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Abstract

The two groups I studied in this dissertation are Diff(S1), the group of orientation-preserving
C∞-diffeomorphisms of the circle, and Sp(∞), an infinite-dimensional symplectic group arising from
certain symplectic representation of the group Diff(S1). In Chapter 1, I constructed Brownian mo-
tion on Diff(S1) associated with a very strong metric of the Lie algebra diff(S1). In Chapter 2, I first
studied the relationship between Diff(S1) and Sp(∞) and found that they are not isomorphic with
each other, then I constructed a Brownian motion on the group Sp(∞). In Chapter 3, I computed
the Ricci curvature of the group Sp(∞) associated with a certain inner product on the Lie algebra
sp(∞).
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Chapter 1

Construction of Brownian Motion on
Diff(S1)

1.1 Introduction

Definition 1.1.1. Let Diff(S1) be the group of orientation preserving C∞-diffeomorphisms of S1.
Let diff(S1) be the space of C∞-vector fields on S1.

The central extension of Diff(S1) is the famous Virasoro group. Both the Virasoro group, the
group Diff(S1), the quotient groups Diff(S1)/S1 and Diff(S1)/SU(1,1) arise naturally in many
places in mathematical physics and have been extensively studied for a long time [25, 6, 19, 21,
2, 3, 8, 13].

The space diff(S1) can be identified with the space of C∞-functions on S1. Therefore, diff(S1)
carries a natural Fréchet space structure. In addition, diff(S1) is an infinite-dimensional Lie algebra:
for any f ,g ∈ diff(S1), the Lie bracket is given by [ f ,g] = f ′g− f g′. Thus, the group Diff(S1)
associated with the Lie algebra diff(S1) becomes an infinite-dimensional Fréchet Lie group [22].

One of the research goals of the stochastic analysis on the group Diff(S1) is to construct a
Brownian motion on it. Because Brownian motions on the group Diff(S1) will induce measures
on it, and once we establish quasi-invariance properties of the measures, we can study unitary
representations of the group Diff(S1).

In general, to construct a Brownian motion on a Lie group, one might solve a Stratonovich
stochastic differential equation (SDE) on such a group [20, 16]. The method is best illustrated for a
finite dimensional compact Lie group.

Let G be a finite dimensional compact Lie group. Denote by g the Lie algebra of G identified
with the tangent space TeG to the group G at the identity element e ∈ G. Let Lg : G→ G be the left
translation of G by an element g ∈G, and let (Lg)∗ : g→ TgG be the differential of Lg. If we choose
a metric on g and let Wt be the standard Brownian motion on g corresponding to this metric, we can
develop the Brownian motion Wt onto G by solving a Stratonovich stochastic differential equation

δ X̃t = (LX̃t
)∗δWt (1.1.1)
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where δ stands for the Stratonovich differential. The solution X̃t is a Markov process on G whose
generator is the Laplace operator on G. We call X̃t the Brownian motion on the group G.

In the case when G is an infinite-dimensional Hilbert Lie group, that is, the tagent space has
a Hilbert space structure, one can solve Equation (1.1.1) by using the theory of stochastic dif-
ferential equations in Hilbert spaces as developed by G. DaPrato and J. Zabczyk in [7]. Us-
ing this method, M. Gordina [10, 11, 12] has constructed Brownian motions on several Hilbert-
Schmidt groups. In Chapter 2, using the same method, I will also construct a Brownian motion on
the infinite-dimensional symplectic group Sp(∞). These constructions rely on the fact that these
Hilbert-Schmidt groups are Hilbert Lie groups.

In the present case, we would like to replace G by Diff(S1) and g by diff(S1) and solve Equation
(1.1.1) correspondingly. But because the group Diff(S1) is a Fréchet Lie group, which is not a
Hilbert Lie group, Equation (1.1.1) does not even make sense as it stands. First, we need to interpret
the Brownian motion Wt in the Fréchet space diff(S1) appropriately. Second, we are lacking a
well developed stochastic differential equation theory in Fréchet spaces to make sense of Equation
(1.1.1).

In 1999, P. Malliavin [21] first constructed a canonical Brownian motion on Homeo(S1), the
group of Hölderian homeomorphisms of S1. In 2002, S. Fang [8] gave a detailed construction of
this canonical Brownian motion on the group Homeo(S1). Their constructions were essentially
carried out by interpreting and solving the same Equation (1.1.1) on the group Diff(S1).

To define the Brownian motion Wt in Equation (1.1.1), Malliavin and Fang chose the H3/2 metric
of the Lie algebra diff(S1). Basically, this metric uses the set

{n−3/2 cos(nθ),m−3/2 sin(mθ)∣m,n = 1,2,3, ⋅ ⋅ ⋅},

which is a subset of the Lie algebra diff(S1), as an orthonormal basis to form a Hilbert space H3/2.
Then they defined Wt to be the cylindrical Brownian motion in H3/2 whose covariance operator is
the identity operator on H3/2. But since the coefficients n−3/2 and m−3/2 do not decrease rapidly
enough, the Hilbert space H3/2 is not contained in the Lie algebra diff(S1). Therefore, the Brownian
motion Wt they defined on H3/2 does not live in diff(S1) either. This is the essential reason why
the canonical Brownian motion they constructed lives in a larger group Homeo(S1), but not in the
group Diff(S1).

To interpret and solve Equation (1.1.1), Fang [8] treated it as a family of stochastic differential
equations on S1: for each θ ∈ S1, Fang considered the equation

δ X̃θ ,t = (LX̃θ ,t
)∗δWθ ,t , (1.1.2)

which is a stochastic differential equation on S1. By solving the above equation for each θ ∈ S1,
Fang obtained a family of solutions X̃θ ,t parameterized by θ . Then he used a Kolmogorov type
argument to show that the family X̃θ ,t is Hölderian continuous in the variable θ . Using this method,
he proved that for each t ≥ 0, X̃θ ,t is a Hölderian homeomorphism of S1. Thus, he constructed
the canonical Brownian motion on the group Homeo(S1). But this Kolmogorov type argument
cannot be pushed further to show that X̃θ ,t is differentiable in θ . Therefore, Fang’s method does not
seem to be suitable to construct a Brownian motion that lives in the group Diff(S1), rather than in
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Homeo
(
S1
)
.

In this chapter, my goal is to construct a Brownian motion that lives exactly in the group
Diff(S1). To achieve this, I need another way to interpret and solve Equation (1.1.1). The idea
is described as follows.

First, instead of the H3/2 metric that Malliavin and Fang used, I will choose a very “strong”
metric on the Lie algebra diff(S1) (In some sense, we can call it H∞ metric): let {λ (n)}∞

n=1 be a
sequence of rapidly decreasing positive numbers. I use the set

{λ (n)cos(nθ),λ (m)sin(mθ)∣m,n = 1,2,3, ⋅ ⋅ ⋅},

which is a subset of the Lie algebra diff(S1), as an orthonormal basis to form a Hilbert space Hλ .
Then I will define the Brownian motion Wt to be the cylindrical Brownian motion in Hλ whose
covariance operator is the identity operator on Hλ . Because the coefficients λ (n) are rapidly de-
creasing, the Hilbert space Hλ is a subspace of the Lie algebra diff(S1). Therefore, the Brownian
motion Wt lives in the Lie algebra diff(S1), and the solution to Equation (1.1.1) will have a better
chance to live in the group Diff(S1).

Second, in contrast to Fang’s method of interpreting Equation (1.1.1) “pointwise” as a family
of stochastic differential equations on S1, I will interpret it as a sequence of stochastic differential
equations on a sequence of “Hilbert” spaces. To do this, I will embed the group Diff(S1) into an
affine space d̃iff(S1) that is isomorphic to the Lie algebra diff(S1). Let Hk be the kth Sobolev space
over S1. It is a separable Hilbert space. Let H̃k be the corresponding affine space that is isomorphic
to Hk. For the precise definition of the space d̃iff(S1) and H̃k, see Section 1.2. It is well known that
the space diff(S1) is the intersection of the Sobolev spaces Hk. Similarly, d̃iff(S1) is the intersection
of the affine spaces H̃k. Now we have the embedding

Diff(S1)⊆ d̃iff(S1)⊆ H̃k, k = 1,2,3, ⋅ ⋅ ⋅ (1.1.3)

Thus, I can interpret Equation (1.1.1) as a sequence of stochastic differential equations on the
sequence of affine spaces {H̃k}∞

k=1 each of which is isomorphic to the Hilbert space Hk. These
stochastic differential equations can be solved by DaPrato and Zabczyk’s method [7].

In accordance with the notations used by DaPrato and Zabczyk in [7], in the rest of this chapter,
I will denote the operator (LX̃t

)∗ in Equation (1.1.1) by Φ̃(X̃t). The operator Φ̃ will be discussed in
detail in the next section. After adding the initial condition, I can now re-write Equation (1.1.1) as

δ X̃t = Φ̃(X̃t)δWt , X̃0 = id (1.1.4)

where id is the identity element in Diff(S1).
Equation (1.1.4) is interpreted as a stochastic differential equation in the “Hilbert” space H̃k. To

use DaPrato and Zabczyk’s method to solve this equation, I will also need to establish the Lipschitz
condition of the operator Φ̃. This will be done in Section 1.2. It turns out that the operator Φ̃ is
locally Lipschitz. So the explosion time of the solution, which is a key part of the problem, needs
to be discussed. This will be done in Section 1.3.

After solving Equation (1.1.4 in H̃)k for each k, it is relatively easy to prove that the solution
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lives in the affine space d̃iff(S1) (Proposition 1.3.17). By the embedding (1.1.3), the group Diff(S1)

is a subset of the affine space d̃iff(S1). I need to push one step further to prove that the solution
actually lives in the group Diff(S1).

In general, to prove a process lives in a group rather than in an ambient space, one needs to
construct an inverse process. To construct the inverse process, usually one needs to solve another
stochastic differential equation – the SDE for the inverse process [10, 14]. In my case, I have derived
the SDE for the inverse process:

δỸt = Ψ̃(Ỹt)δWt (1.1.5)

where Ψ̃ is an operator such that for g̃∈Diff(S1) and f ∈ diff(S1), Ψ̃(g̃) f =Dg̃ ⋅ f , where D= d/dθ

and “⋅” is the pointwise multiplication of two functions. Because the operator D causes loss of one
degree of smoothness, the method I use to interpret and solve Equation (1.1.4) does not apply to
Equation (1.1.5). This causes some problems, and I was forced to give up this method of solving
the inverse SDE. But I mananged to get around the problem by using a different method.

I first observe that an element f̃ ∈ d̃iff(S1) belongs to Diff(S1) if and only if f̃ ′(θ) > 0 for all
θ ∈ S1. Based on this observation, I can show that the solution is contained in the group Diff(S1)
up to a stopping time. Then I can “concatenate” this small piece of solution with another small
piece of solution to make a new solution up to a longer stopping time. The key idea is Proposition
(1.3.14) and the remark following it (Remark 1.3.15). Finally, I am able to prove the main theorem
(Theorem 1.3.19) of this chapter. Basically, it says that Equation (1.1.4) has a unique solution that
lives exactly in the group Diff(S1), and furthermore, the solution is non-explosive.

The work in this chapter is written in [26], and has been accepted by Potential Analysis for
publication.

1.2 An interpretation of Equation (1.1.4)

1.2.1 The group Diff(S1) and the Lie algebra diff(S1)

Let Diff(S1) be the group of orientation preserving C∞ diffeomorphisms of S1, and diff(S1) be the
space of C∞ vector fields on S1. We have the following identifications for the space diff(S1):

diff(S1)∼= { f : S1→ ℝ : f ∈C∞} (1.2.1)
∼= { f : ℝ→ ℝ : f ∈C∞, f (x) = f (x+2π), for all x ∈ ℝ}

Using this identification, we see that the space diff(S1) has a Fréchet space structure. In addition,
this space has a Lie algebra structure, namely, for f ,g ∈ diff(S1) the Lie bracket is given by

[ f ,g] = f ′g− f g′,

where f ′ and g′ are derivatives with respect to the variable θ ∈ S1. Therefore, the group Diff(S1) is
a Fréchet Lie group as defined in [22].
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Using the above identification 1.2.1, we also have an identification for Diff(S1)

Diff(S1)∼= { f̃ : ℝ→ ℝ : f̃ = id + f , f ∈ diff(S1), f̃ ′ > 0}, (1.2.2)

where id is the identity function from ℝ to ℝ. Note that the set on the right hand side of the above
identification is a group with the group multiplication being composition of functions. We define
that for f̃ , g̃ ∈Diff(S1), f̃ g̃ = g̃∘ f̃ . Under this identification, the left translation of Diff(S1) is given
by Lg̃ f̃ = g̃ f̃ = f̃ ∘ g̃.

Definition 1.2.1. Define

d̃iff(S1) = { f̃ : ℝ→ ℝ∣ f̃ = id + f , f ∈ diff(S1)} (1.2.3)

The space d̃iff(S1) is an affine space which is isomorphic to the vector space diff(S1). We
denote the isomorphism by ∼, that is, ∼: diff(S1)→ d̃iff(S1), f 7→ f̃ = id + f . Comparing (1.2.2
and (1.2.1)), we have the embedding

Diff(S1)⊆ d̃iff(S1). (1.2.4)

With this embedding, the differential of a left translation Lg̃ becomes (Lg̃)∗ : diff(S1)→ diff(S1),
and is given by (Lg̃)∗ f = f ∘ g̃ for f ∈ diff(S1). This can be easily seen by the following calculation:

d
dt

∣∣∣∣
t=0

(g̃(θ)+ t f (g̃(θ))) = f (g̃(θ))

The following proposition is an immediate observation from the identification (1.2.2) and def-
inition of d̃iff(S1) given by (1.2.1). Yet, it plays a key role in proving the main theorem (Theorem
1.3.19) of this chapter.

Proposition 1.2.2. An element f̃ ∈ d̃iff(S1) belongs to Diff(S1) if and only if f̃ ′ > 0, or equivalently
f ′ >−1.

1.2.2 The Hilbert space Hλ and the Brownian motion Wt

To define the Brownian motion Wt in Equation (1.1.4), We need to choose a metric on the Lie algebra
diff(S1). Comparing with the H3/2 metric that P. Malliavin and S. Fang chose, the metric we choose
in the following definition is a very “strong” metric.

Definition 1.2.3. Let S be the set of even functions λ : ℤ→ (0,∞) such that limn→∞ ∣n∣kλ (n) = 0
for all k ∈ ℕ. For λ ∈S , n ∈ ℤ, let ên = ê(λ )n ∈ diff(S1) be defined by

ê(λ )n (θ) =

{
λ (n)cos(nθ), n≥ 0
λ (n)sin(∣n∣θ), n < 0

Let Hλ be the Hilbert space with the set {ê(λ )n }n∈ℤ as an orthonormal basis.
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Note that the function λ is rapidly decreasing, therefore the Hilbert space Hλ defined above is a
proper subspace of diff(S1). Also note that diff(S1) =

∪
λ∈S Hλ .

Let α,λ ∈S be defined by λ (n) = ∣n∣α(n), and let Hα and Hλ be the corresponding Hilbert
subspaces of diff(S1). Then we have Hα ⊂ Hλ , and the inclusion map ι : Hα ↪→ Hλ that sends ê(α)

n

to ê(α)
n = 1

∣n∣ ê
(λ )
n is a Hilbert-Schmidt operator. The adjoint operator ι∗ : Hλ →Hα that sends ê(λ )n to

1
∣n∣ ê

(α)
n is also a Hilbert-Schmidt operator. The operator Qλ = ιι∗ : Hλ →Hλ is a trace class operator

on Hλ , and Hα = Q1/2
λ

Hλ .

Definition 1.2.4. Let Wt be a Brownian motion defined by

Wt = ∑
n∈ℤ

B(n)
t ê(α)

n = ∑
n∈ℤ

1
∣n∣

B(n)
t ê(λ )n

where {B(n)
t }n∈ℤ are mutually independent standard ℝ-valued Brownian motions.

Remark 1.2.5. We see that Wt is a cylindrical Brownian motion on Hα whose covariance operator
is the identity operator on Hα . Also, Wt is a Brownian motion on Hλ whose covariance operator is
the operator Qλ .

1.2.3 The Sobolev space Hk and the affine space H̃k

Now we turn to the Sobolev spaces over S1. Let us first recall some basic properties of the Sobolev
spaces over S1 found for example in [1].

Let k be a non-negative integer.

Definition 1.2.6. Let Ck be the space of k-times continuously differentiable real-valued functions
on S1, and Hk be the kth Sobolev space on S1.

Recall that Hk consists of functions f : S1→ ℝ such that f (k) ∈ L2, where f (k) is the kth deriva-
tive of f in distributional sense. The Sobolev space Hk has a norm given by

∥ f∥2
Hk = ∥ f∥2

L2 +∥ f (k)∥2
L2

The Sobolev space Hk is a separable Hilbert space, and Ck is a dense subspace of Hk. We will make
use of the following standard properties of the spaces Hk.

Theorem 1.2.7 ([1]). Let m,k be two non-negative integers.

1. If m≤ k and f ∈ Hk, then ∥ f∥Hm ≤ ∥ f∥Hk .

2. If m < k and f ∈ Hk, then there exists a constant ck such that ∥ f (m)∥L∞ ≤ ck∥ f∥Hk .

3. Hk+1 ⊆ Hk for all k = 0,1,2, ⋅ ⋅ ⋅ , and diff(S1) =
∩

∞
k=0 Hk.

□
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An element f ∈ Hk can be identified with a 2π-periodic function from ℝ to ℝ. Let id be the
identity function from ℝ to ℝ. It makes sense to talk about the function f̃ = id + f . Similar to the
definition of d̃iff(S1), we can define H̃k as follows.

Definition 1.2.8. Define
H̃k = { f̃ : ℝ→ ℝ : f̃ = id + f , f ∈ Hk}

The space H̃k is an affine space that is isomorphic to the Sobolev space Hk. We denote the
isomorphism by ∼, that is, ∼: Hk→ H̃k, f 7→ f̃ = id + f . The image of Ck under the isomorphism,
denoted by C̃k, is a dense subspace of the affine space H̃k. An element f̃ ∈ H̃k can be identified as
a function from S1 to S1. By item (3) in Theorem 1.2.7, we have H̃k+1 ⊆ H̃k and d̃iff(S1) =

∩
k H̃k.

Now we have the following embeddings:

Diff(S1)⊆ d̃iff(S1)⊆ ⋅⋅ ⋅ ⊆ H̃3 ⊆ H̃2 ⊆ H̃1, (1.2.5)

and we can interpret Equation (1.1.4) as a sequence of stochastic differential equations on the se-
quence of affine spaces {H̃k}∞

k=1.

1.2.4 The operator Φ̃ and Φ

For g̃ ∈ Diff(S1), let (Lg̃)∗ be the differential of the left translation. In accordance with the notation
used by DaPrato and Zabczyk in [7], we denote (Lg̃)∗ by Φ̃(g̃).

Initially, Φ̃ : Diff(S1)→ (diff(S1)→ diff(S1)), which means Φ̃ takes an element g̃ ∈ Diff(S1)
and becomes a linear transformation Φ̃(g̃) from diff(S1) to diff(S1). Because we want to interpret
Equation (1.1.4) as an SDE on H̃k and use DaPrato and Zabczyk’s theory [7], we need the operator
Φ̃ to be extended as Φ̃ : H̃k→ (Hλ →Hk), which means Φ̃ takes an element g̃ ∈ H̃k and becomes a
linear transformation Φ̃(g̃) from Hλ to Hk [7].

Let L(Hλ ,Hk) be the space of linear transformations from Hλ to Hk. Define a mapping

Φ̃ : C̃k→ L(Hλ ,H
k) (1.2.6)

such that if f̃ ∈ C̃k, g ∈Hλ , then Φ̃( f̃ )(g) = g∘ f̃ . The mapping Φ̃ is easily seen to be well defined.
Sometimes, it is easier to work with the vector space Ck. So we similarly define a mapping

Φ : Ck→ L(Hλ ,H
k) (1.2.7)

such that if f ∈ Ck, g ∈ Hλ , then Φ( f )(g) = g ∘ f̃ , where f̃ = id + f is the image of f under the
isomorphism ∼.

Let L2(Hλ ,Hk) denote the space of Hilbert-Schmidt operators from Hλ to Hk. The space
L2(Hλ ,Hk) is a separable Hilbert space. For T ∈ L2(Hλ ,Hk), the norm of T is given by

∥T∥2
L2(Hλ ,Hk) = ∑

n∈ℤ
∥T ê(λ )n ∥2

Hk

where ê(λ )n is defined in Definition (1.2.3).
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To use DaPrato and Zabczyk’s theory [7], we need Φ̃ to be Φ̃ : H̃k→ L2(Hλ ,Hk) or equivalently,
we need Φ to be Φ : Hk → L2(Hλ ,Hk). We will also need some Lipschitz condition of Φ̃ and Φ.
These are proved in proposition (1.2.10) and (1.2.12). Both propositions need the Faà di Bruno’s
formula for higher derivatives of a composition function.

Theorem 1.2.9 (Faà di Bruno’s formula [17]).

f (g(x))(n) =
n

∑
k=0

f (k)(g(x))Bn,k(g′(x),g′′(x), ⋅ ⋅ ⋅ ,g(n−k+1)(x)), (1.2.8)

where Bn,k is the Bell polynomial

Bn,k(x1, ⋅ ⋅ ⋅ ,xn−k+1) = ∑
n!

j1! ⋅ ⋅ ⋅ jn−k+1!

(x1

1!

) j1
⋅ ⋅ ⋅
( xn−k+1

(n− k+1)!

) jn−k+1
,

and the summation is taken over all sequences of { j1, ⋅ ⋅ ⋅ , jn−k+1} of nonnegative integers such that
j1 + ⋅ ⋅ ⋅+ jn−k+1 = k and j1 +2 j2 + ⋅ ⋅ ⋅+(n− k+1) jn−k+1 = n.

We remark that after expanding expression (1.2.8), f (g(x))(n) can be viewed as a summation of
several terms, each of which has the form

f ( j)(g(x))m(g′,g′′, ⋅ ⋅ ⋅ ,g(n))

where j≤ n and m(g′,g′′, ⋅ ⋅ ⋅ ,g(n)) is a monomial in g′,g′′, ⋅ ⋅ ⋅ ,g(n). Also observe that, the only term
that involves the highest derivative of g is f ′(g(x))g(n)(x).

Proposition 1.2.10. For any f ∈Ck, k = 0,1,2, ⋅ ⋅ ⋅ , Φ( f ) ∈ L2(Hλ ,Hk).

Proof.

∥Φ( f )∥2
L2(Hλ ,Hk) = ∑

n∈ℤ
∥Φ( f )(ên)∥2

Hk

= ∑
n∈ℤ
∥ên(id + f )∥2

L2 +∥ên(id + f )(k)∥2
L2 ,

where ên is defined in Definition (1.2.3) and we have suppressed the index λ here. ên(id + f )
denotes the function ên composed with id + f , and ên(id + f )(k) is the kth derivative of ên(id + f ).

First, we have
∥ên(id + f )∥2

L2 ≤ λ (n)2.

We apply Faà di Bruno’s formula (1.2.8) to ên(id + f )(k), and then expand it to a summation of
several terms. We are going to deal with the terms with and without f (k), the highest derivative of
f , separately. So we write the summaion as

ên(id + f )(k) = ... terms without f (k)...+ ê′n(id + f ) f (k), (1.2.9)
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where each term without f (k) has the form

ê( j)
n (id + f )m( f ′, f ′′, ⋅ ⋅ ⋅ , f (k−1))

with j ≤ k and m( f ′, f ′′, ⋅ ⋅ ⋅ , f (k−1)) a monomial in f ′, f ′′, ⋅ ⋅ ⋅ , f (k−1). Let d be the degree of the
monomial m( f ′, f ′′, ⋅ ⋅ ⋅ , f (k−1)). Then from Faà di Bruno’s formula we see that d ≤ k for all mono-
mials.

By Definition (1.2.3) of ên and using item (2) in Theorem (1.2.7), we have

∥ê( j)
n (id + f )m( f ′, f ′′, ⋅ ⋅ ⋅ , f (k−1))∥L2

≤ ∥ê( j)
n (id + f )∥L∞∥m( f ′, f ′′, ⋅ ⋅ ⋅ , f (k−1))∥L∞ (1.2.10)

≤ λ (n)∣n∣kck
k∥ f∥k

Hk .

For the last term in expression (1.2.9), we have

∥ê′n(id + f ) f (k)∥L2 ≤ ∥ê′n(id + f )∥L∞∥ f (k)∥L2 (1.2.11)

≤ λ (n)∣n∣∥ f∥Hk ≤ λ (n)∣n∣kck
k∥ f∥k

Hk .

By (1.2.10) and (1.2.11), we have

∥ên(id + f )(k)∥2
L2 ≤ Kλ (n)2∣n∣2kc2k

k ∥ f∥2k
Hk ,

where K is the number of terms in expression (1.2.9), which depends on k but does not depend on
n. Therefore,

∥Φ( f )∥2
L2(Hλ ,Hk) ≤ ∑

n∈ℤ

(
λ (n)2 +Kλ (n)2∣n∣2kc2k

k ∥ f∥2k
Hk

)
Because λ (n) is rapidly decreasing (Definition 1.2.3), ∑n∈ℤ λ (n)2∣n∣2k < ∞. Therefore, we have

∥Φ( f )∥2
L2(Hλ ,Hk) < ∞

Now Φ can be viewed as a mapping Φ : Ck → L2(Hλ ,Hk). Similarly, Φ̃ can be viewed as a
mapping Φ̃ : C̃k→ L2(Hλ ,Hk). To use DaPrato and Zabczyk’s theory [7], we will need the Lipschitz
condition of Φ and Φ̃. It turns out that they are locally Lipschitz. Let us recall the concept of local
Lipschitzness.

Definition 1.2.11. Let A and B be two normed linear spaces with norm ∥ ⋅∥A and ∥ ⋅∥B respectively.
A mapping f : A→ B is said to be locally Lipschitz if for R > 0, and x,y ∈ A such that ∥x∥,∥y∥ ≤ R,
we have

∥ f (x)− f (y)∥B ≤CR∥x− y∥A,

where CN is a constant which in general depends on N.

Proposition 1.2.12. For any k = 0,1,2, ⋅ ⋅ ⋅ , Φ : Ck→ L2(Hλ ,Hk) is locally Lipschitz.
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Proof. Let R > 0, and f ,g ∈Ck be such that ∥ f∥Hk ,∥g∥Hk ≤ R. We have

∥Φ( f )−Φ(g)∥2
L2(Hλ ,Hk)

= ∑
n∈ℤ
∥[Φ( f )−Φ(g)]ên∥2

Hk = ∑
n∈ℤ
∥ên(id + f )− ên(id +g)∥2

Hk

= ∑
n∈ℤ
∥ên(id + f )− ên(id +g)∥2

L2 +∥ên(id + f )(k)− ên(id +g)(k)∥2
L2 ,

where ên is defined in Definition (1.2.3) and we have suppressed the index λ here. ên(id + f ) and
ên(id + g) denote the function ên composed with id + f and id + g respectively. ên(id + f )(k) and
ên(id +g)(k) are the kth derivatives of ên(id + f ) and ên(id +g) respectively.

First, by the mean value theorem we have

∥ên(id + f )− ên(id +g)∥L2 = ∥ê′n(id +ξ )( f −g)∥L2

≤ ∥ê′n(id +ξ )∥L∞∥ f −g∥L2 ≤ λ (n)∣n∣∥ f −g∥Hk

We apply Faà di Bruno’s formula (1.2.8) to ên(id + f )(k), and then expand it to a summation of
several terms. We are going to deal with the terms with and without f (k), the highest derivative of
f , separately. So we write the summaion as

ên(id + f )(k) = ... terms without f (k)...+ ê′n(id + f ) f (k), (1.2.12)

where each term without f (k) has the form

ê( j)
n (id + f )m( f ′, f ′′, ⋅ ⋅ ⋅ , f (k−1))

with j ≤ k and m( f ′, f ′′, ⋅ ⋅ ⋅ , f (k−1)) a monomial in f ′, f ′′, ⋅ ⋅ ⋅ , f (k−1). Let d be the degree of the
monomial m( f ′, f ′′, ⋅ ⋅ ⋅ , f (k−1)). Then from Faà di Bruno’s formula we see that d ≤ k for all mono-
mials. By replacing f with g in (1.2.12), we obtain

ên(id +g)(k) = ... terms without g(k)...+ ê′n(id +g)g(k) (1.2.13)

Next, we need a simple observation: suppose A1A2A3... and B1B2B3... are two monomials with
the same number of factors. By telescoping, we can put A1A2A3...−B1B2B3... into the form

(A1−B1)A2A3...+B1(A2−B2)A3...+B1B2(A3−B3)...+ ⋅ ⋅ ⋅

Using this observation, we can put ên(id + f )(k)− ên(id +g)(k) into the form

ên(id + f )(k)− ên(id +g)(k) = ...terms without f (k) and g(k)... (1.2.14)

+
(
ê′n(id + f )− ê′n(id +g)

)
f (k)+ ê′n(id +g)

(
f (k)−g(k)

)
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In expression (1.2.14), there are two types of terms without f (k) and g(k). One type has the form(
ê( j)

n (id + f )− ê( j)
n (id +g)

)
mA( f ′, ⋅ ⋅ ⋅ , f (k−1),g′, ⋅ ⋅ ⋅ ,g(k−1)), (1.2.15)

where j ≤ k and mA is a monomial in f ′, ⋅ ⋅ ⋅ , f (k−1),g′, ⋅ ⋅ ⋅ ,g(k−1). We denote such a term by A.
Another type has the form

ê(i)n (id +g)
(

f ( j)−g( j)
)

mB( f ′, ⋅ ⋅ ⋅ , f (k−1),g′, ⋅ ⋅ ⋅ ,g(k−1)) (1.2.16)

where i, j ≤ k and mB is a monomial in f ′, ⋅ ⋅ ⋅ , f (k−1),g′, ⋅ ⋅ ⋅ ,g(k−1). We denote such a term by B.
Now we want to find an L2 bound of each term in (1.2.14). For the term A, by the mean value

theorem we have
[ê( j)

n (id + f )− ê( j)
n (id +g)] = ê( j+1)

n (id +ξ )( f −g).

By Definition (1.2.3) of ên, and using Item (1) and (2) in Theorem (1.2.7), we have

∥A∥L2 ≤ ∥ê( j+1)
n (id +ξ )∥L∞∥mA∥L∞∥ f −g∥L2 (1.2.17)

≤ λ (n)∣n∣k+1ck
kNk∥ f −g∥Hk .

For the term B, we have

∥B∥L2 ≤ ∥ê(i)n (id +g)∥L∞∥mB∥L∞∥ f ( j)−g( j)∥L2 (1.2.18)

≤ λ (n)∣n∣kck
kNk∥ f −g∥Hk .

For the last two terms in expression (1.2.14), using Item (1) and (2) in Theorem (1.2.7) again,
we have

∥[ê′n(id + f )− ê′n(id +g)] f (k)∥L2

= ∥ê′′n(id +ξ )( f −g) f (k)∥L2 ≤ ∥ê′′n(id +ξ )∥L∞∥ f −g∥L∞∥ f (k)∥L2 (1.2.19)

≤ ∥ê′′n(id +ξ )∥L∞ck∥ f −g∥Hk∥ f∥Hk ≤ λ (n)∣n∣2ckN∥ f −g∥Hk

and
∥ê′n(id +g)[ f (k)−g(k)]∥L2 ≤ λ (n)∣n∣∥ f −g∥Hk . (1.2.20)

By (1.2.17–1.2.20), we see that λ (n)∣n∣k+1ck
kNk∥ f − g∥Hk is a common L2 bound for all terms

in (1.2.14). So,

∥ên(id + f )(k)− ên(id +g)(k)∥L2 ≤ Kλ (n)∣n∣k+1ck
kNk∥ f −g∥Hk (1.2.21)

where K is the number of terms in expression (1.2.14), which depends on k but does not depend on
n.
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Finally,

∥Φ( f )−Φ(g)∥2
L2(Hλ ,Hk)

≤ ∑
n∈ℤ

λ (n)2∣n∣2∥ f −g∥2
Hk +K2

λ (n)2∣n∣2k+2c2k
k R2k∥ f −g∥2

Hk

≤ Kck
kRk∥ f −g∥Hk

(
∑
n∈ℤ

λ (n)2∣n∣2k+2

)1/2

Let

CR =

(
∑
n∈ℤ

λ (n)2∣n∣2 +K2
λ (n)2∣n∣2k+2c2k

k R2k

)1/2

,

Because λ (n) is rapidly decreasing (Definition 1.2.3), ∑n∈ℤ λ (n)2∣n∣2k <∞. So CR is a finite number
that depends on R and k. Therefore,

∥Φ( f )−Φ(g)∥L2(Hλ ,Hk) ≤CR∥ f −g∥Hk (1.2.22)

By the above proposition, Φ : Ck → L2(Hλ ,Hk) is locally Lipschitz. So Φ is uniformly con-
tinuous on Ck. But Ck is a dense subspace of Hk (see subsection 2.3). Therefore, we can extend
the domain of Φ from Ck to Hk, and obtain a mapping Φ : Hk → L2(Hλ ,Hk). Similarly, we can
also extend the domain of Φ̃ from C̃k to H̃k, and obtain a mapping Φ̃ : H̃k → L2(Hλ ,Hk). After
extension, Φ and Φ̃ are still locally Lipschitz.

Definition 1.2.13. Define Φ̃ : H̃k → L2(Hλ ,Hk) to be the extension of Φ̃ : C̃k → L2(Hλ ,Hk) from
C̃k to H̃k, and Φ : Hk→ L2(Hλ ,Hk) to be the extension of Φ : Ck→ L2(Hλ ,Hk) from Ck to Hk. By
the remark in the previous paragraph, Φ and Φ̃ are still locally Lipschitz.

1.3 A Brownian motion on Diff(S1)

In this section, we fix a probability space (Ω,F ,ℙ) equipped with a filtration F∗ = {Ft , t ≥ 0} that
is right continuous and such that each Ft is complete with respect to ℙ.

Equation (1.1.4) is now interpreted as a Stratonovich stochastic differential equation on H̃k for
each k = 0,1,2, ⋅ ⋅ ⋅ . Let us fix such a k.

1.3.1 Changing Equation (1.1.4) into the Itô form

To solve Equation (1.1.4), we first need to change it into the Itô form. Here we follow the treatment
of S. Fang in [8]. In Definition 1.2.4, Wt = ∑n∈ℤ B(n)

t ê(α)
n , where α is a rapidly decreasing even

function as described in Definition 1.2.3. Using the definition of Φ̃, Wt , and ê(α)
n , we can write
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Equation (1.1.4) as

δ X̃t = α(0)+
∞

∑
n=1

α(n)cos(nX̃t)δB(n)
t +

−∞

∑
m=−1

α(m)sin(−mX̃t)δB(m)
t . (1.3.1)

Using the stochastic contraction of dB(n)
t ⋅dB(m)

t = δmndt for m,n ∈ ℤ, we have

d cos(nX̃t) ⋅dB(n)
t =−α(n) ⋅n ⋅ sin(nX̃t)cos(nX̃t)dt, n = 1,2, ⋅ ⋅ ⋅

d sin(−mX̃t) ⋅dB(m)
t = α(m)(−m)sin(−mX̃t)cos(−mX̃t)dt, m =−1,−2, ⋅ ⋅ ⋅

So the stochastic contraction of the right hand side of (1.3.1) is zero because α is an even function.
Therefore Equation (1.3.1) can be written in the following Itô form:

dX̃t = α(0)+
∞

∑
n=1

α(n)cos(nX̃t)dB(n)
t +

−∞

∑
m=−1

α(m)sin(−mX̃t)dB(m)
t (1.3.2)

Using the definition of Wt and Φ̃ again, Equation (1.3.2) becomes

dX̃t = Φ̃(X̃t)dWt

Therefore, Equation (1.1.4) is equivalent to the following Itô stochastic differential equation

dX̃t = Φ̃(X̃t)dWt , X̃0 = id (1.3.3)

This equation is considered in the affine space H̃k.
If we write X̃t = id +Xt with Xt a process with values in the Sobolev space Hk and use the

definition of Φ (see subsection 2.4), Equation (1.3.3) is equivalent to the following equation

dXt = Φ(Xt)dWt , X0 = 0 (1.3.4)

This equation is considered in the Sobolev space Hk.

1.3.2 Truncated stochastic differential equation

By Proposition (1.2.12) the operator Φ is locally Lipschitz. To use G. DaPrato and J. Zabczyk’s
theory [7], we need to “truncate” the operator Φ: Let R > 0. Let ΦR : Hk→ L2(Hα ,Hk) be defined
by

ΦR(x) =
{

Φ(x), ∥x∥Hk ≤ R
Φ(Rx/∥x∥Hk), ∥x∥Hk > R

(1.3.5)

Then ΦR is globally Lipschitz. Let us consider the following “truncated” stochastic differential
equation

dXt = ΦR(Xt)dWt , X0 = 0 (1.3.6)
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in the Sobolev space Hk. The following defintion is in accordance with G. DaPrato and J. Zabczyk’s
treatments (p.182 in [7]).

Definition 1.3.1. Let T > 0. An F∗-adapted Hk-valued process Xt with continuous sample paths is
said to be a mild solution to Equation (1.3.6) up to time T if∫ T

0
∥Xs∥2

Hk ds < ∞, ℙ-a.s.

and for all t ∈ [0,T ], we have

Xt = X0 +
∫ t

0
ΦR(Xs)dWs, ℙ-a.s.

For Equation (1.3.6), a strong solution is the same as a mild solution. The solution Xt is said to be
unique up to time T if for any other solution Yt , the two processes Xt and Yt are equivalent up to time
T , that is, the stopped processes Xt∧T and Yt∧T are equivalent.

Remark 1.3.2. In the above definition, we require a solution to have continuous sample paths.

Proposition 1.3.3. For each T > 0, there is a unique solution X (T ) to Equation (1.3.6) up to time
T .

Proof. The proof is a simple application of Theorem 7.4, p.186 from [7]. We need to check the
conditions to use Theorem 7.4 from [7]. By definition of ΦR, we see that ΦR satisfies the following
growth condition:

∥ΦR(x)∥2
L2(Hα ,Hk) ≤C(1+∥x∥2

Hk), x ∈ Hk

for some constant C. All other conditions to use Theorem 7.4 from [7] are easily verified. Therefore,
we have the conclusion.

Let us choose a sequence {Tn}∞
n=1 such that Tn ↑ ∞, and let each X (Tn) be the unique solution to

Equation (1.3.6) up to time Tn. By the uniqueness of the solution, and by the continuity of sample
paths, for 1≤ i < j, the sample paths of X (Tj) coincide with the sample paths of X (Ti) up to time Ti

almost surely. To be precise, we have, for almost all ω ∈Ω,

X (Tj)(t,ω) = X (Ti)(t,ω), for all t ∈ [0,Ti]

Therefore, we can extend the sample paths to obtain a process XR: For almost all ω ∈Ω, let

XR(t,ω) = lim
n→∞

X (Tn)(t,ω) for all t ∈ [0,∞)

Then the process XR is a unique solution with continuous sample paths to Equation (1.3.6) up to
time T for all T > 0.
Remark 1.3.4. The above construction of the process XR is independent of the choice of the se-
quence {Tn}∞

n=1: Let {Sn}∞
n=1 be another sequence such that Sn ↑ ∞. Let Y R be the process con-

tructed as above but using the sequence {Sn}∞
n=1. Then XR and Y R are equivalent up to T for all

T > 0. Therefore, they are equivalent.
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Definition 1.3.5. For every R> 0, we define XR to be the Hk-valued process with continuous sample
paths as constructed above. Define

τR = inf{t : ∥XR(t)∥Hk ≥ R} (1.3.7)

1.3.3 Solutions up to stopping times

Let us consider Equation (1.3.4) in the Sobolev space Hk. The following definition is in accordance
with E. Hsu’s treatments in [16].

Definition 1.3.6. Let τ be an F∗-stopping time. An F∗-adapted process Xt with continuous sample
paths is said to be a solution to Equation (1.3.4) up to time τ if for all t ≥ 0

Xt∧τ = X0 +
∫ t∧τ

0
Φ(Xs)dWs

The solution Xt is said to be unique up to τ if for any other solution Yt , the two processes Xt and Yt

are equivalent up to τ , that is, the stopped processes Xt∧τ and Yt∧τ are equivalent.

Remark 1.3.7. We can similarly define an H̃k-valued process being the unique solution to Equation
(1.3.3) up to a stopping time τ . Clearly, we have the following: If Xt is the solution to Equation
(1.3.4) up to a stopping time τ , then the H̃k-valued process X̃t = id +Xt is the solution to Equation
(1.3.3) up to time τ and vice versa.

Remark 1.3.8. If Xt is a solution to Equation (1.3.4) up to τ , then it is also a solution up to σ for
any F∗-stopping time σ such that σ ≤ τ a.s.

Proposition 1.3.9. Let R > 0. Let XR and τR be defined as in Definition (1.3.5). Then XR is the
unique solution to Equation (1.3.4) up to τR.

Proof. Because XR is the unique solution to Equation (1.3.6) up to T for all T > 0, we have

XR
t =

∫ t

0
ΦR(XR

s )dWs

for all t ≥ 0. By the definition of ΦR, we have ΦR(XR
s ) = Φ(XR

s ) for s≤ τR. So,

XR
t∧τR

=
∫ t∧τR

0
ΦR(XR

s )dWs =
∫ t∧τR

0
Φ(XR

s )dWs

Therefore, XR is a solution to Equation (1.3.4) up to τR.
Suppose Yt is another solution to Equation (1.3.4) up to τR. Then Yt is also a solution to Equation

(1.3.6) up to τR. But XR
t is the unique solution to Equation (1.3.6) up to T for all T > 0. Therefore,

Yt and XR
t are equivalent up to τR.

Let us choose a sequence {Rn}∞
n=1 such that Rn ↑∞, and let XRn and τRn be defined as in Defini-

tion (1.3.5). For 1≤ i < j, we have ΦRi(x) = ΦR j(x) for ∥x∥Hk ≤ Ri. Thus, XR j is also a solution to
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Equation (1.3.4 up to τRi). Therefore, by the uniqueness of solution and by the continuity of sample
paths of solution, the sample paths of XR j coincide with the sample paths of XRi almost surely. To
be precise, we have, for almost all ω ∈Ω,

XR j(t,ω) = XRi(t,ω), for all t ∈ [0,τRi(ω)]

Consequently, {τRn}∞
n=1 is an increasing sequence of stopping times. Let

τ∞ = lim
n→∞

τRn (1.3.8)

Now we can extend the sample paths of XRn to obtain a process X∞: For almost all ω ∈Ω, let

X∞(t,ω) = lim
n→∞

XRn(t,ω) for all 0≤ t < τ∞(ω)

Then the process X∞ is a unique solution with continuous sample paths to Equation (1.3.4) up to
time τR for all R > 0. Also, the stopping time τR defined in Definition (1.3.5) is realized by the
process X∞:

τR = inf{t : ∥X∞(t)∥Hk ≥ R}

Remark 1.3.10. The above constructions of the process X∞ and the stopping time τ∞ are independent
of the choice of the sequence {Rn}∞

n=1: Let {Sn}∞
n=1 be another sequence such that Sn ↑∞. Let σ∞ be

the stopping time and Y ∞ be the process contructed as above but using the sequence {Sn}∞
n=1. First,

we can combine the two sequences {Rn}∞
n=1 and {Sn}∞

n=1 to form a new sequence {Kn}∞
n=1 such that

Kn ↑ ∞. Let γ∞ be the stopping time constructed as above but using the sequence {Kn}∞
n=1. Then

τ∞ = σ∞ = γ∞. Also, X∞ and Y ∞ are equivalent up to τRn and τSn for all n = 1,2, ⋅ ⋅ ⋅ . Therefore, they
are equivalent up to τ∞.

Definition 1.3.11. We define X∞ to be the Hk-valued process and τ∞ to be the stopping time as
constructed above. We call τ∞ the explosion time of the process X∞. We also define the H̃k-valued
process X̃∞ to be X̃∞ = id +X∞.

We can slightly extend Definition (1.3.6) and make the following definition:

Definition 1.3.12. Let τ be an F∗-stopping time. An F∗-adapted process Xt with continuous sample
paths is said to be a solution to Equation (1.3.4) up to time τ if there is an increasing sequence of
F∗-stopping time {τn}∞

n=1 such that τn ↑ τ and Xt is a solution to Equation (1.3.4) up to time τn in
the sense of Definition (1.3.6) for all n = 1,2, ⋅ ⋅ ⋅ . The solution Xt is said to be unique up to τ if it is
unique up to τn for all n = 1,2, ⋅ ⋅ ⋅ .

We have proved the following proposition:

Proposition 1.3.13. Let k be a non-negative integer. The process X∞ as defined in Definition (1.3.11)
is the unique solution with continuous sample paths to Equation (1.3.4) up to the explosion time τ∞.
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1.3.4 The main result

In this subsection, we will prove that the explosion time τ∞ defined in Definition (1.3.11) is infinity
almost surely. We will also prove that the process X̃∞ defined in Definition (1.3.11) lives in the
group Diff(S1). The key idea to both proofs is the following proposition:

Proposition 1.3.14. Let X̃t be an F∗-adapted H̃k-valued process with continuous sample paths and
τ an F∗-stopping time. If X̃t is a solution to

dX̃t = Φ̃(X̃t)dWt , X̃0 = id

up to τ , then X̃t ∘ ξ̃ is a solution to

dX̃t = Φ̃(X̃t)dWt , X̃0 = ξ̃

up to τ , where ξ̃ is a bounded H̃k-valued random variable and “∘” is the composition of two
functions.

Proof. By assumption

X̃t∧τ = id +
∫ t∧τ

0
Φ̃(X̃s)dWs

By definition of the operator Φ̃ (see subsection 2.4), this can be written as

X̃t∧τ = id +
∫ t∧τ

0
dWs ∘ X̃s

So
X̃t∧τ ∘ ξ̃ = ξ̃ +

∫ t∧τ

0
dWs ∘ X̃s ∘ ξ̃

that is
X̃t∧τ ∘ ξ̃ = ξ̃ +

∫ t∧τ

0
Φ̃(X̃s ∘ ξ̃ )dWs

Therefore, X̃t ∘ ξ̃ is a solution to

dX̃t = Φ̃(X̃t)dWt , X̃0 = ξ̃

up to τ .

Remark 1.3.15. (Concatenating procedure.) Let R > 0. Let ξ̃ = X̃∞(τR). Then ξ̃ is an H̃k-valued
bounded random variable. Let W ′t =Wt+τR−WτR . Similar to the construction of X∞ and X̃∞, we can
construct Y ∞ and Ỹ ∞, where Ỹ ∞ is a solution to the following equation

dX̃t = Φ̃(X̃t)dW ′t , X̃0 = id

up to the stopping time
τ
′
R = inf{t : ∥Y ∞(t)∥Hk ≥ R}
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By the strong Markov property of the Brownian motion Wt , we have W ′t = Wt in distribution, and
they are independent of each other for all t ≥ 0. Therefore, τR = τ ′R in distribution, and they are
independent of each other. By Proposition (1.3.14), Ỹ ∞ ∘ ξ̃ is the solution up to time τ ′R to the
following equation

dX̃t = Φ̃(X̃t)dW ′t , X̃0 = ξ̃

Because ξ̃ = X̃∞(τR), we can concatenate the two processes X̃∞ and Ỹ ∞ to form a new process Z̃∞

as follows:

Z̃∞
t =

{
X̃∞

t , for t ≤ τR

Ỹ ∞
t−τR
∘ ξ̃ , for t > τR

(1.3.9)

By the choice of W ′t , we see that the process Z̃∞ is a solution to Equation (1.3.3) up to time τR + τ ′R.
By the uniqueness of solution, Z̃∞ is equivalent to X̃∞ up to time τR + τ ′R.

We can carry out this “concatenating” procedure over and over again. Thus, for any n ∈ ℕ, we
can construct a process Z̃∞ which is a solutionn to Equation (1.3.3) and is equivalent to X̃∞ up to
time τR + τ ′R + ⋅ ⋅ ⋅+ τ

(n)
R with τR,τ

′
R, ⋅ ⋅ ⋅ being identical in distribution and mutually independent

with each other.

Proposition 1.3.16. Let τ∞ be the explosion time of the process X∞ defined as in Definition (1.3.11).
Then τ∞ = ∞ almost surely.

Proof. We can carry out the above “concatenating” procedure as many times as we want. Thus, for
any n ∈ ℕ, we can construct a process Z̃∞ which is a solutionn to Equation (1.3.3) and is equivalent
to X̃∞ up to time τR + τ ′R + ⋅ ⋅ ⋅+ τ

(n)
R .

By the triangle inequality in Hk, we have

τR + τ
′
R + ⋅ ⋅ ⋅+ τ

(n)
R ≤ τnR ≤ τ∞,

On the other hand, because τR,τ
′
R, ⋅ ⋅ ⋅ have the same distributions and are mutually independent with

each other,
lim
n→∞

τR + τ
′
R + ⋅ ⋅ ⋅+ τ

(n)
R = ∞ a.s.

Therefore, the explosion time τ∞ = ∞ almost surely.

Proposition 1.3.17. Let X∞ be the Hk-valued process defined in Defintion (1.3.11). Then X∞ actu-
ally lives in the space diff(S1).

Proof. The construction of X∞ in subsection 3.3 is for a fixed k. But the method is valid for all k =
0,1,2, ⋅ ⋅ ⋅ . Let us denote by Xk,∞ the Hk-valued process as constructed in subsection 3.3. Because
Equation (1.3.4) takes the same form in each space Hk, k = 0,1,2, ⋅ ⋅ ⋅ , also, Hk+1 ⊆ Hk, we see
that the Hk+1-valued process Xk+1,∞ is also a solution to Equation (1.3.4) in the space Hk. By
uniqueness of the solution, Xk+1,∞ is equivalent to Xk,∞. Therefore, we can also say the solution
Xk,∞ to Equation (1.3.4) in the space Hk is also the solution to Equation (1.3.4 in the space Hk+1).
By induction, the solution Xk,∞ actually lives in Hk+i for all i = 0,1,2, ⋅ ⋅ ⋅ . Therefore it lives in∩

∞
i=0 Hk+i = diff(S1).
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By the above proposition, the H̃k-valued process X̃∞ lives in the affine space d̃iff(S1). In the
next proposition we will prove that X̃∞ actually lives in the group Diff(S1). The key to the proof is
Proposition (1.2.2) together with the “concatenating” procedure (remark 1.3.15).

Proposition 1.3.18. The process X̃∞ defined in Definition (1.3.11) lives in the group Diff(S1).

Proof. Let us fix a k ≥ 2. Suppose f̃ ∈ H̃k. By item (2) in Theorem 2.5, ∥ f ′∥L∞ ≤ ck∥ f∥Hk . Thus,
by controling the Hk-norm of f we can control the L∞-norm of f ′. When ∥ f ′∥L∞ < 1, we have
f ′ >−1, or equivalently, f̃ ′ > 0. If we also know that f̃ is C∞, then by Proposition (1.2.2), we can
conclude that f̃ is actually a diffeomorphism of S1. The process X∞ has values in the R-ball

B(0,R) = {x ∈ Hk : ∥x∥Hk ≤ R}

up to time τR. Let us choose R so that f ∈ B(0,R) implies ∥ f ′∥L∞ < 1. Then up to τR, the
first derivative ∥X∞(t,ω)(1)∥L∞ < 1 almost surely. So up to τR, X∞(t,ω)(1) > −1, or equivalently
X̃∞(t,ω)(1) > 0 almost surely. Also by Proposition (1.3.17), X̃∞ lives in the affine space d̃iff(S1),
which means: every element X̃∞(t,ω) is C∞. Therefore, by Proposition (1.2.2), X̃∞ lives in the
group Diff(S1) up to time τR.

In the “concatenating” procedure (see remark 3.13), the process Ỹ ∞ lives in the group Diff(S1)
up to time τ ′R for the same reason. Because ξ = X̃∞(τR), it is now a Diff(S1)-valued random variable.
So the composition Ỹ ∞ ∘ ξ̃ lives in Diff(S1) up to time τ ′R. By concatenation, the process Z̃∞ lives in
Diff(S1) up to time τR+τ ′R. Because X̃∞ is equivalent to Z̃∞ up to time τR+τ ′R, we have the process
X̃∞ lives in Diff(S1) up to time τR + τ ′R. We can carry out this “concatenating” procedure over and
over again. Therefore, the process X̃∞ lives in Diff(S1) up to the explosion time τ∞ which is infinity
by Proposition (1.3.16).

Putting together Propositions (1.3.13), (1.3.16) and (1.3.18), we have proved the main result of
this chapter:

Theorem 1.3.19. There is a unique H̃k-valued solution with continuous sample paths to Equation
(1.3.3) for all k = 0,1,2, ⋅ ⋅ ⋅ . Furthermore, the solution is non-explosive and lives in the group
Diff(S1).

Remark 1.3.20. The solution in the above theorem is the Brownian motion on the group Diff(S1)
that we are seeking for.
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Chapter 2

Stochastic Analysis of
Infinite-dimensional Symplectic Group
Sp(∞)

2.1 Introduction

The group Sp(∞) arises from the study of the group Diff(S1). It was first defined by G. Segal
[24], and was further studied by H. Airault and P. Malliavin in [3]. Roughly speaking, Sp(∞) is
the symplectic representation group of Diff(S1) on a certain infinite-dimensional complex vector
space equipped with a symplectic and inner product structure. There are some extra requirements
in the definition of Sp(∞). The intention is to make the group Sp(∞) as small as possible. Ideally,
if the group Sp(∞) is isomorphic to the group Diff(S1), then the study of Diff(S1) will be exactly
the same as the study of Sp(∞). Unfortunately, we discover that they are not isomorphic with each
other (Theorem 2.4.6).

In this chapter, we describe in detail the symplectic representation of Diff(S1) which gives an
embedding of Diff(S1) into Sp(∞). One of the main results is Theorem (2.4.6), where we describe
the embedding of Diff(S1) into Sp(∞) and prove that the map is not surjective.

In this chapter, we also construct a Brownian motion on Sp(∞) (Theorem 2.6.17). The group
Sp(∞) can be represented as an infinite-dimensional matrix group. For such matrix groups, the
method of[10, 12] can be used to construct a Brownian motion living in the group. The construction
relies on the fact that these groups can be embedded into a larger Hilbert space of Hilbert-Schmidt
operators. One of the advantages of Hilbert-Schmidt groups is that one can associate an infinite-
dimensional Lie algebra to such a group, and this Lie algebra is a Hilbert space. This is not the case
with Diff(S1), as an infinite-dimensional Lie algebra associated with Diff(S1) is not a Hilbert space
with respect to the inner product compatible with the symplectic structure on Diff(S1).

In the construction of the Brownian motion on Sp(∞), in order for the Brownian motion to live
in the group Sp(∞), we are forced to choose a non-Ad-invariant inner product on the Lie algebra of
Sp(∞). This fact has a potential implication for this Brownian motion not to be quasi-invariant for
the appropriate choice of the Cameron-Martin subgroup of Sp(∞). This is in contrast to results in
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[2].
The work in this chapter is written in [14] and is published in Communications of Stochastic

Analysis.

2.2 The spaces H and ℍω

Definition 2.2.1. Let H be the space of complex-valued C∞ functions on the unit circle S1 with the
mean value 0. Define a bilinear form ω on H by

ω(u,v) =
1

2π

∫ 2π

0
uv′dθ , for any u,v ∈ H.

Remark 2.2.2. By using integration by parts, we see that the form ω is anti-symmetric, that is,
ω(u,v) =−ω(v,u) for any u,v ∈ H.

Next we define an inner product (⋅, ⋅)ω on H which is compatible with the form ω . First, we
introduce a complex structure on H, that is, a linear map J on H such that J2 =−id. Then the inner
product is defined by (u,v)ω =±ω(u,Jv̄), where the sign depends on the choice of J. The complex
structure J in this context is called the Hilbert transform.

Definition 2.2.3. Let ℍ0 be the Hilbert space of complex-valued L2 functions on S1 with the mean
value 0 equipped with the inner product

(u,v) =
1

2π

∫ 2π

0
uv̄dθ , for any u,v ∈ℍ0.

Notation 2.2.4. Denote ên = einθ ,n ∈ ℤ∖{0}, and BH = {ên, n ∈ ℤ∖{0}} . Let ℍ+ and ℍ− be the
closed subspaces of ℍ0 spanned by {ên : n > 0} and {ên : n < 0}, respectively. By π+ and π− we
denote the projections of ℍ0 onto subspaces ℍ+ and ℍ−, respectively. For u ∈ ℍ0, we can write
u = u++u−, where u+ = π+(u) and u− = π−(u).

Definition 2.2.5. Define the Hilbert transformation J on BH by

J : ên 7→ isgn(n)ên

where sgn(n) is the sign of n, and then extended by linearity to ℍ0.

Remark 2.2.6. In the above definition, J is defined on the space ℍ0. We need to address the issue
whether it is well–defined on the subspace H. That is, if J(H)⊆ H. We will see that if we modify
the space H a little bit, for example, if we let C1

0(S
1) be the space of complex-valued C1 functions

on the circle with mean value zero, then J is not well–defined on C1
0(S

1). This problem really lies in
the heart of Fourier analysis. To see this, we need to characterize J by using the Fourier transform.

Notation 2.2.7. For u ∈ℍ0, let F : u 7→ û be the Fourier transformation with û(n) = (u, ên). Let
Ĵ be a transformation on l2(ℤ∖{0}) defined by

(
Ĵû
)
(n) = isgn(n)û(n) for any û ∈ l2(ℤ∖{0}).
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The Fourier transformation F : ℍ0 → l2(ℤ∖{0}) is an isomorphism of Hilbert spaces, and
J = F−1 ∘ Ĵ ∘F .

Proposition 2.2.8. The Hilbert transformation J is well–defined on H, that is J(H)⊆ H.

Proof. The key of the proof is the fact that functions in H can be completely characterized by
their Fourier coefficients. To be precise, let u ∈ ℍ0 be continuous. Then u is C∞ if and only if
limn→∞ nkû(n) = 0 for any k ∈ ℕ. From this fact, it follows immediately that J is well–defined on
H, because J only changes the signs of the Fourier coefficients of a function u ∈ H.

For completeness of exposition, we give a proof of this fact. Though the statement is probably
a standard fact in the Fourier analysis, we found it proven only in one direction in [18].

We first assume that u is C∞. Then u(θ) = u(0)+
∫

θ

0 u′(t)dt. So

û(n) =
1

2π

(∫ 2π

0

∫ 2π

0
u′(t)χ[0,θ ]dt

)
e−inθ dθ =

1
2π

∫ 2π

0

(∫ 2π

t
e−inθ dθ

)
u′(t)dt

=− 1
2πin

∫ 2π

0
u′(t)−u′(t)e−intdt =

û′(n)
in

,

where we have used Fubini’s theorem and the continuity of u′. Now, u′ is itself C∞, so we can apply

the procedure again. By induction, we get û(n) = û(k)(n)
(in)k . But from the general theory of Fourier

analysis, û(k)(n)→ 0 as n→ ∞. Therefore nkû(n)→ 0 as n→ ∞.
Conversely, assume u is such that for any k, nkû(n)→ 0 as n→ ∞. Then the Fourier series of u

converges uniformly. Also by assumption that u is continuous, the Fourier series converges to u for
all θ ∈ S1 (see Corollary I.3.1 in [18]). So we can write u(θ) = ∑n∕=0 û(n)einθ .

Fix a point θ ∈ S1,

u′(θ) =
d
dt

∣∣∣∣
t=θ

∑
n∕=0

û(n)eint = lim
t→θ

lim
N→∞

N

∑
n=−N

û(n)
eint − einθ

t−θ
.

Note that the derivatives of cosnt and sinnt are all bounded by ∣n∣. So by the mean value theorem,
∣cosnt− cosnθ ∣ ≤ ∣n∣∣t−θ ∣, and ∣sinnt− sinnθ ∣ ≤ ∣n∣∣t−θ ∣. So∣∣∣eint − einθ

t−θ

∣∣∣≤ 2∣n∣, for any t,θ ∈ S1.

Therefore, by the growth condition on the Fourier coefficients û, we have

lim
N→∞

N

∑
n=−N

û(n)
eint − einθ

t−θ

converges at the fixed θ ∈ S1 and the convergence is uniform in t ∈ S1. Therefore we can interchange
the two limits, and obtain (

∑
n∕=0

û(n)einθ

)′
= ∑

n∕=0
û(n)ineinθ ,
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which means we can differentiate term by term. So the Fourier coefficients of u′ are given by
û′(n) = inû(n). Clearly, û′ satisfies the same condition as û: nkû′(n)→ 0 as n→ ∞. By induction, u
is j-times differentiable for any j. Therefore, u is C∞.

Proposition 2.2.9. Let C1
0(S

1) be the space of complex-valued C1 functions on the circle with the
mean value zero. Then the Hilbert transformation J is not well defined on C1

0(S
1), i.e., J(C1

0(S
1))⊈

C1
0(S

1).

Proof. Let C(S1) be the space of continuous functions on the circle. In [18], it is shown that there
exists a function in C(S1) such that the corresponding Fourier series does not converges uniformly
[18, Theorem II.1.3], and therefore there exists an f ∈ C(S1) such that J f /∈ C(S1) [18, Theorem
II.1.4]. Now take u = f − f0 where f0 is the mean value of f . Then u is a continuous function on
the circle with the mean value zero, and Ju is not continuous.

Using Notation 2.2.4 let us write u = u++u−. Then we can use the relation

iu+ Ju = 2iu+ and iu− Ju = 2iu−.

to see that u+ and u− are not continuous. Integrating u = u++u−, we have∫ t

0
u(θ)dθ =

∫ t

0
u+(θ)dθ +

∫ t

0
u−(θ)dθ .

Denote the three functions in the above equation by v,v1,v2. By theorem I.1.6 in [18],

v̂(n) =
û(n)
in

, and v̂1(n) =
û+(n)

in
, v̂2(n) =

1
in

û−(n) for n ∕= 0.

Let g = v− v0 where v0 is the mean value of v. Then g ∈ C1
0(S

1). Write g = g++ g− 2.2.4.
Then g+ = v1− (v1)0 and g− = v2− (v2)0 where (v1)0 and (v2)0 are the mean values of v1 and v2
respectively. Then g+,g− /∈C1

0(S
1) since v′1 = u+,v′2 = u− are not continuous.

By the relation
ig+ Jg = 2ig+ and ig− Jg = 2ig−,

we see that Jg /∈C1
0(S

1).

Notation 2.2.10. Define an ℝ-bilinear form (⋅, ⋅)ω on H by

(u,v)ω =−ω(u,Jv̄) for any u,v ∈ H.

Proposition 2.2.11. (⋅, ⋅)ω is an inner product on H.

Proof. We need to check that (⋅, ⋅)ω satisfies the following properties (1) (λu,v)ω = λ (u,v)ω for
λ ∈ ℂ; (2) (v,u)ω = (u,v)ω ; (3) (u,u)ω > 0 unless u = 0.

(1) for λ ∈ ℂ,

(λu,v)ω =−ω(λu,Jv̄) =−λ ⋅ω(u,Jv̄) = λ ⋅ (u,v)ω .
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To prove (2) and (3), we need some simple facts: H+ = π+(H) ⊆ H and H− = π−(H) ⊆ H,
and H = H+⊕H−. If u ∈ H+,v ∈ H−, then (u,v) = 0. If u ∈ H+, then ū ∈ H−,Ju = iu,Ju ∈ H+.
If u ∈ H−, then ū ∈ H+,Ju =−iu,Ju ∈ H−. Jū = Ju. û′(n) = inû(n). In particular, if u ∈ H+, then
u′ ∈ H+; if u ∈ H−, then u′ ∈ H−.

(2) By definition,

(v,u)ω =−ω(v,Jū) = ω(Jū,v) =
1

2π

∫
(Jū)v′dθ

(u,v)ω =−ω(u,Jv̄) = ω(Jv̄,u) =
1

2π

∫
Jv̄ū′dθ =

1
2π

∫
(Jv)ū′dθ .

Write u = u++ u− and v = v++ v− as in Notation 2.2.4. Using the above fact, we can show that
the above two quantities are equal to each other.

(3) Write u = u++u−, then

(u,u)ω =
1

2π

∫
(−iu+u′++ iu−u′−)dθ = ∑

n∕=0
∣n∣∣û(n)∣2.

Therefore, (u,u)ω > 0 unless u = 0.

Definition 2.2.12. Let ℍω be the completion of H under the norm ∥ ⋅ ∥ω induced by the inner
product (⋅, ⋅)ω . Define

Bω =

{
ẽn =

1√
n

einθ ,n > 0
}
∪

{
ẽn =

1
i
√
∣n∣

einθ ,n < 0

}
.

Remark 2.2.13. ℍω is a Hilbert space. Also the norm ∥ ⋅ ∥ω induced by the inner product (⋅, ⋅)ω is
strictly stronger than the norm ∥ ⋅ ∥ induced by the inner product (⋅, ⋅). So ℍω can be identified as a
proper subspace of ℍ0. The inner product (⋅, ⋅)ω or the norm induced by it is sometimes called the
H1/2 metric or the H1/2 norm on the space H.

One can verify that Bω is an orthonormal basis of ℍω . From the definition of the inner product
(⋅, ⋅)ω , we have the relation ω(u,v) = (u,Jv)ω for any u,v ∈H. This can be used to extend the form
ω to ℍω .

Finally, from the non–degeneracy of the inner product (⋅, ⋅)ω , we see that the form ω(⋅, ⋅) on ℍω

is also non–degenerate.

2.3 The infinite-dimensional symplectic group Sp(∞)

Definition 2.3.1. Let B(ℍω) be the space of bounded operators on ℍω equipped with the operator
norm. For an operator A ∈ B(ℍω),

1. Ā is the conjugate of A if Āu = Aū for any u ∈ℍω .

2. A† is the adjoint of A if (Au,v)ω = (u,A†v)ω for any u,v ∈ℍω .
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3. AT = Ā† is transpose of A.

4. A# is the symplectic adjoint of A if ω(Au,v) = ω(u,A#v) for any u,v ∈ℍω .

5. A is said to preserve the form ω if ω(Au,Av) = ω(u,v) for any u,v ∈ℍω .

In the orthonormal basis Bω , an operator A ∈ B(ℍω) can be represented by an infinite dimen-
sional matrix, still denoted by A, with (m,n)th entry equal to Am,n = (Aẽn, ẽm)ω .

Remark 2.3.2. If we represent an operator A ∈ B(ℍω) by a matrix {Am,n}m,n∈ℤ∖{0}, the indices m
and n are allowed to be both positive and negative following Definition 2.2.12 of Bω .

The next proposition collects some simple facts about operations on B(ℍω) introduced in Defi-
nition 2.3.1.

Proposition 2.3.3. Let A,B ∈ B(ℍω). Then

1. ẽn = iẽ−n, Jẽn = isgn(n)ẽn, (ẽn)
′ = inẽn;

2. (Ā)m,n = A−m,−n;

3. (A†)m,n = An,m;

4. Ā† = A†, and (AT )m,n = A−n,−m;

5. if A = Ā, then (A#)m,n = sgn(mn)An,m;

6. AB = ĀB̄, (AB)† = B†A†, (AB)T = BT AT , (AB)# = B#A#;

7. If A is invertible, then Ā,AT ,A†,A# are all invertible, and (Ā)−1 = A−1, (AT )−1 = (A−1)T ,
(A†)−1 = (A−1)†, (A#)−1 = (A−1)#;

8. (π+)m,n =
1
2(δmn + sgn(m)δmn), (π−)m,n =

1
2(δmn− sgn(m)δmn), π+ = π−, π− = π+,

(π+)T = π−, (π−)T = π+, (π+)† = π+, (π−)† = π−;

9. Jm,n = isgn(m)δmn, J̄ = J, J = i(π+−π−), JT =−J, J† =−J, J2 =−id;

10. (A#)m,n = sgn(mn)A−n,−m.

Proof. All of these properties can be checked by straight forward calculations. We only prove (10).

(A#)m,n = (A#ẽn, ẽm)ω =−ω(A#ẽn,Jẽm) = ω(Jẽm,A#ẽn)

= ω(AJẽm, ẽn) =−ω(ẽn,AJẽm) =−ω(ẽn,J(−J)AJẽm)

=−ω(ẽn,J(−JĀJẽm)),
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where in the last equality we used property (6), AB = ĀB̄, and property (9), J̄ = J, so that−JĀJẽm =
−J̄ ¯̄AJ̄ẽm =−JAJẽm. Therefore,

(A#)m,n =−ω(ẽn,J(−JĀJẽm)) = (ẽn,−JĀJẽm)ω =−(ẽn,JĀJẽm)ω

=−(J†ẽn, ĀJẽm)ω =−(−Jẽn, ĀJẽm)ω = (isgn(n)ẽn, Āisgn(m)ẽm)ω

= sgn(mn)(ẽn, Āẽm)ω = sgn(mn)(Āẽm, ẽn)ω = sgn(mn)(Ā)n,m

= sgn(mn)A−n,−m.

Notation 2.3.4. For A ∈ B(ℍω), let a = π+Aπ+, b = π+Aπ−, c = π−Aπ+, and d = π−Aπ−, where
a :ℍ+

ω→ℍ+
ω , b :ℍ−ω→ℍ+

ω , c :ℍ+
ω→ℍ−ω , d :ℍ−ω→ℍ−ω . Then A= a+b+c+d can be represented

as the following block matrix (
a b
c d

)
.

If A,B ∈ B(ℍω), then the block matrix representation for AB is exactly the multiplication of
block matrices for A and B.

Proposition 2.3.5. Suppose A ∈ B(ℍω) with the matrix {Am,n}m,n∈ℤ∖{0}. Then the following are
equivalent:

1. A = Ā;

2. if u = ū, then Au = Au;

3. Am,n = A−m,−n (2.3.2);

4. as a block matrix, A has the form
(

a b
b̄ ā

)
.

Proof. Equivalence of (1), (3) and (4) follows from Proposition2.3.3 and Notation2.3.4. First we
show that (1) is equivalent to (2).

[(1)=⇒(2)]. If u = ū, then Au = Āu = Aū = Au.
[(2)=⇒(1)]. Let u = ẽn + ẽn, and v = ẽ−n + ẽ−n. Then u,v are real-valued functions on the

circle. Using Proposition 2.3.3 we have ẽn = iẽ−n, and therefore Au = Au and Av = Av imply

Aẽn + iAẽ−n = Aẽn− iAẽ−n

Aẽn− iAẽ−n =−Aẽn− iAẽ−n.

Solving the above two equations for Aẽn, we have

Aẽn =−iAẽ−n = Aẽn = Āẽn

with this being true for any n ∕= 0, and so A = Ā.
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Proposition 2.3.6. Let A ∈ B(ℍω). The following are equivalent:

1. A preserves the form ω;

2. ω(Au,Av) = ω(u,v) for any u,v ∈ℍω ;

3. ω(Aẽm,Aẽn) = ω(ẽm, ẽn) for any m,n ∕= 0;

4. AT JA = J;

5. ∑k ∕=0 sgn(mk)Ak,mA−k,−n = δm,n for any m,n ∕= 0.

If we further assume that A = Ā, then the following two are equivalent to the above:

(I) aT ā−b†b = π− and aT b̄−b†a = 0;

(II) ∑k ∕=0 sgn(mk)Ak,mAk,n = δm,n for any m,n ∕= 0.

Proof. Equivalence of (1),(2) and (3) follows directly from Definition 2.3.1. Let us check the equiv-
alency of (2) and (4). First assume that (2) holds. By Remark 2.2.13 we have ω(u,v) = (u,Jv̄)ω ,
and therefore

ω(Au,Av) = (Au,JAv)ω = (u,A†JAv)ω .

By assumption, ω(Au,Av) = ω(u,v) for any u,v ∈ ℍω . So by the non-degeneracy of the inner
product (⋅, ⋅)ω , we have A†JAv = Jv̄ for any v ∈ ℍω . By definition of Ā, we have Av = Āv̄. So
A†JĀv̄ = Jv̄ for any v ∈ℍω , or A†JĀ = J. Taking conjugation of both sides and using J̄ = J, we see
that AT JA = J.

Every step above is reversible, therefore we have implication in the other direction as well.
Now we check the equivalency of (3) and (5). First, by Remark 2.2.13 ω(u,v) = (u,Jv̄)ω and

Proposition 2.3.3
ω(ẽm, ẽn) = (ẽm,Jẽn)ω =−sgn(m)δm,−n.

On the other hand, by the continuity of the form ω(⋅, ⋅) in both variables, we have

ω(Aẽm,Aẽn) = ω

(
∑
k

Ak,mẽk,∑
k

Al,nẽl

)
= ∑

k,l
Ak,mAl,n(−sgn(k))δk,−l =−∑

k
sgn(k)Ak,mA−k,n.

Now assuming ω(Aẽm,Aẽn) = ω(ẽm, ẽn), we have

−∑
k

sgn(k)Ak,mA−k,n =−sgn(m)δm,−n, for any m,n ∕= 0.

By multiplying by sgn(m) both sides, and replacing −n with n, we get (5). Conversely, note that
every step above is reversible, therefore we have implication in the other direction.
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We have proved equivalence of (1)-(5). Now assume A = Ā. To prove equivalence of (4) and
(I), just notice that as block matrices, A,AT and J have the form(

a b
b̄ ā

)
,

(
a† bT

b† aT

)
, and i

(
π+ 0
0 −π−

)
.

Equivalence of (5) and (II) follows from the relation A−k,−n = Ak,n.

Proposition 2.3.7. Let A ∈ B(ℍω). If A preserves the form ω , then the following are equivalent:

1. A is invertible.

2. AJAT = J.

3. AT preserves the form ω .

4. ∑k sgn(mk)Am,kA−n,−k = δm,n for any m,n ∕= 0.

If we further assume that A = Ā, then the following are equivalent to the above:

(I) āaT − b̄bT = π− and b̄a†− āb† = 0.

(II) ∑k sgn(mk)Am,kAn,k = δm,n for any m,n ∕= 0.

Proof. We will use several times the fact that if A preserves ω , then AT JA = J.
[(1)⇒(2)] Multiplying on the left by (AT )−1 and multiplying on the right by A−1 both sides, we

get J = (AT )−1JA−1, and so (A−1)T JA−1 = J. Taking inverse of both sides, and using J−1 = −J,
we have AT JA = J.

[(2)⇒(1)] As J is injective, so is AT JA, and therefore A is injective. On the other hand, by
assumption AJAT = J. As J is surjective, so AJAT is surjective too. This implies that A is surjective,
and therefore A is invertible.

Equivalence of (2) and (3) follows from (AT )T = A and Proposition 2.3.6. Equivalence of (3)
and (4) follows directly from Proposition 2.3.6 and the fact that (AT )m,n = A−n,−m.

Now assume that A = Ā. Then equivalence of (3) and (I)can be checked by using multiplication
of block matrices as in the proof of Proposition 2.3.6. Finally (4) is equivalent to (II) as if A = Ā,
then A−m,−n = Am,n.

Corollary 2.3.8. Let A ∈ B(ℍω) and A = Ā. Then the following are equivalent:

1. A preserves the form ω and is invertible;

2. A#A = A#A = id;

Proof. By Proposition 2.3.3

(A#A)m,n = ∑
k ∕=0

(A#)m,kAk,n = ∑
k ∕=0

sgn(mk)Ak,nAk,m,

(AA#)m,n = ∑
k ∕=0

Am,k(A#)k,n = ∑
k ∕=0

sgn(nk)Am,kAn,k.
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Therefore, by (II) in Proposition 2.3.6 and (II) in Proposition 2.3.7 we have equivalence.

Definition 2.3.9. Define a (semi)norm ∥ ⋅∥2 on B(ℍω) such that for A ∈ B(ℍω), ∥A∥2
2 = Tr(b†b) =

∥b∥HS, where b = π+Aπ−. That is, the norm ∥A∥2 is just the Hilbert-Schmidt norm of the block b.

Definition 2.3.10. An infinite-dimensional symplectic group Sp(∞) is the set of bounded opera-
tors A on H such that

1. A is invertible;

2. A = Ā;

3. A preserves the form ω;

4. ∥A∥2 < ∞.

Remark 2.3.11. Condition (2) in Definition 2.3.10 says that an element in Sp(∞) has the following
form: (

a b
b̄ ā

)
Condition (4) in Definition 2.3.10 says that the block b is a Hilbert-Schmidt matrix.

Remark 2.3.12. If A is a bounded operator on H, then A can be extended to a bounded operator on
ℍω . Therefore, we can equivalently define Sp(∞) to be the set of operators A ∈ B(ℍω) such that

1. A is invertible;

2. A = Ā;

3. A preserves the form ω;

4. ∥A∥2 < ∞.

5. A is invariant on H, i.e., A(H)⊆ H.

Remark 2.3.13. By Corollary 2.3.8, the definition of Sp(∞) is also equivalent to

1. A = Ā;

2. A#A = AA# = id;

3. ∥A∥2 < ∞.

Proposition 2.3.14. Sp(∞) is a group.

Proof. First we show that if A ∈ Sp(∞), then A−1 ∈ Sp(∞). By the assumption on A, it is easy to
verify that A−1 satisfies (1), (2), (3) and (5) in Remark 2.3.12. We need to show that A−1 satisfies
the condition (4), i.e. ∥A−1∥2 < ∞. Suppose

A =

(
a b
b̄ ā

)
and A−1 =

(
a′ b′

b′ a′

)
,
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where by our assumptions all blocks are bounded operators, and in addition b is a Hilbert-Schmidt
operator. We want to prove b′ is also a Hilbert-Schmidt operator. AA−1 = I and A−1A = I imply that

ab′ =−ba′, a′a+b′b̄ = I.

The last equation gives a′ab′+b′b̄b′ = b′, and so

b′ = a′ab′+b′b̄b′ =−a′ba′+b′b̄b′

which is a Hilbert-Schmidt operator as b and b̄ are Hilbert-Schmidt. Therefore ∥A−1∥2 < ∞ and
A−1 ∈ Sp(∞).

Next we show that if A,B ∈ Sp(∞), then AB ∈ Sp(∞). By the assumption on A and B, it is easy
to verify that AB satisfies (1), (2), (3) and (5) in Remark 2.3.12. We need to show that AB satisfies
the condition (4), i.e. ∥AB∥2 < ∞. Suppose

A =

(
a b
b̄ ā

)
and B =

(
c d
d̄ c̄

)
,

where all blocks are bounded, and ∥b∥HS,∥d∥HS < ∞. Then

AB =

(
ac+bd̄ ad +bc̄
b̄c+ ād̄ b̄d + āc̄

)
.

Then
∥AB∥2

2 = ∥ad +bc̄∥HS ⩽ ∥ad∥2 +∥bc̄∥HS < ∞,

since both ad and bc̄ are Hilbert-Schmidt operators. Therefore ∥AB∥2 < ∞ and AB ∈ Sp(∞).

2.4 Symplectic Representation of Diff(S1)

Definition 2.4.1. Let Diff(S1) be the group of orientation preserving C∞ diffeomorphisms of S1.
Diff(S1) acts on H as follows

(φ .u)(θ) = u(φ−1(θ))− 1
2π

∫ 2π

0
u(φ−1(θ))dθ .

Note that if u ∈ H is real-valued, then φ .u is real-valued as well.

Proposition 2.4.2. The action of Diff(S1) on H gives a group homomorphism

Φ : Diff(S1)→ AutH

defined by Φ(φ)(u) = φ .u, for φ ∈ Diff(S1) and u ∈ H, where AutH is the group of automorphisms
on H.
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Proof. Let u ∈ H, then φ .u is a C∞ function with the mean value 0, and so φ .u ∈ H. It is also clear
that φ .(u+ v) = φ .u+ φ .v and φ .(λu) = λφ .u. So Φ is well–defined as a map from Diff(S1) to
EndH, the space of endomorphisms on H. Now let us check that Φ is a group homomorphism.
Suppose φ ,ψ ∈ Diff(S1) and u ∈ H, then

Φ(φψ)(u)(θ) = u
(
(φψ)−1(θ)

)
− 1

2π

∫ 2π

0
u
(
(φψ)−1(θ)

)
dθ

= u
(
(ψ−1

φ
−1)(θ)

)
− 1

2π

∫ 2π

0
u
(
(ψ−1

φ
−1)(θ)

)
dθ .

On the other hand,

Φ(φ)Φ(ψ)(u)(θ) = Φ(φ)

[
u(ψ−1(θ))− 1

2π

∫ 2π

0
u(ψ−1(θ))dθ

]
= Φ(φ)

[
u(ψ−1(θ))

]
= u
(
(ψ−1

φ
−1)(θ)

)
− 1

2π

∫ 2π

0
u
(
(ψ−1

φ
−1)(θ)

)
dθ .

So Φ(φψ) = Φ(φ)Φ(ψ). In particular, the image of Φ is in the AutH.

Lemma 2.4.3. Any φ ∈ Diff(S1) preserves the form ω , that is, ω(φ .u,φ .v) = ω(u,v) for any u,v ∈
H.

Proof. By Definition 2.4.1 φ .u = u(ψ)− u0,φ .v = v(ψ)− v0, where ψ = φ−1 and u0,v0 are the
constants. Then

ω(φ .u,φ .v) = ω(u(ψ)−u0,v(ψ)− v0)

=
1

2π

∫ 2π

0

(
u(ψ(θ))−u0

)(
v(ψ(θ))− v0

)′dθ

=
1

2π

∫ 2π

0
u(ψ)v′(ψ)ψ ′(θ)dθ − 1

2π

∫ 2π

0
u0v(ψ(θ))dθ

=
1

2π

∫ 2π

0
u(ψ)v′(ψ)dψ

= ω(u,v).

We are going to prove that a diffeomorphism φ ∈ Diff(S1) acts on H as a bounded linear map,
and that Φ(φ) is in Sp(∞). The next lemma is a generalization of a proposition in a paper of G. Segal
[24].

Lemma 2.4.4. Let ψ ∕= id ∈ Diff(S1) and φ = ψ−1. Let

In,m = (ψ.eimθ ,einθ ) =
1

2π

∫ 2π

0
eimφ−inθ dθ .

Then
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1. ∑
n>0,m<0

∣n∣∣In,m∣2 < ∞, and ∑
m>0,n<0

∣n∣∣In,m∣2 < ∞.

2. For sufficiently large ∣m∣ there is a constant C independent of m such that

∑
n∕=0
∣n∣∣In,m∣2 <C∣m∣. (2.4.1)

Proof. Let
mφ ′ = min{φ ′(θ)∣θ ∈ S1}; and Mφ ′ = max{φ ′(θ)∣θ ∈ S1}.

Since φ is a diffeomorphism, we have 0 < mφ ′ < Mφ ′ < ∞.
Take four points a,b,c,d on the unit circle such that a corresponds to mφ ′ in the sense tan(a) =

mφ ′ , b corresponds to Mφ ′ in the sense tan(b) = Mφ ′ , c is opposite to a, i.e., c = a+π , d is opposite
to b, i.e., d = b+π . The four points on the circle are arranged in the counter-clockwise order, and
0 < a < b < π

2 , π < c < d < 3
2 π .

Let τ ∈ S1 such that τ ∕= π

4 ,
5
4 π . Define a function φτ on S1 by

φτ(θ) =
cosτ ⋅φ(θ)− sinτ ⋅θ

cosτ− sinτ
.

We will show that if τ ∈ (b,c) or τ ∈ (d,a), then φτ is an orientation preserving diffeomorphism
of S1, where (b,c) is the open arc from the point b to the point c, and (d,a) is the open arc from the
point d to the point a.

Clearly φτ is a C∞ function on S1. Also, φτ(0) = 0 and φτ(2π) = 2π . Taking derivative with
respect to θ , we have

φ
′
τ(θ) =

cosτ ⋅φ ′(θ)− sinτ

cosτ− sinτ
.

By the choice of τ , we can prove that φ ′τ(θ)> 0. Therefore, φτ is an orientation preserving diffeo-
morphism as claimed.

Let m,n ∈ ℤ∖{0}. Let τmn = Arg(m+ in), i.e., the argument of the complex number m+ in,
considered to be in [0,2π]. Then we have mφ −nθ = (m−n)φτmn .

If τmn ∈ (b,c), then φτmn is a diffeomorphism. Let ψτmn = φ−1
τmn

. Then

In,m =
1

2π

∫ 2π

0
ei(m−n)φτmn dθ =

1
2π

∫ 2π

0
ei(m−n)θ

ψ
′
τmn

(θ)dθ ,

where the last equality is by change of variable. On integration by parts k times, we have

In,m =

(
1

i(m−n)

)k 1
2π

∫ 2π

0
ei(m−n)θ

ψ
(k+1)
τmn (θ)dθ .

Let α = [α0,α1] be a closed arc contained in the arc (b,c). Let Sα be the set of all pairs
of nonzero integers (m,n) such that α0 < τmn < α1, where τmn = Arg(m+ in). We are going to
consider an upper bound of the sum ∑(m,n)∈Sα

∣n∣∣In,m∣2.
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For the pair (m,n), if ∣m− n∣ = p, the condition α0 < τmn < α1 gives us both an upper bound
and a lower bound for n:

mφ ′

mφ ′−1
p≤ n≤

Mφ ′

Mφ ′−1
p.

So ∣n∣ ≤ C1 p where C1 is a constant which does not depend on the pair (m,n). Also, the number
of pairs (m,n) ∈ Sα such that ∣m− n∣ = p is bounded by C2 p for some constant C2. Let C3 =

max
{
∣ψ(k+1)

τ (θ)∣ : θ ∈ S1,τ ∈ [α0,α1]
}

. Then

∣In,m∣ ≤C3

∣∣∣ 1
i(m−n)

∣∣∣k 1
2π

∫ 2π

0
ei(m−n)θ dθ =C3 p−k.

Therefore,

∑
(m,n)∈S

∣n∣∣In,m∣2 = ∑
p

∑
(m,n)∈Sα ;∣m−n∣=p

∣n∣∣In,m∣2

≤∑
p

C1 p ⋅C2
3 p−2k ⋅C2 p =Cα ∑

p
p−(2k−2),

where the constant Cα depends on the arc α .
Similarly, for a closed arc β = [β0,β1] contained in the arc (d,a), we have

∑
(m,n)∈Sβ

∣n∣∣In,m∣2 ≤Cβ ∑
p

p−(2k−2),

where the constant Cβ depends on the arc β .
Now let α = [π

2 ,π], and β = [3
2 π,2π]. Then α is contained in (b,c) and β is contained in (d,a).

We have
∑

n>0,m<0
∣n∣∣In,m∣2 =Cα ⋅∑

p
p−(2k−2) < ∞

and
∑

n<0,m>0
∣n∣∣In,m∣2 =Cβ ⋅∑

p
p−(2k−2) < ∞,

which proves (1) of the lemma.
To prove (2), we let α = [α0,α1] be a closed arc contained in the arc (b,c) such that b < α0 <

π

2
and π < α1 < c, and β = [β0,β1] be a closed arc contained in the arc (d,a) such that d < β0 <

3
2 π

and 0 < β1 < a. Then we have

∑
(m,n)∈Sα

∣n∣∣In,m∣2 + ∑
(m,n)∈Sβ

∣n∣∣In,m∣2 ⩽Cαβ

for some constant Cαβ .
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Let m > 0 be sufficiently large, and Nm be the largest integer less than or equal to m tan(α0),

∑
0<n⩽Nm

∣In,m∣2 ⩽ ∑
n∕=0
∣In,m∣2.

Note that In,m is the nth Fourier coefficient of ψ.eimθ . Therefore,

∑
n∕=0
∣In,m∣2 = ∥ψ.eimθ∥L2

which is bounded by a constant K. Therefore,

∑
0<n⩽Nm

∣n∣∣In,m∣2 ⩽ Km tan(α0) .

On the other hand,

∑
n<0
∣n∣∣In,m∣2 + ∑

n>Nm

∣n∣∣In,m∣2 ⩽ ∑
(m,n)∈Sα

∣n∣∣In,m∣2 + ∑
(m,n)∈Sβ

∣n∣∣In,m∣2 =Cαβ .

Therefore,
∑
n∕=0
∣n∣∣In,m∣2 ⩽Cαβ +Km tan(α0)⩽ mC+,

where C+ can be chosen to be, for example, K tan(α0)+Cαβ , which is independent of m.
Similarly, for m < 0 with sufficiently large ∣m∣

∑
n∕=0
∣n∣∣In,m∣2 ⩽ mC−.

Let C = max{C+,C−}. Then we have, for sufficiently large ∣m∣,

∑
n∕=0
∣n∣∣In,m∣2 ⩽ ∣m∣C,

which proves (2) of the lemma.

Lemma 2.4.5. For any ψ ∈ Diff(S1), Φ(ψ) ∈ B(H), the space of bounded linear maps on H.
Moreover,

∥Φ(ψ)∥⩽C, ∥Φ(ψ)∥2 ⩽C,

where C is the constant in Equation 2.4.1.

Proof. First observe that the operator norm of Φ(ψ) is

∥Φ(ψ)∥= sup{∥ψ.u∥ω ∣ u ∈ H,∥u∥ω = 1}.

For any u ∈ H, let û be its Fourier coefficients, that is û(n) = (u, ên), and let ũ be defined by
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ũ = (u, ẽn)ω (2.2.10,2.2.12). It can be verified that the relation between û and ũ is: if n > 0, then
ũ(n) =

√
nû(n); if n < 0, then ũ(n) = i

√
∣n∣û(n). We have

∥u∥2
ω = (u,u)ω = (ũ, ũ)l2 = ∑

n∕=0
∣ũ(n)∣2 = ∑

n∕=0
∣n∣∣û(n)∣2.

Let φ = ψ−1. We have u(φ) = ∑m∕=0 û(m)eimφ . Using the notation In,m (2.4.4), we have

∥ψ.u∥2
ω = ∑

n∕=0
∣n∣∣ψ̂.u(n)∣2 = ∑

n∕=0
∣n∣
∣∣∣ 1
2π

∫ 2π

0
u(φ(θ))e−inθ dθ

∣∣∣2
= ∑

n ∕=0
∣n∣
∣∣∣ 1
2π

∫ 2π

0
∑

m∕=0
û(m)eimφ e−inθ dθ

∣∣∣2
= ∑

n ∕=0
∣n∣
∣∣∣ ∑

m∕=0
û(m)

1
2π

∫ 2π

0
eimφ−inθ dθ

∣∣∣2
= ∑

n ∕=0
∣n∣
∣∣∣ ∑

m∕=0
û(m)In,m

∣∣∣2
⩽ ∑

m,n∕=0
∣n∣∣û(m)∣2∣In,m∣2 = ∑

m∕=0
∣û(m)∣2 ∑

n∕=0
∣n∣∣In,m∣2

= ∑
∣m∣⩽M0

∣û(m)∣2 ∑
n∕=0
∣n∣∣In,m∣2 + ∑

∣m∣>M0

∣û(m)∣2 ∑
n∕=0
∣n∣∣In,m∣2,

where the constant M0 in the last equality is a positive integer large enough so that we can apply part
(2) of Lemma 2.4.4. It is easy to see that the first term in the last equality is finite. For the second
term we use Lemma 2.4.4

∑
∣m∣>M0

∣û(m)∣2 ∑
n∕=0
∣n∣∣In,m∣2 ⩽C ∑

∣m∣>M0

∣û(m)∣2∣m∣⩽C.

Thus for any u ∈ H with ∥u∥ω = 1, ∥ψ.u∥ω is uniformly bounded. Therefore, Φ(ψ) is a bounded
operator on H.

Now we can use Lemma 2.4.4 again to estimate the norm ∥Φ(ψ)∥2

∥Φ(ψ)∥2 = ∑
n>0,m<0

∣(ψ.ẽm, ẽn)ω ∣2 = ∑
n>0,m<0

∣n∣∣(ψ.êm, ên)∣2

= ∑
n>0,m<0

∣n∣∣In,m∣2 < ∞.

Theorem 2.4.6. Φ : Diff(S1)→ Sp(∞) is a group homomorphism. Moreover, Φ is injective, but not
surjective.

Proof. Combining Lemma 2.4.3 and Lemma 2.4.5 we see that for any diffeomorphism ψ ∈Diff(S1)
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the map Φ(ψ) is an invertible bounded operator on H, it preserves the form ω , and ∥Φ(ψ)∥2 < ∞.
In addition, by our remark after Definition 2.4.1 ψ.u is real-valued, if u is real-valued. Therefore,
Φ maps Diff(S1) into Sp(∞).

Next, we first prove that Φ is injective. Let ψ1,ψ2 ∈ Diff(S1), and denote φ1 = ψ
−1
1 ,φ2 = ψ

−1
2 .

Suppose Φ(ψ1) = Φ(ψ2), i.e. ψ1.u = ψ2.u, for any u ∈H. In particular, ψ1.eiθ = ψ2.eiθ . Therefore

eiφ1−C1 = eiφ2−C2,

where C1 =
1

2π

∫ 2π

0 eiφ1dθ , and C2 =
1

2π

∫ 2π

0 eiφ2dθ . Note that eiφ1 and eiφ2 have the same image as
maps from S1 to ℂ. This implies C1 = C2, since otherwise eiφ1 = eiφ2 +(C1−C2) and eiφ1 and eiφ2

would have had different images. Therefore, we have eiφ1 = eiφ2 . But the function eiτ : S1→ S1 is
an injective function, so φ1 = φ2. Therefore ψ1 = ψ2, and so Φ is injective.

To prove that Φ is not surjective, we will construct an operator A ∈ Sp(∞) which can not be
written as Φ(ψ) for any ψ ∈Diff(S1). Let the linear map A be defined by the corresponding matrix
{Am,n}m,n∈ℤ with the entries

A1,1 = A−1,−1 =
√

2

A1,−1 = i,A−1,1 =−i

Am,m = 1, for m ∕=±1

with all other entries being 0.
First we show that A ∈ Sp(∞). For any u ∈ H, we can write u = ∑n∕=0 ũ(n)ẽn. Then A acting on

u changes only ẽ1 and ẽ−1 . Therefore, Au ∈H, and clearly A is a well–defined bounded linear map
on H to H. Moreover, ∥A∥2 < ∞. It is clear that Am,n = A−m,−n, and therefore A = Ā by Proposition
2.3.3. Moreover, A preserves the form ω by part(II) of Proposition 2.3.6, as

∑
k ∕=0

sgn(mk)Ak,mAk,n = δm,n.

Finally, A is invertible, since {Ak,m}m,n∈ℤ is, with the inverse {Bk,m}m,n∈ℤ given by

B1,1 = B−1,−1 =
√

2

B1,−1 =−i,B−1,1 = i

Bm,m = 1, for m ∕=±1

with all other entries being 0. Next we show that A ∕= Φ(ψ) for any ψ ∈Diff(S1). First observe that
if we look at any basis element ẽ1 = eiθ as a function from S1 to ℂ, then the image of this function
lies on the unit circle. Clearly, when acted by a diffeomorphism φ ∈ Diff(S1), the image of the
function φ .eiθ is still a circle with radius 1. But if we consider Aẽ1 as a function from S1 to ℂ, we
will show that the image of the function Aẽ1 : S1→ ℂ is not a circle. Therefore, A ∕= Φ(ψ) for any
ψ ∈ Diff(S1). Indeed, by definition of A we have

Aẽ1 =
√

2ẽ1− iẽ−1.
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Let us write it as a function on S1

Aẽ1(θ) =
√

2eiθ − e−iθ = (
√

2−1)cosθ + i(
√

2+1)sinθ ,

and then we see that the image lies on an ellipse, which is not the unit circle

x2

(
√

2−1)2
+

y2

(
√

2+1)2
= 1.

2.5 The Lie algebra associated with Diff(S1)

Let diff(S1) be the space of smooth vector fields on S1. Elements in diff(S1) can be identified with
smooth functions on S1. The space diff(S1) is a Lie algebra with the following Lie bracket

[X ,Y ] = XY ′−X ′Y, X ,Y ∈ diff(S1),

where X ′ and Y ′ are derivatives with respect to θ .
Let X ∈ diff(S1), and ρt be the corresponding flow of diffeomorphisms. We define an action of

diff(S1) on H as follows: for X ∈ diff(S1) and u ∈ H, X .u is a function on S1 defined by

(X .u)(θ) =
d
dt

∣∣∣∣
t=0

[(ρt .u)(θ)] ,

where ρt acts on u via the representation Φ : Diff(S1)→ Sp(∞).
The next proposition shows that the action is well–defined, and also gives an explicit formula of

X .u.

Proposition 2.5.1. Let X ∈ diff(S1). Then

(X .u)(θ) = u′(θ)(−X(θ))− 1
2π

∫ 2π

0
u′(θ)(−X(θ))dθ ,

that is, X .u is the function −u′X with the 0th Fourier coefficient replaced by 0.

Proof. Let ρt be the flow that corresponds to X , and λt be the flow that corresponds to −X . Then λt

is the inverse of ρt for all t.

(X .u)(θ) =
d
dt

∣∣∣∣
t=0

[(ρt .u)(θ)] =
d
dt

∣∣∣∣
t=0

[
u(λt(θ))−

1
2π

∫ 2π

0
u(λt(θ))dθ

]
.

Using the chain rule, we have

d
dt

∣∣∣∣
t=0

u(λt(θ)) = u′(θ)(−X̃(θ)),
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and
d
dt

∣∣∣∣
t=0

1
2π

∫ 2π

0
u(λt(θ))dθ =

1
2π

∫ 2π

0
u′(θ)(−X(θ))dθ .

Notation 2.5.2. We consider diff(S1) as a subspace of the space of real-valued L2 functions on S1.
The space of real-valued L2 functions on S1 has an orthonormal basis

B = {Xl = cos(mθ),Yk = sin(kθ), l = 0,1, ...,k = 1,2, ...}

which is contained in diff(S1).

Let us consider how these basis elements act on H.

Proposition 2.5.3. For any l = 0,1, ...,k = 1,2, ... the basis elements Xl,Yk act on H as linear maps.
In the basis Bω of H, they are represented by infinite-dimensional matrices with (m,n)th entries
equal to

(Xl)m,n = (Xl.ẽn, ẽm)ω = s(m,n)
1
2

√
∣mn∣(δm−n,l +δn−m,l)

(Yk)m,n = (Yk.ẽn, ẽm)ω = s(m,n)(−i)
1
2

√
∣mn∣(δm−n,k−δn−m,k)

where m,n ∕= 0,

s(m,n) =

⎧⎨⎩
−i m,n > 0
1 m > 0,n < 0
1 m < 0,n > 0
i m,n < 0.

Proof. By Proposition 2.5.1 and a simple verification depending on the signs of m,n we see that

Xl.einθ =−ineinθ cos(lθ) =−1
2

in
[
ei(n+l)θ + ei(n−l)θ

]
Yk.einθ =−ineinθ sin(kθ) =−1

2
n
[
ei(n+k)θ − ei(n−k)θ

]
.

Indeed, recall that a basis element ẽn ∈Bω has the form

ẽn =

{ 1√
n einθ n > 0
1

i
√
∣n∣

einθ n < 0.

Suppose m,n > 0

Xl.ẽn =
1√
n

Xl.einθ =−1
2

i
√

n
[
ei(n+l)θ + ei(n−l)θ

]
,

and
(ei(n+l)θ , ẽm)ω =

√
mδm−n,k; (ei(n−l)θ , ẽm)ω =

√
mδn−m,l.
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Therefore,

(Xl)m,n = (Xl.ẽn, ẽm)ω = (−i)
1
2

√
∣mn∣(δm−n,l +δn−m,l).

All other cases can be verified similarly.

Remark 2.5.4. Recall that ℍω is the completion of H under the metric (⋅, ⋅)ω . The above calculation
shows that the trigonometric basis Xl,Yk of diff(S1) act on ℍω as unbounded operators. They are
densely defined on the subspace H ⊆ℍω .

2.6 Brownian motion on Sp(∞)

Definition 2.6.1. As in [3], let sp(∞) be the space of infinite-dimensional matrices A which can be
written as block matrices of the form (

a b
b̄ ā

)
such that a+a† = 0, b = bT , and b is a Hilbert-Schmidt operator.

Remark 2.6.2. The space sp(∞) has a structure of Lie algebra with the operator commutator as a
Lie bracket. Following [3], we call sp(∞) the Lie algebra of the group Sp(∞). An element of sp(∞)
can be viewed as an operator on the space H or ℍω defined in Section 2.2. Note that as the Lie
algebra of the group Sp(∞), sp(∞) may contain a lot of unbounded operators.

In the definition of Lie algebra sp(∞), the condition a+a† = 0 says that the block a is conjugate
skew-symmetric. The condition b = bT says that the block b is symmetric. These are summarized
in the following proposition.

Proposition 2.6.3. Let {Am,n}m,n∈ℤ∖{0} be the matrix corresponding to an operator A. Then any
A ∈ sp(∞) satisfies (1) Am,n = A−m,−n; (2) Am,n +An,m = 0, for m,n > 0; (3) Am,n = A−n,−m, for
m > 0,n < 0. Moreover, A ∈ sp(∞) if and only if (1) A = Ā; (2) π+Aπ− is Hilbert-Schmidt; (3)
A+A# = 0.

Proof. The first part follows directly from definition of sp(∞). Then we can use this fact and the
formula for the matrix entries of A# in Proposition 2.3.3 to prove the second part.

Definition 2.6.4. Let HS be the space of Hilbert-Schmidt matrices with complex entries and indexed
by ℤ∖{0}×ℤ∖{0}. That is, the matrix {amn} ∈ HS if and only if ∑m,n∈ℤ∖{0} ∣amn∣2 < ∞. Let
spHS = sp(∞)∩HS.

The space HS as a real Hilbert space has an orthonormal basis

BHS = {eRe
mn : m,n ∕= 0}∪{eIm

mn : m,n ∕= 0},

where eRe
mn is a matrix with (m,n)-th entry 1 all other entries 0, and eIm

mn is a matrix with (m,n)th
entry i all other entries 0.
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The space spHS is a closed subspace of HS, and therefore a real Hilbert space. According to the
symmetry of the matrices in spHS, we define a projection π : HS→ spHS, such that

π(eRe
mn) =

1
2
(
eRe

mn− eRe
nm + eRe

−m,−n− eRe
−n,−m

)
, if sgn(mn)> 0

π(eIm
mn) =

1
2
(
eIm

mn + eIm
nm− eIm

−m,−n− eIm
−n,−m

)
, if sgn(mn)> 0

π(eRe
mn) =

1
2
(
eRe

mn + eRe
−n,−m + eRe

−m,−n + eRe
n,m
)
, if sgn(mn)< 0

π(eIm
mn) =

1
2
(
eIm

mn + eIm
−n,−m− eIm

−m,−n− eIm
nm
)
, if sgn(mn)< 0

Notation 2.6.5. We choose BspHS = π(BHS) to be the orthonormal basis of spHS.

Clearly, if A ∈ spHS, then ∣A∣spHS = ∣A∣HS.

Definition 2.6.6. Let Wt be a Brownian motion on spHS which has the mean zero and covariance Q,
where Q is assumed to be a positive symmetric trace class operator on H. We further assume that Q
is diagonal in the basis BspHS .

Remark 2.6.7. Q can also be viewed as a positive function on the set BspHS , and the Brownian
motion Wt can be written as

Wt = ∑
ξ∈BspHS

√
Q(ξ )Bξ

t ξ , (2.6.1)

where {Bξ

t }ξ∈BspHS
are standard real-valued mutually independent Brownian motions.

Our goal now is to construct a Brownian motion on the group Sp(∞) using the Brownian motion
Wt on spHS. This is done by solving the Stratonovich stochastic differential equation

δXt = XtδWt . (2.6.2)

This equation can be written as the following Itô stochastic differential equation

dXt = XtdWt +
1
2

XtDdt, (2.6.3)

where D = Diag(Dm) is a diagonal matrix with entries

Dm =−1
4

sgn(m)∑
k

sgn(k)
[
QRe

mk +QIm
mk
]

(2.6.4)

with QRe
mk = Q(π(eRe

mk)) and QIm
mk = Q(π(eIm

mk)).

Notation 2.6.8. Denote by spQ
HS = Q1/2(spHS) which is a subspace of spHS. Define an inner prod-

uct on spQ
HS by ⟨u,v⟩

spQ
HS

= ⟨Q−1/2u,Q−1/2v⟩spHS . Then B
spQ

HS
= {ξ̂ = Q1/2ξ : ξ ∈ BspHS} is an

orthonormal basis of the Hilbert space spQ
HS.
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Notation 2.6.9. Let L0
2 be the space of Hilbert-Schmidt operators from spQ

HS to spHS with the norm

∣Φ∣2L0
2
= ∑

ξ̂∈B
sp

Q
HS

∣Φξ̂ ∣2spHS
= ∑

ξ ,ζ∈BspHS

Q(ξ )∣⟨Φξ ,ζ ⟩spHS ∣
2 = Tr[ΦQΦ

∗],

where Q(ξ ) means Q evaluated at ξ as a positive function on BspHS .

Lemma 2.6.10. If Ψ ∈ L(spHS,spHS), a bounded linear operator from spHS to spHS, then Ψ restricted
on spQ

HS is a Hilbert-Schmidt operator from spQ
HS to spHS, and ∣Ψ∣L0

2
⩽ Tr(Q)∥Ψ∥2, where ∥Ψ∥ is the

operator norm of Ψ.

Proof.

∣Ψ∣2L0
2
= ∑

ξ̂∈B
sp

Q
HS

∣Ψξ̂ ∣2spHS
⩽ ∥Ψ∥2

∑
ξ̂∈B

sp
Q
HS

∣ξ̂ ∣2spHS

= ∥Ψ∥2
∑

ξ∈BspHS

⟨Q1/2
ξ ,Q1/2

ξ ⟩spHS = ∥Ψ∥
2

∑
ξ∈BspHS

⟨Qξ ,ξ ⟩spHS = ∥Ψ∥
2Tr(Q)

Notation 2.6.11. Define B : spHS→ L0
2 by B(Y )A = (I +Y )A for A ∈ spQ

HS, and F : spHS→ spHS by
F(Y ) = 1

2(I +Y )D.

Note that B is well–defined by Lemma 2.6.10. Also D ∈ spHS, and so F(Y ) ∈ spHS and F is
well–defined as well.

Theorem 2.6.12. The stochastic differential equation

dYt = B(Yt)dWt +F(Yt)dt (2.6.5)

Y0 = 0

has a unique solution, up to equivalence, among the processes satisfying

P
(∫ T

0
∣Ys∣2spHS

ds < ∞

)
= 1.

Proof. To prove this theorem we will use Theorem 7.4 from the book by G. DaPrato and J. Zabczyk
[7] as it has been done in [10, 12]. It is enough to check

1. B is a measurable mapping.

2. ∣B(Y1)−B(Y2)∣L0
2
⩽C1∣Y1−Y2∣spHS for Y1,Y2 ∈ spHS;

3. ∣B(Y )∣2L0
2
⩽ K1(1+ ∣Y ∣2spHS

) for any Y ∈ spHS;

4. F is a measurable mapping.
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5. ∣F(Y1)−F(Y2)∣spHS ⩽C2∣Y1−Y2∣spHS for Y1,Y2 ∈ spHS;

6. ∣F(Y )∣2spHS
⩽ K2(1+ ∣Y ∣2spHS

) for any Y ∈ spHS.

Proof of 1. By the proof of 2, B is a continuous mapping, therefore it is measurable.
Proof of 2.

∣B(Y1)−B(Y2)∣2L0
2
= ∑

ξ̂∈B
sp

Q
HS

∣(Y1−Y2)ξ̂ ∣2spHS
= ∑

ξ∈BspHS

Q(ξ )∣(Y1−Y2)ξ ∣2spHS

⩽ ∑
ξ∈BspHS

Q(ξ )∥ξ∥2∣Y1−Y2∣2spHS
⩽ max

ξ∈BspHS

∥ξ∥2

⎛⎝ ∑
ξ∈BspHS

Q(ξ )

⎞⎠ ∣Y1−Y2∣2spHS

= TrQ

(
max

ξ∈BspHS

∥ξ∥2

)
∣Y1−Y2∣2spHS

=C2
1 ∣Y1−Y2∣2spHS

,

where ∥ξ∥ is the operator norm of ξ , which is uniformly bounded for all ξ ∈BspHS .
Proof of 3.

∣B(Y1)∣2L0
2
= ∑

ξ̂∈B
sp

Q
HS

∣(I +Y )ξ̂ ∣2spHS
= ∑

ξ∈BspHS

Q(ξ )∣(I +Y )ξ ∣2spHS

⩽ ∣(I +Y )ξ ∣2spHS ∑
ξ∈BspHS

Q(ξ )∥ξ∥2 ≤ (1+ ∣Y ∣2spHS
) ⋅K1.

Proof of 4. By the proof of 5, F is a continuous mapping, therefore it is measurable.
Proof of 5.

∣F(Y1)−F(Y2)∣spHS = ∣
1
2
(Y1−Y2)D∣spHS ≤ ∥

1
2

D∥∣Y1−Y2∣spHS

Proof of 6.

∣F(Y )∣2spHS
= ∣1

2
(I +Y )D∣2spHS

≤ ∥1
2

D∥2∣I +Y ∣2spHS
⩽ K2(1+ ∣Y ∣2spHS

).

Notation 2.6.13. Let B# : spHS→ L0
2 be the operator B#(Y )A = A#(I +Y ), and F# : spHS→ spHS be

the operator F#(Y ) = 1
2 D#(Y + I).

Proposition 2.6.14. If Yt is the solution to the stochastic differential equation

dXt = B(Xt)dWt +F(Xt)dt

X0 = 0,
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where B and F are defined in Notation 2.6.11, then Y #
t is the solution to the stochastic differential

equation

dXt = B#(Xt)dWt +F#(Xt)dt (2.6.6)

X0 = 0,

where B# and F# are defined in Notation 2.6.13.

Proof. This follows directly from the property (AB)# = B#A# for any A and B, which can be verified
by using part (5) of Proposition 2.3.3.

Lemma 2.6.15. Let U and H be real Hilbert spaces. Let Φ : U → H be a bounded linear map. Let
G : H→ H be a bounded linear map. Then

TrH(GΦΦ
∗) = TrU(Φ

∗GΦ)

Proof.

TrH(GΦΦ
∗) = ∑

i, j∈H;k∈U
Gi jΦ jk(Φ

∗)ki = ∑
i, j∈H;k∈U

Gi jΦ jkΦik

TrU(Φ
∗GΦ) = ∑

i, j∈H;k∈U
(Φ∗)kiGi jΦ jk = ∑

i, j∈H;k∈U
Gi jΦ jkΦik.

Therefore TrH(GΦΦ∗) = TrU(Φ
∗GΦ).

Lemma 2.6.16.
∑

ξ∈BspHS

(
Q1/2

ξ
)(

Q1/2
ξ
)#

=−D

Proof. If ξ ∈BspHS , then ξ ∈ sp(∞), so ξ # =−ξ . We will use the fact that

(eRe
i j eRe

kl )pq = δipδ jkδlq

where eRe
i j is the matrix with the (i, j)th entry being 1 and all other entries being zero. Using this

fact, we see

1. for ξ = 1
2

(
eRe

mn− eRe
nm + eRe

−m,−n− eRe
−n,−m

)
with sgn(mn)> 0,

(
Q1/2

ξ
)(

Q1/2
ξ
)#

=−1
4

QRe
mn
[
−eRe

mm− eRe
nn− eRe

−m,−m− eRe
−n,−n

]
2. for ξ = 1

2

(
eIm

mn + eIm
nm− eIm

−m,−n− eIm
−n,−m

)
with sgn(mn)> 0,

(
Q1/2

ξ
)(

Q1/2
ξ
)#

=−1
4

QIm
mn
[
−eRe

mm− eRe
nn− eRe

−m,−m− eRe
−n,−n

]
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3. for ξ = 1
2

(
eRe

mn + eRe
−n,−m + eRe

−m,−n + eRe
n,m
)

with sgn(mn)< 0,

(
Q1/2

ξ
)(

Q1/2
ξ
)#

=−1
4

QRe
mn
[
eRe

mm + eRe
nn + eRe

−m,−m + eRe
−n,−n

]
4. for ξ = 1

2

(
eIm

mn + eIm
−n,−m− eIm

−m,−n− eIm
nm
)

with sgn(mn)< 0,

(
Q1/2

ξ
)(

Q1/2
ξ
)#

=−1
4

QIm
mn
[
eRe

mm + eRe
nn + eRe

−m,−m + eRe
−n,−n

]
.

Each of the above is a diagonal matrix. The lemma can be proved by looking at the diagonal
entries of the sum.

Theorem 2.6.17. Let Yt be the solution to Equation 2.6.5. Then Yt + I ∈ Sp(∞) for any t > 0 with
probability 1.

Proof. The proof is adapted from papers by M. Gordina [10, 12]. Let Yt be the solution to Equation
(2.6.5) and Y #

t be the solution to Equation (2.6.6). Consider the process Yt = (Yt ,Y #
t ) in the product

space spHS× spHS. It satisfies the following stochastic differential equation

dYt = (B(Yt),B#(Y #
t ))dW +(F(Yt),F#(Y #

t ))dt.

Let G be a function on the Hilbert space spHS× spHS defined by G(Y1,Y2) = Λ((Y1 + I)(Y2 + I)),
where Λ is a nonzero linear real bounded functional from spHS× spHS to ℝ. We will apply Itô’s
formula to G(Yt) = G(Yt ,Y #

t ). Then (Yt + I)(Y #
t + I) = I if and only if Λ((Yt + I)(Y #

t + I)− I) = 0
for any Λ.

In order to use Itô’s formula we must verify that G and the derivatives Gt , GY, GYY are uniformly
continuous on bounded subsets of [0,T ]× spHS× spHS, where GY is defined as follows

GY(Y)(S) = lim
ε→0

G(Y+ εS)−G(Y)

ε
for any Y,S ∈ spHS× spHS

and GYY is defined as follows

GYY(Y)(S⊗T) = lim
ε→0

GY(Y+ εT)(S)−GY(Y)(S)
ε

for any Y,S,T ∈ spHS×spHS. Let us calculate Gt , GY, GYY. Clearly, Gt = 0. It is easy to verify that
for any S = (S1,S2) ∈ spHS× spHS

GY(Y)(S) = Λ(S1(Y2 + I)+(Y1 + I)S2)

and for any S = (S1,S2) ∈ spHS× spHS and T = (T1,T2) ∈ spHS× spHS

GYY(Y)(S⊗T) = Λ(S1T2 +T1S2).

So the condition is satisfied.

45



We will use the following notation

GY(Y)(S) = ⟨ḠY(Y),S⟩spHS×spHS

GYY(Y)(S⊗T) = ⟨ḠYY(Y)S,T⟩spHS×spHS ,

where ḠY(Y) is an element of spHS× spHS corresponding to the functional GY(Y) in (spHS× spHS)
∗

and ḠYY(Y) is an operator on spHS×spHS corresponding to the functional GYY(Y)∈ ((spHS×spHS)⊗
(spHS× spHS))

∗.
Now we can apply Itô’s formula to G(Yt)

G(Yt)−G(Y0) =
∫ t

0
⟨ḠY(Ys),

(
B(Ys)dWs,B#(Y #

s )dWs
)
⟩spHS×spHS

+
∫ t

0
⟨ḠY(Ys),

(
F(Ys),F#(Y #

s )
)
⟩spHS×spHSds

+
∫ t

0

1
2

TrspHS×spHS

[
ḠYY(Ys)

(
B(Ys)Q1/2,B#(Y #

s )Q
1/2
)

(
B(Ys)Q1/2,B#(Y #

s )Q
1/2
)∗]

ds.

Let us calculate the three integrands separately. The first integrand is

⟨ḠY(Ys),
(
B(Ys)dWs,B#(Y #

s )dWs
)
⟩spHS×spHS

=
(

B(Ys)dWs

)
(Y #

s + I)+(Ys + I)
(

B#(Y #
s )dWs

)
= (Ys + I)dWs(Y #

s + I)+(Ys + I)dW #
s (Y

#
s + I) = 0.

The second integrand is

⟨ḠY(Ys),
(
F(Ys),F#(Y #

s )
)
⟩spHS×spHS

= F(Ys)(Y #
s + I)+(Ys + I)F#(Y #

s )

=
1
2
(Ys + I)D(Y #

s + I)+
1
2
(Ys + I)D#(Y #

s + I)

=
1
2
(Ys + I)(D+D#)(Y #

s + I)

= (Ys + I)D(Y #
s + I),

where we have used the fact that D = D#, since D is a diagonal matrix with all real entries.
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The third integrand is

1
2

TrspHS×spHS[
ḠYY(Ys)

(
B(Ys)Q1/2,B#(Y #

s )Q
1/2
)(

B(Ys)Q1/2,B#(Y #
s )Q

1/2
)∗]

=
1
2

TrspHS

[(
B(Ys)Q1/2,B#(Y #

s )Q
1/2
)∗

ḠYY(Ys)
(

B(Ys)Q1/2,B#(Y #
s )Q

1/2
)]

=
1
2 ∑

ξ∈BspHS

GYY(Ys)

((
B(Ys)Q1/2

ξ ,B#(Y #
s )Q

1/2
ξ

)
⊗
(

B(Ys)Q1/2
ξ ,B#(Y #

s )Q
1/2

ξ

))
= ∑

ξ∈BspHS

(
B(Ys)Q1/2

ξ

)(
B#(Y #

s )Q
1/2

ξ

)
= ∑

ξ∈BspHS

(Ys + I)
((

Q1/2
ξ
)(

Q1/2
ξ
)#
)
(Y #

s + I)

=−(Ys + I)D(Y #
s + I),

where the second equality follows from Lemma 2.6.15, and the last equality follows from Lemma
2.6.16.

The above calculations show that the stochastic differential of G is zero. So G(Yt) = G(Y0) =
Λ(I) for any t > 0 and any nonzero linear real bounded functional Λ on spHS× spHS. This means
(Yt + I)(Y #

t + I) = I almost surely for any t > 0. Similarly we can show (Y #
t + I)(Yt + I) = I almost

surely for any t > 0. Therefore Yt + I ∈ Sp(∞) almost surely for any t > 0.
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Chapter 3

Geometric Analysis of
Infinite-dimensional Symplectic Group
Sp(∞)

3.1 Introduction

For finite dimensional manifolds, it is well known that the behavior of the Brownian motion is
closely related to the geometric properties of the manifolds. In particular, Ricci curvature plays an
important role. For example, one can construct an example of a manifold whose Ricci curvature
grows fast enough to negative infinity with the distance from an origin, and on such a manifold
the Brownian motion has explosion [5]. In [15], A. Grigor’yan summarized the relationship be-
tween recurrence and explosion/non-explosion properties of Brownian motion on the one hand, and
geometric properties of the manifold on the other hand.

In my research, I am dealing with infinite-dimensional groups Diff(S1) and Sp(∞). As infinite-
dimensional manifolds, I expect geometric properties of Diff(S1) and Sp(∞) play similar roles as
in finite-dimensional cases. But Diff(S1) and Sp(∞) are not merely infinite-dimensional manifolds.
They are infinite-dimensional Lie groups. Therefore, all geometric properties should be the same
around every element of the groups. As a consequence, one cannot make the Ricci curvature grows
fast enough to negative infinity to construct a Brownian motion that has explosion as in [5]. In
fact, in Chapter 1 Theorem (1.3.19), I proved that the Brownian motion I constructed on Diff(S1) is
non-explosive. Nevertheless, geometric analysis of infinite-dimensional groups is still important.

In [13], M. Gordina studied the geometric properties of the group Diff(S1)/S1, in particular, she
computed the Ricci curvature of Diff(S1)/S1. In [11], using the same method, Gordina computed the
Ricci curvatures of several Hilbert-Schmidt groups which can be represented as infinite-dimensional
matrix groups. In this chapter, following Gordina’s method, I will compute the Ricci curvature of
the infinite-dimensional symplectic group Sp(∞).

Let G be a finite dimensional Lie group, and g its Lie algebra. Let ⟨⋅, ⋅⟩g be an inner product on
g. Then ⟨⋅, ⋅⟩g defines a unique left-invariant metric on the Lie group G compactible with the Lie
group structure. In [23], J. Milnor studied the Riemannian geometry of Lie groups. For x,y,z ∈ g,
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the Levi-Civita connection ∇x is given by

⟨∇xy,z⟩g =
1
2
(⟨[x,y],z⟩g−⟨[y,z],x⟩g+ ⟨[z,x],y⟩g) (3.1.1)

The Riemann curvature tensor Rxy is given by

Rxy = ∇[x,y]−∇x∇y +∇y∇x (3.1.2)

For any orthogonal x,y ∈ g, the sectional curvature K(x,y) is given by

K(x,y) = ⟨Rxy(x),y⟩g (3.1.3)

Let us choose an orthonormal basis {ξi}N
i=1 of g, where N is the dimension of the Lie group G. Let

x ∈ g. Then the Ricci curvature Ric(x) is given by

Ric(x) =
N

∑
i=1

K(x,ξi) =
N

∑
i=1
⟨Rxξi(x),ξi⟩g (3.1.4)

3.2 Ricci curvature of Sp(∞)

In this section, we apply the Ricci curvature theory to the infinite-dimensional symplectic group
Sp(∞) and its Lie algebra sp(∞). The group Sp(∞) and its Lie algebra sp(∞) are defined in Def-
inition 2.3.10 and Definition 2.6.1. Basically, elements in both the Lie group Sp(∞) and the Lie
algebra sp(∞) are block matrices of the form:(

a b
b̄ ā

)
where each of the blocks is an infinite-dimensional matrix. The blocks a and ā are complex conju-
gate with each other. The blocks b and b̄ are also complex conjugate with each other, are required
to be a Hilbert-Schmidt matrices. For a block matrix to be an element of Sp(∞), it is also required
that the matrix is invertible, and preserve a certain symplectic form. For a block matrix to be an
element of sp(∞), it is required that a+a† = 0 or aT + ā = 0, which means the block a is conjugate
skew-symmetric, and b = bT , which means the block b is symmetric.

To write the block matrix explicitly, we index the matrix by ℤ∖{0}×ℤ∖{0}, so the matrix is
written as {Amn}m,n∈ℤ∖{0}. An entry in block a has m,n > 0; an entry in block ā has m,n < 0; an
entry in block b has m > 0,n < 0; an entry in block b̄ has m < 0,n > 0. The condition that blocks a
and b are conjugate to blocks ā and b̄ can be expressed as Am,n = A−m,−n. The condition a+a† = 0
or aT + ā = 0 can be expressed as Anm +Amn = 0 where m,n > 0 or m,n < 0. The condition b = bT

can be expressed as Am,n = A−n,−m where m > 0,n < 0. These are summarized in Proposition 2.3.3
and Proposition 2.6.3.

To find Ricci curvature, we need to choose a metric for the Lie algebra sp(∞). Let us define a
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sequence of positive numbers

{λi ∈ ℝ+∣λi = λ−i, i ∈ ℤ∖{0}}

The sequence {λi} will serve as parameters to fine tune the metric that we are going to choose.

Remark 3.2.1. Let us first consider the space HS of Hilbert-Schmidt matrices which we defined in
Definition 2.6.4. The Hilbert space HS, if viewed as a complex Hilbert space, has a canonical inner
product given by:

⟨A,B⟩= Tr(AB†) = Tr(AB̄T ), A,B ∈ HS

If viewed as real Hilbert space, HS has a canonical inner product given by: for A,B ∈ HS, writing
A = A1 + iA2 and B = B1 + iB2, where A1,A2,B1,B2 are matrices with real value entries, then

⟨A,B⟩= Tr(A1BT
1 )+Tr(A2BT

2 )

Let eab be the infinite-dimensional matrix with 1 in the entry (a,b), and 0 in all other entries, where
a,b are indices of the matrix such that a,b ∈ ℤ∖{0}. Then the above canonical inner product on HS
viewed as real Hilbert space is equivalent to choosing the set

{eab, ieab∣a,b ∈ ℤ∖{0}}

as an orthonormal basis.

Definition 3.2.2. Let
ξab = 2λaλbeab (3.2.1)

We define an inner product ⟨⋅, ⋅⟩HS on HS by choosing the following set

{ξab, iξab∣a,b ∈ ℤ∖{0}} (3.2.2)

as an orthonormal basis for the real Hilbert space HS.

Remark 3.2.3. If we set the parameter λi = 1/
√

2 for all i ∈ ℤ∖{0} in Definition 3.2.2, we can
recover the canonical inner product of HS (remark 3.2.1) as a real Hilbert space.

The Lie algebra sp(∞) may contain unbounded opertors. For simplicity, we consider the sub-
space spHS = sp(∞)∩HS. Now we can choose orthonormal set of the space spHS according to the
symmety of matrices in the Lie algebra sp(∞).

Definition 3.2.4. Let

µ
Re
ab = λaλb(ea,b− eb,a + e−a,−b− e−b,−a), a > b > 0

µ
Im
ab = λaλb(iea,b− ieb,a + ie−a,−b− ie−b,−a), a≥ b > 0

ν
Re
ab = λaλb(ea,b + e−b,−a + e−a,−b + eb,a), a≥−b > 0

ν
Im
ab = λaλb(iea,b + ie−b,−a− ie−a,−b− ieb,a), a≥−b > 0
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Let ARe = {µRe
ab ∣a > b > 0}, AIm = {µ Im

ab ∣a ≥ b > 0}, BRe = {νRe
ab ∣a ≥ −b > 0}, BIm = {ν Im

ab ∣a ≥
−b > 0}, and Bλ = ARe∪AIm∪BRe∪BIm.

Remark 3.2.5. It is easy to verify that matrices in the set Bλ all belong to the space spHS. So Bλ is
a subset of spHS and sp(∞). Also, by definition of ξab (equation 3.2.1), it is easy to verify

µ
Re
ab =

1
2
(ξa,b−ξb,a +ξ−a,−b−ξ−b,−a)

µ
Im
ab =

1
2
(iξa,b− iξb,a + iξ−a,−b− iξ−b,−a) (3.2.3)

ν
Re
ab =

1
2
(ξa,b +ξ−b,−a +ξ−a,−b +ξb,a)

ν
Im
ab =

1
2
(iξa,b + iξ−b,−a− iξ−a,−b− iξb,a)

Definition 3.2.6. We define an inner product ⟨⋅, ⋅⟩sp on both spHS and sp(∞) by choosing the set Bλ

as an orthonormal set.

Remark 3.2.7. We note that the inner product on spHS and sp(∞) is equivalent to the subspace
inner product induced from the inner product on HS defined in Definition (3.2.2). Therefore, for
x,y ∈ spHS, ⟨x,y⟩HS = ⟨x,y⟩sp.

Remark 3.2.8. For µRe
ab , the indices satisfy a > b > 0, which means the entry is in the strict upper

triangular block. For µ Im
ab , the indices satisfy a ≥ b > 0, which means the entry is in the upper

triangular block including the diagonal. For νRe
ab , the indices satisfy a ≥ −b > 0, which means

the entry is in the other upper triangular block including the diagonal. For ν Im
ab , the indices satisfy

a≥−b > 0, which means the entry is in the other upper triangular block including the diagonal.

Definition 3.2.9. Using Ricci curvature formula (Equation 3.1.4) for Sp(∞) and sp(∞), we define,
for x ∈ sp(∞),

Ric(x) = ∑
ξ∈Bλ

K(x,ξ ) = ∑
ξ∈Bλ

⟨Rxξ (x),ξ ⟩sp (3.2.4)

By definition of Bλ , the above sum will break into four parts:

Ric(x) = ∑
a>b>0

K(x,µRe
ab )+ ∑

a≥b>0
K(x,µ Im

ab )+ ∑
a≥−b>0

K(x,νRe
ab )+ ∑

a≥−b>0
K(x,ν Im

ab ) (3.2.5)

For computational reason, we define the following truncated Ricci curvature:

RicN(x) = ∑
N≥a>b>0

K(x,µRe
ab )+ ∑

N≥a≥b>0
K(x,µ Im

ab )

+ ∑
N≥a≥−b>0

K(x,νRe
ab )+ ∑

N≥a≥−b>0
K(x,ν Im

ab ) (3.2.6)

We have Ric(x) = limN→∞ RicN(x).

In the rest of the section, we will compute the following Ricci curvatures via the corresponding
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truncated Ricci curvatures:

Ric(µRe
ab ),Ric(µ Im

ab ),Ric(νRe
ab ),Ric(ν Im

ab )

All of these computations boil down to matrix multiplications. The following lemma is an important
tool to the computation of Ricci curvature.

Lemma 3.2.10. We have the following Levi-Civita connection formula, where δ is the Kronecker
delta:

∇ξab
ξcd = δbcλ

2
c ξad−δdaλ

2
a ξcb−δcaλ

2
d ξdb +δdbλ

2
c ξac +δbdλ

2
a ξca−δacλ

2
b ξbd

∇iξab
iξcd =−δbcλ

2
c ξad +δdaλ

2
a ξcb−δcaλ

2
d ξdb +δdbλ

2
c ξac +δbdλ

2
a ξca−δacλ

2
b ξbd

∇ξab
iξcd = δbcλ

2
c iξad−δdaλ

2
a iξcb +δcaλ

2
d iξdb−δdbλ

2
c iξac +δbdλ

2
a iξca−δacλ

2
b iξbd

∇iξab
ξcd = δbcλ

2
c iξad−δdaλ

2
a iξcb−δcaλ

2
d iξdb +δdbλ

2
c iξac−δbdλ

2
a iξca +δacλ

2
b iξbd

Proof. We have
ξabξcd = 2λ

2
b δcbξad

So
[ξab,ξcd ] = ξabξcd−ξcdξab = 2λ

2
c δcbξad−2λ

2
a δadξcb

In the following, ⟨⋅, ⋅⟩ stands for ⟨⋅, ⋅⟩HS. Using orthonormality,

2⟨∇ξab
ξcd ,ξe f ⟩

= ⟨[ξab,ξcd ],ξe f ⟩−⟨[ξcd ,ξe f ],ξab⟩+ ⟨[ξe f ,ξab],ξcd⟩
= 2δbcδaeδd f λ

2
c −2δdaδceδb f λ

2
a −2δdeδcaδ f bλ

2
e

+2δ f cδeaδdbλ
2
c +2δ f aδecδbdλ

2
a −2δbeδacδ f dλ

2
e

and
2⟨∇ξab

ξcd , iξe f ⟩= ⟨[ξab,ξcd ], iξe f ⟩−⟨[ξcd , iξe f ],ξab⟩+ ⟨[iξe f ,ξab],ξcd⟩= 0

Therefore,

∇ξab
ξcd = δbcλ

2
c ξad−δdaλ

2
a ξcb−δcaλ

2
d ξdb +δdbλ

2
c ξac +δbdλ

2
a ξca−δacλ

2
b ξbd

Similarly,

2⟨∇iξab
iξcd ,ξe f ⟩

= ⟨[iξab, iξcd ],ξe f ⟩−⟨[iξcd ,ξe f ], iξab⟩+ ⟨[ξe f , iξab], iξcd⟩
=−δbcδaeδd f λ

2
c +δdaδceδb f λ

2
a −δdeδcaδ f bλ

2
e

+δ f cδeaδdbλ
2
c +δ f aδecδbdλ

2
a −δbeδacδ f dλ

2
e

and
2⟨∇iξab

iξcd , iξe f ⟩= ⟨[iξab, iξcd ], iξe f ⟩−⟨[iξcd , iξe f ], iξab⟩+ ⟨[iξe f , iξab], iξcd⟩= 0
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Therefore,

∇iξab
iξcd =−δbcλ

2
c ξad +δdaλ

2
a ξcb−δcaλ

2
d ξdb +δdbλ

2
c ξac +δbdλ

2
a ξca−δacλ

2
b ξbd

Similarly,

2⟨∇ξab
iξcd , iξe f ⟩

= ⟨[ξab, iξcd ], iξe f ⟩−⟨[iξcd , iξe f ],ξab⟩+ ⟨[iξe f ,ξab], iξcd⟩
= δbcδaeδd f λ

2
c −δdaδceδb f λ

2
a +δdeδcaδ f bλ

2
e

−δ f cδeaδdbλ
2
c +δ f aδecδbdλ

2
a −δbeδacδ f dλ

2
e

and
2⟨∇ξab

iξcd ,ξe f ⟩= ⟨[ξab, iξcd ],ξe f ⟩−⟨[iξcd ,ξe f ],ξab⟩+ ⟨[ξe f ,ξab], iξcd⟩= 0

Therefore,

∇ξab
iξcd = δbcλ

2
c iξad−δdaλ

2
a iξcb +δcaλ

2
d iξdb−δdbλ

2
c iξac +δbdλ

2
a iξca−δacλ

2
b iξbd

Similarly,

2⟨∇iξab
ξcd , iξe f ⟩

= ⟨[iξab,ξcd ], iξe f ⟩−⟨[ξcd , iξe f ], iξab⟩+ ⟨[iξe f , iξab],ξcd⟩
= δbcδaeδd f λ

2
c −δdaδceδb f λ

2
a −δdeδcaδ f bλ

2
e

+δ f cδeaδdbλ
2
c −δ f aδecδbdλ

2
a +δbeδacδ f dλ

2
e

and
2⟨∇iξab

ξcd ,ξe f ⟩= ⟨[iξab,ξcd ],ξe f ⟩−⟨[ξcd ,ξe f ], iξab⟩+ ⟨[ξe f , iξab],ξcd⟩= 0

Therefore,

∇iξab
ξcd = δbcλ

2
c iξad−δdaλ

2
a iξcb−δcaλ

2
d iξdb +δdbλ

2
c iξac−δbdλ

2
a iξca +δacλ

2
b iξbd

Remark 3.2.11. Once we have the above lemma, we can use equation (3.2.3) to change the basis
elements of sp(∞) into the basis elements of HS, and then use formula (3.1.1), (3.1.2), (3.1.3) and
(3.1.4) to compute the Ricci curvature of Sp(∞). But since each basis µRe

ab , µ Im
ab , νRe

ab , and ν Im
ab has

four terms, and each connection formula in the above lemma has six terms, the combination will be
huge. For example, the sectional curvature

K(µRe
ab ,µ

Re
cd ) = ⟨RµRe

ab µRe
cd
(µRe

ab ),µ
Re
cd ⟩

= ⟨∇[µRe
ab ,µ

Re
cd ]
(µRe

ab )−∇µRe
ab

∇µRe
cd
(µRe

ab )+∇µRe
cd

∇µRe
ab
(µRe

ab ),µ
Re
cd ⟩

will have 21,504 terms. Thereore, I use a computer program to facilitate the computation.
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Theorem 3.2.12. Let a,b ∈ ℤ∖{0}.
For a > b > 0,

RicN(µRe
ab ) =

1
16

[
−24λ

4
a −24λ

4
b +48λ

2
a λ

2
b −12λ

2
a

a−1

∑
d=1

λ
2
d +8λ

2
a

b−1

∑
d=1

λ
2
d +8λ

2
b

a−1

∑
d=1

λ
2
d

−12λ
2
b

b−1

∑
d=1

λ
2
d +8

a−1

∑
d=1

λ
4
d +8

b−1

∑
d=1

λ
4
d −16Nλ

4
a −16Nλ

4
b −12λ

2
a

N

∑
c=a+1

λ
2
c

+8λ
2
a

N

∑
c=b+1

λ
2
c +8λ

2
b

N

∑
c=a+1

λ
2
c −12λ

2
b

N

∑
c=b+1

λ
2
c +8

N

∑
c=a+1

λ
4
c +8

N

∑
c=b+1

λ
4
c

]
.

For a > b > 0,

RicN(µ Im
ab ) =

1
16

[
−40λ

4
a −40λ

4
b −32λ

2
a λ

2
b −12λ

2
a

a−1

∑
d=1

λ
2
d −8λ

2
a

b−1

∑
d=1

λ
2
d −8λ

2
b

a−1

∑
d=1

λ
2
d

−12λ
2
b

b−1

∑
d=1

λ
2
d +8

a−1

∑
d=1

λ
4
d +8

b−1

∑
d=1

λ
4
d −16Nλ

4
a −16Nλ

4
b −12λ

2
a

N

∑
c=a+1

λ
2
c

−8λ
2
a

N

∑
c=b+1

λ
2
c −8λ

2
b

N

∑
c=a+1

λ
2
c −12λ

2
b

N

∑
c=b+1

λ
2
c +8

N

∑
c=a+1

λ
4
c +8

N

∑
c=b+1

λ
4
c

]
.

For a = b > 0,

RicN(µ Im
ab ) = 0.

For a >−b > 0,

RicN(νRe
ab ) =

1
16

[
−40λ

4
a −40λ

4
b −48λ

2
a λ

2
b −12λ

2
a

a−1

∑
d=1

λ
2
d −8λ

2
a

b−1

∑
d=1

λ
2
d −8λ

2
b

a−1

∑
d=1

λ
2
d

−12λ
2
b

b−1

∑
d=1

λ
2
d +8

a−1

∑
d=1

λ
4
d +8

b−1

∑
d=1

λ
4
d −16Nλ

4
a −16Nλ

4
b −12λ

2
a

N

∑
c=a+1

λ
2
c

−8λ
2
a

N

∑
c=b+1

λ
2
c −8λ

2
b

N

∑
c=a+1

λ
2
c −12λ

2
b

N

∑
c=b+1

λ
2
c +8

N

∑
c=a+1

λ
4
c +8

N

∑
c=b+1

λ
4
c

]
.

For a =−b > 0,

RicN(νRe
ab ) =

1
16

[
−192λ

4
a −32

a−1

∑
d=1

λ
4
d −192Nλ

4
a −32

N

∑
c=a+1

λ
4
c

]
.
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For a >−b > 0,

RN(ν Im
ab ) =

1
16

[
−40λ

4
a −40λ

4
b −32λ

2
a λ

2
b −12λ

2
a

a−1

∑
d=1

λ
2
d −8λ

2
a

b−1

∑
d=1

λ
2
d −8λ

2
b

a−1

∑
d=1

λ
2
d

−12λ
2
b

b−1

∑
d=1

λ
2
d +8

a−1

∑
d=1

λ
4
d +8

b−1

∑
d=1

λ
4
d −16Nλ

4
a −16Nλ

4
b −12λ

2
a

N

∑
c=a+1

λ
2
c

−8λ
2
a

N

∑
c=b+1

λ
2
c −8λ

2
b

N

∑
c=a+1

λ
2
c −12λ

2
b

N

∑
c=b+1

λ
2
c +8

N

∑
c=a+1

λ
4
c +8

N

∑
c=b+1

λ
4
c

]
.

For a =−b > 0,

RicN(ν Im
ab ) = 0.

Corollary 3.2.13. If we set the parameter λi = 1/
√

2, for all i ∈ ℤ∖{0}, then we recover the canon-
ical inner product on the space HS (remark 3.2.3). In this case, we have

RicN(µRe
ab ) =−

3
8

N− 1
8
, for a > b > 0;

RicN(µ Im
ab ) =−

7
8

N− 11
8
, for a > b > 0;

RicN(µ Im
ab ) = 0, for a = b > 0;

RicN(νRe
ab ) =−

7
8

N− 13
8
, for a >−b > 0;

RicN(νRe
ab ) =−

7
2

N− 5
2
, for a =−b > 0;

RicN(ν Im
ab ) =−

7
8

N− 11
8
, for a >−b > 0;

RicN(ν Im
ab ) = 0, for a =−b > 0.

Remark 3.2.14. By the above corollary, we see that for most of the basis element ξ ∈Bλ , we have
Ric(ξ ) = limN→∞ RicN(ξ ) =−∞.

Proof. (of the theorem.)
The method of computing Ricci curvature and truncated Ricci curvature is stated in Definition

3.2.9. Ricci curvature is defined in terms of sectional curvature, which can be expressed in terms
of Riemann tensor and the inner product of the Lie algebra. Riemann tensor is defined in terms of
Levi-Civita connection. The formula of Levi-Civita connection is the content of Lemma 3.2.10. So
the method of computing Ricci curvature is straightforward. But there are huge number of terms.
Therefore, I used a computer program to facilitate the computation.
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RicN(µRe
ab )

= ∑
N≥c>d>0

K(µRe
ab ,µ

Re
cd )+ ∑

N≥c≥d>0
K(µRe

ab ,µ
Im
cd )+ ∑

N≥c≥−d>0
K(µRe

ab ,ν
Re
cd )+ ∑

N≥c≥−d>0
K(µRe

ab ,ν
Im
cd )

= ∑
N≥c>d>0

K(µRe
ab ,µ

Re
cd )+ ∑

N≥c≥d>0
K(µRe

ab ,µ
Im
cd )+ ∑

N≥c≥d>0
K(µRe

ab ,ν
Re
c,−d)+ ∑

N≥c≥d>0
K(µRe

ab ,ν
Im
c,−d)

= ∑
N≥c>d>0

[
K(µRe

ab ,µ
Re
cd )+K(µRe

ab ,µ
Im
cd )+K(µRe

ab ,ν
Re
c,−d)+K(µRe

ab ,ν
Im
c,−d)

]
+ ∑

N≥c=d>0

[
K(µRe

ab ,µ
Re
cd )+K(µRe

ab ,µ
Im
cd )+K(µRe

ab ,ν
Re
c,−d)+K(µRe

ab ,ν
Im
c,−d)

]
:= ∑

N≥c>d>0
Aupper + ∑

N≥c=d>0
Adiagonal

We have

Aupper =
1

16

[
−16δa,cλ

4
a −24δa,cδa,dλ

4
a +24δa,cδb,dλ

4
a −16δa,dλ

4
a

+24δa,dδb,cλ
4
a +8δa,cδa,dλ

2
a λ

2
b +8δb,cδb,dλ

2
a λ

2
b −12δa,dλ

2
a λ

2
c

+8δb,dλ
2
a λ

2
c −12δa,cλ

2
a λ

2
d +8δb,cλ

2
a λ

2
d +24δa,cδb,dλ

4
b +24δa,dδb,cλ

4
b

−16δb,cλ
4
b −24δb,cδb,dλ

4
b −16δb,dλ

4
b +8δa,dλ

2
b λ

2
c −12δb,dλ

2
b λ

2
c

+8δa,cλ
2
b λ

2
d −12δb,cλ

2
b λ

2
d +8δa,dλ

4
c +8δb,dλ

4
c +8δa,cλ

4
d +8δb,cλ

4
d

]
and

Adiagonal =
1
16

[
−12δa,cλ

4
a −16δa,cδa,dλ

4
a +18δa,cδb,dλ

4
a −12δa,dλ

4
a

+18δa,dδb,cλ
4
a +12δa,cδb,dλ

2
a λ

2
b +12δa,dδb,cλ

2
a λ

2
b −18δa,dλ

2
a λ

2
c

+12δb,dλ
2
a λ

2
c −18δa,cλ

2
a λ

2
d +12δb,cλ

2
a λ

2
d +18δa,cδb,dλ

4
b +18δa,dδb,cλ

4
b

−12δb,cλ
4
b −16δb,cδb,dλ

4
b −12δb,dλ

4
b +12δa,dλ

2
b λ

2
c −18δb,dλ

2
b λ

2
c

+12δa,cλ
2
b λ

2
d −18δb,cλ

2
b λ

2
d +6δa,dλ

4
c +6δb,dλ

4
c +6δa,cλ

4
d +6δb,cλ

4
d

]
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So

∑
N≥c>d>0

Aupper =
1
16

[
−16(a−1)λ 4

a +24λ
4
a −16(N−a)λ 4

a −12λ
2
a

N

∑
c=a+1

λ
2
c

+8λ
2
a

N

∑
c=b+1

λ
2
c −12λ

2
a

a−1

∑
d=1

λ
2
d +8λ

2
a

b−1

∑
d=1

λ
2
d +24λ

4
b

−16(b−1)λ 4
b −16(N−b)λ 4

b +8λ
2
b

N

∑
c=a+1

λ
2
c −12λ

2
b

N

∑
c=b+1

λ
2
c +8λ

2
b

a−1

∑
d=1

λ
2
d

−12λ
2
b

b−1

∑
d=1

λ
2
d +8

N

∑
c=a+1

λ
4
c +8

N

∑
c=b+1

λ
4
c +8

a−1

∑
d=1

λ
4
d +8

b−1

∑
d=1

λ
4
d

]
and

∑
N≥c=d>0

Adiagonal =
1
16

[
−12λ

4
a −16λ

4
a −12λ

4
a −18λ

4
a +12λ

2
a λ

2
b −18λ

4
a +12λ

2
a λ

2
b −12λ

4
b

−16λ
4
b −12λ

4
b +12λ

2
a λ

2
b −18λ

4
b +12λ

2
a λ

2
b −18λ

4
b +6λ

4
a +6λ

4
b +6λ

4
a +6λ

4
b

]
Therefore, for a > b > 0,

RicN(µRe
ab ) = ∑

N≥c>d>0
Aupper + ∑

N≥c=d>0
Adiagonal

=
1
16

[
−24λ

4
a −24λ

4
b +48λ

2
a λ

2
b −12λ

2
a

a−1

∑
d=1

λ
2
d +8λ

2
a

b−1

∑
d=1

λ
2
d +8λ

2
b

a−1

∑
d=1

λ
2
d

−12λ
2
b

b−1

∑
d=1

λ
2
d +8

a−1

∑
d=1

λ
4
d +8

b−1

∑
d=1

λ
4
d −16Nλ

4
a −16Nλ

4
b −12λ

2
a

N

∑
c=a+1

λ
2
c

+8λ
2
a

N

∑
c=b+1

λ
2
c +8λ

2
b

N

∑
c=a+1

λ
2
c −12λ

2
b

N

∑
c=b+1

λ
2
c +8

N

∑
c=a+1

λ
4
c +8

N

∑
c=b+1

λ
4
c

]
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Next,

RicN(µ Im
ab )

= ∑
N≥c>d>0

K(µ Im
ab ,µ

Re
cd )+ ∑

N≥c≥d>0
K(µ Im

ab ,µ
Im
cd )+ ∑

N≥c≥−d>0
K(µ Im

ab ,ν
Re
cd )+ ∑

N≥c≥−d>0
K(µ Im

ab ,ν
Im
cd )

= ∑
N≥c>d>0

K(µ Im
ab ,µ

Re
cd )+ ∑

N≥c≥d>0
K(µ Im

ab ,µ
Im
cd )+ ∑

N≥c≥d>0
K(µ Im

ab ,ν
Re
c,−d)+ ∑

N≥c≥d>0
K(µ Im

ab ,ν
Im
c,−d)

= ∑
N≥c>d>0

[
K(µ Im

ab ,µ
Re
cd )+K(µ Im

ab ,µ
Im
cd )+K(µ Im

ab ,ν
Re
c,−d)+K(µ Im

ab ,ν
Im
c,−d)

]
+ ∑

N≥c=d>0

[
K(µ Im

ab ,µ
Re
cd )+K(µ Im

ab ,µ
Im
cd )+K(µ Im

ab ,ν
Re
c,−d)+K(µ Im

ab ,ν
Im
c,−d)

]
:= ∑

N≥c>d>0
Bupper + ∑

N≥c=d>0
Bdiagonal

We have

Bupper =
1
16

[
+32δa,bδa,cλ

4
a +32δa,bδa,dλ

4
a −16δa,cλ

4
a −24δa,cδa,dλ

4
a +8δa,cδb,dλ

4
a

−16δa,dλ
4
a +8δa,dδb,cλ

4
a −8δa,cδa,dλ

2
a λ

2
b +16δa,cδb,dλ

2
a λ

2
b +16δa,dδb,cλ

2
a λ

2
b

−8δb,cδb,dλ
2
a λ

2
b +40δa,bδa,dλ

2
a λ

2
c −12δa,dλ

2
a λ

2
c −8δb,dλ

2
a λ

2
c +40δa,bδa,cλ

2
a λ

2
d

−12δa,cλ
2
a λ

2
d −8δb,cλ

2
a λ

2
d +8δa,cδb,dλ

4
b +8δa,dδb,cλ

4
b −16δb,cλ

4
b −24δb,cδb,dλ

4
b

−16δb,dλ
4
b −8δa,dλ

2
b λ

2
c −12δb,dλ

2
b λ

2
c −8δa,cλ

2
b λ

2
d −12δb,cλ

2
b λ

2
d

−16δa,bδa,dλ
4
c +8δa,dλ

4
c +8δb,dλ

4
c −16δa,bδa,cλ

4
d +8δa,cλ

4
d +8δb,cλ

4
d

]
and

Bdiagonal =
1
16

[
+24δa,bδa,cλ

4
a −32δa,bδa,cδa,dλ

4
a +24δa,bδa,dλ

4
a −12δa,cλ

4
a −16δa,cδa,dλ

4
a

+6δa,cδb,dλ
4
a −12δa,dλ

4
a +6δa,dδb,cλ

4
a +20δa,cδb,dλ

2
a λ

2
b +20δa,dδb,cλ

2
a λ

2
b

+60δa,bδa,dλ
2
a λ

2
c −18δa,dλ

2
a λ

2
c −12δb,dλ

2
a λ

2
c +60δa,bδa,cλ

2
a λ

2
d −18δa,cλ

2
a λ

2
d

−12δb,cλ
2
a λ

2
d +6δa,cδb,dλ

4
b +6δa,dδb,cλ

4
b −12δb,cλ

4
b −16δb,cδb,dλ

4
b

−12δb,dλ
4
b −12δa,dλ

2
b λ

2
c −18δb,dλ

2
b λ

2
c −12δa,cλ

2
b λ

2
d −18δb,cλ

2
b λ

2
d

−12δa,bδa,dλ
4
c +6δa,dλ

4
c +6δb,dλ

4
c −12δa,bδa,cλ

4
d +6δa,cλ

4
d +6δb,cλ

4
d

]
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For a > b > 0,

∑
N≥c>d>0

Bupper =
1
16

[
−16(a−1)λ 4

a +8λ
4
a −16(N−a)λ 4

a +16λ
2
a λ

2
b −12λ

2
a

N

∑
c=a+1

λ
2
c

−8λ
2
a

N

∑
c=b+1

λ
2
c −12λ

2
a

a−1

∑
d=1

λ
2
d −8λ

2
a

b−1

∑
d=1

λ
2
d +8λ

4
b −16(b−1)λ 4

b

−16(N−b)λ 4
b −8λ

2
b

N

∑
c=a+1

λ
2
c −12λ

2
b

N

∑
c=b+1

λ
2
c −8λ

2
b

a−1

∑
d=1

λ
2
d −12λ

2
b

b−1

∑
d=1

λ
2
d

+8
N

∑
c=a+1

λ
4
c +8

N

∑
c=b+1

λ
4
c +8

a−1

∑
d=1

λ
4
d +8

b−1

∑
d=1

λ
4
d

]
For a = b > 0,

∑
N≥c>d>0

Bupper =
1
16

[
+32(a−1)λ 4

a +32(N−a)λ 4
a −16(a−1)λ 4

a −16(N−a)λ 4
a

+40λ
2
a

N

∑
c=a+1

λ
2
c −12λ

2
a

N

∑
c=a+1

λ
2
c −8λ

2
a

N

∑
c=a+1

λ
2
c +40λ

2
a

a−1

∑
d=1

λ
2
d −12λ

2
a

a−1

∑
d=1

λ
2
d −8λ

2
a

a−1

∑
d=1

λ
2
d

−16(a−1)λ 4
a −16(N−a)λ 4

a −8λ
2
a

N

∑
c=a+1

λ
2
c −12λ

2
a

N

∑
c=a+1

λ
2
c −8λ

2
a

a−1

∑
d=1

λ
2
d

−12λ
2
a

a−1

∑
d=1

λ
2
d −16

N

∑
c=a+1

λ
4
c +8

N

∑
c=a+1

λ
4
c +8

N

∑
c=a+1

λ
4
c −16

a−1

∑
d=1

λ
4
d +8

a−1

∑
d=1

λ
4
d +8

a−1

∑
d=1

λ
4
d

]
For a > b > 0,

∑
N≥c=d>0

Bdiagonal =
1
16

[
−12λ

4
a −16λ

4
a −12λ

4
a −18λ

4
a −12λ

2
a λ

2
b −18λ

4
a −12λ

2
a λ

2
b −12λ

4
b

−16λ
4
b −12λ

4
b −12λ

2
a λ

2
b −18λ

4
b −12λ

2
a λ

2
b −18λ

4
b +6λ

4
a +6λ

4
b +6λ

4
a +6λ

4
b

]
For a = b > 0,

∑
N≥c=d>0

Bdiagonal = 0
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Therefore, for a > b > 0,

RicN(µ Im
ab ) = ∑

N≥c>d>0
Bupper + ∑

N≥c=d>0
Bdiagonal

=
1
16

[
−40λ

4
a −40λ

4
b −32λ

2
a λ

2
b −12λ

2
a

a−1

∑
d=1

λ
2
d −8λ

2
a

b−1

∑
d=1

λ
2
d −8λ

2
b

a−1

∑
d=1

λ
2
d

−12λ
2
b

b−1

∑
d=1

λ
2
d +8

a−1

∑
d=1

λ
4
d +8

b−1

∑
d=1

λ
4
d −16Nλ

4
a −16Nλ

4
b −12λ

2
a

N

∑
c=a+1

λ
2
c

−8λ
2
a

N

∑
c=b+1

λ
2
c −8λ

2
b

N

∑
c=a+1

λ
2
c −12λ

2
b

N

∑
c=b+1

λ
2
c +8

N

∑
c=a+1

λ
4
c +8

N

∑
c=b+1

λ
4
c

]
and for a = b > 0,

RN(µ Im
ab ) = ∑

N≥c>d>0
Bupper + ∑

N≥c=d>0
Bdiagonal = 0

Next, we compute RN(νRe
ab ) for a≥−b > 0. Replacing b with −b, it’s equivalent to computing

RN(νRe
a,−b) for a≥ b > 0.

RicN(νRe
a,−b)

= ∑
N≥c>d>0

K(νRe
a,−b,µ

Re
cd )+ ∑

N≥c≥d>0
K(νRe

a,−b,µ
Im
cd )

+ ∑
N≥c≥−d>0

K(νRe
a,−b,ν

Re
cd )+ ∑

N≥c≥−d>0
K(νRe

a,−b,ν
Im
cd )

= ∑
N≥c>d>0

K(νRe
a,−b,µ

Re
cd )+ ∑

N≥c≥d>0
K(νRe

a,−b,µ
Im
cd )

+ ∑
N≥c≥d>0

K(νRe
a,−b,ν

Re
c,−d)+ ∑

N≥c≥d>0
K(νRe

a,−b,ν
Im
c,−d)

= ∑
N≥c>d>0

[
K(νRe

a,−b,µ
Re
cd )+K(νRe

a,−b,µ
Im
cd )+K(νRe

a,−b,ν
Re
c,−d)+K(νRe

a,−b,ν
Im
c,−d)

]
+ ∑

N≥c=d>0

[
K(νRe

a,−b,µ
Re
cd )+K(νRe

a,−b,µ
Im
cd )+K(νRe

a,−b,ν
Re
c,−d)+K(νRe

a,−b,ν
Im
c,−d)

]
:= ∑

N≥c>d>0
Cupper + ∑

N≥c=d>0
Cdiagonal
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We have

Cupper =
1
16

[
−160δa,bδa,cλ

4
a +480δa,bδa,cδa,dλ

4
a −160δa,bδa,dλ

4
a −16δa,cλ

4
a

−24δa,cδa,dλ
4
a +8δa,cδb,dλ

4
a −16δa,dλ

4
a +8δa,dδb,cλ

4
a −8δa,cδa,dλ

2
a λ

2
b

−8δb,cδb,dλ
2
a λ

2
b −24δa,bδa,dλ

2
a λ

2
c −12δa,dλ

2
a λ

2
c −8δb,dλ

2
a λ

2
c

−24δa,bδa,cλ
2
a λ

2
d −12δa,cλ

2
a λ

2
d −8δb,cλ

2
a λ

2
d +8δa,cδb,dλ

4
b +8δa,dδb,cλ

4
b

−16δb,cλ
4
b −24δb,cδb,dλ

4
b −16δb,dλ

4
b −8δa,dλ

2
b λ

2
c −12δb,dλ

2
b λ

2
c −8δa,cλ

2
b λ

2
d

−12δb,cλ
2
b λ

2
d +16δa,bδa,dλ

4
c +8δa,dλ

4
c +8δb,dλ

4
c +16δa,bδa,cλ

4
d +8δa,cλ

4
d +8δb,cλ

4
d

]
and

Cdiagonal =
1

16

[
−120δa,bδa,cλ

4
a +480δa,bδa,cδa,dλ

4
a −120δa,bδa,dλ

4
a −12δa,cλ

4
a

−16δa,cδa,dλ
4
a −6δa,cδb,dλ

4
a −12δa,dλ

4
a −6δa,dδb,cλ

4
a +4δa,cδb,dλ

2
a λ

2
b

+4δa,dδb,cλ
2
a λ

2
b −36δa,bδa,dλ

2
a λ

2
c −18δa,dλ

2
a λ

2
c −12δb,dλ

2
a λ

2
c −36δa,bδa,cλ

2
a λ

2
d

−18δa,cλ
2
a λ

2
d −12δb,cλ

2
a λ

2
d −6δa,cδb,dλ

4
b −6δa,dδb,cλ

4
b −12δb,cλ

4
b −16δb,cδb,dλ

4
b

−12δb,dλ
4
b −12δa,dλ

2
b λ

2
c −18δb,dλ

2
b λ

2
c −12δa,cλ

2
b λ

2
d −18δb,cλ

2
b λ

2
d

+12δa,bδa,dλ
4
c +6δa,dλ

4
c +6δb,dλ

4
c +12δa,bδa,cλ

4
d +6δa,cλ

4
d +6δb,cλ

4
d

]
For a > b > 0,

∑
N≥c>d>0

Cupper =
1
16

[
−16(a−1)λ 4

a +8λ
4
a −16(N−a)λ 4

a −12λ
2
a

N

∑
c=a+1

λ
2
c

−8λ
2
a

N

∑
c=b+1

λ
2
c −12λ

2
a

a−1

∑
d=1

λ
2
d −8λ

2
a

b−1

∑
d=1

λ
2
d +8λ

4
b

−16(b−1)λ 4
b −16(N−b)λ 4

b −8λ
2
b

N

∑
c=a+1

λ
2
c −12λ

2
b

N

∑
c=b+1

λ
2
c −8λ

2
b

a−1

∑
d=1

λ
2
d

−12λ
2
b

b−1

∑
d=1

λ
2
d +8

N

∑
c=a+1

λ
4
c +8

N

∑
c=b+1

λ
4
c +8
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λ
4
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]
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For a = b > 0,

∑
N≥c>d>0

Cupper =
1
16

[
−160(a−1)λ 4

a −160(N−a)λ 4
a −16(a−1)λ 4
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2
a

N

∑
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2
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2
a

N

∑
c=a+1

λ
2
c −8λ

2
a
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a
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a
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a
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2
a

N
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2
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2
a

N
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λ
2
c −8λ

2
a
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∑
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λ
2
d −12λ

2
a
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∑
d=1

λ
2
d +16

N

∑
c=a+1

λ
4
c +8

N

∑
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λ
4
c
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N

∑
c=a+1

λ
4
c +16
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∑
d=1

λ
4
d +8

a−1

∑
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λ
4
d +8

a−1

∑
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λ
4
d

]
For a > b > 0,

∑
N≥c=d>0

Cdiagonal =
1
16

[
−12λ

4
a −16λ

4
a −12λ

4
a −18λ

4
a −12λ

2
a λ

2
b −18λ

4
a −12λ

2
a λ

2
b −12λ

4
b

−16λ
4
b −12λ

4
b −12λ

2
a λ

2
b −18λ

4
b −12λ

2
a λ

2
b −18λ

4
b +6λ

4
a +6λ

4
b +6λ

4
a +6λ

4
b

]
For a = b > 0,

∑
N≥c=d>0

Cdiagonal = 0

Therefore, for a >−b > 0,

RicN(νRe
ab ) = ∑

N≥c>d>0
Cupper + ∑

N≥c=d>0
Cdiagonal

=
1
16

[
−40λ

4
a −40λ

4
b −48λ

2
a λ

2
b −12λ

2
a

a−1

∑
d=1

λ
2
d −8λ

2
a

b−1

∑
d=1

λ
2
d −8λ

2
b

a−1

∑
d=1

λ
2
d

−12λ
2
b

b−1

∑
d=1

λ
2
d +8

a−1

∑
d=1

λ
4
d +8

b−1

∑
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λ
4
d −16Nλ

4
a −16Nλ

4
b −12λ

2
a

N

∑
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λ
2
c

−8λ
2
a

N

∑
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λ
2
c −8λ

2
b
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∑
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λ
2
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2
b
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∑
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λ
2
c +8
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∑
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λ
4
c +8

N

∑
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λ
4
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]
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and, for a =−b > 0,

RN(νRe
ab ) = ∑

N≥c>d>0
Cupper + ∑

N≥c=d>0
Cdiagonal

=
1
16

[
−192λ

4
a −32

a−1

∑
d=1

λ
4
d −192Nλ

4
a −32

N

∑
c=a+1

λ
4
c

]
Next, we compute RN(ν Im

ab ) for a≥−b > 0. Replacing b with −b, it’s equivalent to computing
RN(ν Im

a,−b) for a≥ b > 0.

RicN(ν Im
a,−b)

= ∑
N≥c>d>0

K(ν Im
a,−b,µ

Re
cd )+ ∑

N≥c≥d>0
K(ν Im

a,−b,µ
Im
cd )

+ ∑
N≥c≥−d>0

K(ν Im
a,−b,ν

Re
cd )+ ∑

N≥c≥−d>0
K(ν Im

a,−b,ν
Im
cd )

= ∑
N≥c>d>0

K(ν Im
a,−b,µ

Re
cd )+ ∑

N≥c≥d>0
K(ν Im

a,−b,µ
Im
cd )

+ ∑
N≥c≥d>0

K(ν Im
a,−b,ν

Re
c,−d)+ ∑

N≥c≥d>0
K(ν Im

a,−b,ν
Im
c,−d)

= ∑
N≥c>d>0

[
K(ν Im

a,−b,µ
Re
cd )+K(ν Im

a,−b,µ
Im
cd )+K(ν Im

a,−b,ν
Re
c,−d)+K(ν Im

a,−b,ν
Im
c,−d)

]
+ ∑

N≥c=d>0

[
K(ν Im

a,−b,µ
Re
cd )+K(ν Im

a,−b,µ
Im
cd )+K(ν Im

a,−b,ν
Re
c,−d)+K(ν Im

a,−b,ν
Im
c,−d)

]
:= ∑

N≥c>d>0
Dupper + ∑

N≥c=d>0
Ddiagonal

We have

Dupper =
1
16

[
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4
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4
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4
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2
a λ
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2
a λ

2
b
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2
a λ
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2
a λ

2
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a λ
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2
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a λ

2
d −12δa,cλ

2
a λ
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2
a λ

2
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4
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2
b λ

2
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2
b λ

2
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2
b λ

2
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2
b λ

2
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4
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4
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]
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and

Ddiagonal =
1
16

[
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2
a λ
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2
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2
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2
a λ
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2
a λ

2
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4
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4
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4
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2
b λ
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2
b λ

2
c −12δa,cλ

2
b λ

2
d

−18δb,cλ
2
b λ
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]
For a > b > 0,

∑
N≥c>d>0

Dupper =
1
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]
For a = b > 0,

∑
N≥c>d>0

Dupper =
1
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a +32(N−a)λ 4
a −16(a−1)λ 4
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For a > b > 0,

∑
N≥c=d>0

Ddiagonal =
1
16

[
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4
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4
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4
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]
For a = b > 0,

∑
N≥c=d>0

Ddiagonal = 0

Therefore, for a >−b > 0,

RicN(ν Im
ab ) = ∑

N≥c>d>0
Dupper + ∑

N≥c=d>0
Ddiagonal

=
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∑
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∑
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∑
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∑
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∑
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4
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]
and, for a =−b > 0,

RicN(ν Im
ab ) = ∑

N≥c>d>0
Dupper + ∑

N≥c=d>0
Ddiagonal = 0
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