , d.

Using Eq. (9.3) along with the identity,

(9.4) 〈fs, d (Pb) (s)〉 =
d∑

j=1

[〈fs, ej〉 dXj (s) + 〈fs, iej〉 dYj (s)] ,

it follows by the basic isometry property of the stochastic integral that

E

∣∣∣∣∣
∫ T

0

〈fs, d (Pb) (s)〉
∣∣∣∣∣

2

=
1
2

d∑

j=1

E

[∫ T

0

|〈fs, ej〉|2 ds +
∫ T

0

|〈fs, iej〉|2 ds

]

= E
∫ T

0

d∑

j=1

|〈fs, ej〉|2 ds =
∫ T

0

E |fs|2(PH)∗ ds.

¤

Definition 9.4. For P ∈ Proj (W), n ∈ N, and T > 0, let

MP
n (T ) :=

∫

0≤s1≤s2≤···≤sn≤T

dPb (s1)⊗ dPb (s2)⊗ · · · ⊗ dPb (sn) .

Alternatively put, MP
0 (T ) ≡ 1 and MP

n (t) ∈ (PH)⊗n is defined inductively by

(9.5) MP
n (t) :=

∫ t

0

MP
n−1 (s)⊗ dPb (s) for all t ≥ 0.

Corollary 9.5. Suppose that T > 0, α ∈ H∗⊗n, and P ∈ Proj (W), then〈
α, MP

n (T )
〉

is a square integrable random variable and

E
∣∣〈α,MP

n (T )
〉∣∣2 =

Tn

n!
‖αP ‖2n .
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Proof. The proof is easily carried out by induction with the case n = 1 following
directly from Lemma 9.3. Similarly from Lemma 9.3, Eq. (9.5), and induction we
have

E |α̃P |2 = E

∣∣∣∣∣
∫ T

0

〈
α, MP

n−1 (s)⊗ dPb (s)
〉
∣∣∣∣∣

2

=
∫ T

0

d∑

j=1

E
∣∣〈α, MP

n−1 (s)⊗ ej

〉∣∣2 ds

=
d∑

j=1

∫ T

0

sn−1

(n− 1)!
‖〈α, (·)⊗ ej〉‖2n−1 ds =

Tn

n!
‖α‖2n .

¤
Notation 9.6. We now fix T > 0 and for P ∈ Proj (W), let α̃P =

〈
α, MP

n (T )
〉
,

i.e.

α̃P =
〈

α,

∫

0≤s1≤s2≤···≤sn≤T

dPb (s1)⊗ dPb (s2)⊗ · · · ⊗ dPb (sn)
〉

.

Lemma 9.7. If P, Q ∈ Proj (W), then

‖α̃P − α̃Q‖2L2 := E |α̃P − α̃Q|2 =
Tn

n!
‖αP − αQ‖2n .

Proof. Let R ∈ Proj (W) be the orthogonal projection onto Ran (P )+Ran (Q). We
then have (αP )R = αP and (αQ)R = αQ and therefore, by Corollary 9.5,

E |α̃P − α̃Q|2 = E
∣∣∣(αP )˜R − (αQ)˜R

∣∣∣
2

= E
∣∣∣(αP − αP )˜R

∣∣∣
2

=
Tn

n!
‖(αP − αP )R‖2n =

Tn

n!
‖αP − αP ‖2n .

¤
Proposition 9.8. Let α ∈ H∗⊗n and Pk ∈ Proj (W) with Pk|H ↑ I|H, then
{α̃Pk

}∞k=1 is an L2–convergent series. We denote the limit by α̃. This limit is
independent of the choice of orthogonal projections used in constructing α̃.

Proof. For k, l ∈ N, by Lemma 9.7,

‖α̃Pl
− α̃Pk

‖L2 = ‖αPl
− αPk

‖n → 0 as l, k →∞,

because, as we have already seen, αPl
→ α in H∗⊗n. Therefore α̃ := L2–

limk→∞ α̃Pk
exists.

Now suppose that Ql ∈ Proj (W) also increases to I|H. By Lemma 9.7 and the
fact that both αPl

and αQl
converge to α in H∗⊗n, we have

‖α̃Pl
− α̃Ql

‖L2 = ‖αPl
− αQl

‖H∗⊗n → 0 as l →∞.

¤
By polarization of the identity, ‖α̃‖2L2 = Tn ‖α‖2n /n!, it follows that

(
α̃, β̃

)
L2

=
Tn

n!
(α, β)H∗⊗n for all α, β ∈ H∗⊗n.

Moreover, if α ∈ H∗⊗n and β ∈ H∗⊗m with m 6= n, by the orthogonality of the
finite dimensional approximations, α̃Pl

and β̃Pl
, we have that

(
α̃, β̃

)
L2

= 0.
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Corollary 9.9 (Itô’s isometry). Suppose that α = {αn}∞n=0 ∈
∞⊕

n=0

T n

n! H
∗⊗n, i.e.

αn ∈ H∗⊗n for all n such that

‖α‖2T =
∞∑

n=0

Tn

n!
‖αn‖2n < ∞.

Then α̃ :=
∑∞

n=0 α̃n is L2 (P)–convergent and the map,
∞⊕

n=0

Tn

n!
H∗⊗n 3 α 7→ α̃ ∈ L2 (P) ,

is an isometry, where P is the probability measure used in describing the law of
{b (t)}t≥0.

9.2. The stochastic Taylor map. Let b (t) = (B (t) , B0 (t)) ∈ g and g (t) ∈ G be
the Brownian motions introduced at the start of Section 4. We are going to use the
results of the previous subsection with H = gCM ,W = g, and b (t) = (B (t) , B0 (t)).
Let f ∈ H2

T (G) and αf := TT ST f ∈ J0
T (gCM ). The following theorem is a (precise)

restatement of Theorem 1.9.

Theorem 9.10. For any f ∈ H2
T (G)

(9.6) f (g (T )) = α̃f ,

where α̃f was introduced in Corollary 9.9. (The right hand side of Eq. (1.8) is to
be interpreted as α̃f .)

Proof. First suppose that f is a holomorphic polynomial and P ∈ Proj (W ) so that
πP ∈ Proj (g). Then by Itô’s formula,

f (gP (T )) = f (e) +
∫ T

0

〈Df (gP (t)) , dπP b (t)〉 .

Iterating this equation as in the proof of [3, Proposition 5.2], if N ∈ N is sufficiently
large, then

f (gP (T )) = f (e) +
N∑

n=1

∫

0≤s1≤s2≤···≤sn≤T

〈Dnf (e) , dπP b (s1)⊗ · · · ⊗ dπP b (sn)〉

= f (e) +
N∑

n=1

[Dnf (e)]˜πP
.

We now replace P by Pk ∈ Proj (W ) with Pk ↑ I in this identity. Using Propositions
4.12 and 9.8, we may now pass to the limit as k →∞ in order to conclude,

(9.7) f (g (T )) = f (e) +
N∑

n=1

[Dnf (e)]˜ = α̃f .

Now suppose that f ∈ H2
T (G). By Theorem 7.1 we can find a sequence of

holomorphic polynomials {fn}∞n=1 ⊂ P such that

E |f (g (T ))− fn (g (T ))|2 = ‖f − fn‖2L2(νT ) → 0 as n →∞.

The isometry property of the Taylor and skeleton maps (Theorem 6.10 and Corol-
lary 8.3), shows that αfn → αf in J0

T and therefore by Corollary 9.9 α̃fn → α̃f
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as n → ∞. Hence we may pass to the limit in Eq. (9.7) applied to the sequence
fn (g (T )) = α̃fn

, to complete the proof of Eq. (9.6). ¤

10. Future directions and questions

In this last section we wish to speculate on a number of ways that the results in
this paper might be generalized.

(1) It should be possible to remove the restriction on C being finite dimensional,
i.e. we expect much of what have done in this paper to go through when
C is replaced by a separable Hilbert space. In doing so one would have to
modify the finite dimensional approximations used in our construction to
truncate C as well.

(2) We also expect that the level of non-commutativity of G may be increased.
To be more precise, under suitable hypothesis it should be possible to handle
more general graded nilpotent Lie groups.

(3) Open questions:
(a) as we noted in Remark 5.13 we do not know if Ap

T = Hp
T (G). It might

be easier to try to answer this question for p = 2.
(b) give an intrinsic characterization of H2

T (G) as in Shigekawa [25] in
terms of functions in L2 (νT ) solving a weak form of the Cauchy–
Riemann equations.

Acknowledgement. We are grateful to Professor Malliavin whose question during
a workshop at the Hausdorff Institute (Bonn, Germany) led us to include a section
on a holomorphic chaos expansion.
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