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Abstract. We show that the logarithmic derivatives of the convolution heat
kernels on a uni-modular Lie group are exponentially integrable. This result is
then used to prove an “integrated” Harnack inequality for these heat kernels.
It is shown that this integrated Harnack inequality is equivalent to a version
of Wang’s Harnack inequality. (A key feature of all of these inequalities is that
they are dimension independent.) Finally, we show these inequalities imply
quasi-invariance properties of heat kernel measures for two classes of infinite
dimensional “Lie” groups.
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1. Introduction

1.1. Basic setup. Let (M, g) be a connected complete Riemannian manifold,
d : M × M → [0,∞) be the Riemannian distance function, dV be the Rie-
mannian volume measure on M, ∆ be the Laplace–Beltrami operator acting on
the space of smooth differential forms, Ω (M) , over M, and ∆0 := ∆|Ω0

c(M),

where Ω0
c (M) := C∞c (M) is the space of compactly supported smooth func-

tions on M. From Gaffney [25], Roelcke [52], Chernoff [10] and Strichartz [59],
we know that the L2 (M, dV )–closure, ∆̄0, of ∆0 is a non-positive self-adjoint op-
erator on L2 (M,dV ) . Moreover, there exists an associated smooth heat kernel,
(0,∞)×M ×M 3 (t, x, y) → pt (x, y) ∈ (0,∞) , such that pt (x, y) = pt (y, x) ,

(1.1)
∫

M

pt(x, y)dV (y) ≤ 1 for all x ∈ M, and

(1.2)
(
et∆̄0/2f

)
(x) =

∫

M

pt(x, y)f(y)dV (y) for all f ∈ L2(M).

For the bulk of this paper we will be considering the special case where M = G is
a Lie group equipped with a left invariant Riemannian metric as we now describe.

Let G be a connected finite dimensional uni-modular Lie group, g = Lie (G) be its
Lie algebra, and suppose that g is equipped with an inner product, (·, ·) = (·, ·)g .

Let |A|g :=
√

(A,A) for all A ∈ g. We endow G with the unique left invariant
Riemannian metric which agrees with (·, ·)g at e ∈ G, i.e. the unique metric on
G such that Lg∗ : g → TgG is isometric for all g ∈ G. The Riemannian distance
between x, y ∈ G will be denoted by d (x, y) .

For A ∈ g let Ã denote the unique left invariant vector field on G such that
Ã (e) = A ∈ g and let L =

∑dim g
i=1 Ã2

i where {Ai}dim g
i=1 is an orthonormal basis for

g. As is well-known, since G is uni-modular, L is the Laplace-Beltrami operator
(for example, see [21, Remark 2.2] and Lemma 6.1 below) restricted to C∞ (G) .
Since Lg : G → G is an isometry for all g ∈ G, if pt (x, y) is the heat kernel on
G, then pt (gx, gy) = pt (x, y) for all x, y, g ∈ G. Taking g = x−1 then implies
that pt (x, y) = pt

(
e, x−1y

)
. Similarly, d (gx, gy) = d (x, y) for all x, y, g ∈ G and

therefore d (x, y) = d
(
e, x−1y

)
.

Notation 1.1. By a slight abuse of notation, let pt (x) := pt (e, x) for x ∈ G. We
will refer to pt (·) as the convolution heat kernel on G and to the probability
measure, dνt (x) := pt (x) dx, as the heat kernel measure on G. We also write
dx for dV (x) and |x| for d (e, x) .

The following lemma is an immediate consequence of the comments above and
the basic properties of pt (x, y) .

Lemma 1.2. For all x, y ∈ G

(1) d (x, y) =
∣∣x−1y

∣∣ ,

(2)
∣∣x−1

∣∣ = |x|
(3) pt

(
x−1

)
= pt (x)

(4) pt (x, y) = pt

(
x−1y

)
= pt

(
y−1x

)
,

(5) dV is a bi-invariant Haar measure on G,
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(6) for f ∈ L2 (G, dV ) ,
(
et∆̄0/2f

)
(x) =

∫

G

pt

(
x−1y

)
f (y) dy

=
∫

G

pt

(
y−1x

)
f (y) dy

=
∫

G

pt (yx) f
(
y−1

)
dy.

1.2. The main theorems.

Definition 1.3. For A ∈ g and T > 0, let

WT
A (x) := −

(
Ã ln pT

)
(x) = −

(
ÃpT

)
(x)

pT (x)
.

The significance of WT
A in the above definition stems from the following integra-

tion by parts identity;

(1.3)
∫

G

Ãf (x) pT (x) dx =
∫

G

f (x)WT
A (x) pT (x) dx ∀ f ∈ C∞c (G) .

We may now state the main theorems of this paper.

Theorem 1.4. If T > 0 and A ∈ g, then

(1.4)
∫

G

eW T
A (x)pT (x) dx ≤ exp

(
c (kT )

2T
|A|2g

)
,

where c (·) is as in Eq. (1.7).

The proof of this theorem relies on martingale inequalities applied to the proba-
bilistic representation for Ã ln pT (x) in Theorem 6.4. We also have another related
integral bound on WT

A .

Theorem 1.5. Continuing the notation in Theorem 1.6 and in particular let c (·)
be as in Eq. (1.7). Then for any p ∈ (1,∞) there is a constant, Cp < ∞ such that

(1.5)
∥∥WT

A

∥∥
Lp(νT )

≤ Cp

√
c (kT )

T
|A| for all A ∈ g.

These theorems will be proved in Sections 5 and 6 below. Also see [22, Theorem
5.11] for a version of this theorem valid on a general compact Riemannian manifold
and Proposition E.1 in Appendix E where we use a Hamilton type inequality to show
that an inequality similar to that in Eq. (1.4) holds on any complete Riemannian
manifolds whose Ricci curvature is bounded from below. However, see Remark E.2
where it is noted that, in general, we can not choose the constants appearing in
Proposition E.1 to be independent of dimension.

The following theorem is a corollary of Theorem 1.4 above and Theorem 2.5
below. The details will be given in Section 3 below.

Theorem 1.6. Let T > 0 be given and let k ∈ R be a lower bound on the Ricci
curvature, Ric ≥ kI. Then for every y ∈ G and p ∈ [1,∞),

(1.6)

(∫

G

[
pT

(
xy−1

)

pT (x)

]p

pT (x) dx

)1/p

≤ exp
(

c (kT ) (p− 1)
2T

|y|2
)
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where

(1.7) c (t) =
t

et − 1
for all t ∈ R

with the convention that c (0) = 1.

From Theorem 1.6 and Lemma 1.2 we have,
(∫

G

[
pT (y, x)
pT (z, x)

]p

pT (z, x) dx

)1/p

=

(∫

G

[
pT

(
y−1x

)

pT (z−1x)

]p

pT

(
z−1x

)
dx

)1/p

=

(∫

G

[
pT

(
y−1zx

)

pT (x)

]p

pT (x) dx

)1/p

≤ exp
(

c (kT ) (p− 1)
2T

∣∣y−1z
∣∣2

)

= exp
(

c (kT ) (p− 1)
2T

d2 (y, z)
)

(1.8)

for all y, z ∈ G. This form of the integrated Harnack inequality makes sense on any
Riemannian manifold. We will show in Corollary D.3 of Appendix D below that Eq.
(1.8) does indeed hold when G is replaced by a complete connected Riemannian
manifold with Ric ≥ kI for some k ∈ R. The key point is that the estimate in
Eq. (1.8) is equivalent to Wang’s dimension free Harnack inequality, see [65, 66]
and Theorem D.2 below. We are grateful to Michael Röckner for pointing out the
relationship between Wang’s inequality and the integrated Harnack inequality in
Eq. (1.8).

Remarks 1.7. Some of the key features of Theorem 1.6 are:
(1) As seen in Example 1.1) below, the estimate in Eq. (1.6) is sharp when

G = Rn.
(2) For T near zero, c (kT ) /T ∼= 1/T and for T large, c (kT ) /T ∼= max (0,−k) .
(3) The estimate in Eq. (1.6) is dimension independent and therefore has

applications to infinite dimensional settings, see Section 7 below.

Let Ry : G → G (Ly : G → G) be the operation of right (left) multipli-
cation by y ∈ G, νT ◦ R−1

y

(
νT ◦ L−1

y

)
be νT pushed forward by Ry (Ly) , and

d
(
νT ◦R−1

y

)
/dνT denote the Radon-Nikodym derivative of νT ◦ R−1

y with respect
to νT . For the infinite dimensional applications of Section 7, it is convenient to
rewrite Eq. (1.6) as

(1.9)

∥∥∥∥∥
d

(
νT ◦R−1

y

)

dνT

∥∥∥∥∥
Lp(G,νT )

≤ exp
(

c (kT ) (p− 1)
2T

d2 (e, y)
)

.

By Lemma 1.2, Eq. (1.6) may be also be expressed as

(1.10)
(∫

G

[
pT (xy)
pT (x)

]p

pT (x) dx

)1/p

≤ exp
(

c (kT ) (p− 1)
2T

|y|2
)

or as

(1.11)

(∫

G

[
pT

(
y−1x

)

pT (x)

]p

pT (x) dx

)1/p

≤ exp
(

c (kT ) (p− 1)
2T

|y|2
)

.
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This last equality is equivalent to the left translation analogue of Eq. (1.9), namely

(1.12)

∥∥∥∥∥
d

(
νT ◦ L−1

y

)

dνT (·)

∥∥∥∥∥
Lp(G,νT )

≤ exp
(

c (kT ) (p− 1)
2T

|y|2
)

.

1.3. Examples and applications.

Example 1.1. Suppose G = Rn so that g ∼= Rn which we assume has been
equipped with the standard inner product. In this case

pT (x) =
(

1
2πT

)n/2

exp

(
−|x|

2

2T

)
,

where |x|2 :=
∑n

i=1 x2
i . For A ∈ g and f ∈ C1

c (Rn) we have Ã = ∂A and
∫

Rn

Ãf (x) pT (x) dx = −
∫

Rn

f (x) ∂ApT (x) dx =
∫

Rn

f (x)
x ·A
T

pT (x) dx

from which it follows that WT
A (x) = x·A

T . By simple Gaussian integrations,

∫

Rn

eW T
A (x)pT (x) dx = exp

(
|A|2g
2T

)
,

(∫

Rn

[
pT (x− y)

pT (x)

]p

pT (x) dx

)1/p

=
(∫

Rn

[
e−

1
2T |y|2+ 1

T x·y
]p

pT (x) dx

)1/p

= e−
(p−1)

2T |y|2 = exp
(

c (0)
(p− 1)

2T
|y|2

)
,

and

(1.13)
∫

Rn

∣∣WT
A (x)

∣∣p pT (x) dx =
∫

Rn

∣∣∣∣
x ·A
T

∣∣∣∣
p

pT (x) dx = T p/2 |A|p C̃p
p ,

where

C̃p
p :=

∫

Rn

|x|p p1 (x) dx.

The first two results show the estimates in Eqs. (1.4) and (1.6) are sharp. The
identity in Eq. (1.13) shows the form of Eq. (1.5) is sharp. We do not know if, in
general, the constant Cp appearing in Eq. 1.5 can be taken to be C̃p defined above.

Our main interest in Theorem 1.6 is in its application to proving that certain
“heat kernel measures” on infinite dimensional Lie groups, G, are quasi-invariant
under left and right translations by elements of a certain subgroup, G0. We will
postpone our discussion of this application to Section 7. For now let us give a
couple of finite dimensional applications of Theorems 1.6 and 1.5.

Proposition 1.8. Suppose that T > 0, p > 1, and f ∈ Lp (νT ) is a harmonic
function, i.e. ∆f = 0. Then

(1.14)
∫

G

pT (y, x) f (x) dx = f (y) for all y ∈ G.
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At an informal level we expect
∫

G

pt (y, x) f (x) dx =
(
et∆̄0/2f

)
(y)

and hence
d

dt

∫

G

pt (y, x) f (x) dx =
d

dt

(
et∆̄0/2f

)
(y) =

(
et∆̄0/2 ∆̄0

2
f

)
(y) = 0.

Therefore it is reasonable to conclude that∫

G

pT (y, x) f (x) dx =
(
eT ∆̄0/2f

)
(y) =

(
e0∆̄0/2f

)
(y) = f (y) .

However, this argument is not rigorous as f is only square–integrable relative to
the rapidly decaying measure, νT , rather than to Haar measure on G. The rigorous
proof of Proposition 1.8 will be given in Section 7.

The following corollary is a simple consequence of Proposition 1.8, Eq. (7.4) in
the proof of this proposition, and Theorem 1.6 in the form of Eq. (1.11).

Corollary 1.9. Suppose that p ∈ (1,∞) . Under the hypothesis of Theorem 1.6, if
f ∈ Lp (νT ) and f is harmonic (i.e. ∆f = 0), then

(1.15) |f (y)| ≤ ‖f‖Lp(νT ) exp
(

c (kT )
2T (p− 1)

|y|2
)

.

In particular, if G is further assumed to be a complex Lie group and f ∈ Lp (νT ) is
assumed to be holomorphic, then the pointwise bound in Eq. (1.15) is still valid.

Remark 1.10. When f is holomorphic, p = 2, T = 1/2, and G = Cd, the inequality
in Eq. (1.15) is Bargmann’s pointwise bound in [3, (Eq. (1.7)] except that the
constant in the exponent is off by a factor of two. More generally, when G is a
general complex Lie group and f is holomorphic, it has been shown in [21, Corollary
5.4] that

|f(y)| ≤ ‖f‖L2(νt/2) e|y|
2/2t for all y ∈ G.

The reason for the discrepancy in the coefficients in the exponents between these
inequalities is that pt/2 (x, y) is not the reproducing kernel for the holomorphic
functions in L2

(
νt/2

)
in that y → pt/2 (x, y) is not holomorphic. The coefficient in

the exponent of Eq. (1.15) is also not sharp since y → pT (x, y) is not harmonic.

2. Lp – Jacobian estimates

Let M be a finite dimensional manifold, µ be a probability measure on M with
a smooth, strictly positive density in each coordinate chart. For r > 0, let ‖f‖r :=(∫

M
|f |r dµ

)1/r denote the Lr (µ) – norm of f : M → C.
Let Xt be a time dependent vector field and let St denote its flow, i.e. St (m)

solves,

(2.1)
d

dt
St (m) = Xt ◦ St (m) with S0 (m) = m for all m ∈ M.

We will assume that Xt is forward complete, i.e. St (m) exists for all t ≥ 0 and
m ∈ M. Define

µt = (St)∗ µ = µ ◦ S−1
t .
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Since µt also has a strictly positive density in each coordinate chart the Radon-
Nikodym derivative

Jt = dµt/dµ

exists for all t ≥ 0. Our goal of this section is to prove Theorem 2.5 below which
gives an upper bound on ‖Jt‖p for p ∈ (1,∞) . This result is a slight extension of
the part of Theorem 2.14 in Galaz-Fontes, Gross, and Sontz [27] to the setting of
time dependent vector fields, Xt. For the readers convenience we will sketch the
method introduced in [27, Theorem 2.14]. In what follows, 0 ln 0 is to always be
interpreted to be 0.

Lemma 2.1. Suppose that (t,m) ∈ (0, T ) × M → ht (m) ∈ [0,∞) is a smooth
bounded function and r : (0, T ) → (1,∞) is a C1 – function. Then

(2.2)
d

dt
ln ‖ht‖r(t) =

ṙ (t)
r (t)

∫

M

h
r(t)
t

‖ht‖r(t)
r(t)

(
ln

ht

‖ht‖r(t)

)
dµ+

1
r (t)

∫

M

d
ds |s=th

r(t)
s

‖ht‖r(t)
r(t)

dµ.

Proof. For the reader’s convenience we will give a formal derivation of this identity
and refer the reader to Gross [32, Lemma 1.1] for the technical details. For r > 0
and any bounded measurable function, g : M → R, a straight forward calculation
shows

d

dr
ln ‖g‖r =

1
r

∫

M

|g|r
‖g‖r

r

(
ln

|g|
‖g‖r

)
dµ.

If we further assume that r > 1 and v : M → R is another bounded measurable
function, then

∂v ln ‖g‖r = ∂v

[
1
r

ln
(∫

M

|g|r dµ

)]
=

1
r

∫
M

∂v |g|r dµ∫
M
|g|r dµ

=
1
r

∫

M

∂v |g|r
‖g‖r

r

dµ =
∫

M

|g|r−1 sgn(g)
‖g‖r

r

v dµ.

These two identities along with the chain rule,

d

dt
ln ‖ht‖r(t) =

d

ds
|s=t

[
ln ‖ht‖r(s) + ln ‖hs‖r(t)

]
,

easily give Eq. (2.2). ¤

Lemma 2.2. Let W ∈ L1 (µ) and f ≥ 0 be a bounded measurable function. Then,
for all s > 0,

(2.3)
∫

M

Wfdµ ≤ s

∫

M

f ln
f

µ (f)
dµ + sB (W/s)

∫

M

fdµ

where

B (W ) := ln
(
µ

(
eW

))
= ln

(∫

M

eW dµ

)
.

Proof. Recall that Young’s inequality states, xy ≤ ex + y ln y − y for x ∈ R and
y ≥ 0, where 0 ln 0 := 0. Applying Young’s inequality with x = W and y = f and
then integrating the result gives

∫

M

Wfdµ ≤
∫

M

eW dµ +
∫

M

[f ln f − f ] dµ.
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Replacing f by λf with λ > 0 in this inequality then shows∫

M

Wfdµ ≤ λ−1

[∫

M

eW dµ +
∫

M

[λf ln (λf)− λf ] dµ

]

= λ−1

∫

M

eW dµ + ln λ

∫

M

fdµ +
∫

M

[f ln f − f ] dµ.

The minimizer of the right side of this inequality occurs at λ =
(∫

M
eW dµ

) ·(∫
M

fdµ
)−1 and using this value for λ gives

(2.4)
∫

M

Wfdµ ≤
∫

M

f ln
f

µ (f)
dµ + B (W )

∫

M

fdµ.

(The proof of Eq. (2.4) was predicated on the assumption that B (W ) < ∞ but
clearly Eq. (2.4) remains valid when B (W ) = ∞.) The estimate in Eq. (2.3) follows
directly from this by replacing W by W/s. ¤
Definition 2.3. The µ–divergence of a smooth vector field, X, on M is the function
W = Wµ

X defined by∫

M

Xϕdµ =
∫

M

ϕWdµ, for all ϕ ∈ C1
c (M).

Proposition 2.4. Let Xt and St be as in Eq. (2.1), Wt := WXt be the µ–divergence
of Xt, h ∈ C1 (M, [0,∞)) , ht := h ◦S−1

t , and r ∈ C1 ((0, τ) , (1,∞)) . Then for any
s > 0 we have

(2.5)
d

dt
ln ‖ht‖r(t) ≥

(
ṙ

r
− s

) ∫

M

hr
t

‖ht‖r
r

(
ln

ht

‖ht‖r

)
dµ− s

r
B (

s−1Wt

)
.

Proof. Differentiating the identity St ◦ S−1
t (m) = m and making use of the flow

Eq. (2.1) implies

Xt (m) + (St)∗
d

dt
S−1

t (m) = 0.

Therefore,
d

dt
S−1

t (m) = − (
S−1

t

)
∗Xt (m)

or equivalently,
d

dt
f

(
S−1

t (m)
)

= −Xt

(
f ◦ S−1

t

)
(m) for all f ∈ C1 (M) .

Using this identity along with Eq. (2.2) shows

(2.6)
d

dt
ln ‖ht‖r(t) =

ṙ

r

∫

M

hr
t

‖ht‖r
r

(
ln

ht

‖ht‖r

)
dµ− 1

r

∫

M

Xth
r
t

‖ht‖r
r

dµ

where r = r (t) and ṙ = ṙ (t) . Combining this identity with the definition of Wt

and the estimate in Eq. (2.3) with W = Wt and f = hr
t

‖ht‖r
r

then implies,

d

dt
ln ‖ht‖r(t) =

ṙ

r

∫

M

hr
t

‖ht‖r
r

(
ln

ht

‖ht‖r

)
dµ− 1

r

∫

M

Wt
hr

t

‖ht‖r
r

dµ

≥ ṙ

r

∫

M

hr
t

‖ht‖r
r

(
ln

ht

‖ht‖r

)
dµ

− s

r

[∫

M

hr
t

‖ht‖r
r

ln
hr

t

‖ht‖r
r

dµ + B (Wt/s)
]
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which is the same as Eq. (2.5). ¤

The following theorem is the extension of Galaz-Fontes, Gross, and Sontz [27,
Theorem 2.14] from time–independent vector fields to time–dependent vector fields.
These results generalize the fundamental results of Cruzerio [11] – also see [4, 5,
12, 17, 49, 50] for other related results.

Theorem 2.5 (Jacobian Estimate). Let p > 1 and r ∈ C ([0, τ ] , [1,∞)) ∩
C1 ((0, τ) , (1,∞)) such that r (0) = 1, r (τ) = p and ṙ (t) > 0 for 0 < t < τ,
then

(2.7) ‖Jτ‖p′ ≤ eΛ(r),

where p′ := p/ (p− 1) is the conjugate exponent to p and

(2.8) Λ (r) = ΛX (r) :=
∫ τ

0

ṙ (t)
r2 (t)

B
(

r (t)
ṙ (t)

Wt

)
dt.

Proof. Taking s = ṙ/r in Eq. (2.5) gives

d

dt
ln ‖ht‖r(t) ≥ − ṙ

r2
B

(r

ṙ
Wt

)

which integrates to

∥∥h ◦ S−1
τ

∥∥
p

= ‖hτ‖p ≥ ‖h‖1 exp
(
−

∫ τ

0

ṙ (t)
r2 (t)

B
(

r (t)
ṙ (t)

Wt

)
dt

)
.

Replacing h by h ◦ Sτ in this inequality implies

(2.9)
∫

M

hJτdµ = ‖h ◦ Sτ‖1 ≤ ‖h‖p eΛ(r).

Let Lp (µ)+ denote the almost everywhere non-negative functions in Lp (µ) . Since
Eq. (2.9) is valid for all h ∈ C1 (M, [0,∞)) and the latter functions are dense in
Lp (µ)+ (see the proof of Lemma 2.8 in [27]), it follow that Eq. (2.9) is valid for
all h ∈ Lp (µ)+ . Equation 2.7) now follows by the converse to Hölder’s inequality.
Indeed, let K ⊂ M be a compact set and take h = Jp′−1

τ 1K = J
1/(p−1)
τ 1K in Eq.

(2.9) to find
∫

M

Jp′
τ 1Kdµ ≤

∥∥∥J1/(p−1)
τ 1K

∥∥∥
p
eΛ(r) =

(∫

M

Jp′
τ 1Kdµ

)1/p

eΛ(r).

This inequality is equivalent to

‖Jτ1K‖p′ =
(∫

M

Jp′
τ 1Kdµ

)1−1/p

≤ eΛ(r).

Now replacing K by Kn with Kn compact and Kn ↑ M and passing to the limit as
n →∞ in the previous inequality gives the estimate in Eq. (2.7). ¤

3. Proof of Theorem 1.6

In this section we will give a proof of Theorem 1.6 assuming that Theorem 1.4
holds.
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Proof. (Proof of Theorem 1.6.) In order to abbreviate the notation, let c :=
c (kT ) /T. Let g ∈ C1 ([0, 1] , G) be such that g (0) = e ∈ G and g (1) = y ∈ G

and define At := L−1
g(t)∗ġ (t) ∈ g. If we now let Xt := Ãt ∈ Γ (TG) , then the flow,

St, of Xt satisfies, St (x) = xg (t) . Indeed, because Xt is left invariant,
d

dt
xg (t) = Lx∗ġ (t) = Lx∗Lg(t)∗At = Lxg(t)∗At = Xt (xg (t)) .

In order to apply the Jacobian estimate in Theorem 2.5, let dµ (x) = dνT (x) :=
pT (x) dx and observe that∫

G

h (S1 (x)) dµ (x) =
∫

G

h (xy) dµ (x) =
∫

G

h (xy) pT (x) dx

=
∫

G

h (x) pT

(
xy−1

)
dx =

∫

G

h (x)
pT

(
xy−1

)

pT (x)
dµ (x)

from which it follows that

(3.1) J1 (x) :=
d (S1)∗ µ

dµ
(x) =

pT

(
xy−1

)

pT (x)
.

Moreover, if Wt = W νT

Xt
is the µ = νT – divergence of Xt, by Theorem 1.4,

(3.2) B (λWt) = ln
(∫

G

eλWtdµ

)
≤ c (kT )

T
λ2 |At|2g .

Hence it follows from Theorem 2.5 that

(3.3)




∫

G

(
pT

(
xy−1

)

pT (x)

)p′

pT (x) dx




1/p′

= ‖J1‖p′ ≤ eΛ(r),

where

Λ (r) =
∫ 1

0

ṙ (t)
r2 (t)

B
(

r (t)
ṙ (t)

Wt

)
dt

≤ c

∫ 1

0

ṙ (t)
r2 (t)

r2 (t)
ṙ2 (t)

|At|2g dt = c

∫ 1

0

|At|2g
ṙ (t)

dt,

and r ∈ C ([0, 1] , [1,∞)) ∩ C1 ((0, 1) , (1,∞)) such that r (0) = 1, r (1) = p and
ṙ (t) > 0 for 0 < t < 1.

We now want to choose r (t) so as to minimize Λ (r) subject to the constraints
ṙ (t) > 0, r (0) = 1 and r (1) = p. To see how to choose r, let us differentiate Λ (r)
in a direction v such that v (0) = 0 = v (1) and then require

0 set= (∂vΛ) (r) = − c

2

∫ 1

0

|At|2g
ṙ2 (t)

v̇ (t) dt = − c

2

∫ 1

0

v (t)
d

dt

(
|At|2g
ṙ2 (t)

)
dt.

Since v (t) is arbitrary, we should require
|At|2g
ṙ2(t) = κ−2, where κ > 0 is a constant,

i.e. ṙ (t) = κ |At|g . Hence we take

r (t) = 1 + κ

∫ t

0

|Aτ |g dτ,

where

κ := (p− 1)
(∫ 1

0

|Aτ |g dτ

)−1
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has been chosen so that r (1) = p. With this choice of r,

Λ (r) :=
c

2

∫ 1

0

|At|2g
κ |At|g

dt =
c

2κ

∫ 1

0

|At|g dt =
c

2 (p− 1)

(∫ 1

0

|At|g dt

)2

and using this value for Λ (r) in Eq. (3.3) along with the identity, (p− 1)−1 = p′−1
implies



∫

G

[
pT

(
xy−1

)

pT (x)

]p′

pT (x) dx




1/p′

= ‖J1‖p′ ≤ exp

(
c (p′ − 1)

2

(∫ 1

0

|At|g dt

)2
)

.

Upon noting that p′ := p (p− 1)−1 ranges over (1,∞) as p ranges over (1,∞) , the
proof of Theorem 1.6 is complete. ¤

4. Properties of the Hodge – de Rham semigroups

This section gathers a number of technical functional analytic results needed
to establish the representation formula in Theorem 5.4 below. Let (M, g) be a
complete Riemannian manifold, dV denote the volume measure on M associated to
g, ∇ denote the Levi-Civita covariant derivative, Λk = Λk (T ∗M) , Λ = ⊕dim M

k=0 Λk,
Ωk (M) (Ωk

c (M)) denote the space of (compactly supported) smooth k – forms over
M, and Ω (M) = ⊕dim M

k=0 Ωk (M) be the space of all smooth forms over M. If α and
β are measurable k – forms, let

〈α, β〉m :=
d∑

j1,...,jk=1

α (ej1 , . . . , ejk
)β (ej1 , . . . , ejk

) ,

where {ej}d
j=1 is any orthonormal frame for TmM. When m → 〈α, β〉m is integrable,

let

(α, β) :=
∫

M

〈α, β〉 dV

and let L2
(
Λk

)
denote the measurable k – forms, α, such that (α, α) < ∞. Further

let
L2 (Λ) := ⊕dim M

k=0 L2
(
Λk

)
.

Two measurable k – forms, α and β, are take to be equivalent if α = β a.e.
Let d : Ω (M) → Ω(M) be the differential operator taking k – forms to k + 1 –

forms, δ be the formal L2 – adjoint of −d,

∆ := − (δd + dδ) = − (d + δ)2

be the Hodge-de Rham Laplacian on Ω (M) , and ¤ be the Bochner (i.e. flat)
Laplacian on Ω (M) . More precisely if α is a k – form, δα is the k− 1 form defined
by

(4.1) (δα)m :=
d∑

j=1

(∇ej α
)
(ej , –)

and

(¤α)m :=
d∑

j=1

∇2
ej⊗ej

α :=
d∑

j=1

(
∇2

Ej
α−∇∇Ej

Ej α
)

m



12 DRIVER AND GORDINA

where {Ej}dim M
j=1 is an local orthonormal frame for TM defined in a neighborhood

of m. The next two theorems summarize the properties about these operators that
will be needed in this paper.

Theorem 4.1. The operators, dk := d|Ωk
c (M) : Ωk

c (M) → Ωk+1
c (M) for k =

0, 1, 2 . . . , dim M − 1 are L2
(
Λk

)
– closable with closure denoted by d̄k. Let us now

further assume that (M, g) is complete. Then:
(1) Each of the operators, ∆k := ∆|Ωk

c (M) for k = 0, 1, 2 . . . , dim M thought of
as unbounded operators on L2

(
Λk

)
, are essentially self-adjoint operators.

Let ∆̄k denote the (self-adjoint) closure of ∆k.

(2) Each operator, ∆̄k, is non-negative. Let et∆̄k denotes the contraction semi-
group on L2

(
Λk

)
associated to ∆̄k.

(3) For k ∈ {0, 1, . . . , dim M − 1} and t > 0, d̄ket∆̄k = et∆̄k+1 d̄k on the domain
of d̄k.

(4) δket∆̄kω = et∆̄k−1δkω for all ω ∈ Ωk
c (M) with k = 1, 2, . . . , dim M.

Proof. Let δk := δ|Ωk
c (M) : Ωk

c (M) → Ωk−1
c (M) . As −δk+1 ⊂ d∗k, d∗k is densely

defined and hence dk is closable. For items 1. and 2., see Gaffney [25], Roelcke [52],
Chernoff [10], [67], and Strichartz [59].

Item 3. is a simple application of Theorem A.2 of Appendix A below. In applying
this theorem, take W = L2

(
Λk−1

)
, X = L2

(
Λk

)
, Y = L2

(
Λk+1

)
and Z =

L2
(
Λk+2

)
with A = d̄k−1, B = d̄k, and C := d̄k+1. By convention Ω−1 (M) =

{0} = Ωdim M+1 (M) and d−1 = 0 = ddim M . With these assignments, the self-
adjoint operators, L and S, in Theorem A.2 become

(4.2) L = d̄k−1d
∗
k−1 + d∗kd̄k and S = d̄kd∗k + d∗k+1d̄k+1.

As ∆k|Ωk
c (M) ⊂ −L and −L is self-adjoint (see Theorem A.1 below), it follows that

∆̄k = −L and similarly, ∆̄k+1 = −S.
For item 4., let ω ∈ Ωk

c (M) and ϕ ∈ Ωk−1
c (M) . Then

(
δet∆̄kω, ϕ

)
= −

(
et∆̄kω, dϕ

)
= −

(
ω, et∆̄k d̄ϕ

)
= −

(
ω, d̄et∆̄k−1ϕ

)

=
(
δω, et∆̄k−1ϕ

)
=

(
et∆̄k−1δω, ϕ

)
.

¤

Remark 4.2. With a little more work it is possible to show that d̄k = −δ∗k+1 and
that δ̄ket∆̄k = et∆̄k−1 δ̄k on the domain of δ̄k. We will omit the proof of these results
as they are not needed for this paper.

We are primarily concerned with zero and one forms. A key ingredient in the
sequel is the Bochner identity,

(4.3) ∆α = ¤α− α ◦ Ric for all α ∈ Ω1 (M) .

Assumption 1. For the rest of this paper we will assume that (M, g) is a complete
Riemannian manifold such that Ric ≥ k for some k ∈ R, i.e. Ricm ≥ kITmM for
all m ∈ M.

Theorem 4.3 (Semi-group domination). Suppose that (M, g) is a complete Rie-
mannian manifold such that Ric ≥ k for some k ∈ R. Then for all f ∈ L2

(
Λ0

)
and
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α ∈ L2
(
Λ1

)
,

(4.4)
∣∣∣et∆̄0f

∣∣∣ ≤ et∆̄0 |f | ≤ ‖f‖∞ a.e.

and

(4.5)
∣∣∣et∆̄1α

∣∣∣ ≤ e−ktet∆̄0 |α| ≤ e−kt ‖α‖∞ a.e.

where ‖f‖∞ and ‖α‖∞ denote the essential supremums of the functions, |f | and
m → |αm| respectively.

Proof. The inequality in Eq. (4.4) is an immediate consequence Eqs. (1.2), (1.1)
and the positivity of the heat kernel, pt (x, y) . This inequality may also be proved
using the semi-group domination ideas that will be used below to prove Eq. (4.5).

The proof of Eq. (4.5) will be an application of the results in Simon [56, 57] and
Hess, Schrader, and Uhlenbrock [34] along with a Kato [39] type inequality. The
general Kato inequality we need is given in Theorem B.2 of Appendix B. We apply
Theorem B.2 with E = Λ1 (T ∗M) to conclude,

(4.6) (¤α, ϕ sgne (α)) ≤ (|α| , ∆ϕ)

for all α ∈ Ω1
c (M) and ϕ ∈ C∞ (M)+ := C∞ (M → [0,∞)) . In Eq. (4.6),

sgne (α) := 1α 6=0
α

|α| + 1α=0e,

where e is any measurable section of E such that 〈¤α, e〉 = 0 on M. This inequality
and the Bochner identity in Eq. (4.3) shows

(∆1α, ϕ sgne (α)) = (¤α, ϕ sgne (α))− (α ◦ Ric, ϕ sgne (α))

≤ (|α| , ∆ϕ)− (α ◦ Ric, ϕ sgne (α)) .(4.7)

To evaluate the last term, let Y be the vector field on M such that α = 〈Y, ·〉 . Then
α ◦ Ric = 〈RicY, ·〉 and

〈α ◦ Ric, sgne (α)〉 = 1α 6=0
1
|α| 〈α ◦ Ric, α〉 = 1α 6=0

1
|α| 〈RicY, Y 〉

≥ k1α 6=0
1
|α| 〈Y, Y 〉 = k1α 6=0

1
|α| |α|

2 = k |α| .

Therefore,

(α ◦ Ric, ϕ sgne (α)) =
∫

M

〈α ◦ Ric, sgne (α)〉ϕdV ≥ k (|α| , ϕ)

which combined with Eq. (4.7) implies

(4.8) (∆1α, ϕ sgne (α)) ≤ (|α| , ∆ϕ)− k (|α| , ϕ)

or equivalently,
(H0α, ϕ sgne (α)) ≥ (|α| ,−∆ϕ)

where H0 := − (∆ + k) |Ω1
c(M). In particular if g ∈ C∞c (M)+ , λ > 0, ϕ =(−∆̄0 + λ

)−1
g, and α1 ∈ Ω1

c (M) and we define α2 := ϕ sgne (α1) ∈ L2
(
Λ1

)
,

then (α1, α2)L2(Λ1)
= (|α1| , |α2|)L2(Λ0)

, |α2| = ϕ, and

(H0α1, α2)L2(Λ1)
≥ (|α1| ,−∆̄0ϕ

)
L2(Λ0)

.
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Hence we have verified the hypothesis of Proposition 2.14 and Theorem 2.15 in [34]
and as a consequence,

(4.9)
∣∣∣e−tH̄0α

∣∣∣ ≤ e−t(−∆̄0) |α| a.e. for all α ∈ L2
(
Λ1

)
.

As H̄0 = −∆̄1 − k and hence, e−tH̄0 = et∆̄1etk, Eq. (4.9) is equivalent to the first
inequality in Eq. (4.5). ¤

5. A path integral derivative formula

5.1. Brownian motion and the divergence formula. Let
(
Ω,F , {Ft}t≥0,P

)
be a filtered probability space satisfying the usual hypothesis, and for each x ∈
M let {Σx

t : t < ζ(x)} be an M – valued Brownian motion on
(
Ω,F , {Ft}t≥0,P

)
,

starting from x, with possibly finite lifetime ζ(x). Recall Σx
t is said to be an M–

valued Brownian motion provided it is a Markov diffusion process starting at x
with transition semi-group determined by the heat kernel, pt (·, ·) . Because of our
standing assumption, Ric ≥ k, it is well–known that

∫
M

pt(x, y)dy = 1 for all x ∈ M
and consequently that ζ (x) = ∞, see [2, 26, 67, 15, 41, 28, 29, 31] and the books
[62, Theorem 8.62], [36, Chapter 4.] and [13, Theorem 5.2.6]. For our purposes it
will be convenient to construct Σx

t as a solution to a stochastic differential equation
which we will describe shortly.

Notation 5.1. Given two isometric isomorphic real finite–dimensional inner prod-
uct spaces, V and W, let O (V, W ) denote the set of linear isometries from V to
W.

Let //t (σ) denote parallel translation along a curve σ in TM and all associated
bundles. We also introduce the horizontal vector fields on the orthogonal frame
bundle over M as

Bv (u) =
d

dt
|0//t (σ) u for v ∈ Rd and u ∈ O

(
Rd, TxM

)
,

where σ (t) is a curve in M such that σ̇ (0) = uv.

Notation 5.2. Given a semi-martingale, Yt, we will denote its Itô differential by
dYt and its Fisk-Stratonovich differential by ◦dYt.

Let bt denote a Rd – valued Brownian motion, x ∈ M, and u0 ∈ O
(
Rd, TxM

)
,

then Σx
t may be defined as the unique solution to the stochastic differential equation,

◦dΣx
t = ut ◦ dbt with Σx

0 = x,

◦dut = B◦dbt (ut) with u0.

The stochastic parallel translation along Σx
t up to time t is taken to be, //t :=

utu
−1
0 ∈ O

(
TxM,TΣx

t
M

)
. Suppose that f (t,m) (α (t, m)) is a smooth time de-

pendent function (one form), then the Itô differentials of f (t, Σx
t ) and α (t, Σx

t ) //t

are

(5.1) d [f (t,Σx
t )] =

(
∂

∂t
f (t,Σx

t ) +
1
2
∆0f (t,Σx

t )
)

dt + 〈grad f (t, ·) , //tdbt〉

and

(5.2) d [α (t,Σx
t ) //t] =

(
∂

∂t
α (t,Σx

t ) +
1
2
¤α (t, Σx

t )
)

dt +
[∇//tdbt

α (t, ·)] //t.
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See (for example) [23, 45, 62, 36, 19] for more on the general background used in
this section.

5.2. The divergence formula. Let Qt denote the End (TxM) – valued process
satisfying the ordinary differential equation,

(5.3)
d

dt
Qt = −1

2
Ric//t Qt with Q0 = idTxM .

where

(5.4) Ric//t := //−1
t RicΣx

t
//t.

Lemma 5.3. If Ric ≥ k for some k ∈ R and ‖·‖op denotes the operator norm on
TxM, then

(5.5) ‖Qt‖op ≤ e−kt/2.

Similarly if Ric ≤ K for some K ∈ R, then

(5.6)
∥∥Q−1

t

∥∥
op
≤ eKt/2.

Proof. For any v ∈ TxM, we have

d

dt
|Qtv|2 =

〈
−Ric//t Qtv, Qtv

〉
≤ −k |Qtv|2

from which Eq. (5.5) easily follows. To prove Eq. (5.6), let Rt :=
(
Q−1

t

)∗
and

observe that
d

dt
Rt = −

(
Q−1

t Q̇tQ
−1
t

)∗
=

1
2

(
Q−1

t Ric//t QtQ
−1
t

)∗
=

1
2

Ric//t Rt.

Hence reasoning as above we may conclude that
∥∥Q−1

t

∥∥
op

=
∥∥∥
(
Q−1

t

)∗∥∥∥
op

= ‖Rt‖op ≤ eKt/2.

¤

When M is compact, the following result is Theorem 5.10 of Driver and Thal-
maier [22].

Theorem 5.4 (A divergence formula). Assume the Ricci curvature, Ric, on M

satisfies, k ≤ Ric ≤ K for some −∞ < k ≤ K < ∞. Let T > 0 and ˜̀ be a C1 –
adapted real-valued process such that ˜̀

0 = 0, ˜̀
T = 1, and

(5.7)
∫ T

0

∣∣∣∣
d

dτ
˜̀
τ

∣∣∣∣ dτ ≤ C,

where C < ∞ is a non-random constant. Then for every C2 – vector field, Y, on
M with compact support the following identity holds

(5.8) E [∇ · Y (Σx
T )] = E

[〈
Y (Σx

T ), //T QT

∫ T

0

˜̀′
tQ

−1
t dbt

〉]
,

where ∇ · Y is the divergence of Y and ˜̀′
t := d

dt
˜̀
t.
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Proof. The proof will consist of adding some technical details to the proof of The-
orem 5.10 in [22]. Suppose a is a smooth one form on M with compact support,

(5.9) at := e(T−t)∆̄1/2a,

˜̀
τ is an adapted continuously differentiable real–valued process, and `0 is a fixed

vector in TxM. Then as shown in [22, Theorem 3.4] (and repeated below in Lemma
C.1 for the readers convenience) the process,

(5.10) Zt := (at (Σx
t ) ◦ //t) Qt

[∫ t

0

Q−1
τ

(
d

dτ
˜̀
τ

)
dbτ + `0

]
− (δat) (Σx

t ) ˜̀
t

is a local martingale.
From Theorems 4.1 and 4.3 we have

|at| ≤ e−(T−t)k/2 ‖a‖∞ ≤ eT |k|/2 ‖a‖∞
and

|δat| =
∣∣∣e(T−t)∆̄0/2δa

∣∣∣ ≤ ‖δa‖∞ .

Making use of these estimates along with Lemma 5.3 and Eq. (5.7) shows that Zt

is a bounded local martingale and hence, by a localization argument, a martingale.
In particular, it follows that t → EZt is constant for 0 ≤ t ≤ T and hence
(
eT∆/2a

)
(Σx

0) `0 − δ
(
eT∆/2a

)
(Σx

0) ˜̀
0 = Z0 = EZT

= E

[
(a (Σx

T ) ◦ //T )QT

[∫ T

0

Q−1
τ

(
d

dτ
˜̀
τ

)
dbτ + `0

]
− δa (Σx

T ) ˜̀
T

]
.

If we now suppose that `0 = 0, ˜̀
0 = 0, and ˜̀

T = 1, the above formula reduces to

0 = E

[
(a (Σx

T ) ◦ //T )QT

∫ T

0

Q−1
τ

(
d

dτ
˜̀
τ

)
dbτ − δa (Σx

T )

]
.

This identity is equivalent to the identity in Eq. (5.8) as is seen by taking a (x) v :=
〈Y (x) , v〉 for all x ∈ M and v ∈ TxM and recalling that

δa =
d∑

i=1

iei∇ei 〈Y, ·〉 =
d∑

i=1

iei 〈∇eiY, ·〉 = ∇ · Y.

¤

Example 5.5. Taking ˜̀
t = t/T in Eq. (5.8) shows

(5.11) E [∇ · Y (Σx
T )] =

1
T
E

[〈
Y (Σx

T ), //T QT

∫ T

0

Q−1
t dbt

〉]
.

6. Exponential integrability of WT
A

In this section and for the remainder of the paper we will again go back to the
setting where M = G is a connected uni-modular Lie group equipped with a left -
invariant Riemannian metric as described in the introduction. We are now going
to use Theorem 5.4 to estimate WA := WT

A in Definition 1.3. In order to do this
we will use Eq. (5.8) to find a useful path integral expression for WA, see Theorem
6.4 below.
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For A,B ∈ g, let DAB := ∇AB̃ ∈ g where ∇ is the Levi-Civita covari-
ant derivative on TG. Observe that ∇ÃB̃ is a left invariant vector field and(
∇ÃB̃

)
(e) = ∇AB̃ = DAB. Hence we have the identity, ∇ÃB̃ = D̃AB.

Lemma 6.1. Suppose that {Ai}dim g
i=1 is an orthonormal basis for g and G is uni-

modular. Then
(1)

∑dim g
i=1 DAi

Ai = 0 or equivalently
∑dim g

i=1 ∇Ãi
Ãi = 0.

(2) The divergence of B̃, ∇ · B̃, is zero for all B ∈ g.

(3) ∆0 =
∑dim g

i=1 Ã2
i is the Laplace Beltrami operator on G.

Proof. (1) The formula for DAB is

DAB =
1
2

(adAB − ad∗AB − ad∗BA)

and hence DAA = −ad∗AA and for any B ∈ g we find
(

dim g∑

i=1

DAiAi, B

)

g

= −
dim g∑

i=1

(Ai, adAiB)g

= −
dim g∑

i=1

(Ai, adBAi)g = − tr (adB) .

Since G is uni-modular, det (AdetB ) = 0 for all t and therefore tr (adB) = 0.

(2) The following simple computation shows ∇ · B̃ = 0

∇ · B̃ =
dim g∑

i=1

(
∇Ãi

B̃, Ãi

)
TG

=
dim g∑

i=1

(DAiB,Ai)g

= −
dim g∑

i=1

(B, DAiAi)g = 0.

(3) Observe that
{

Ãi

}dim g

i=1
is a globally defined orthonormal frame for TG and

that

∆0 =
dim g∑

i=1

[
Ã2

i −∇Ãi
Ãi

]
=

dim g∑

i=1

Ã2
i .

¤

In Theorem 6.4 below, we will specialize Theorem 5.4 in order to find a prob-
abilistic representation for WA of Definition 1.3. This representation will then be
used to estimate

∫
G

eWAdνT for all A ∈ g. Let {Σt}t≥0 be a Brownian motion on
G such that Σ0 = e, bt be the g – valued Brownian motion defined by,

bt :=
∫ t

0

//τ (Σ)−1 ◦ dΣτ ,

and βt be the g – valued semi-martingale defined by

βt :=
∫ t

0

θ (◦dΣτ ) =
∫ t

0

LΣ−1
τ ∗ ◦ dΣτ ,
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where θ (vg) := Lg−1∗vg for all vg ∈ TgG. As a reflection of the fact that
∑dim g

i=1 Ã2
i

is the Laplace–Beltrami operator, βt is another g–valued Brownian motion. This
will also be evident from the following proposition.

Proposition 6.2. Fix T > 0 and let Ut ∈ O (g) be the unique solution to the
stochastic differential equation

(6.1) dUt + D◦dβtUt = 0 with U0 = I.

Further define Yt := UtQt, and Vt := YT Y −1
t . Then

(6.2) //t := LΣt∗Ut

and

(6.3)
∫ t

0

U−1
τ ◦ dβτ =

∫ t

0

U−1
τ dβτ =

∫ t

0

//τ
−1 ◦ dΣτ = bt.

Proof. The fact that //t := LΣt∗Ut is explained in [18, Theorem 6.6] and hence

bt =
∫ t

0

U−1
t L−1

Σt∗ ◦ dΣτ =
∫ t

0

U−1
t θ (◦dΣτ ) =

∫ t

0

U−1
τ ◦ dβτ ,

i.e. dβt = Ut ◦ dbt. Letting {Ai}dim g
i=1 be an orthonormal basis for g, it follows from

Lemma 6.1 and the fact that {UtAi}dim g
i=1 is also an orthonormal basis for g that

dUtdbt = −1
2
DdβtUtdbt = −1

2
DUtdbtUtdbt

= −1
2

dim g∑

i=1

DUtAiUtAi dt = 0.

This allows us to conclude that dβt = Ut ◦ dbt = Utdbt which completes the proof
of the proposition. ¤
Proposition 6.3. Let Yt := UtQt and for fixed T > 0 let Vt := YT Y −1

t and
Gt := σ (βτ − βs : t ≤ s, τ ≤ T ) – the completion of the σ – algebra generated by
{βτ − βs : t ≤ s, τ ≤ T} . Then

(1) Vt is Gt – measurable, and
(2) Vt is the unique solution to the backwards stochastic differential equation,

dVt = Vt

(
D◦dβt +

1
2

Rice dt

)
with VT = I.

Proof. Because LΣt∗ is an isometry of G, it follows that

(6.4) Ric//t = //−1
t RicΣt //t = U−1

t L−1
Σt∗RicΣt LΣt∗Ut = U−1

t Rice Ut.

Using this identity and the definition of Yt we find, Y0 = Id and

dYt = −D◦dβtUtQt − 1
2
Ut Ric//t Qtdt

= −D◦dβtYt − 1
2
Ut Ric//t U−1

t Ytdt(6.5)

= −D◦dβtYt − 1
2

Rice Ytdt.(6.6)

Since dY −1
t = −Y −1

t (◦dYt) Y −1
t , it follows that Y −1

t satisfies,

(6.7) dY −1
t = Y −1

t D◦dβt +
1
2
Y −1

t Rice dt with Y −1
0 = Id.
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For T ≥ t ≥ 0, let YT,t solve,

dT YT,t = −D◦dβT
YT,t − 1

2
Rice YT,tdT with Yt,t = Id,

and observe that YT,t is σ (βτ − βs : t ≤ s, τ ≤ T ) – measurable. By the uniqueness
of solutions to linear stochastic differential equations we may conclude

YT = YT,tYt a.s. for all 0 ≤ t ≤ T

and hence it follows that Vt = YT Y −1
t

a.s.= YT,t is also σ (βτ − βs : t ≤ s, τ ≤ T ) –
measurable. Moreover we have,

dVt = YT d
(
Y −1

t

)
= −YT Y −1

t (◦dYt)Y −1
t

= −Vt

(
−D◦dβt

− 1
2

Rice dt

)

= Vt

(
D◦dβt

+
1
2

Rice dt

)
with VT = Id.

See [18, Section 4.1] for more on the backwards stochastic integral interpretation
of this equation. ¤

Theorem 6.4. If A ∈ g and ` ∈ C1 ([0, T ] ,R) with ` (0) = 0 and ` (T ) = 1, then

(6.8) WA (x) = E

[(
A,

∫ T

0

˙̀ (τ) Vτd
←−
β τ

)∣∣∣∣∣ ΣT = x

]
,

where
∫ T

0
˙̀ (τ)Vτd

←−
β τ is a backwards Itô integral and Vt satisfies the (backwards)

stochastic differential equation,

dVt =
1
2
Vt Rice dt + VtD◦dβt with VT = Id.

Proof. Let f ∈ C∞c (G) and

Y (x) := f (x) Ã (x) = f (x)Lx∗A.

As shown in Lemma 6.1, ∇ · Ã = 0 from which it follows that

∇ · Y =
(
grad f, Ã

)
TG

= Ãf.

Therefore an application of Theorem 5.4 (with ˜̀
t now being denoted by ` (t)) shows,

E
[(

Ãf
)

(ΣT )
]

= E

[
f (ΣT )

〈
Ã (ΣT ) , //T QT

∫ T

0

˙̀ (τ) Q−1
τ dbτ

〉]

= E

[
f (ΣT )

〈
A,LΣ−1

T ∗//T QT

∫ T

0

˙̀ (τ) Q−1
τ dbτ

〉]
.(6.9)

From Eq. (6.3)
〈

A,LΣ−1
T ∗//T QT

∫ T

0

˙̀ (τ)Q−1
τ dbτ

〉
=

〈
A,UT QT

∫ T

0

˙̀ (τ)Q−1
τ U−1

τ dβτ

〉

=

〈
A, YT

∫ T

0

˙̀ (τ) Y −1
τ dβτ

〉
(6.10)
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=

〈
A,

∫ T

0

˙̀ (τ)Vτdβτ

〉
.(6.11)

Moreover, we may write the last expression as a backwards Itô integral, since

dVτdβτ = VτDdβτ dβτ = Vτ

∑

A∈ONB(g)

DAA · dt = 0

wherein we have used Lemma 6.1 again for the last equality. Hence we now have〈
A,LΣ−1

T ∗//T QT

∫ T

0

˙̀ (τ) Q−1
τ dbτ

〉
=

〈
A,

∫ T

0

˙̀ (τ)Vτd
←−
β τ

〉
.

These computations may be justified by the same methods introduced in [18]. This
completes the proof because,

E [WA (ΣT ) f (ΣT )] = E
[(

Ãf
)

(ΣT )
]

= E

[
f (ΣT )

〈
A,

∫ T

0

˙̀ (τ) Vτd
←−
β τ

〉]

for all f ∈ C∞c (G) . ¤

Our next goal is to bound
∫

G
eWAdνT for all A ∈ g. In order to do this it will be

necessary to estimate the size of the process Vt.

Lemma 6.5. Suppose k ∈ R is chosen so that Ric ≥ kI, then

(6.12) |V ∗
t A|2 ≤ |A|2 e−k(T−t) for all A ∈ g.

Proof. Since

dVt =
1
2
Vt Rice dt + VtD◦dβt ,

we have
dV ∗

t =
1
2

Rice V ∗
t dt−D◦dβtV

∗
t

wherein we have used the fact that DA : g → g is antisymmetric. In particular it
now follows that

d |V ∗
t A|2 = 2 (◦dV ∗

t A, V ∗
t A) = 2

(
1
2

Rice V ∗
t Adt−D◦dβtV

∗
t A, V ∗

t A

)

= (Rice V ∗
t A, V ∗

t A) dt ≥ k |V ∗
t A|2 dt with |V ∗

T A|2 = |A|2 .

We may write this inequality as
d

dt
ln |V ∗

t A|2 ≥ k with |V ∗
T A|2 = |A|2

which upon integration gives,

ln |A|2 − ln |V ∗
t A|2 = ln |V ∗

T A|2 − ln |V ∗
t A|2 ≥ k (T − t) .

Hence |A|2 / |V ∗
t A|2 ≥ ek(T−t) which is equivalent to Eq. (6.12). ¤

Lemma 6.6. Let k ∈ R and T > 0, then

(6.13) inf

{∫ T

0

˙̀2 (τ) e−k(T−τ)dτ

}
≤ k

ekT − 1

where the infimum is taken over all ` ∈ C1 ([0, T ] ,R) such that ` (0) = 0 and
` (T ) = 1.
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Proof. By a simple calculus of variation argument, ` ∈ C1 ([0, T ] ,R) with ` (0) = 0
and ` (T ) = 1 is a critical point for the function,

(6.14) K (`) :=
∫ T

0

˙̀2 (τ) e−k(T−τ)dτ,

iff ˙̀ (τ) ekτ is constant in τ. This constraint and the boundary conditions imply that
K has a unique critical point at

`c (τ) =
e−kτ − 1
e−kT − 1

.

Plugging this value of `c into K then shows K (`c) = k
(
1− e−kT

)−1 from which
Eq. (6.13) follows. ¤

6.1. Proof of Theorems 1.4 and 1.5. With the above results as preparation, we
are now in position to complete the proofs of Theorem 1.4 and 1.5.

Proof. Proof of Theorem 1.4. Let ` ∈ C1 ([0, T ] ,R) such that ` (0) = 0 and ` (T ) =
1. From Theorem 6.4, Lemma 6.5, Jensen’s inequality for conditional expectations,
and a standard martingale argument (see the proof of Lemma 7.6 and especially
Eq. 7.17 in [17]) we have

∫

G

eWAdνT = E

[
exp

(
E

[〈
A,

∫ T

0

˙̀ (τ) Vτd
←−
β τ

〉∣∣∣∣∣ σ (ΣT )

])]

≤ E
[
E

[
exp

(〈
A,

∫ T

0

˙̀ (τ) Vτd
←−
β τ

〉)∣∣∣∣∣ σ (ΣT )

]]

= E

[
exp

(〈
A,

∫ T

0

˙̀ (τ)Vτd
←−
β τ

〉)]

≤ exp


1

2

∥∥∥∥∥
∫ T

0

˙̀2 (τ) |V ∗
τ A|2 dτ

∥∥∥∥∥
L∞(P )




≤ exp

(
|A|2
2

∫ T

0

˙̀2 (τ) e−k(T−τ)dτ

)
,

where P is the underlying probability measure. Since ` was arbitrary, it follows
from Lemma 6.6 that,

∫

G

eWAdνT ≤ inf
`

exp

(
1
2

∫ T

0

˙̀2 (τ) |A|2 e−k(T−τ)dτ

)

≤ exp
(

1
2

k

ekT − 1
|A|2

)
= exp

(
1

2T
c (kT ) |A|2

)
.

¤

Proof. (Proof of Theorem 1.5.) From Theorem 6.4, Lemma 6.5, Jensen’s inequality
for conditional expectations, and Burkholder-Davis-Gundy inequality (see for ex-
ample [60, Corollary 6.3.1a on p.344], [48, Appendix A.2], or [47, p. 212] and [38,
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Theorem 17.7] for the real case), there exists Cp < ∞ such that
∫

G

|WA|p dνT = E

[∣∣∣∣∣E
[〈

A,

∫ T

0

˙̀ (τ) Vτd
←−
β τ

〉∣∣∣∣∣ σ (ΣT )

]∣∣∣∣∣

p]

≤ E
[
E

[∣∣∣∣∣

〈
A,

∫ T

0

˙̀ (τ) Vτd
←−
β τ

〉∣∣∣∣∣

p ∣∣∣∣∣ σ (ΣT )

]]

= E

[∣∣∣∣∣

〈
A,

∫ T

0

˙̀ (τ)Vτd
←−
β τ

〉∣∣∣∣∣

p]
= E

[∣∣∣∣∣
∫ T

0

˙̀ (τ)
〈
V ∗

τ A, d
←−
β τ

〉∣∣∣∣∣

p]

≤ Cp
pE




∣∣∣∣∣
∫ T

0

˙̀2 (τ) |V ∗
τ A|2 dτ

∣∣∣∣∣

p/2



≤ Cp
p

(
|A|2

∫ T

0

˙̀2 (τ) e−k(T−τ)dτ

)p/2

.

Using Lemma 6.6, we may optimize this last estimate over the admissible ` to find,
∫

G

|WA|p dνT ≤ Cp
p

(
|A|2 k

ekT − 1

)p/2

= Cp
p

(
|A|2 c (kT )

T

)p/2

which is equivalent to Eq. (1.5). ¤

7. Applications

Lemma 7.1. Suppose that T > 0, p > 1, and f ∈ Lp (νT ) ∩ C2 (G) such that
∆f ∈ Lp (νT ) . Then f, ∆f ∈ Lp (νt) for 0 < t ≤ T and

(7.1)
∂

∂t

∫

G

pt (x, y) f (y) dy =
1
2

∫

G

pt (x, y)∆f (y) dy for all 0 < t < T.

Proof. Since the Ricci curvature is left translation invariant, it is bounded on G.
Applying the Li – Yau Harnack inequality (see Eq. (D.6 below), we have for any
γ > 1/2 that there exists K = K (γ, T ) < ∞ such that

(7.2) pt(x) ≤ K

(
T

t

)dγ

pT (x) ∀ (x, t) ∈ G× (0, T ].

In particular it follows that

(7.3) ‖f‖Lp(νt)
≤ K

(
T

t

)dγ/p

‖f‖Lp(νT ) ∀ 0 < t ≤ T.

Using p′ − 1 = (p− 1)−1 and Eq. (1.8), it follows that
∫

G

pt (y, x) |f (x)| dx =
∫

G

pt (y, x)
pt (x)

|f (x)| dνt (x)

≤
∥∥∥∥

pt (y, ·)
pt (·)

∥∥∥∥
Lp′ (νt)

· ‖f‖Lp(νt)

≤ ‖f‖Lp(νt)
exp

(
c (kt) (p′ − 1)

2t
|y|2

)

≤ ‖f‖Lp(νt)
exp

(
c (kt)

2t (p− 1)
|y|2

)
.(7.4)
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Therefore the integrals in Eq. (7.1) are well defined. Moreover,∫

G

pt (y, x) f (x) dx =
∫

G

pt

(
y−1x

)
f (x) dx =

∫

G

pt (x) f (yx) dx

=
∫

G

f ◦ Ly (x) pt (x) dx

and for any q ∈ (1, p) ,

‖f ◦ Ly‖q
Lq(νt)

=
∫

G

|f (yx)|q pt (x) dx =
∫

G

|f (x)|q pt

(
y−1x

)
dx

=
∫

G

|f (x)|q pt

(
y−1x

)

pt (x)
dνt (x)

≤ ‖f‖Lp(νt)
exp

(
c (kt) p (p− q)−1

2t
|y|2

)

wherein we have used Hölder’s inequality and Eq. (1.11) for the last inequality.
From these remarks and the fact that ∆ (f ◦ Ly) = (∆f) ◦ Ly, it suffices to prove
Eq. (7.1) in the special case where y = e.

From Eq. (7.2) and the Dominated convergence theorem, the function,

F (t) =
∫

G

f (x) dνt (x) for all t ∈ (0, T ],

is continuous. Our goal now is to show F is differentiable and that Ḟ (t) =
1
2

∫
G

∆f (x) dνt (x) for all 0 < t < T. To prove this suppose that h ∈ C∞c (G)
and consider,

Fh (t) :=
∫

G

f (x)h (x) pt (x) dx.

To simplify notation in the computation below, let {Ai}dim g
i=1 be an orthonormal

basis for g, ∇f =
(
Ãif

)dim g

i=1
, and ∇ · U =

∑
ÃiUi where U = (Ui)

dim g
i=1 with

Ui ∈ C∞ (G) . Using ∂
∂tpt (x) = 1

2∆pt (x) , and a few integration by parts we find

Ḟh (t) =
1
2

∫

G

f (x)h (x)∆pt (x) dx

=
1
2

∫

G

∆(fh) pt dV =
1
2

∫

G

(f∆h + 2∇f · ∇h + h∆f) pt dV

=
1
2

∫

G

(f∆h + h∆f) pt dV −
∫

G

f ∇ · [∇h pt] dV

=
1
2

∫

G

(f∆h + h∆f) pt dV −
∫

G

f [∆h pt +∇h · ∇pt] dV

= −1
2

∫

G

f∆h dνt −
∫

G

f ∇h · ∇pt

pt
dνt +

1
2

∫

G

h∆f dνt.(7.5)

Therefore,

Ḟh (t)− 1
2

∫

G

∆f dνt = −1
2
Rh (t)− Sh (t) +

1
2
Uh (t)

where, making use of Eqs. (7.3) and (1.5), we have

|Rh (t)| ≤
∫

G

|f | |∆h| dνt ≤ ‖f‖Lp(νt)
‖∆h‖Lp′ (νt)
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≤ K2

(
T

t

)dγ

‖f‖Lp(νT ) ‖∆h‖Lp′ (νT ) ,(7.6)

|Sh (t)| =
∑

i

∫

G

|f |
∣∣∣Ãih

∣∣∣
∣∣W t

Ai

∣∣ dνt ≤
∑

i

∥∥∥f · Ãih
∥∥∥

Lp(νt)

∥∥W t
Ai

∥∥
Lp′ (νt)

≤ Cp

√
c (kt)

t
K

(
T

t

)dγ/p ∑

i

∥∥∥f · Ãih
∥∥∥

Lp(νT )
.(7.7)

and

|Uh (t)| ≤
∫

G

|∆f | |h− 1| dνt ≤ ‖∆f‖Lp(νt)
‖1− h‖Lp′ (νt)

≤ K2

(
T

t

)dγ

‖∆f‖Lp(νT ) ‖1− h‖Lp′ (νT ) .(7.8)

From [21, Lemma 3.6], we may choose {hn}∞n=1 ⊂ C∞c (G, [0, 1]) such that

hn(x) = 1 whenever |x| ≤ n and supn supx∈G

∣∣∣
(
Ãi1 . . . Ãik

hn

)
(x)

∣∣∣ < ∞ for all
i1, . . . , ik ∈ {1, 2, . . . , dim g} and k ∈ N. It then follows from Eqs. (7.3), (7.5), (7.6),
(7.7), and (7.8) and the dominated convergence theorem that

∣∣∣∣Ḟhn (t)− 1
2

∫

G

∆f dνt

∣∣∣∣ ≤
1
2
|Rhn (t)|+ |Shn (t)|+ 1

2
|Uhn (t)| → 0 as n →∞

uniformly on compact subsets of (0, T ) . Moreover, by the dominated convergence
theorem, Fhn (t) → F (t) as n → ∞ and therefore we may conclude that Ḟ (t) =
1
2

∫
G

∆f dνt for t ∈ (0, T ) . ¤

7.1. The proof of Proposition 1.8.

Proof. Now suppose, as in Proposition 1.8, T > 0, p > 1, and f ∈ Lp (νT ) such
that ∆f = 0. As in the proof of Lemma 7.1, we may reduce the proof to the case
where y = e. Let F (t) :=

∫
G

fdνt. By Lemma 7.1 and the mean value theorem,
F (T ) = F (t) for all t ∈ (0, T ) and in particular, F (T ) = limt↓0 F (t) . We are going
to finish the proof by showing limt↓0 F (t) = f (e) . To do this, let h ∈ C∞c (G, [0, 1])
be chosen so that h (x) = 1 if |x| ≤ 1. Then

F (t) =
∫

G

f (x)h (x) pt (x) dx + r (t)

where

|r (t)| ≤
∫

G

|f (x)| |1− h (x)| pt (x) dx ≤
∫

|x|≥1

|f (x)| pt (x) dx

=
∫

|x|≥1

|f (x)| pt (x)
pT (x)

dνT (x) ≤ sup
|x|≥1

pt (x)
pT (x)

‖f‖L1(νT ) .(7.9)

Since limt↓0
∫

G
f (x)h (x) pt (x) dx = f (e) h (e) = f (e) , it suffices to show

limt↓0 |r (t)| = 0.
To estimate r (t) we will make use of some crude upper and lower bounds on

the heat kernel, pt (x) , for example see [64, Theorem V.4.4 or Theorem IX.1.2.] for
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more precise bounds. According to either of these theorems, there exists a constant
c > 0 such that

pt (x)
pT (x)

≤
ct−d/2 exp

(
−c |x|2 /t

)

c−1T−d/2 exp
(
−c−1 |x|2 /T

) = c2

(
T

t

)d/2

exp
((

1
cT

− c

t

)
|x|2

)
.

From this estimate it follows that limt↓0 sup|x|≥1 (pt (x) /pT (x)) = 0 which com-
bined with Eq. (7.9) shows limt↓0 |r (t)| = 0. ¤

7.2. Applications to infinite–dimensional groups. For this section, suppose
that G is a topological group, B is the Borel σ – algebra over G, and G0 is a
dense subgroup of G which is endowed with the structure of an infinite–dimensional
Hilbert Lie group. Further assume that g0 := Lie (G0) = TeG0 is equipped with a
Hilbertian inner product, 〈·, ·〉g0

. We will also assume that (G,B) is also equipped
with a probability measure, ν, to be thought of as the “heat kernel” measure at
some time T > 0 associated to the given inner product on g0. We will now give two
theorems which guarantee that ν is quasi-invariant under both left and right trans-
lations by elements of G0. The two cases considered are where G can be thought of
as either a projective or inductive limit of finite–dimensional Lie groups.

Theorem 7.2 (Projective Limits). Suppose that T > 0, A is a directed
set, {Gα}α∈A is a collection of finite dimensional uni-modular Lie groups, and
{πα : G → Gα}α∈A is a collection of continuous group homomorphisms satisfying
the following properties.

(1) B is equal to the σ – algebra generated by the projections, {πα}α∈A .
(2) πα|G0 : G0 → Gα is a smooth surjection. Let dπα : g0 → gα be the

differential of πα at e.
(3) να := (πα)∗ ν = ν◦π−1

α is the time T heat kernel measure on Gα determined
by the unique inner product. (·, ·)α on gα which makes

dπα|Nul(πα) : Nul (πα)⊥ → gα

an isometric isomorphism of inner product spaces.
(4) There exists k ∈ R such that Ricα ≥ kgα for all α ∈ A, where Ricα is the

Ricci tensor on Gα equipped with the left invariant metric determined by
〈·, ·〉α .

Under these assumptions, to each h ∈ G0, ν ◦ R−1
h is absolutely continuous

relative to ν. Moreover, if Jh := d
(
ν ◦R−1

h

)
/dν is the Radon-Nikodym derivative

of ν ◦R−1
h with respect to ν and 1 ≤ p < ∞, then

(7.10) ‖Jh‖Lp(ν) ≤ exp
(

c (kT ) (p− 1)
2T

d2
G0

(e, h)
)

,

where dG0 is the Riemannian distance function on G0.

Proof. Since the estimate in Eq. (7.10) holds for p = 1, we may assume without loss
of generality that 1 < p < ∞. Let H denote the linear space of bounded measurable
functions of the form f = u ◦ πα where α ∈ A and u : Gα → R is a bounded
measurable function on Gα. Because of assumption 1., H is dense in Lp (G, ν) . (An
easy proof may be given using a functional form of the monotone class theorem,
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see for example [37, Theorem A.1 on p. 309].) By Theorem 1.6 in the form of Eq.
(1.9),

Jα (x) :=
να

(
dx · πα

(
h−1

))

να (dx)
for x ∈ Gα,

satisfies

‖Jα‖Lp(Gα,να) ≤ exp
(

c (kT ) (p− 1)
2T

d2
Gα

(e, πα (h))
)

for all 1 < p < ∞.

Using this result and assumption 3, if f = u ◦ πα ∈ H, then∫

G

|f (xh)| dν (x) =
∫

G

|u ◦ πα (xh)| dν (x) =
∫

G

|u (πα (x) πα (h))| dν (x)

=
∫

Gα

|u (y · πα (h))| dνα (y) =
∫

Gα

|u (y)| Jα (y) dνα (y) .

An application of Hölder’s inequality then implies,∫

G

|f (xh)| dν (x) ≤ ‖u‖Lp(Gα,να) · ‖Jα‖Lp′ (Gα,να)

≤ ‖f‖Lp(G,ν) exp
(

c (kT ) (p′ − 1)
2T

d2
Gα

(e, πα (h))
)

.(7.11)

Now suppose that k ∈ C1 ([0, 1] , G0) such that k (0) = e and k (1) = h. Then
the length of t → πα (k (t)) ∈ Gα is given by

`Gα (πα ◦ k) =
∫ 1

0

∣∣∣Lπα(k(t))−1∗πα

(
k̇ (t)

)∣∣∣
gα

dt.

Since

Lπα(k(t))−1∗πα

(
k̇ (t)

)
=

d

ds
|0πα (k (t))−1

πα (k (t + s))

=
d

ds
|0πα

(
k (t)−1

k (t + s)
)

= dπα

(
Lk(t)−1∗k̇ (t)

)

and ∣∣∣Lπα(k(t))−1∗πα

(
k̇ (t)

)∣∣∣
gα

=
∣∣∣dπα

(
Lk(t)−1∗k̇ (t)

)∣∣∣
gα

≤
∣∣∣Lk(t)−1∗k̇ (t)

∣∣∣
g0

,

it follows that

dGα (e, πα (h)) ≤ `Gα (πα ◦ k) ≤
∫ 1

0

∣∣∣Lk(t)−1∗k̇ (t)
∣∣∣
g0

dt = `G0 (k) .

Taking the infimum over all such k implies

dGα (e, πα (h)) ≤ dG0 (e, h) .

Combining this inequality with Eq. (7.11) gives the estimate,

(7.12)
∫

G

|f (xh)| dν (x) ≤ ‖f‖Lp(G,ν) exp
(

c (kT ) (p′ − 1)
2T

d2
G0

(e, h)
)

.

The afore mentioned density of H in Lp (G, ν) along with Eq. (7.12) shows the
linear functional ϕ : H→ R, defined by

ϕh (f) :=
∫

G

f (xh) dν (x) ,
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extends uniquely to a continuous linear functional, ϕ̄h, on Lp (G, ν) satisfying

|ϕ̄h (f)| ≤ ‖f‖Lp(G,ν) exp
(

c (kT ) (p′ − 1)
2T

d2
G0

(e, h)
)

for all f ∈ Lp (G, ν) .

Since Lp (G, ν)∗ ∼= Lp′ (G, ν) , there exists Jh ∈ Lp′ (G, ν) such that

‖Jh‖Lp′ (G,ν) ≤ exp
(

c (kT ) (p′ − 1)
2T

d2
G0

(e, h)
)

and

ϕ̄h (f) =
∫

G

f (x) Jh (x) dν (x) for all f ∈ Lp (G, ν) .

Restricting this formula H shows,
(7.13)∫

G

f (x) ν
(
dxh−1

)
=

∫

G

f (xh) dν (x) = ϕ̄h (f) =
∫

G

f (x)Jh (x) dν (x) for all f ∈ H.

Another monotone class argument (again use [37, Theorem A.1 on p. 309])) shows
that Eq. (7.13) remains valid for all bounded measurable functions, f : G → R.
Therefore, we have shown that Jh := dν ◦R−1

h /dν exists and satisfies the bound in
Eq. (7.10). ¤

We now turn to the inductive limit quasi-invariance theorem. The following
result is an abstraction of the quasi-invariance result in [17]. For related results of
this type see, Fang [24] and Airault and Malliavin [1].

Theorem 7.3 (Inductive Limits). Again, let T > 0, G0 ⊂ G, and (G,B, ν) be as
described at the start of this section. Further assume there exists, {Gα}α∈A , where
A is a directed set and for each α ∈ A, Gα is a finite dimensional uni-modular Lie
subgroup of G0 such that Gα ⊂ Gβ if α < β. Let iα : Gα → G0 denote the smooth
injection map. The following properties are assumed to hold.

(1) ∪α∈AGα is a dense subgroup of G0.
(2) For all f ∈ BC (G,R) (the bounded continuous maps from G to R),∫

G

fdν = lim
α→∞

∫

Gα

(f ◦ iα) dνα,

where να is the time, T, heat kernel measure on Gα associated to inner
product, (·, ·)gα

, defined to be the restriction of (·, ·)g0
to gα × gα.

(3) There exists k ∈ R such that Ricα ≥ kgα for all α ∈ A, where Ricα and
gα are the left invariant Ricci and the metric tensors on Gα induced by
(·, ·)gα

.

(4) For each α ∈ A, there exits a smooth section, sα : G0 → Gα (i.e.
sα ◦ iα = idGα) satisfying the following property. Given α0 ∈ A, and
k ∈ C1 ([0, 1] , G0) with k (0) = e, there exists an increasing sequence,
{αn}∞n=1 ⊂ A (i.e. α0 < α1 < α2 < . . . ), such that

(7.14) `G0 (k (·)) = lim
n→∞

`Gαn
(sαn ◦ k) .

(We do not assume that sα : G0 → Gα is a homomorphism.)
Under these assumptions, to each h ∈ G0, ν◦R−1

h is absolutely continuous relative
to ν and the Moreover, the Radon-Nikodym derivative, Jh := d

(
ν ◦R−1

h

)
/dν, again

satisfies the bounds in Eq. (7.10).
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Proof. As in the proof of Theorem 7.2 it suffices to assume p ∈ (1,∞) throughout
the proof. Let α0 ∈ A, h ∈ Gα0 , and α0 < α1 < α2 < · · · < αn < . . . be as in item
4. above. By Theorem 1.6 in the form of Eq. (1.9), the Radon-Nikodym derivative,
Jαn (x) , of ναn

(
dx · sαn (h)−1

)
= ναn

(
dx · h−1

)
relative to ναn (dx) satisfies the

estimate,

‖Jαn
‖Lp′ (Gαn ,ναn ) ≤ exp

(
c (kT ) (p′ − 1)

2T
d2

Gαn

(
e, h−1

))

= exp
(

c (kT ) (p′ − 1)
2T

d2
Gαn

(e, h)
)

≤ exp
(

c (kT ) (p′ − 1)
2T

`2Gαn
(sαn

◦ σ)
)

,

where σ is any path in C1 ([0, 1] , G0) such that σ (0) = e and σ (1) = h. Assuming
the f ∈ BC (G) , by the definition of Jαn

and Hölder’s inequality,
∫

Gαn

|f (x · h)| dναn (x) =
∫

Gαn

Jαn (x) |f (x)| dναn (x)

≤ ‖f‖Lp(Gαn ,ναn ) · exp
(

c (kT ) (p′ − 1)
2T

`2Gαn
(sαn ◦ σ)

)
.

Using the assumptions in items 2. and 4. of the theorem, we may pass to the limit
(n →∞) in this inequality to find,

(7.15)
∫

G

|f (x · h)| dν (x) ≤ ‖f‖Lp(G,ν) · exp
(

c (kT ) (p′ − 1)
2T

`2G0
(σ)

)
.

Optimizing this inequality over σ ∈ C1 ([0, 1] , G0) joining e to h gives

(7.16)
∫

G

|f (x · h)| dν (x) ≤ ‖f‖Lp(G,ν) · exp
(

c (kT ) (p′ − 1)
2T

d2
G0

(e, h)
)

.

Up to now we have verified Eq. (7.16) for any h ∈ ∪α∈AGα. As the latter set
is dense in G0, the dominated convergence theorem along with the continuity of
d2

G0
(e, h) in h allows us to conclude that the estimate in Eq. (7.16) is valid for all

h ∈ G0. Since BC (G,R) is dense in Lp (G, ν) (again use [37, Theorem A.1 on p.
309]) and because of Eq. (7.16), the linear functional, ϕh : BC (G) → R defined by

(7.17) ϕh (f) =
∫

G

f (xh) dν (x) ,

has a unique extension to an element, ϕ̄h, of Lp (G, ν)∗ satisfying
(7.18)

|ϕ̄h (f)| ≤ ‖f‖Lp(G,ν) · exp
(

c (kT ) (p′ − 1)
2T

d2
G0

(e, h)
)

for all f ∈ Lp (G, ν) .

As in the latter part of the proof of Theorem 7.2, the estimate in Eq. (7.18) implies
the existence of a function, Jh ∈ Lp′ (G, ν) , such that

(7.19) ϕ̄h (f) =
∫

G

f (x)Jh (x) dν (x)

and

‖Jh‖Lp′ (G,ν) ≤ exp
(

c (kT ) (p′ − 1)
2T

d2
G0

(e, h)
)

.
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Furthermore, from Eqs. (7.17) and (7.19) it follows that

(7.20)
∫

G

f (xh) dν (x) =
∫

G

f (x)Jh (x) dν (x) for all f ∈ BC (G) .

Another monotone class argument [37, Theorem A.1 on p. 309] then shows Eq.
(7.20) is valid for all bounded measurable functions, f : G → R. Hence ν

(
dxh−1

)
=

Jh (x) ν (dx) and Jh (x) satisfies the estimate in Eq. (7.10). ¤

Corollary 7.4. Under the hypothesis of either Theorem 7.2 or 7.3, the heat ker-
nel measure, ν, is quasi-invariant under left translations by elements of h ∈ G0.
Moreover, the Radon-Nikodym derivative, J l

h := d
(
ν ◦ L−1

h

)
/dν satisfies the same

bound as d
(
ν ◦R−1

h

)
/dν which is given in Eq. (7.10).

Proof. Since the heat kernel measures {να}α∈A on the Lie groups, {Gα}α∈A , are
invariant under inversion, x → x−1, it follows that ν also inherits this property.
Hence if f : G → R is a bounded measurable function, then∫

G

f (hx) dν (x) =
∫

G

f
(
hx−1

)
dν (x) =

∫

G

f
((

xh−1
)−1

)
dν (x)

=
∫

G

f
(
x−1

)
Jh−1 (x) dν (x) =

∫

G

f (x)Jh−1

(
x−1

)
dν (x) ,

from which it follows that J l
h (x) = Jh−1

(
x−1

)
for ν – a.e. x. Therefore,

∥∥J l
h

∥∥
Lp(ν)

= ‖Jh−1‖Lp(ν) ≤ exp
(

c (kT ) (p− 1)
2T

d2
G0

(
e, h−1

))

which completes the proof since d2
G0

(
e, h−1

)
= d2

G0
(h, e) = d2

G0
(e, h) . ¤

See Driver [17] for an explicit application of the projective limit Theorem 7.2 in
the setting of loop groups and see Driver and Gordina [20] for an application of the
inductive limit Theorem 7.3 to an infinite dimensional Heisenberg group setting.
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Appendix A. A commutator theorem

In this section we will develop the abstract functional analytic results which were
used in the proofs of Theorems 4.1 and 4.3. Results similar to the next theorem
may be found in Brüning and Lesch [6], Xue-Mei Li [43, 44] and in Bueler [7].

Theorem A.1. Let W,X, and Y be Hilbert spaces and A : W → X and B : X → Y
be densely defined closed (unbounded) operators such that Ran(A) ⊂ Nul(B). Let
Q : X → W⊕Y be the unbounded linear operator defined by: D(Q) = D(A∗)∩D(B)
and for x ∈ D(Q), Qx := (A∗x,Bx). Let us also define R : W ⊕ Y → X by
D(R) = D(A)⊕D(B∗) and R(w, y) := Aw + B∗y. Then

(1) Ran(A) and Ran(B∗) are orthogonal.
(2) R is closed.
(3) Q = R∗ is a closed densely defined operator.
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(4) The operator, L := AA∗+B∗B, on X is densely defined, non-negative, and
self adjoint operator. Moreover, L := Q∗Q.

Proof. We will denote all of the inner products on these Hilbert spaces by 〈·, ·〉. Let
w ∈ D(A) and y ∈ D(B∗). Since Ran(A) ⊂ Nul(B), 0 = 〈BAw, y〉 = 〈Aw,B∗y〉
which proves item 1. For item 2., suppose that (wn, yn) ∈ D(R) are such that there
exists (w, y) ∈ W ⊕ Y and x ∈ X such that

(wn, yn) → (w, y) as n →∞ and

R(wn, yn) → x as n →∞.

We must show that w ∈ D(A), y ∈ D(B∗) and that x = Aw + B∗y. We are given
that Awn + B∗yn → x as n → ∞. But by the first item and the Cauchy criteria,
this implies that both limn→∞Awn and limn→∞B∗yn exist. Because both A and
B∗ are closed, this implies that w ∈ D(A), y ∈ D(B∗) and that

Aw + B∗y = lim
n→∞

Awn + lim
n→∞

B∗yn = lim
n→∞

(Awn + B∗yn) .

Hence we have proved item 2.
Item 3. As R is closed, it follows that R∗ is densely defined. Therefore we need

only show that R∗ = Q. For this, let us recall that x ∈ D(R∗) and R∗x = (w, y)
iff 〈(w, y), (w′, y′)〉 = 〈x,R(w′, y′)〉 for all (w′, y′) ∈ D(R). This is equivalent to the
following statements:

• 〈w, w′〉+ 〈y, y′〉 = 〈x, Aw′ + B∗y′〉 for all w′ ∈ D(A) and y′ ∈ D(B∗).
• 〈w, w′〉 = 〈x,Aw′〉 and 〈y, y′〉 = 〈x,B∗y′〉 for all w′ ∈ D(A) and y′ ∈ D(B∗).
• x ∈ D(A∗), x ∈ D(B∗∗) = D(B), A∗x = w and Bx = B∗∗x = y.
• x ∈ D(Q) and Qx = (w, y).

Thus we have proved item 2. of the theorem.
Item 4. By a Theorem of Von-Neumann, [51, Theorem X.25], Q∗Q is a non-

negative densely defined self adjoint operator on X. So it suffices to show that
Q∗Q = AA∗ + B∗B.

By items 2. and 3., Q∗ = R∗∗ = R. Therefore, Q∗Q = RQ. Now the following
are equivalent:

• x ∈ D(RQ) and RQx = x′.
• x ∈ D(A∗) ∩ D(B), Qx := (A∗x, Bx) ∈ D(R), and R(A∗x,Bx) = x′.
• x ∈ D(A∗) ∩ D(B), A∗x ∈ D(A), Bx ∈ D(B∗) and AA∗x + B∗Bx = x′.
• x ∈ D(AA∗) ∩ D(B∗B) and AA∗x + B∗Bx = x′.
• x ∈ D(AA∗ + B∗B) and AA∗x + B∗Bx = x′.

This shows Q∗Q = AA∗ + B∗B and thus completes the proof. ¤

Theorem A.2 (Commutator Theorem). Let W, X, Y, and Z be Hilbert spaces and
A : W → X, B : X → Y, and C : Y → Z be densely defined closed (unbounded)
operators such that Ran(A) ⊂ Nul(B) and Ran(B) ⊂ Nul(C). Let L := AA∗+B∗B
and S := BB∗ + C∗C. Then Be−tLx = e−tSBx for all x ∈ D(B) and any t ≥ 0.

Proof. Let λ > 0. Observe that BL = BB∗B on D(BL) = D(AA∗) ∩ D(BB∗B)
and the SB = BB∗B on D(SB) = D(BB∗B). In particular we have shown

(A.1) SB = BB∗B = BL on D(BL) = D(AA∗) ∩ D(BB∗B)

and hence,

(A.2) (1 + λS)B = B (1 + λL) on D(BL).
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If x ∈ D (B) and x′ := (1 + λL)−1
x, then x′ ∈ D (L) ⊂ D (B) and

Lx′ = (1 + λL)x′ − λx′ = x− λx′ ∈ D (B) .

Therefore x′ ∈ D (BL) and so by Eq. (A.2) applied to x′ = (1 + λL)−1
x we

discover that,

(1 + λS)B (1 + λL)−1
x = B (1 + λL) (1 + λL)−1

x = Bx.

Applying (1 + λS)−1 to both sides of this equation shows

(A.3) B(1 + λL)−1 = (1 + λS)−1B on D (B) .

Multiplying Eq. (A.3) on the right by (1 + λL)−1 gives

B(1 + λL)−2 = (1 + λS)−1B (1 + λL)−1 = (1 + λS)−2B on D (B) ,

wherein we have used Eq. (A.3) again in the second equality. Continuing this way
inductively allows us to conclude.

(A.4) B(1 + λL)−n = (1 + λS)−nB on D (B) for all n ∈ N.

To complete the proof the theorem recall e−tL = s − limn→∞(1 + t
nL)−n and

that e−tS = s− limn→∞(1 + t
nS)−n. Hence, taking λ = t/n in Eq. (A.4) and then

passing to the limit allows us to conclude

lim
n→∞

B(1 +
t

n
L)−nx = lim

n→∞
(1 +

t

n
S)−nBx = e−tSBx for all x ∈ D (B) .

Since B is closed, it follows that, for all x ∈ D (B) , that

e−tLx = lim
n→∞

(1 +
t

n
L)−nx ∈ D (B)

and
Be−tLx = lim

n→∞
B(1 +

t

n
L)−nx = e−tSBx.

¤

Appendix B. A Kato type inequality

Let E be a real Euclidean vector bundle over a Riemannian manifold, M, Γ∞ (E)
(Γ∞c (E)) be the smooth (compactly supported) sections of E, and H := L2 (E) be
the space of square integrable sections of E. Further assume that E is equipped with
a metric compatible connection, ∇E , and that ¤ = ¤E is the associated Bochner
Laplacian on Γ∞ (E) . To be more explicit, if {ei}rank(E)

i=1 is a local orthonormal
frame, then

¤f = tr
(
∇T∗M⊗E∇Ef

)
=

∑

i

(
∇E

ei
∇E

ei
f −∇E

∇T M
ei

ei
f
)

.

To simplify notation in the computations below, we will drop the superscripts, E
and TM from the symbols since they can be deduced from the context.

Notation B.1. Given a measurable section, e : M → E, and f ∈ H, let

sgne (f) := 1f 6=0
f

|f | + 1f=0e =
{ f

|f | if f 6= 0
e if f = 0

.

With this notation we have the polar decomposition, f = |f | sgne (f) , which is
valid no matter what the choice of e.



32 DRIVER AND GORDINA

Theorem B.2 (Kato’s Inequality). Let ε > 0, f ∈ Γ∞ (E) , |f |ε :=
√
|f |2 + ε2,

and f̂ε := f/ |f |ε .Then

d |f |ε =
〈
f̂ε,∇f

〉
and

∆0 |f |ε =
1
|f |ε

∑

i

(
|∇ei

f |2 −
∣∣∣
〈
f̂ε,∇ei

f
〉∣∣∣

2
)

+
〈
f̂ε,¤f

〉
(B.1)

≥
〈
f̂ε, ¤f

〉
.(B.2)

Moreover if ϕ ∈ C∞ (M)+ and f ∈ C∞c (E) , then

(B.3) (¤f, ϕ sgne (f)) ≤ (|f | , ∆0ϕ)

where e is any measurable section of E such that 〈¤f (x) , e (x)〉x = 0 and |e (x)|x =
1 on the set where f = 0.

Proof. This theorem is mostly a straightforward computation. (See [34], where a
local coordinate version of this calculation is done.) We start by computing the
gradient of |f |ε as

d |f |ε =
1

2
√
|f |2 + ε2

d |f |2 =
1√

|f |2 + ε2

〈f,∇·f〉 .

With this in hand we have the following formula for the Hessian of |f |ε

∇d |f |ε = −
(
|f |2 + ε2

)−3/2

〈f,∇·f〉2 +
1√

|f |2 + ε2

(
〈∇·f,∇·f〉+

〈
f,∇2

(·,·)f
〉)

.

Taking the trace of this result gives

∆0 |f |ε = −
(
|f |2 + ε2

)−3/2 ∑

i

|〈f,∇eif〉|2 +
1√

|f |2 + ε2

(∑

i

|∇eif |2 + 〈f, ¤f〉
)

which is equivalent to Eq. (B.1). Equation (B.2) follows by the Cauchy-Schwarz
inequality which implies

|∇eif |2 −
∣∣∣
〈
f̂ε,∇eif

〉∣∣∣
2

≥ |∇eif |2 −
∣∣∣f̂ε

∣∣∣
2

· |∇eif |2 ≥ 0.

If we now assume that f ∈ Γ∞c (E) and ϕ ∈ C∞ (M, [0,∞)) , then multiplying
Eq. (B.2) by ϕ and integrating gives,

(B.4)
∫

M

〈
¤f,

f

|f |ε

〉
ϕdV ≤

∫

M

∆0 |f |ε ϕdV =
∫

M

|f |ε ∆0ϕdV

where we have done two integrations by parts to get the last equality. Letting ε ↓ 0
in Eq. (B.4) then implies

(B.5)
∫

M

〈¤f, sgn0 (f)〉ϕdV ≤
∫

M

|f |∆0ϕdV

which is to say

(B.6) 〈¤f, sgn0 (f)〉 ≤ ∆0 |f | (in the distributional sense).
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If we now choose e to be a measurable section of E such that |e| = 1 and 〈¤f, e〉 = 0,
then 〈¤f, sgn0 (f)〉 = 〈¤f, sgne (f)〉 and we may rewrite Eqs. (B.5) and (B.6) as,∫

M

〈¤f, sgne (f)〉ϕdV ≤
∫

M

|f |∆0ϕdV

and
〈¤f, sgne (f)〉 ≤ ∆0 |f | (in the distributional sense).

These last two equations are equivalent to Eq. (B.3). ¤

Appendix C. A local martingale

In this appendix we will continue to use the notation in Section 5.1 unless oth-
erwise stated.

Lemma C.1 (Local martingale lemma). Let ˜̀
t ∈ R be an adapted continuously

differentiable real valued process, `0 ∈ TxM,

(C.1) `t = Qt

[∫ t

0

Q−1
τ

(
d

dτ
˜̀
τ

)
dbτ + `0

]
,

a ∈ Ω1
c (M) , and

(C.2) Zt := (at (Σt) ◦ //t) `t − δat (Σt) ˜̀
t,

be as in Eq. (5.10). Then Zt is a local martingale whose Itô differential is given by
(C.3)

dZt =
(∇//tdbt

at

)
(Σt) ◦ //t`t + (at (Σt) ◦ //t)

(
d

dt
˜̀
t

)
dbt −

(∇//tdbt
at

)
(Σt) ˜̀

t.

Proof. The proof of this lemma is purely a computation. For the sake of the reader’s
understanding we will give a slightly inefficient proof designed to motivate the form
of Zt in Eq. (5.10). Let at be as in Eq. (5.9) and then set

Nt := at (Σt) ◦ //t.

Then by Itô’s lemma in Eq. (5.2), Theorem 4.1, and Bochner identity in Eq. (4.3),
we find

dNt =
(∇//tdbt

at

)
(Σt) ◦ //t +

1
2

((¤−∆) at (Σt)) ◦ //tdt

=
(∇//tdbt

at

)
(Σt) ◦ //t +

1
2

[at (Σt) ◦ Ric ◦//t] dt.(C.4)

Also by Itô’s lemma in Eq. (5.1) and item 4. of Theorem 4.1,

d [δat (Σt)] = d
[(

e(T−t)∆̄0/2δa
)

(Σt)
]

=
(
∇//tdbt

[
e(T−t)∆̄0/2δa

])
(Σt) =

(∇//tdbt
[δat]

)
(Σt) .(C.5)

Now suppose `t ∈ TxM and ˜̀
t ∈ R are arbitrary continuous Brownian semi-

martingales such that

d`t = αt dbt + βt dt and d˜̀
t = α̃t dbt + β̃t dt

with αt, βt, α̃t, and β̃t being continuous adapted processes with values in
End (TxM) , TxM, TxM∗, and R respectively and let

(C.6) Zt = Nt`t − (δat) (Σt) ˜̀
t.
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Making use of Eqs. (C.4) and (C.5), the Itô differential of Z in Eq. (C.6) is,

dZt =
(∇//tdbt

at

)
(Σt) ◦ //t`t +

1
2

[at (Σt) ◦ Ric ◦//t`t] dt

+ (at (Σt) ◦ //t) [αtdbt + βt dt] +
(∇//tei

at

)
(Σt) ◦ //tαteidt

− (∇//tdbt
[δat]

)
(Σt) ˜̀

t − δat (Σt)
[
α̃tdbt + β̃tdt

]

− (∇//tei
[δat]

)
α̃teidt

=
(∇//tdbt

at

)
(Σt) ◦ //t`t + (at (Σt) ◦ //t)αtdbt

− (∇//tdbt
[δat]

)
(Σt) ˜̀

t − δat (Σt) α̃tdbt

+
(

1
2 [at (Σt) ◦ Ric ◦//t`t] + (at (Σt) ◦ //t) βt +

(∇//tei
at

)
(Σt) ◦ //tαtei

−δat (Σt) β̃t −
(∇//tei

[δat]
)
α̃tei

)
dt.

(C.7)

Our goal is to choose αt, βt, α̃t, and β̃t in such as way that Zt is a local martingale.
To do this we need to make the term in the parenthesis in Eq. (C.7) vanish.
Grouping the terms according to the number of derivatives on at, the term in
parenthesis in Eq. (C.7) will vanish provided

1
2

[at (Σt) ◦ Ric ◦//t`t] + (at (Σt) ◦ //t) βt = 0,
(∇//tei

at

)
(Σt) ◦ //tαtei − δat (Σt) β̃t = 0,

and
(∇//tei

[δat]
)
α̃tei = 0.

Moreover because of Eq. (4.1), these equations may be satisfied by choosing α̃ ≡ 0
(so that ˜̀

t is differentiable and d˜̀
t

dt = β̃t),

βt = −1
2
//−1

t Ric //t`t =: −1
2

Ric//t `t,

and

αt = β̃tITxM =
d˜̀

t

dt
ITxM .

Thus we have shown,

Zt := (at (Σt) ◦ //t) `t − δat (Σt) ˜̀
t,

is a local martingale provided ˜̀
t is an adapted C1 – process and ` solves

(C.8) d`t =
d˜̀

t

dt
dbt − 1

2
Ric//t `t dt.

To solve this equation for `t, let Qt solve the ODE in Eq. (5.3) and write `t = Qtkt

where kt := Q−1
t `t. Plugging this expression for `t into Eq. (C.8) using,

d`t = −1
2

Ric//t Qtktdt + Qtdkt,

implies,

−1
2

Ric//t Qtktdt + Qtdkt =
d˜̀

t

dt
dbt − 1

2
Ric//t Qtkt dt

from which we learn, dkt = Q−1
t

d˜̀
t

dt dbt. Integrating this equation and multiplying
the result on the left by Qt gives Eq. (C.1). Equation (C.3) now follows from Eq.
(C.7) with α̃ = 0 and αt = d˜̀

t

dt ITxM . ¤
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Appendix D. Wang’s dimension free Harnack inequality

Suppose that pT (·, ·) > 0 is the heat kernel at time T > 0 on a complete
connected Riemannian manifold (M) and for measurable f : M → [0,∞), let

(PT f) (x) :=
∫

M

pT (x, y) f (y) dV (y) .

Hence if f ∈ L2 (V ) , then PT f = eT ∆̄0/2f. The following lemma reflects the fact
that (Lp)∗ and Lp′ are isometrically isomorphic Banach spaces for 1 < p < ∞ and
p′ = p/ (p− 1) – the conjugate exponent to p.

Lemma D.1. Let x, y ∈ M, T > 0, p ∈ (1,∞), and C ∈ (0,∞]. Then

(D.1) [(PT f) (x)]p ≤ Cp (PT fp) (y) for all f ≥ 0

if and only if

(D.2)

(∫

M

[
pT (x, z)
pT (y, z)

]p′

pT (y, z) dV (z)

)1/p′

≤ C.

Proof. Since

(PT f) (x) =
∫

M

pT (x, z)
pT (y, z)

f (z) pT (y, z) dV (z) ,

if dµ (z) := pT (y, z) dV (z) and g (x) := pT (x,·)
pT (y,·) , then

(D.3) (PT f) (x) =
∫

M

f (x) g (x) dµ (x) .

Since g ≥ 0 and Lp (µ)∗ is isomorphic to Lp′ (µ)∗ under the pairing in Eq. (D.3),
it follows that

‖g‖Lp′ (µ) = sup
f≥0

∫
M

f (x) g (x) dµ (x)
‖f‖Lp(µ)

= sup
f≥0

(PT f) (x)

[(PT fp) (y)]1/p
.

The last equation may be written more explicitly as,
(∫

M

[
pT (x, z)
pT (y, z)

]p′

pT (y, z) dV (z)

)1/p′

= sup
f≥0

(PT f) (x)

[(PT fp) (y)]1/p
,

and from this equation the lemma easily follows. ¤

The following theorem appears in [65, 66] – also see also see [].

Theorem D.2 (Wang’s Harnack inequality). Suppose that M is a complete con-
nected Riemannian manifold such that Ric ≥ kI for some k ∈ R. Then for all
p > 1, f ≥ 0, T > 0, and x, y ∈ M, we have

(D.4) (PT f)p (y) ≤ (PT fp) (z) exp
(

p′
k

ekT − 1
d2 (y, z)

)
,

where p′ = p/ (p− 1) is the conjugate exponent to p.

In applying Wang’s results the reader should use k = −K, V ≡ 0, and replace
T by T/2 since Wang’s generator is ∆ rather than ∆/2.
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Corollary D.3. Let (M, g) be a complete Riemannian manifold such that Ric ≥ kI
for some k ∈ R. Then for every y, z ∈ M and p ∈ [1,∞),

(D.5)
(∫

M

[
pT (y, x)
pT (z, x)

]p

pT (z, x) dV (x)
)1/p

≤ exp
(

c (kT ) (p− 1)
2T

d2 (y, z)
)

where c (·) is defined as in Eq. (1.7), pt (x, y) is the heat kernel on M and d (y, z)
is the Riemannian distance from x to y for x, y ∈ M.

Proof. From Lemma D.1 and Theorem D.2 with

C = exp
(

p′

p

k

ekT − 1
d2 (y, z)

)
= exp

(
1

p− 1
k

ekT − 1
d2 (y, z)

)
,

it follows that it follows that
(∫

M

[
pT (x, z)
pT (y, z)

]p′

pT (y, z) dV (z)

)1/p′

≤ exp
(

1
p− 1

k

ekT − 1
d2 (y, z)

)
.

Using p − 1 = (p′ − 1)−1 and then interchanging the roles of p and p′ gives Eq.
(D.5). ¤

For comparison sake, recall that the classical Li - Yau Harnack inequality (see Li
and Yau [42] and Davies [13, Theorem 5.3.5]) states if α > 1, s > 0, and Ric ≥ −K
for some K ≥ 0, then

(D.6)
pt (y, x)

pt+s (z, x)
≤

(
t + s

t

)dα/2

exp
(

αd2 (y, z)
2s

+
d · αKs

8 (α− 1)

)
,

for all x, y, z ∈ Md and t > 0. However when s = 0, Eq. (D.6) gives no information
on pt (y, x) /pt (z, x) when y 6= z.

Remark D.4. Since our heat equation is determined by ∆0/2 rather than ∆0, the
reader should replace t and s by t/2 and s/2 when applying the results in [42, 13].

Appendix E. Consequences of Hamilton’s estimates

Let T ∈ (0,∞) , M (d = dim (M)) be a complete Riemannian manifold with
Ric ≥ −KI for some K ≥ 0, and let V (x, r) := Vol (B (x, r)) be the volume of the
ball, B (x, r) , centered at x ∈ M with radius r > 0. Suppose, for 0 ≤ t ≤ t1, that
u (t, x) is a positive solution to the heat equation, ∂

∂tu = 1
2∆u. The Hamilton type

gradient bounds [33, 58, 40] state if

m := sup {u (t, x) : 0 ≤ t ≤ t1, x ∈ M}
then

(E.1) t|∇ log(u (t, x))|2 ≤ 2(1 + Kt) log(m/u (t, x)) for all (t, x) ∈ [0, t1]×M.

The standard heat kernel bounds (see for example Theorems 5.6.4, 5.6.6, and 5.4.12
in Sallof-Coste [54] and for more detailed bounds see [42, 13, 53, 14, 30]) which state
there exist constants, c = c (K, d, T ) and C = C (K, d, T ) , such that,
(E.2)

c

V
(
x,

√
t/2

) exp
(
−C

d2(x, y)
t

)
≤ p(t, x, y) ≤ C

V
(
x,

√
t/2

) exp
(
−c

d2(x, y)
t

)
,

for all x, y ∈ M and t ∈ (0, T ].
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Let s ∈ (0, T ], o ∈ M, t1 = s/2 and u (t, x) = ps/2+t (o, x) . Combining Eqs.
(E.1) and (E.2) then shows,
(E.3)

t|∇x log ps/2+t (o, x))|2 ≤ 2(1+Kt) log


C

c

V
(
0,

√
s/4 + t/2

)

V
(
o,

√
s/4

) exp
(

C
d2(o, y)
s/2 + t

)
 .

Taking t = s/2 in Eq. (E.3) and then replacing s by t in the resulting inequality
implies,

(E.4)
t

2
|∇x log pt (o, x))|2 ≤ 2(1 + K

t

2
) log


C

c

V
(
0,

√
t/2

)

V
(
o,

√
t/4

) exp
(

C
d2(o, y)

t

)
 .

Using the volume estimate (see [9] and [54, Theorem 5.6.4]),

V (x, σ)
V (x, s)

≤
(σ

s

)d

exp
(√

(d− 1) Kσ
)
∀ x ∈ M and 0 ≤ s < σ,

it follows that

(E.5)
V (x,

√
t/2)

V (x,
√

t/4)
≤ 2d/2 exp

(√
(d− 1)Kt/2

)
≤ 2d/2 exp

(√
(d− 1)KT/2

)
.

Combining Eqs. (E.4) and (E.5) then allows us to conclude that there exist con-
stants, c1 and c2 depending on T, K, and d such that

(E.6) |∇x log pt (o, x))| ≤
(

c1√
t

+ c2
d (o, x)

t

)
for all t ∈ (0, T ] and o, x ∈ M.

For this estimate in the compact case with its relations to stochastic analysis, see
[16, 46, 61, 63, 35].

Proposition E.1. Continuing the notation and assumptions used above, there exist
constants, C1 (d,K) and C2 (d,K, t) such that,

(E.7)
∫

M

exp (λ |∇x log pt (o, x))|) pt (o, x) dx ≤ C (d,K, t) exp
(
C (d,K)λ2/t

)

for all o ∈ M and t ∈ (0, T ].

Proof. Let v (r) := Vol (B (o, r)) , κ :=
√

K/ (d− 1), γ := (d− 1)κ =
√

K (d− 1),
and ωd−1 be the volume of the standard d− 1 sphere. Using Bishop’s comparison
theorem (see [8, 55]) which states,

(E.8) dv (r) ≤ ωd−1

(
sinhκr

κ

)d−1

dr ≤
(ωd−1

2κ

)d−1

eκ(d−1)rdr,

along with the estimates in Eqs. (E.2) and (E.6), we have
∫

M

exp (λ |∇x log pt (o, x))|) pt (o, x) dx

≤ Ct−d/2

∫ ∞

0

exp
(

λ

(
c1√

t
+ c2

r

t

))
exp

(
−C

2t
r2

)
dv (r)

≤ C
(ωd−1

2κ

)d−1

t−d/2

∫ ∞

0

exp
(

λ

(
c1√

t
+ c2

r

t

))
exp

(
−C

2t
r2

)
eγrdr(E.9)
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= C(d,K, T )t−d/2 exp
(

λ
c1√

t

) ∫ ∞

0

exp
((

γ + λ
c2

t

)
r
)

exp
(
−C

2t
r2

)
dr.(E.10)

Equation (E.7) follows easily from Eq. (E.10) and the following two estimates

c1
λ√
t
≤ 1

2

(
c2
1 +

λ2

2t

)

and ∫ ∞

0

exp
((

γ + λ
c2

t

)
r
)

exp
(
−C

2t
r2

)
dr

≤
∫ ∞

−∞
exp

((
γ + λ

c2

t

)
r
)

exp
(
−C

2t
r2

)
dr

=
√

2πt/C exp
(

t

2C

(
γ + λ

c2

t

)2
)

.(E.11)

¤

Remark E.2. When M = Rd, using Laplace asymptotics, one may show;

lim
d→∞

e
− λ√

t

√
d−1

∫

Rd

exp (λ |∇x log pt (o, x))|) pt (o, x) dx = eλ2/4t ∀ t, λ > 0.

In particular, this implies that we can not take both C (d, 0, t) and C (d, 0) in Eq.
(E.7) to be independent of the dimension, d = dim (M) .
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