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Abstract

The two groups I studied in this dissertation are Diff(S!), the group of orientation-preserving
C>-diffeomorphisms of the circle, and Sp(ee), an infinite-dimensional symplectic group arising from
certain symplectic representation of the group Diff(S!). In Chapter 1, I constructed Brownian mo-
tion on Diff(S') associated with a very strong metric of the Lie algebra diff(S'). In Chapter 2, I first
studied the relationship between Diff(S!) and Sp(ee) and found that they are not isomorphic with
each other, then I constructed a Brownian motion on the group Sp(ee). In Chapter 3, I computed
the Ricci curvature of the group Sp(ec) associated with a certain inner product on the Lie algebra

sp(c0).
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Chapter 1

Construction of Brownian Motion on
Diff (S 1)

1.1 Introduction

Definition 1.1.1. Let Diff(S') be the group of orientation preserving C*-diffeomorphisms of S'.
Let diff(S!) be the space of C*-vector fields on S'.

The central extension of Diff(S!) is the famous Virasoro group. Both the Virasoro group, the
group Diff(S!), the quotient groups Diff(S')/S! and Diff(S')/SU(1,1) arise naturally in many
places in mathematical physics and have been extensively studied for a long time [25, 6, 19, 21,
2,3,8,13].

The space diff(S') can be identified with the space of C*-functions on S'. Therefore, diff(S')
carries a natural Fréchet space structure. In addition, diff(S') is an infinite-dimensional Lie algebra:
for any f,g € diff(S'), the Lie bracket is given by [f,g] = f'g — fg'. Thus, the group Diff(S")
associated with the Lie algebra diff(S') becomes an infinite-dimensional Fréchet Lie group [22].

One of the research goals of the stochastic analysis on the group Diff(S') is to construct a
Brownian motion on it. Because Brownian motions on the group Diff(S') will induce measures
on it, and once we establish quasi-invariance properties of the measures, we can study unitary
representations of the group Diff(S").

In general, to construct a Brownian motion on a Lie group, one might solve a Stratonovich
stochastic differential equation (SDE) on such a group [20, 16]. The method is best illustrated for a
finite dimensional compact Lie group.

Let G be a finite dimensional compact Lie group. Denote by g the Lie algebra of G identified
with the tangent space T, G to the group G at the identity element e € G. Let Lg : G — G be the left
translation of G by an element g € G, and let (L, ), : g — T, G be the differential of L,. If we choose
a metric on g and let W; be the standard Brownian motion on g corresponding to this metric, we can
develop the Brownian motion W; onto G by solving a Stratonovich stochastic differential equation

85X, = (Lg )+8W, (1.1.1)



where 0 stands for the Stratonovich differential. The solution )?, is a Markov process on G whose
generator is the Laplace operator on G. We call X, the Brownian motion on the group G.

In the case when G is an infinite-dimensional Hilbert Lie group, that is, the tagent space has
a Hilbert space structure, one can solve Equation (1.1.1) by using the theory of stochastic dif-
ferential equations in Hilbert spaces as developed by G. DaPrato and J. Zabczyk in [7]. Us-
ing this method, M. Gordina [10, 11, 12] has constructed Brownian motions on several Hilbert-
Schmidt groups. In Chapter 2, using the same method, I will also construct a Brownian motion on
the infinite-dimensional symplectic group Sp(ee). These constructions rely on the fact that these
Hilbert-Schmidt groups are Hilbert Lie groups.

In the present case, we would like to replace G by Diff(S') and g by diff(S') and solve Equation
(1.1.1) correspondingly. But because the group Diff(S') is a Fréchet Lie group, which is not a
Hilbert Lie group, Equation (1.1.1) does not even make sense as it stands. First, we need to interpret
the Brownian motion W; in the Fréchet space diff(S') appropriately. Second, we are lacking a
well developed stochastic differential equation theory in Fréchet spaces to make sense of Equation
(1.1.1).

In 1999, P. Malliavin [21] first constructed a canonical Brownian motion on Homeo(S'), the
group of Holderian homeomorphisms of S'. In 2002, S. Fang [8] gave a detailed construction of
this canonical Brownian motion on the group Homeo(S!). Their constructions were essentially
carried out by interpreting and solving the same Equation (1.1.1) on the group Diff(S!).

To define the Brownian motion W; in Equation (1.1.1), Malliavin and Fang chose the H3/2 metric
of the Lie algebra diff(S!). Basically, this metric uses the set

{n"3cos(n),m > sin(m@)|m,n = 1,2,3,---},

which is a subset of the Lie algebra diff(S'), as an orthonormal basis to form a Hilbert space H 3/2,
Then they defined W, to be the cylindrical Brownian motion in H>/?> whose covariance operator is
the identity operator on H>/2. But since the coefficients n~3/2 and m—3/2 do not decrease rapidly
enough, the Hilbert space H>/? is not contained in the Lie algebra diff (S'). Therefore, the Brownian
motion W, they defined on H3/? does not live in diff(S') either. This is the essential reason why
the canonical Brownian motion they constructed lives in a larger group Homeo(S'), but not in the
group Diff(S1).

To interpret and solve Equation (1.1.1), Fang [8] treated it as a family of stochastic differential
equations on S': for each 6 € S', Fang considered the equation

8Xo = (Lg, )+6Wo,, (1.1.2)

which is a stochastic differential equation on S'. By solving the above equation for each 6 € S',
Fang obtained a family of solutions )A(/g,, parameterized by 6. Then he used a Kolmogorov type
argument to show that the family )?97, is Holderian continuous in the variable 6. Using this method,
he proved that for each ¢ > 0, Yg’, is a Holderian homeomorphism of S!. Thus, he constructed
the canonical Brownian motion on the group Homeo(S'). But this Kolmogorov type argument
cannot be pushed further to show that 5(797, is differentiable in 6. Therefore, Fang’s method does not
seem to be suitable to construct a Brownian motion that lives in the group Diff(S!), rather than in



Homeo (S').

In this chapter, my goal is to construct a Brownian motion that lives exactly in the group
Diff(S'). To achieve this, I need another way to interpret and solve Equation (1.1.1). The idea
is described as follows.

First, instead of the H>/2 metric that Malliavin and Fang used, I will choose a very “strong”
metric on the Lie algebra diff(S') (In some sense, we can call it H* metric): let {1(n)}_, be a
sequence of rapidly decreasing positive numbers. I use the set

{A(n)cos(nB),A(m)sin(m6)lm,n=1,2,3,---},

which is a subset of the Lie algebra diff(S!), as an orthonormal basis to form a Hilbert space Hj,.
Then I will define the Brownian motion W; to be the cylindrical Brownian motion in H; whose
covariance operator is the identity operator on Hj. Because the coefficients A(n) are rapidly de-
creasing, the Hilbert space H; is a subspace of the Lie algebra diff(S!). Therefore, the Brownian
motion W, lives in the Lie algebra diff(S'), and the solution to Equation (1.1.1) will have a better
chance to live in the group Diff(S").

Second, in contrast to Fang’s method of interpreting Equation (1.1.1) “pointwise” as a family
of stochastic differential equations on S, I will interpret it as a sequence of stochastic differential
equations on a sequence of “Hilbert” spaces. To do this, I will embed the group Diff(S') into an
affine space diff (S') that is isomorphic to the Lie algebra diff(S'). Let H* be the kth Sobolev space
over S'. It is a separable Hilbert space. Let H* " be the corresponding affine space that is isomorphic
to H*. For the precise definition of the space dlff(S ) and H", HF, see Section 1.2. It is well known that
the space diff(S') is the intersection of the Sobolev spaces H¥. Similarly, diff (S') is the intersection
of the affine spaces H*. Now we have the embedding

Diff(S') C diff(S") C H*, k=1,2,3,--- (1.1.3)

Thus, I can interpret Equation (1.1.1) as a sequence of stochastic differential equations on the
sequence of affine spaces {I—~Ik }7_, each of which is isomorphic to the Hilbert space H*. These
stochastic differential equations can be solved by DaPrato and Zabczyk’s method [7].

In accordance with the notations used by DaPrato and Zabczyk in [7], in the rest of this chapter,
I will denote the operator (Lg ). in Equation (1.1.1) by ®(X,). The operator ® will be discussed in
detail in the next section. After adding the initial condition, I can now re-write Equation (1.1.1) as

8X, = D(X,)6W,, Xo=id (1.1.4)

where id is the identity element in Diff(S").

Equation (1.1.4) is interpreted as a stochastic differential equation in the “Hilbert” space H*. To
use DaPrato and Zabczyk’s method to solve this equation, I will also need to establish the Lipschitz
condition of the operator ®. This will be done in Section 1.2. It turns out that the operator P is
locally Lipschitz. So the explosion time of the solution, which is a key part of the problem, needs
to be discussed. This will be done in Section 1.3.

After solving Equation (1.1.4 in H )* for each k, it is relatively easy to prove that the solution



lives in the affine space cﬁff(Sl) (Proposition 1.3.17). By the embedding (1.1.3), the group Diff(S')
is a subset of the affine space cfi?f(Sl). I need to push one step further to prove that the solution
actually lives in the group Diff(S').

In general, to prove a process lives in a group rather than in an ambient space, one needs to
construct an inverse process. To construct the inverse process, usually one needs to solve another
stochastic differential equation — the SDE for the inverse process [10, 14]. In my case, I have derived
the SDE for the inverse process:

8Y, =P (Y,)6W, (1.1.5)

where W is an operator such that for § € Diff(S") and f € diff(S!), W(g)f = Dg- f, where D = d /d®
and “-” is the pointwise multiplication of two functions. Because the operator D causes loss of one
degree of smoothness, the method I use to interpret and solve Equation (1.1.4) does not apply to
Equation (1.1.5). This causes some problems, and I was forced to give up this method of solving
the inverse SDE. But I mananged to get around the problem by using a different method.

I first observe that an element f € diff(S') belongs to Diff(S!) if and only if f'(8) > 0 for all
6 € S'. Based on this observation, I can show that the solution is contained in the group Diff(S')
up to a stopping time. Then I can “concatenate” this small piece of solution with another small
piece of solution to make a new solution up to a longer stopping time. The key idea is Proposition
(1.3.14) and the remark following it (Remark 1.3.15). Finally, I am able to prove the main theorem
(Theorem 1.3.19) of this chapter. Basically, it says that Equation (1.1.4) has a unique solution that
lives exactly in the group Diff(S!), and furthermore, the solution is non-explosive.

The work in this chapter is written in [26], and has been accepted by Potential Analysis for
publication.

1.2 An interpretation of Equation (1.1.4)

1.2.1 The group Diff(S') and the Lie algebra diff(S')

Let Diff(S!) be the group of orientation preserving C* diffeomorphisms of S', and diff(S') be the
space of C* vector fields on S'. We have the following identifications for the space diff(S'):

diff(s") = {f:S' 5 R: feC?) (1.2.1)
2{f:R—>R:feC” f(x)=f(x+2x), forall x € R}

Using this identification, we see that the space diff(S') has a Fréchet space structure. In addition,
this space has a Lie algebra structure, namely, for f, g € diff(S') the Lie bracket is given by

If.8l=fg—fg,

where f’ and g’ are derivatives with respect to the variable 8 € S'. Therefore, the group Diff(S!) is
a Fréchet Lie group as defined in [22].



Using the above identification 1.2.1, we also have an identification for Diff(S!)
Diff(S") = {f: R > R: f=id+ f, f € diff(S"), /' > 0}, (1.2.2)

where id is the identity function from R to R. Note that the set on the right hand side of the above
identification is a group with the _group multiplication being composition of functions. We define
that for f,g € lef(Sl) f& = go f. Under this identification, the left translation of Diff(S') is given

by Lgf =8f = fog.
Definition 1.2.1. Define

diff(S") = {F: R > R|f = id + f, f € diff(S")} (1.2.3)

The space (ii?f(Sl) is an affine space which is isomorphic to the vector space diff(S'). We
denote the isomorphism by ~, that is, ~: diff(S') — diff(S"), f + f = id + f. Comparing (1.2.2
and (1.2.1)), we have the embedding

Diff(S") C diff(s"). (1.2.4)

With this embedding, the differential of a left translation L; becomes (L) : diff(S') — diff(S!),
and is given by (L;).f = fog for f € diff(S 1. This can be easﬂy seen by the following calculation:

d

S (@(0)+1£(3(0)) = 1(2(6))
t=0

The following proposition is an immediate observation from the identification (1.2.2) and def-
inition of diff(S') given by (1.2.1). Yet, it plays a key role in proving the main theorem (Theorem
1.3.19) of this chapter.

Proposition 1.2.2. An element f € c;;]/j”(S 1) belongs to Diff(S") if and only if f > 0, or equivalently
ff>-1
1.2.2 The Hilbert space H; and the Brownian motion W,

To define the Brownian motion W; in Equation (1.1.4), We need to choose a metric on the Lie algebra
diff(S'). Comparing with the H 3/2 metric that P. Malliavin and S. Fang chose, the metric we choose
in the following definition is a very “strong” metric.

Definition 1.2.3. Let .# be the set of even functions A : Z — (0,0) such that lim, e |n|*A(n) =0
forallk € N. For A € .7, n € Z, let é, = &3 € diff(S") be defined by

A, | A(n)cos(nB), n>0
(9)‘{ A(n)sin(}n]8), n<0

Let H; be the Hilbert space with the set {é,(fl)}nez as an orthonormal basis.



Note that the function A is rapidly decreasing, therefore the Hilbert space H, defined above is a
proper subspace of diff(S'). Also note that diff(S') = Uy .o Hy.

Let @, A € . be defined by A (n) = |n|a(n), and let Hy and H), be the corresponding Hilbert

subspaces of diff(S'). Then we have Hy C Hj, and the inclusion map 1 : Hy < Hj, that sends éﬁ,a)

to é,(f‘) = ‘—,hé,gl) is a Hilbert-Schmidt operator. The adjoint operator 1* : H) — Hy, that sends éﬁ,l) to

ﬁé,(qa) is also a Hilbert-Schmidt operator. The operator Oy = 11* : Hy — H, is a trace class operator
on H,, and Hy = Q;/ZH,I.
Definition 1.2.4. Let W, be a Brownian motion defined by

n) A L ) A2
W= LB = Y el

where {B,(") }nez are mutually independent standard R-valued Brownian motions.

Remark 1.2.5. We see that W, is a cylindrical Brownian motion on H, whose covariance operator
is the identity operator on Hy. Also, W, is a Brownian motion on H, whose covariance operator is
the operator Q.

1.2.3 The Sobolev space H* and the affine space H*

Now we turn to the Sobolev spaces over S'. Let us first recall some basic properties of the Sobolev
spaces over S' found for example in [1].
Let k be a non-negative integer.

Definition 1.2.6. Let C* be the space of k-times continuously differentiable real-valued functions
on S', and H¥ be the kth Sobolev space on S'.

Recall that H¥ consists of functions f : §' — R such that f¥) € L2, where f®) is the kth deriva-
tive of f in distributional sense. The Sobolev space H* has a norm given by

A1 = 1112 + 12

The Sobolev space H* is a separable Hilbert space, and C¥ is a dense subspace of H*. We will make
use of the following standard properties of the spaces H*.

Theorem 1.2.7 ([1]). Let m,k be two non-negative integers.
1. Ifm<kand f € H, then || f||gm < || f]| -
2. If m < kand f € H, then there exists a constant c; such that || f" ||z < ci || f] -

3. H**' C H* forallk =0,1,2,---, and diff(S") = N_o H*.



An element f € H* can be identified with a 27-periodic function from R to R. Let id be the
identity function from R to R. It makes sense to talk about the function f =id + f. Similar to the
definition of diff(S'), we can define H* as follows.

Definition 1.2.8. Define N
H'={f:R—=>R:f=id+f,f € H}

The space H* is an affine space that is isomorphic to the Sobolev space H*. We denote the
isomorphism by ~, that is, ~: H* — HF, f+ f=id+ f. The image of C¥ under the isomorphism,
denoted by C¥, is a dense subspace of the affine space H*. An element fe H* can be identified as
a function from S to S'. By item (3) in Theorem 1.2.7, we have H**! C H* and diff(s') =N H*.

Now we have the following embeddings:

Diff(S") C diff(s') C--- CH* CH* CH', (1.2.5)

and we can interpret Equation (1.1.4) as a sequence of stochastic differential equations on the se-
quence of affine spaces {H*}7_,.

1.2.4 The operator ® and

For g € Diff(S'), let (Lz). be the differential of the left translation. In accordance with the notation
used by DaPrato and Zabczyk in [7], we denote (Lg), by D(3).

Initially, & : Diff(S") — (diff($ H— diff(S')), which means ® takes an element g € Diff(S")
and becomes a linear transformation ®(g) from diff(S') to diff(S'). Because we want to interpret
Equation (1.1.4) as an SDE on H H* and use DaPrato and Zabczyk’s theory [7], we need the operator
@ to be extended as P : H* — — (Hj — H¥), which means ® takes an element § € H H* and becomes a
linear transformation ®(g) from H, to H* [7].

Let L(H,,,H*) be the space of linear transformations from Hj to H*. Define a mapping

& :Ck— L(Hy, H" (1.2.6)

such that if f € C*, g € H,, then &J(f) (g) = go f. The mapping D is easily seen to be well defined.
Sometimes, it is easier to work with the vector space C*. So we similarly define a mapping

®:C* — L(H)y,H") (1.2.7)

such that if f € C*, g € Hy, then ®(f)(g) = go f, where f = id + f is the image of f under the
isomorphism ~.

Let L>(Hj,H*) denote the space of Hilbert-Schmidt operators from H; to H*. The space
L?(Hy,H") is a separable Hilbert space. For T € L*(H, ,H*), the norm of T is given by

1122, 0 = X T8 2

nez

where eﬁl ) is defined in Definition (1.2.3).



To use DaPrato and Zabczyk’s theory [7], we need @ tobe P: H* — 12 (Hj, , H*) or equivalently,
we need @ to be ® : H* — L2(H, ,H*). We will also need some Lipschitz condition of @ and .
These are proved in proposition (1.2.10) and (1.2.12). Both propositions need the Faa di Bruno’s
formula for higher derivatives of a composition function.

Theorem 1.2.9 (Faa di Bruno’s formula [17]).
£ =Y B (e(x)Bur(e (x),8"(x),-,g" * (), (1.2.8)

where B, i is the Bell polynomial
n' x1 jl xn_k+1 .jnfk+l
matn e B () ()

and the summation is taken over all sequences of {ji, - , ju—k+1} of nonnegative integers such that
it Ak =kand j1+2j+ -+ (n—k+1) jug1 =n.

We remark that after expanding expression (1.2.8), f(g(x))™ can be viewed as a summation of
several terms, each of which has the form

f(j) (g(x))m(glagllv T ’g(n))

where j <nandm(g,g",---,g"™) is amonomialin g',g",--- g™ . Also observe that, the only term
that involves the highest derivative of g is f'(g(x))g" (x).

Proposition 1.2.10. For any f € CX, k=0,1,2,---, ®(f) € L*(H, ,H*).

Proof.
P2,y = X IR ()
neZz
=Y llen(id + )72+ lleaid + )V 2.
nez

where &, is defined in Definition (1.2.3) and we have suppressed the index A here. é,(id + f)
denotes the function &, composed with id + f, and &, (id + f)*) is the kth derivative of &,(id + f).
First, we have
len(id + f)lI7> < A(n)*.

We apply Faa di Bruno’s formula (1.2.8) to é,(id + f)¥), and then expand it to a summation of
several terms. We are going to deal with the terms with and without £, the highest derivative of
f, separately. So we write the summaion as

en(id + £)® = ... terms without f® ..+ 2 (id + f) ™, (1.2.9)



where each term without %) has the form

& id+ fym(f, ", &)

with j < k and m(f’,f",---, f& V) a monomial in f', f",---, f*1). Let d be the degree of the
monomial m(f’, f”,---, f*=1)). Then from Faa di Bruno’s formula we see that d < k for all mono-
mials.

By Definition (1.2.3) of é, and using item (2) in Theorem (1.2.7), we have

16 (id + £ym(f " FE )2
< (1 (id+ )= lm(f, £ fED) 1 (1.2.10)
< A(n)|nf* k|l £1I%

For the last term in expression (1.2.9), we have

12, (id + £) £ @] 2 < 11&)(id + f)l|z=]1f ) 2 (1.2.11)
< A@) ||| F Nl < A(n)|nl | £ |l

By (1.2.10) and (1.2.11), we have
én(id + £)W17 < KA (n)*[n* | 1l

where K is the number of terms in expression (1.2.9), which depends on & but does not depend on
n. Therefore,
1) g < X (R0 + KA (0 1125
nez

Because A (n) is rapidly decreasing (Definition 1.2.3), ¥,,cz A (n)?|n|** < oo. Therefore, we have

||q)(f)||12‘2(Hka) <o
U

Now @ can be viewed as a mapping ® : CK — L?(H,,H"). Similarly, @ can be viewed as a
mapping o:Ck— 12 (Hj,,H). To use DaPrato and Zabczyk’s theory [7], we will need the Lipschitz
condition of ® and ®. It turns out that they are locally Lipschitz. Let us recall the concept of local
Lipschitzness.

Definition 1.2.11. Let A and B be two normed linear spaces with norm || - |4 and || - || 5 respectively.
A mapping f: A — B is said to be locally Lipschitz if for R > 0, and x,y € A such that ||x||, ||ly|| <R,
we have

1F(x) = f W)l < Crllx=ylla,

where Cy is a constant which in general depends on N.

Proposition 1.2.12. Forany k=0,1,2,---, ®: C* — L?>(H, ,H") is locally Lipschitz.

10



Proof. Let R >0, and f, g € C* be such that k, + < R. We have
8 He I8l H

[©(/) ~ (&) s,
= Y 00) ~ ®())enl = X lentid + 1) — eulid + ) 3

nez nez
= Y llen(id+ f) = ea(id + )| 72 + l|én(id + £)® —én(id +g) M| 22,
nez

where é, is defined in Definition (1.2.3) and we have suppressed the index A here. é,(id + f) and
én(id + g) denote the function &, composed with id + f and id + g respectively. é,(id + f)*) and
én(id 4 g)™ are the kth derivatives of &,(id + f) and &, (id + g) respectively.

First, by the mean value theorem we have

[én(id + f) —én(id + )12 = |8, (id + € ) (f — g)I .2
<18, (id +&)||z= || f — gllz2 < A(n)|nl|| f — gl| s

We apply Faa di Bruno’s formula (1.2.8) to é,(id + f) () and then expand it to a summation of
several terms. We are going to deal with the terms with and without £, the highest derivative of
f, separately. So we write the summaion as

en(id+ f)*® = ... terms without f®) ..+ ¢/ (id + f) f*®, (1.2.12)
where each term without f*) has the form
o id+ fym(f' "o f )

with j < k and m(f’,f",---, f* D) a monomial in f', f",---, f* ). Let d be the degree of the
monomial m(f’, f",---, f*~1)). Then from Faa di Bruno’s formula we see that d < k for all mono-
mials. By replacing f with g in (1.2.12), we obtain

en(id+g) ™ = ... terms without g®)... + &' (id + g)g¥) (1.2.13)

Next, we need a simple observation: suppose A1A>As... and BB, Bs3... are two monomials with
the same number of factors. By telescoping, we can put A{AzA3... — B1 By B3... into the form

(A1 —B1)A2As...+B(Ay — By)A3...+ B1B2(A3 — B3)...+- -+
Using this observation, we can put &, (id + f)®) — é,(id 4 g)®) into the form
en(id+ ) — &, (id + g)® = ...terms without f*) and g®... (1.2.14)
+(&(id + f) — & id+)) SO+ & (id +g) (9~ g)
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In expression (1.2.14), there are two types of terms without f®) and g*). One type has the form

(6 d+ ) =& id +g) ) ma(f',o- SO oo g0, (1.2.15)
where j < k and my is a monomial in f’,---, f*=1 ¢/ ... ¢*=1 We denote such a term by A.

Another type has the form

él(’ll)(ld+g) (f(j) _g(1)> mB(f,a 7f(k_1)7g/7"' ag(k_1)> (1216)

where i, j < k and mgp is a monomial in f,---, f*=1) ¢/ ... o*=1 We denote such a term by B.

Now we want to find an L? bound of each term in (1.2.14). For the term A, by the mean value
theorem we have

& (id+ f) =i (id + )] = & (id + &) (f — g)-
By Definition (1.2.3) of é,, and using Item (1) and (2) in Theorem (1.2.7), we have
A1) /.
IAl2 < o5 (id + &) |- lmall= ]| f — g2 (1.2.17)
< A()[n[ TN f — gl -
For the term B, we have
1Bz < 168 (id + &)=l ms| = £ — g 2 (1.2.18)
< A(n)|n[* NI f — gl

For the last two terms in expression (1.2.14), using Item (1) and (2) in Theorem (1.2.7) again,
we have

e id + £) =&, (id + ) £V 2
= |16 (id +&)(f = &) f Wz < 1 (id + &) |e=11f = gllz=I1S .2 (1.2.19)
<l (id + &) |=cell f = gllpell flle < A(n) nfPerN || f = gl
and
25, (id +g) [ Y = g ¥z < Am)lnlllf — gl (1.2.20)
By (1.2.17-1.2.20), we see that A (n) |n|*" cAN¥|| f — g|| ¢ is a common L? bound for all terms
in (1.2.14). So,
lén(id + £)) = é,(id +8) M| < KA (n)[nH N[ £ = gl | (1221

where K is the number of terms in expression (1.2.14), which depends on k but does not depend on
n.

12



Finally,

[©CF) = (&) s, 0

<Y 2PN f — gl + KA ()2 P2 R f — g7
nez

1/2
< KRN £ — gl (Z A(n !2"”)

nez

Let

1/2

Cr = Zl(l’l)zlfl‘z+K21(n)2|n‘2k+2C]%kR2k 7
nez

Because A (n) is rapidly decreasing (Definition 1.2.3), ¥,,c7 A (n)?|n|* < c0. So Ck is a finite number

that depends on R and k. Therefore,

1P(f) = L&) 22, 114) < CrIS = &l (1.2.22)
O

By the above proposition, ® : CK — L?(H, ,H*) is locally Lipschitz. So & is uniformly con-
tinuous on C¥. But C¥ is a dense subspace of H¥ (see subsection 2.3). Therefore, we can extend
the domain of & from C* to H*, and obtain a mapping & : H* — L2 (H 1, HY). Similarly, we can
also extend the domain of @ from C* to H, and obtain a mapping P : HF — 12 (Hy ,H"). After
extension, @ and @ are still locally Lipschitz.

Definition 1.2.13. Define @ : H* — L2(H,,H*) to be the extension of ® : C¥ — L2(H, ,H*) from
C* to H*, and @ : H* — L*(H),H*) to be the extension of ® : C* — L*(H, ,H*) from C* to H*. By
the remark in the previous paragraph, ® and ® are still locally Lipschitz.

1.3 A Brownian motion on Diff(S')

In this section, we fix a probability space (Q,.%#,P) equipped with a filtration .%, = {.%,t > 0} that
is right continuous and such that each .%; is complete with respect to P.

Equation (1.1.4) is now interpreted as a Stratonovich stochastic differential equation on H* for
eachk=0,1,2,---. Letus fix such a k.

1.3.1 Changing Equation (1.1.4) into the Ito6 form

To solve Equation (1.1.4), we first need to change it into the 1t6 form. Here we follow the treatment
of S. Fang in [8]. In Definition 1.2.4, W, = Z,,GZBI(")@E,O‘), where « is a rapidly decreasing even

function as described in Definition 1.2.3. Using the definition of EIVD, W;, and é,(,"‘), we can write
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Equation (1.1.4) as

8X, = a(0) + Y a(n)cos(nX,)8B" + f o(m) sin(—mX,)8B™. (1.3.1)

n=1 m=—1
Using the stochastic contraction of dBt(") -dB,(m) = Omudt for m,n € Z, we have
dcos(nX;) ~dBt(") = —o(n)-n-sin(nX,)cos(nX,)dt, n=1,2,--
dsin(—mX,)-dB"™ = oi(m)(—m)sin(—mX,) cos(—mX,)dt, m=—1,-2,--

So the stochastic contraction of the right hand side of (1.3.1) is zero because « is an even function.
Therefore Equation (1.3.1) can be written in the following Itd form:

dX, = a(0) + i a(n)cos(nX;)dB" + _f a(m) sin(—mX,)dB" (1.3.2)

n=1 m=—1
Using the definition of W; and o again, Equation (1.3.2) becomes
dX, = ‘5(2)01 W;
Therefore, Equation (1.1.4) is equivalent to the following It6 stochastic differential equation
dX, = ®(X,)dW,, Xo=id (1.3.3)

This equation is considered in the affine space H*.
If we write X; = id + X; with X; a process with values in the Sobolev space H* and use the
definition of ® (see subsection 2.4), Equation (1.3.3) is equivalent to the following equation

dX, = ®(X,)dW,, Xo=0 (13.4)

This equation is considered in the Sobolev space H*.

1.3.2 Truncated stochastic differential equation

By Proposition (1.2.12) the operator & is locally Lipschitz. To use G. DaPrato and J. Zabczyk’s
theory [7], we need to “truncate” the operator ®: Let R > 0. Let & : H k_p? (Ha,Hk) be defined
by
P(x) €[ < R
o) { 2 <
W= @R/ xllge). Nl > R

Then ®p is globally Lipschitz. Let us consider the following “truncated” stochastic differential
equation

(1.3.5)

dX, = ®p(X,)dW,, Xo=0 (1.3.6)
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in the Sobolev space H¥. The following defintion is in accordance with G. DaPrato and J. Zabczyk’s
treatments (p.182 in [7]).

Definition 1.3.1. Let 7 > 0. An .%,-adapted H*-valued process X; with continuous sample paths is
said to be a mild solution to Equation (1.3.6) up to time T if

T
[ Iluds <oo, Pas
0
and for all 7 € [0, T], we have
t
X :XO+/ Dr(Xs)dW,, P-as.
0

For Equation (1.3.6), a strong solution is the same as a mild solution. The solution X; is said to be
unique up to time 7 if for any other solution ¥;, the two processes X; and ¥; are equivalent up to time
T, that is, the stopped processes X;nr and Y; .7 are equivalent.

Remark 1.3.2. In the above definition, we require a solution to have continuous sample paths.

Proposition 1.3.3. For each T > 0, there is a unique solution X'\") to Equation (1.3.6) up to time
T.

Proof. The proof is a simple application of Theorem 7.4, p.186 from [7]. We need to check the
conditions to use Theorem 7.4 from [7]. By definition of ®g, we see that ®p satisfies the following
growth condition:

PR ()72, gy < COA+ IIxl7w), v € B

for some constant C. All other conditions to use Theorem 7.4 from [7] are easily verified. Therefore,
we have the conclusion. ]

Let us choose a sequence {T,,}::l such that 7;, 1" e, and let each X (72) be the unique solution to
Equation (1.3.6) up to time 7,,. By the uniqueness of the solution, and by the continuity of sample
paths, for 1 <i < j, the sample paths of X (7/) coincide with the sample paths of X (%) up to time 7;
almost surely. To be precise, we have, for almost all ® € Q,

XT)(t,0)=X"(r,0), forallse|0,T]
Therefore, we can extend the sample paths to obtain a process XX: For almost all @ € Q, let

XR(1,0) = lim XT)(t,0) forallt e [0,00)
Then the process X¥ is a unique solution with continuous sample paths to Equation (1.3.6) up to
time 7 forall T > 0.
Remark 1.3.4. The above construction of the process X% is independent of the choice of the se-
quence {7,,}>_,: Let {S,}>°_, be another sequence such that S, 1 c. Let Y® be the process con-
tructed as above but using the sequence {S,}>>_;. Then XX and Y® are equivalent up to T for all
T > 0. Therefore, they are equivalent.
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Definition 1.3.5. For every R > 0, we define X to be the H*-valued process with continuous sample
paths as constructed above. Define

g = inf{t : || X®(¢)||;« > R} (1.3.7)

1.3.3 Solutions up to stopping times

Let us consider Equation (1.3.4) in the Sobolev space H*. The following definition is in accordance
with E. Hsu’s treatments in [16].

Definition 1.3.6. Let T be an .%,-stopping time. An .#,-adapted process X; with continuous sample
paths is said to be a solution to Equation (1.3.4) up to time 7 if forall# > 0

AT
Xine =Xo+ /0 D(X,)dW;

The solution X; is said to be unique up to 7 if for any other solution Y;, the two processes X; and Y;
are equivalent up to 7, that is, the stopped processes X;rr and Y; o7 are equivalent.

Remark 1.3.7. We can similarly define an H*-valued process being the unique solution to Equation
(1.3.3) up to a stopping time 7. Clearly, we have the following: If X; is the solution to Equation
(1.3.4) up to a stopping time 7, then the HF-valued process X, = id + X, is the solution to Equation
(1.3.3) up to time 7 and vice versa.

Remark 1.3.8. If X; is a solution to Equation (1.3.4) up to 7, then it is also a solution up to o for
any .%,-stopping time o such that 6 < 7 a.s.

Proposition 1.3.9. Let R > 0. Let X® and g be defined as in Definition (1.3.5). Then XR is the
unique solution to Equation (1.3.4) up to Tg.

Proof. Because XX is the unique solution to Equation (1.3.6) up to T for all 7 > 0, we have
t
Xk = / Dr(XE)AW,
0

for all # > 0. By the definition of ®g, we have ®x(XF) = ®(XF) for s < 1z. So,

tATR LATR
X = | Pr(X)dW, = | (X)W,
Therefore, X® is a solution to Equation (1.3.4) up to z.
Suppose Y; is another solution to Equation (1.3.4) up to 7z. Then Y; is also a solution to Equation
(1.3.6) up to 7. But X is the unique solution to Equation (1.3.6) up to T for all 7 > 0. Therefore,
Y; and XX are equivalent up to 7. O

Let us choose a sequence {R, }*_; such that R, 1 o, and let X®» and ¢, be defined as in Defini-
tion (1.3.5). For 1 <i < j, we have @, (x) = g, (x) for ||x| gz« < R;. Thus, X*/ is also a solution to
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Equation (1.3.4 up to tg,). Therefore, by the uniqueness of solution and by the continuity of sample
paths of solution, the sample paths of X®/ coincide with the sample paths of X* almost surely. To
be precise, we have, for almost all w € Q,

XRi(t, ) = XRi(t,w), forallt e [0, ()]
Consequently, { g, };r_; is an increasing sequence of stopping times. Let

T = lim T, (1.3.8)
n—yoeo

Now we can extend the sample paths of X®» to obtain a process X*: For almost all ® € Q, let

X*(t,0) = lim X® (t, @) forall 0 <t < 7..(®)
n—soo
Then the process X is a unique solution with continuous sample paths to Equation (1.3.4) up to
time 7z for all R > 0. Also, the stopping time Tz defined in Definition (1.3.5) is realized by the
process X*:
TR = inf{t : HXOQ(Z‘)HH/( > R}

Remark 1.3.10. The above constructions of the process X and the stopping time 7. are independent
of the choice of the sequence {R,, };;_;: Let {S,};"_, be another sequence such that S, 1 co. Let 0., be
the stopping time and Y be the process contructed as above but using the sequence {S,};_,. First,
we can combine the two sequences {R,, }y_, and {S,,}7_, to form a new sequence {K,} ;_, such that
K, 1 eo. Let %, be the stopping time constructed as above but using the sequence {K,}7_,. Then
Too = Ooo = Yeo. Also, X* and Y*° are equivalent up to 7, and 7s, foralln =1,2,---. Therefore, they
are equivalent up to Te.

Definition 1.3.11. We define X* to be the H*-valued process and 7., to be the stopping time as
constructed above. We call 7., the explosion time of the process X*. We also define the H k_valued
process X~ to be X* = id +X*.

We can slightly extend Definition (1.3.6) and make the following definition:

Definition 1.3.12. Let 7 be an .%,-stopping time. An .%,-adapted process X; with continuous sample
paths is said to be a solution to Equation (1.3.4) up to time 7 if there is an increasing sequence of
F.-stopping time {7,}>_, such that 7, T 7 and X; is a solution to Equation (1.3.4) up to time T, in
the sense of Definition (1.3.6) for all n =1,2,---. The solution X; is said to be unique up to 7 if it is
unique up to 7, foralln=1,2,---.

We have proved the following proposition:

Proposition 1.3.13. Let k be a non-negative integer. The process X™ as defined in Definition (1.3.11)
is the unique solution with continuous sample paths to Equation (1.3.4) up to the explosion time T-.
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1.3.4 The main result

In this subsection, we will prove that the explosion time 7., defined in Definition (1.3.11) is infinity
almost surely. We will also prove that the process X defined in Definition (1.3.11) lives in the
group Diff(S!). The key idea to both proofs is the following proposition:

Proposition 1.3.14. Let )?,Nbe an Z,-adapted H¥-valued process with continuous sample paths and
T an F,-stopping time. If X; is a solution to

dX, = ®(X,)dW,, Xo=id

up to T, then )?, og is a solution to

up to T, where é is a bounded H*-valued random variable and “o” is the composition of two
functions.
Proof. By assumption
- INT
Kpe=id+ [ )W,
0

By definition of the operator @ (see subsection 2.4), this can be written as
(AT

XVIA‘L‘ =id+ dW; Oj(vs
0

So

- - o INT - o
Xt/\foézg"i_ deOXsoé
0

that is e
th/\roézg‘i‘/o Cf)(iyog)dm
Therefore, X, og is a solution to
dX, = ®(X,)dW,, Xo=£E
up to . O

Remark 1.3.15. (Concatenating procedure.) Let R > 0. Let & = X™(1z). Then & is an fl k_valued
bounded random Yvariable. Le~t W/ =W, tr, — Wr,. Similar to the construction of X* and X, we can
construct Y= and Y=, where Y is a solution to the following equation

dX, = ®(X,)dW/, Xo=id

up to the stopping time
T = inf{t : [V (1)} > R}
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By the strong Markov property of the Brownian motion W;, we have W/ = W, in distribution, and
they are independent of each other for all # > 0. Therefore, Tz = 75 in distribution, and they are
independent of each other. By Proposition (1.3.14), Y™ oé is the solution up to time T to the
following equation

dX, = ®(X,)dW/, Xo=E
Because E =X *(1gr), we can concatenate the two processes X* and Y* to form a new process Z~
as follows:

_ { XVI"", forr < 1g (1.3.9)

Ztoo_ DO
Y208, fort >

By the choice of W/, we see that the process Z* is a solution to Equation (1.3.3) up to time g + Tp.
By the uniqueness of solution, Z=is equivalent to X® up to time Tg + Tk.

We can carry out this “concatenating” procedure over and over again. Thus, for any n € N, we
can construct a process Z= which is a solutionn to Equation (1.3.3) and is equivalent to X° up to
time Tg + Tp + - + ’L'I(Q " with TR, Tg, -+ - being identical in distribution and mutually independent

with each other.

Proposition 1.3.16. Let T.. be the explosion time of the process X defined as in Definition (1.3.11).
Then 7., = oo almost surely.

Proof. We can carry out the above “concatenating” procedure as many times as we want. Thus, for
any n € N, we can construct a process Z~ which is a solutionn to Equation (1.3.3) and is equivalent
to X* up to time g+ Th + -+ 0.
By the triangle inequality in H¥, we have
/ (n)
TR+TR+"‘+TR < TR < Too,

On the other hand, because g, Tg, - - - have the same distributions and are mutually independent with
each other,

: TR )
’}glgorR+TR+ + T a.s.

Therefore, the explosion time 7., = co almost surely. O

Proposition 1.3.17. Let X* be the H*-valued process defined in Defintion (1.3.11). Then X* actu-
ally lives in the space diff(S").

Proof. The construction of X in subsection 3.3 is for a fixed k. But the method is valid for all k =
0,1,2,---. Let us denote by X** the H*-valued process as constructed in subsection 3.3. Because
Equation (1.3.4) takes the same form in each space H* k= 0,1,2,---, also, HM C HY we see
that the H**!-valued process X**! is also a solution to Equation (1.3.4) in the space H*. By
uniqueness of the solution, X*T1> is equivalent to X**. Therefore, we can also say the solution
X% to Equation (1.3.4) in the space H* is also the solution to Equation (1.3.4 in the space H**1).
By induction, the solution X** actually lives in H** for all i = 0,1,2,---. Therefore it lives in
N HA ' = diff(S!). O
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By the above proposition, the F{f—valued process X* lives in the affine space (ffff(Sl). In the
next proposition we will prove that X* actually lives in the group Diff(S'). The key to the proof is
Proposition (1.2.2) together with the “concatenating” procedure (remark 1.3.15).

Proposition 1.3.18. The process X® defined in Definition (1.3.11) lives in the group Diff(S").

Proof. Let us fix a k > 2. Suppose f € H*. By item (2) in Theorem 2.5, || f'||z= < cx||f]| . Thus,
by controling the H*-norm of f we can control the L*-norm of f’. When ||f'||z= < 1, we have
f'> —1, or equivalently, f > 0. If we also know that f is C*, then by Proposition (1.2.2), we can
conclude that f is actually a diffeomorphism of S!. The process X* has values in the R-ball

B(0,R) = {x € H* : ||x||;» <R}

up to time Tg. Let us choose R so that f € B(0,R) implies ||f’||;= < 1. Then up to g, the
first derivative ||X* (¢, )| ;= < 1 almost surely. So up to Tz, X*(¢,®)!) > —1, or equivalently
X(t,0)") > 0 almost surely. Also by Proposition (1.3.17), X** lives in the affine space dAiff(S b,
which means: every element X (t,w) is C*. Therefore, by Proposition (1.2.2), X* lives in the
group Diff(S!) up to time x.

In the “concatenating” procedure (see remark 3.13), the process Y* lives in the group Diff(S!)
up to time 1}, for the same reason. Because & = X*(1z), it is now a Diff(S')-valued random variable.
So the composition Y=o é lives in Diff(S') up to time 7. By concatenation, the process Z= lives in
Diff(S') up to time 7 + T;. Because X is equivalent to z= up to time Tg + Tg, we have the process
X lives in Diff(S') up to time Tz + Tf. We can carry out this “concatenating” procedure over and
over again. Therefore, the process X* lives in Diff(S!) up to the explosion time .. which is infinity
by Proposition (1.3.16). O

Putting together Propositions (1.3.13), (1.3.16) and (1.3.18), we have proved the main result of
this chapter:

Theorem 1.3.19. There is a unique HF-valued solution with continuous sample paths to Equation
(1.3.3) for all k = 0,1,2,---. Furthermore, the solution is non-explosive and lives in the group

Diff(S").

Remark 1.3.20. The solution in the above theorem is the Brownian motion on the group Diff(S')
that we are seeking for.
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Chapter 2

Stochastic Analysis of
Infinite-dimensional Symplectic Group

Sp(°)

2.1 Introduction

The group Sp(e) arises from the study of the group Diff(S'). It was first defined by G. Segal
[24], and was further studied by H. Airault and P. Malliavin in [3]. Roughly speaking, Sp(ee) is
the symplectic representation group of Diff(S!) on a certain infinite-dimensional complex vector
space equipped with a symplectic and inner product structure. There are some extra requirements
in the definition of Sp(eo). The intention is to make the group Sp(eo) as small as possible. Ideally,
if the group Sp(eo) is isomorphic to the group Diff(S'), then the study of Diff(S') will be exactly
the same as the study of Sp(ec). Unfortunately, we discover that they are not isomorphic with each
other (Theorem 2.4.6).

In this chapter, we describe in detail the symplectic representation of Diff(S') which gives an
embedding of Diff(S') into Sp(e). One of the main results is Theorem (2.4.6), where we describe
the embedding of Diff(S!) into Sp(ce) and prove that the map is not surjective.

In this chapter, we also construct a Brownian motion on Sp(eo) (Theorem 2.6.17). The group
Sp(e0) can be represented as an infinite-dimensional matrix group. For such matrix groups, the
method of[10, 12] can be used to construct a Brownian motion living in the group. The construction
relies on the fact that these groups can be embedded into a larger Hilbert space of Hilbert-Schmidt
operators. One of the advantages of Hilbert-Schmidt groups is that one can associate an infinite-
dimensional Lie algebra to such a group, and this Lie algebra is a Hilbert space. This is not the case
with Diff(S!), as an infinite-dimensional Lie algebra associated with Diff(S') is not a Hilbert space
with respect to the inner product compatible with the symplectic structure on Diff(S').

In the construction of the Brownian motion on Sp(eo), in order for the Brownian motion to live
in the group Sp(eo), we are forced to choose a non-Ad-invariant inner product on the Lie algebra of
Sp(e0). This fact has a potential implication for this Brownian motion not to be quasi-invariant for
the appropriate choice of the Cameron-Martin subgroup of Sp(eo). This is in contrast to results in
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[2].
The work in this chapter is written in [14] and is published in Communications of Stochastic
Analysis.

2.2 The spaces H and H,

Definition 2.2.1. Let H be the space of complex-valued C* functions on the unit circle S' with the
mean value 0. Define a bilinear form @ on H by

1 2T
a)(u,v):—/ w'd0, foranyu,v € H.
21 Jo
Remark 2.2.2. By using integration by parts, we see that the form @ is anti-symmetric, that is,
o(u,v) = —o(v,u) forany u,v € H.
Next we define an inner product (-,-), on H which is compatible with the form ®. First, we
introduce a complex structure on H, that is, a linear map J on H such that J> = —id. Then the inner

product is defined by (u,v), = +®(u,J7v), where the sign depends on the choice of J. The complex
structure J in this context is called the Hilbert transform.

Definition 2.2.3. Let H), be the Hilbert space of complex-valued L? functions on S' with the mean
value 0 equipped with the inner product

1 27
(u,v) = E/o uvd@,  for any u,v € Hy.
Notation 2.2.4. Denote é, = €% n € Z\{0}, and By = {é,, n € Z\{0}}. Let H* and H~ be the
closed subspaces of Hj spanned by {é, : n > 0} and {é, : n < 0}, respectively. By 7" and 7~ we
denote the projections of Hy onto subspaces H' and H ™, respectively. For u € Hy, we can write
u=uy—+u_,whereu; =n"(u) and u_ =~ (u).

Definition 2.2.5. Define the Hilbert transformation J on %y by
J:é,—isgn(n)é,
where sgn(n) is the sign of n, and then extended by linearity to Hy.

Remark 2.2.6. In the above definition, J is defined on the space Hy. We need to address the issue
whether it is well-defined on the subspace H. That is, if J(H) C H. We will see that if we modify
the space H a little bit, for example, if we let Cé (S') be the space of complex-valued C' functions
on the circle with mean value zero, then J is not well-defined on C}(S"). This problem really lies in
the heart of Fourier analysis. To see this, we need to characterize J by using the Fourier transform.

Notation 2.2.7. For u € Hy, let .% : u — ii be the Fourier transformation with ii(n) = (u,é,). Let
J be a transformation on /?(Z\{0}) defined by (/41) (n) = isgn(n)i(n) for any & € 1*(Z\{0}).
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The Fourier transformation .% : Hy — [*(Z\{0}) is an isomorphism of Hilbert spaces, and
J=F loJoZ.

Proposition 2.2.8. The Hilbert transformation J is well-defined on H, that is J(H) C H.

Proof. The key of the proof is the fact that functions in H can be completely characterized by
their Fourier coefficients. To be precise, let u € Hj be continuous. Then u is C* if and only if
lim,, . n¥i(n) = O for any k € N. From this fact, it follows immediately that J is well-defined on
H, because J only changes the signs of the Fourier coefficients of a function u € H.

For completeness of exposition, we give a proof of this fact. Though the statement is probably
a standard fact in the Fourier analysis, we found it proven only in one direction in [18].

We first assume that u is C. Then u(8) = u(0) + [/ (t)dz. So

. 1 2r 21w , i@ 1 2r 2 in® ,
i(n) = E(/o /0 u (t))c[oﬂ]dt)e de = %/0 (/t e de)u (t)dt

_ /Omul(t)—u’(t)ei"tdt—u/,(n),

27win in

where we have used Fubini’s theorem and the continuity of u’. Now, u’ is itself C*, so we can apply
e (in)"
analysis, u®) (n) — 0 as n — oo. Therefore n*ii(n) — 0 as n — oo.

Conversely, assume « is such that for any k, n¥ii(n) — 0 as n — co. Then the Fourier series of u
converges uniformly. Also by assumption that u is continuous, the Fourier series converges to u for
all 6 € S' (see Corollary 1.3.1 in [18]). So we can write u(6) = ¥, o i(n)e™®.

Fix a point 6 € S!,

the procedure again. By induction, we get ii(n) = . But from the general theory of Fourier

- N eint _ ein@
i(n)e™ = lim lim i(n) ——
—0 r;éu(n)e teeN%wn:Z’Nu(n) t—0

d

u'(0)= %

Note that the derivatives of cosnt and sinnt are all bounded by |n|. So by the mean value theorem,
|cosnt —cosnB| < |n||t — 6], and |sinnt — sinnb| < |n||t — 6]. So

et — in@

8 <2|n|, foranyt,6cS".

Therefore, by the growth condition on the Fourier coefficients i, we have

N et — ezn@

lim )’ ﬁ(n)ﬁ

N%wn:—N

converges at the fixed @ € S! and the convergence is uniform in # € S'. Therefore we can interchange

the two limits, and obtain
N/ )
< Z ﬁ(n)e'"6> = Z i(n)ine™®
n#0 n#0
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which means we can differentiate term by term. So the Fourier coefficients of u’ are given by
u'(n) = inii(n). Clearly, u’ satisfies the same condition as i: n*u/(n) — 0 as n — co. By induction, u
is j-times differentiable for any j. Therefore, u is C™. O

Proposition 2.2.9. Let Cé (S') be the space of complex-valued C' functions on the circle with the
mean value zero. Then the Hilbert transformation J is not well defined on C}(S'), i.e., J(C{(S1)) €
cl(sh).

Proof. Let C(S') be the space of continuous functions on the circle. In [18], it is shown that there
exists a function in C(S') such that the corresponding Fourier series does not converges uniformly
[18, Theorem I1.1.3], and therefore there exists an f € C(S') such that Jf ¢ C(S') [18, Theorem
II.1.4]. Now take u = f — fy where f; is the mean value of f. Then u is a continuous function on
the circle with the mean value zero, and Ju is not continuous.

Using Notation 2.2.4 let us write u = u; +u_. Then we can use the relation

iu+Ju=2iu, and iu—Ju=2iu_.

to see that .y and u_ are not continuous. Integrating u = u; +u_, we have
t t t
/ u(0)d0 = / . (6)d6 +/ u_(6)d6.
0 0 0
Denote the three functions in the above equation by v,vy,v;. By theorem 1.1.6 in [18],

. n . 1
o(n) = i and Vi (n) = P W2 (n) = %u_(n) for n # 0.

Let g = v — vy where vy is the mean value of v. Then g € C}(S'). Write g = g, +g- 2.2.4.
Then g, =v; — (v1)p and g = vy — (v2)p Where (v1)p and (v2)o are the mean values of v; and v,
respectively. Then g, g ¢ C}(S!) since v} = uy,v, = u_ are not continuous.

By the relation

ig+Jg=2ig, and ig—Jg=2ig_,

we see that Jg & C}(S1). O
Notation 2.2.10. Define an R-bilinear form (-, -), on H by

(u,v)p = —@(u,Jv)  foranyu,v € H.
Proposition 2.2.11. (-,-) is an inner product on H.

,")o satisfies the following properties (1) (Au,v)y = A(u,v)q for
(u,u)p > 0 unless u = 0.

Proof. We need to check that (-
AeC2) (vu)p = (u,v)e: (3)
(1) for A € C,

(Au,v)p = —0(Au,Jv) = —A - 0(u,Jv) = A - (u,v) .
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To prove (2) and (3), we need some simple facts: H™ =7t (H) CHand H =7 (H) C H,
andH=H"®H .IfueH " ve H ,then (u,v)=0. fue H", theni € H ,Ju=iu,Jue H™.
IfuecH ,thenii € H,Ju=—iu,Ju € H™. Jii = Ju. u'(n) = inii(n). In particular, if u € H', then
WeH ifueH ,thenu € H™.

(2) By definition,

(vot)e = —0(v,Jid) = 0(Ji,v) = ;/W)V,de

C2n
1 I
U)o = — @, J7) = 0[7u) = g/ﬁﬁ’de - %/(Jv)ﬁ’de.

Write u = u+ +u_ and v = v +v_ as in Notation 2.2.4. Using the above fact, we can show that
the above two quantities are equal to each other.
(3) Write u = u4 +u_, then

1
(1, ) = E/(—uﬁuﬂr i )do = Y |nla(n) .
n#0

Therefore, (u,u), > 0 unless u = 0. O

Definition 2.2.12. Let H,, be the completion of A under the norm || - ||, induced by the inner
product (-, ). Define

1 . 1 ;
%w—{én—eme,n>0 Ulé,=———€e" n<0}.
vn i/In]

Remark 2.2.13. Hy, is a Hilbert space. Also the norm || - || induced by the inner product (-, ) is
strictly stronger than the norm || - || induced by the inner product (-, -). So H, can be identified as a
proper subspace of Hj. The inner product (-, ) or the norm induced by it is sometimes called the
H'/2 metric or the H'/2 norm on the space H.

One can verify that %, is an orthonormal basis of H,. From the definition of the inner product
(+,)w> we have the relation @(u,v) = (u,Jv)q, for any u,v € H. This can be used to extend the form
o to Hy,.

Finally, from the non—degeneracy of the inner product (-, -), we see that the form (-, ) on H,
is also non—degenerate.

2.3 The infinite-dimensional symplectic group Sp(co)

Definition 2.3.1. Let B(H,,) be the space of bounded operators on H,, equipped with the operator
norm. For an operator A € B(H,),

1. Ais the conjugate of A if Au = A for any u € H,.

2. AT is the adjoint of A if (Au,v)y = (u,A™v) for any u,v € Hy.
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3. AT = A" is transpose of A.
4. A* is the symplectic adjoint of A if ®(Au,v) = ®(u,A*v) for any u,v € Hy,.
5. Ais said to preserve the form o if ®(Au,Av) = ®(u,v) for any u,v € Hy,.

In the orthonormal basis %, an operator A € B(Hy,) can be represented by an infinite dimen-
sional matrix, still denoted by A, with (m,n)th entry equal to A,, , = (Aé,,é) -

Remark 2.3.2. 1f we represent an operator A € B(Hy) by a matrix {An}mnez)\{0}» the indices m
and n are allowed to be both positive and negative following Definition 2.2.12 of %,,.

The next proposition collects some simple facts about operations on B(Hy,) introduced in Defi-
nition 2.3.1.

Proposition 2.3.3. Let A,B € B(Hy,). Then
1. é,=ié_,, Jé, =isgn(n)é,, (&,) = iné,;
2. (An =A_—n;
3. (ANn = Ap s
4. A" = A7, and (AT )y = Ay s
5. ifA=A, then (A*),,, = sgn(mn)A, n;
6. AB=AB, (AB)" = B'AT, (AB)T = BTAT, (AB)* = B*A*;

7. If A is invertible, then A,AT A" A* are all invertible, and (A)~! = A-1, (AT)~! = (A~1T,
(ANt = @), (A =@k

8. (71:+)mn = %(5mn+sgn(m)5 n) (0 _) = %( mn_sgn( YOmn), AT =1, T = n,
(@) =z, (z7)" =77, (7T+)T_7T+ (m 7) =

9. Jp =isgn(m)Syy, J=J,J=i(xt —1), JT = —J, J =—J, J> = —id;
10. (A#)mJ, = sgn(mn)A_, _p.

Proof. All of these properties can be checked by straight forward calculations. We only prove (10).

(A" mn = (A*ey,0m)0 = —w(A#én,Ja) = w(JZ,,A%E,)
= 0(AJey,8,) = —w(8n,AJey) = —0(8n,J(—T)ATE,)
= —0(&,,J(—JAJey)),
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where in the last equality we used property (6), AB = AB, and property (9), J = J, so that —JAJ&,, =
—JAJé, = —JAJé,. Therefore,

= sgn(mn)(&,,Aéy)w = sgn(mn)(Aéy,é,)w = sgn(mn)(A)um
= sgn(mn)A_, _m.

O]

Notation 2.3.4. For A € B(Hy), leta=n"An",b=n"An",c=n"An",andd = 7~ Am~, where
a:H —HE, b:H, — HE, c: HE — Hy,, d: Hy, — H,. Then A =a-+b+c+d can be represented
as the following block matrix
a b
(4)

If A,B € B(H,,), then the block matrix representation for AB is exactly the multiplication of
block matrices for A and B.

Proposition 2.3.5. Suppose A € B(Hy,) with the matrix {Amn}mncz\j0y- Then the following are
equivalent:

1. A=A,
2. ifu=ii, then Au = Au;

3. Apn=A_p_n (2.3.2);

S

4. as a block matrix, A has the form ( > .
Proof. Equivalence of (1), (3) and (4) follows from Proposition2.3.3 and Notation2.3.4. First we
show that (1) is equivalent to (2).

[(1)=(2)]. If u = i, then Au = Au = Aii = Au.

[2)=(1)]. Letu=2¢&,+¢é,, and v=2¢_,+¢é&_,. Then u,v are real-valued functions on the
circle. Using Proposition 2.3.3 we have &, = i¢_,, and therefore Au = Au and Av = Av imply

S
Q

Aé, +iAé_, = Aé, —iAé_,
Aé, —iAé_, = —Aé, —iAé_,.

Solving the above two equations for Aé,, we have

Aé, = —iAé_, = Aé, = Aé,

with this being true for any n # 0, and so A = A. O
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Proposition 2.3.6. Let A € B(Hy,). The following are equivalent:
1. A preserves the form ®;
2. o(Au,Av) = o(u,v) for any u,v € Hy,
3. w(Aé,,Aé,) = w(éy,é,) for any m,n # 0;
4. ATJIA=1J;
5. Yyrosgn(mk)Ag A, —n = 8 p for any m,n # 0.
If we further assume that A = A, then the following two are equivalent to the above:
(D) a"a—b'b=n"anda’b—b'a=0;
(1) Yizo sgn(mk)Ag mAin = Omn for any m,n # 0.

Proof. Equivalence of (1),(2) and (3) follows directly from Definition 2.3.1. Let us check the equiv-
alency of (2) and (4). First assume that (2) holds. By Remark 2.2.13 we have ®(u,v) = (u,JV)g ,
and therefore

O (Au,Av) = (Au,JAV) o = (u,ATJAV) .

By assumption, ®(Au,Av) = @(u,v) for any u,v € Hg,. So by the non-degeneracy of the inner
product (-,-)e, we have ATJAv = J¥ for any v € Hy. By definition of A, we have Av = Av. So
ATJAV = Jv for any v € Hy,, or ATJA = J. Taking conjugation of both sides and using J = J, we see
that ATJA =J.
Every step above is reversible, therefore we have implication in the other direction as well.
Now we check the equivalency of (3) and (5). First, by Remark 2.2.13 @(u,v) = (u,J7v), and
Proposition 2.3.3

®(8p,8n) = (€m,J 1) = —sgn(m) Sy _p.
On the other hand, by the continuity of the form (-, -) in both variables, we have

a)(Aém,Aén) = (ZAkJnék? ZAl,nél)
k k

= ZAk,mAl,n(_Sgn(k))Sk,fl = _ngn(k)Ak,mAfk,n-
k.l k

Now assuming @(Aé,,,Aé,) = ®(é,,é,), we have

— Z’sgn(k)Aky,,,A_k’,1 = —sgn(m)6,, _,, for any m,n # 0.
k

By multiplying by sgn(m) both sides, and replacing —n with n, we get (5). Conversely, note that
every step above is reversible, therefore we have implication in the other direction.
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We have proved equivalence of (1)-(5). Now assume A = A. To prove equivalence of (4) and
(D), just notice that as block matrices, A,AT and J have the form

a b a’ b’ d.7'C+0
b al’ AR A W) B Sy

Equivalence of (5) and (II) follows from the relation A_; _, = m . L]

Proposition 2.3.7. Let A € B(Hy,). If A preserves the form o, then the following are equivalent:
1. Aisinvertible.
2. AJAT = .
3. AT preserves the form .
4. Y sgn(mk)Ap kA _pn —k = Opn for any m,n # 0.
If we further assume that A = A, then the following are equivalent to the above:
() aa” —bb" =~ and ba" —ab' = 0.
(1) Y sgn(mk)AmiAnk = Omn for any m,n # 0.

Proof. We will use several times the fact that if A preserves @, then ATJA = J.

[(1)=(2)] Multiplying on the left by (A7) ~! and multiplying on the right by A~! both sides, we
get J = (AT)"'JA~!, and so (A"1)TJA~! = J. Taking inverse of both sides, and using J~! = —J,
we have ATJA = J.

[(2)=(1)] As J is injective, so is ATJA, and therefore A is injective. On the other hand, by
assumption AJAT = J. As J is surjective, so AJAT is surjective too. This implies that A is surjective,
and therefore A is invertible.

Equivalence of (2) and (3) follows from (A7) = A and Proposition 2.3.6. Equivalence of (3)
and (4) follows directly from Proposition 2.3.6 and the fact that (AT)mJ, =A_p_nm.

Now assume that A = A. Then equivalence of (3) and (I)can be checked by using multiplication
of block matrices as in the proof of Proposition 2.3.6. Finally (4) is equivalent to (II) as if A = A,
thenA_,, _, = Ayn. OJ

Corollary 2.3.8. Let A € B(Hy,) and A = A. Then the following are equivalent:
1. A preserves the form @ and is invertible;
2. A*A=A%A=id;

Proof. By Proposition 2.3.3

(A#A)m,n = Z (A#)m,kAk,n = Z Sgn(mk)Ak,HM7

k0 k0
AA ) = Y Awi(AF)in = Y sgn(nk) A iAn.
k0 k0
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Therefore, by (II) in Proposition 2.3.6 and (II) in Proposition 2.3.7 we have equivalence. O

Definition 2.3.9. Define a (semi)norm || - ||> on B(Hy,) such that for A € B(Hy), ||A]|3 = Tr(b'b) =
|b|lus, where b = " An~. That is, the norm ||A||, is just the Hilbert-Schmidt norm of the block b.

Definition 2.3.10. An infinite-dimensional symplectic group Sp(eo) is the set of bounded opera-
tors A on H such that

1. A is invertible;

2. A=A;

3. A preserves the form ;
4. A]l2 < e

Remark 2.3.11. Condition (2) in Definition 2.3.10 says that an element in Sp(eo) has the following

form:
a b
b a

Condition (4) in Definition 2.3.10 says that the block b is a Hilbert-Schmidt matrix.

Remark 2.3.12. If A is a bounded operator on H, then A can be extended to a bounded operator on
Hg. Therefore, we can equivalently define Sp(ee) to be the set of operators A € B(H,) such that

1. A is invertible;
2. A=A;
3. A preserves the form ;
4. lAfl < o
5. Aisinvarianton H,i.e.,A(H) CH.
Remark 2.3.13. By Corollary 2.3.8, the definition of Sp(eo) is also equivalent to
1. A=A;
2. A*A = AA* = id;
3. [|A]l2 < eo.
Proposition 2.3.14. Sp() is a group.

Proof. First we show that if A € Sp(eo), then A~! € Sp(e0). By the assumption on A, it is easy to
verify that A~ satisfies (1), (2), (3) and (5) in Remark 2.3.12. We need to show that A~! satisfies
the condition (4), i.e. [|A7!||2 < . Suppose

. a b -1 _ a’ b/
A_(B C_l> and A _(b’ a’>’

30



where by our assumptions all blocks are bounded operators, and in addition b is a Hilbert-Schmidt
operator. We want to prove &' is also a Hilbert-Schmidt operator. AA~! =7 and A~'A = I imply that

ab' = —bd', da+bb=1.
The last equation gives a’ab’ +b'bb’ = b', and so
b =dab +b'bb = —d'bd + b'bb’

which is a Hilbert-Schmidt operator as b and b are Hilbert-Schmidt. Therefore ||A~!||, < o and
A~! € Sp().

Next we show that if A, B € Sp(0), then AB € Sp(0). By the assumption on A and B, it is easy
to verify that AB satisfies (1), (2), (3) and (5) in Remark 2.3.12. We need to show that AB satisfies
the condition (4), i.e. ||AB||z < co. Suppose

a b c d
A_<Bd>andB_<d_ >,

where all blocks are bounded, and ||b||gs, ||d||gs < eo. Then

AB — ac+bd ad+be
“ \ bc+ad bd+ac )’

9}

Then
|AB|)3 = ||ad + bé|us < ||lad||> + ||bé|lus < oo,

since both ad and b¢ are Hilbert-Schmidt operators. Therefore ||AB||, < e and AB € Sp(eo).

2.4 Symplectic Representation of Diff(S')

Definition 2.4.1. Let Diff(S') be the group of orientation preserving C* diffeomorphisms of S'.
Diff(S') acts on H as follows

1
2n

2r
(0.0)(0) = (9™ (0)) = 5 [~ u(9™!(0))ae.

Note that if u € H is real-valued, then ¢.u is real-valued as well.
Proposition 2.4.2. The action of Diff(S') on H gives a group homomorphism
@ : Diff(S') — AutH

defined by ®(9)(u) = ¢.u, for ¢ € Diff(S') and u € H, where AutH is the group of automorphisms
on H.
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Proof. Letu € H, then ¢.u is a C* function with the mean value 0, and so ¢.u € H. It is also clear
that ¢.(u+v) = ¢.u+ ¢.v and ¢.(Au) = A¢.u. So @ is well-defined as a map from Diff(S') to
EndH, the space of endomorphisms on H. Now let us check that @ is a group homomorphism.
Suppose ¢,y € Diff(S!) and u € H, then

So D(py) = P(¢)P(y). In particular, the image of P is in the AutH. O

Lemma 2.4.3. Any ¢ € Diff(S") preserves the form w, that is, ©(¢.u,$.v) = ©(u,v) for any u,v €
H.

Proof. By Definition 2.4.1 ¢.u = u(y) — ug,d.v = v(y) — vo, where ¥ = ¢~ and ug, vy are the

constants. Then

0(0.14,9.v) = &(u(W) — o, v(W) — vo)

O]

We are going to prove that a diffeomorphism ¢ € Diff(S!) acts on H as a bounded linear map,
and that ®(¢) is in Sp(e0). The next lemma is a generalization of a proposition in a paper of G. Segal
[24].

Lemma 2.4.4. Let v # id € Diff(S') and ¢ = y~". Let
im0 in@ 1 n im@—in@
Lim = (y.e™ e ):E./o e de.

Then
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Lo} |nlllanl* <ocovand 3, |nl[lynf* <o
n>0,m<0 m>0,n<0

2. For sufficiently large |m| there is a constant C independent of m such that

Y 1nllLnl* < Clm. (2.4.1)
n#0

Proof. Let
my =min{¢'(6)|6 € S'}; and My =max{¢'(6)|6 € S'}.

Since ¢ is a diffeomorphism, we have 0 < my < My < oo

Take four points a, b, c,d on the unit circle such that a corresponds to my in the sense tan(a) =
mg:, b corresponds to My in the sense tan(b) = My, ¢ is opposite to a, i.e., c = a+ 7, d is opposite
to b, i.e., d = b+ . The four points on the circle are arranged in the counter-clockwise order, and
O<a<b<Z,m<c<d<3m

Let T € S' such that 7 # I, 27. Define a function ¢; on S' by

~ cosT-¢(6)—sint-6
- cosT—sinT '

¢:(6)

We will show that if 7 € (b,c) or T € (d,a), then ¢; is an orientation preserving diffeomorphism
of S', where (b, c) is the open arc from the point b to the point ¢, and (d,a) is the open arc from the
point d to the point a.

Clearly ¢; is a C* function on S'. Also, ¢;(0) = 0 and ¢;(27) = 2x. Taking derivative with
respect to 6, we have
_ cosT-¢'(0) —sint

9:(6) =

By the choice of 7, we can prove that ¢.(6) > 0. Therefore, ¢, is an orientation preserving diffeo-
morphism as claimed.

Let m,n € Z\{0}. Let 7,, = Arg(m + in), i.e., the argument of the complex number m + in,

considered to be in [0,27]. Then we have m¢ —n6 = (m—n)¢, .
If T € (b,c), then @y, is a diffeomorphism. Let y,, = ¢, . Then

CcoST—sInT

L i(m—n)@ L i(m—n)6
Inm_ _ I\m—n Tmnd — m—n ,
’ 21 /o ¢ 0 27r/o ¢ v/;'"”(e)de

where the last equality is by change of variable. On integration by parts k times, we have

1 ky pom
Liw=\ 7" a i(m=n)® (k1) 0)do.
, <l(m—n)> 27[/0 e lI/’fmn ( )

Let oo = [0, @] be a closed arc contained in the arc (b,c). Let Sy be the set of all pairs

of nonzero integers (m,n) such that oy < Ty, < 0, where T, = Arg(m+ in). We are going to

consider an upper bound of the sum Y.(,,, )es,, 11| Lo.m 2,
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For the pair (m,n), if |m —n| = p, the condition &y < T,, < Q; gives us both an upper bound

and a lower bound for #:
m¢/ M¢/
p<n<
I’I1¢/ — 1 - - M¢/ — 1

pP-

So |n| < C;p where C is a constant which does not depend on the pair (m,n). Also, the number
of pairs (m,n) € Sq such that |m —n| = p is bounded by Cp for some constant C;. Let C3 =

max{|‘l’§k+l)(9)\ :0eS t¢e [ozo,ocl]}. Then
1 ‘k 1

o m—n)0 -
E/o e de=Csp".

I <c‘7
nm| < Cs i(m—n)

Therefore,

Z |nHIn,m‘2 = Z Z |”H1n,m‘2

(m,n)es P (mn)€Sq;|lm—n|=p
<Y cap-Cp*-Gp=c) p*2,
p p

where the constant Cy, depends on the arc «.
Similarly, for a closed arc B = [By, B1] contained in the arc (d,a), we have

Z \nl\ln,m|2 < Cg pr(Zkfz)’
(m,n)€Sp 7

where the constant Cg depends on the arc f3.
Now let @ = [Z,x], and B = [37,27]. Then « is contained in (b,c) and f3 is contained in (d,a).

‘We have
Y [l =Co- Y p ) <o
p

n>0,m<0

and
Z In\lln,m\z =Cg .pr<2k72) < oo,
p

n<0,m>0

which proves (1) of the lemma.

To prove (2), we let & = [, 011 ] be a closed arc contained in the arc (b,c) such that b < op <
and T < 0o < ¢, and B = [Bo, B1] be a closed arc contained in the arc (d,a) such thatd < By < 37
and 0 < B; < a. Then we have

Y P+ Y [nlLaml? < Cop
(m,n)ESq (m,n)ESﬁ

for some constant Cpp.
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Let m > 0 be sufficiently large, and N, be the largest integer less than or equal to mtan( o),

Y bl <Y ol

0<n<N,, n#0

Note that I, ,, is the nth Fourier coefficient of y/.ei’”e. Therefore,

Y bl = [lye™ 2
n#0

which is bounded by a constant K. Therefore,

) || |Lym]* < Kmtan (o) .

0<n<N,,
On the other hand,
Z |””In,m|2+ Z |”H1n,m‘2 < Z ‘”Hln,m|2+ Z |”H1n7m’2 =Cqp-
n<0 n>Ny (m.n)ES (m,n)€Sp
Therefore,

Z ||l < Cop +Kmtan(ap) < mCy,
n#0

where C, can be chosen to be, for example, K tan(0) + C,g, which is independent of .
Similarly, for m < 0 with sufficiently large |m|

Z |n|]ln7m|2 <mC-_.
n#0

Let C = max{C;,C_}. Then we have, for sufficiently large |m],

Y (1]l < miC,
n#0

which proves (2) of the lemma.
O

Lemma 2.4.5. For any y € Diff(S'), ®(y) € B(H), the space of bounded linear maps on H.
Moreover,

W) <C, [[@(W)ll2 <C,

where C is the constant in Equation 2.4.1.

Proof. First observe that the operator norm of ®(y) is

[@(w)|| = sup{[|[y.ullw | ueH,|ullo=1}.

For any u € H, let & be its Fourier coefficients, that is @#(n) = (u,é,), and let & be defined by
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i=(u,8,)e (2.2.10,2.2.12). It can be verified that the relation between @ and i is: if n > 0, then
i(n) = /ni(n); if n <0, then ii(n) = i\/|n|d(n). We have

lulle, = (w,u)0 = (@ 8) = Y la(m)|* =} [nlla(n)|®

n#0 n#0

Let ¢ = w~'. We have u(¢) = Yont0 fi(m)e™? . Using the notation I, ,, (2.4.4), we have

Iveally = X o) = X |5 [ o0 as|

n#O
271
_ Z ‘I’l’ / tm(]) lnﬂde‘
n#0 2” m;éO
—Y | Y ﬁ(m)lfme"mq"’"@de‘z
n20 'm0 27 Jo
2
= Z ‘l’l’ Z ia(m nm
n#0 m#0
< Z |n|[i2(m)| |Inm‘2 Z |i(m ‘2 Z ’nHIn,m|2
m,n#0 m##0 n#0
= Y am)P Y [l + Y, [a0m)? Y |2l
‘m‘gMo n;é() \m\>M0 n;éO

where the constant M in the last equality is a positive integer large enough so that we can apply part
(2) of Lemma 2.4.4. It is easy to see that the first term in the last equality is finite. For the second
term we use Lemma 2.4.4

Z ‘ZZ’”HIan C Z Hm’

|m|>My n#0 |m|>Mo

Thus for any u € H with |jul|e = 1, ||y.u|| is uniformly bounded. Therefore, ®(y) is a bounded
operator on H.

Now we can use Lemma 2.4.4 again to estimate the norm ||®(y)||>

le(w)lla= Y, l(wéneol’= Y, Inll(w.em )

n>0,m<0 n>0,m<0

= ) [l <o

n>0,m<0

O]

Theorem 2.4.6. @ : Diff(S') — Sp() is a group homomorphism. Moreover, ® is injective, but not
surjective.

Proof. Combining Lemma 2.4.3 and Lemma 2.4.5 we see that for any diffeomorphism y € Diff(S')
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the map ®(y) is an invertible bounded operator on H, it preserves the form ®, and ||®(y)||2 < .
In addition, by our remark after Definition 2.4.1 y.u is real-valued, if u is real-valued. Therefore,
® maps Diff(S') into Sp(o).

Next, we first prove that @ is injective. Let yq, y» € Diff(S'), and denote ¢; = y; ', ¢ =y, .
Suppose ®(y1) = ®(y), i.e. Wi.u= Ws.u, for any u € H. In particular, y;.¢/® = y;.e/. Therefore

ei¢1 —C1 = €i¢2 —C2,

where C1 = - [77e/d6, and C; = oL [7¢/2d0. Note that ¢/ and ¢/%> have the same image as
maps from S"to C. This implies C; = (C,, since otherwise el = i (C; —C,) and €' and ¢
would have had different images. Therefore, we have ¢/? = ¢/%2. But the function % : §' — §! is
an injective function, so ¢; = ¢,. Therefore y; = Y, and so P is injective.

To prove that ® is not surjective, we will construct an operator A € Sp(eo) which can not be
written as ®(y) for any y € Diff(S'). Let the linear map A be defined by the corresponding matrix

{Ap.n}mnez with the entries

A=A 1= V2
Al 1=0L,A_11=—i
Apm=1, form#+1

with all other entries being 0.

First we show that A € Sp(e°). For any u € H, we can write u = Y, ii(n)é,. Then A acting on
u changes only &, and é_; . Therefore, Au € H, and clearly A is a well-defined bounded linear map
on H to H. Moreover, ||A]|2 < o. It is clear that A,, , = A_,, _,, and therefore A = A by Proposition
2.3.3. Moreover, A preserves the form @ by part(Il) of Proposition 2.3.6, as

Y sen(mk)AgmAin = G-
k0

Finally, A is invertible, since {Ay , }m nez is, with the inverse { By, }mncz given by

Bi1=B_ 1= V2
B, 1=—i,B11=1i
Bum =1, form#=+1

with all other entries being 0. Next we show that A # ®(y) for any y € Diff(S'). First observe that
if we look at any basis element &; = e'? as a function from S' to C, then the image of this function
lies on the unit circle. Clearly, when acted by a diffeomorphism ¢ € Diff(S'), the image of the
function (]).e“’ is still a circle with radius 1. But if we consider A&, as a function from S! to C, we
will show that the image of the function Aé; : S' — C is not a circle. Therefore, A # ®(y) for any
v € Diff(S'). Indeed, by definition of A we have

A&, =28, —ie_,.
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Let us write it as a function on S’
Ae1(0) = V2% —e7® = (vV/2—1)cos 0 +i(vV2+1)sin6,

and then we see that the image lies on an ellipse, which is not the unit circle
2 2

Vi TvarE "

2.5 The Lie algebra associated with Diff(S')

Let diff(S') be the space of smooth vector fields on S'. Elements in diff(S') can be identified with
smooth functions on S!. The space diff(S') is a Lie algebra with the following Lie bracket

[X,Y]=XY' —X'Y, XY e diff(s"),

where X’ and Y’ are derivatives with respect to 6.
Let X € diff(S'), and p, be the corresponding flow of diffeomorphisms. We define an action of
diff(S') on H as follows: for X € diff(S') and u € H, X .u is a function on S' defined by

d

a®)= g

[(pr-u) (8)]

where p; acts on u via the representation & : Diff(S') — Sp(eo).
The next proposition shows that the action is well-defined, and also gives an explicit formula of
X.u.

Proposition 2.5.1. Let X € diff(S'). Then

1
21

(X.u)(8) = i/ (8)(—X () /Oz”u'<e><—x<e>>de,

that is, X .u is the function —u'X with the Oth Fourier coefficient replaced by 0.

Proof. Let p; be the flow that corresponds to X, and A, be the flow that corresponds to —X. Then A,
is the inverse of p; for all 7.

o) (®) = G| (@) = G| [ua(6) =5 [ (6)ae]
Using the chain rule, we have
d , ~
G e ~w o)),




and
d

dt

1
(—0 2T

_1
2

27 27
| utnionas = [*u(o)-x(e))ae.

O]

Notation 2.5.2. We consider diff(S!) as a subspace of the space of real-valued L? functions on S'.
The space of real-valued L? functions on S' has an orthonormal basis

B = {X; =cos(mB),Y; =sin(k0),[ =0,1,....k=1,2,...}

which is contained in diff(S").
Let us consider how these basis elements act on H.

Proposition 2.5.3. Forany!=0,1,....k=1,2,... the basis elements X;,Y; act on H as linear maps.
In the basis By of H, they are represented by infinite-dimensional matrices with (m,n)th entries
equal to

1
(Xl)m,n = (Xl-énaém>w = S(man)i V |mn|(6m—n,l + sn—m,l)

(K = (sl = 5(m,m) (—0) 53/ T] (B — 1)
where m,n % 0,
—i mn>0
m>0,n<0
1 m<0n>0
i mn<O.

s(m,n) =

Proof. By Proposition 2.5.1 and a simple verification depending on the signs of m,n we see that

. . 1 . .
X;.eM% = —ine™® cos(16) = —Ein [e’(””)e —I—e’("”)e]
Y;.e"® = —ine™ sin(k@) = —%n [ei(”+k)9 —ei(”_k)e} .

Indeed, recall that a basis element ¢, € %, has the form

et n>0

e, = { in6
e n < 0.
i/|n]

Suppose m,n > 0
1

7

X.e, = Xl.eme = _Ei\/ﬁ [el(nﬂ)e +ez(n71)9 7

and
(0 2,V = Vimdu_nis  (€070.8,)0 = VM.
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Therefore,
1

(Xl)m,n = (Xl~énaém)w = (_1)5 ‘mn|(6m—n,l + Sn—m,l)-

All other cases can be verified similarly. O

Remark 2.5.4. Recall that H, is the completion of H under the metric (-, ). The above calculation
shows that the trigonometric basis X;,Y; of diff(S') act on Hy, as unbounded operators. They are
densely defined on the subspace H C Hy,.

2.6 Brownian motion on Sp(c°)

Definition 2.6.1. As in [3], let sp(ee) be the space of infinite-dimensional matrices A which can be
written as block matrices of the form

a b

b a

such that a+a’ =0, b = b”, and b is a Hilbert-Schmidt operator.

Remark 2.6.2. The space sp(eo) has a structure of Lie algebra with the operator commutator as a
Lie bracket. Following [3], we call sp(eo) the Lie algebra of the group Sp(e<). An element of sp ()
can be viewed as an operator on the space H or H, defined in Section 2.2. Note that as the Lie
algebra of the group Sp(ee), sp(eo) may contain a lot of unbounded operators.

In the definition of Lie algebra sp(co), the condition a +a’ = 0 says that the block a is conjugate
skew-symmetric. The condition b = b’ says that the block b is symmetric. These are summarized
in the following proposition.

Proposition 2.6.3. Let {Am,n},117nez\{0} be the matrix corresponding to an operator A. Then any
A € sp(eo) satisfies (1) Apmn =A—m—n; (2) A +Anm =0, for myn > 0; (3) Appn =A_p_m, for
m > 0,n < 0. Moreover, A € sp(=) if and only if (1) A = A; (2) nAn~ is Hilbert-Schmidt; (3)
A+A*=0.

Proof. The first part follows directly from definition of sp (eo). Then we can use this fact and the
formula for the matrix entries of A* in Proposition 2.3.3 to prove the second part. O

Definition 2.6.4. Let HS be the space of Hilbert-Schmidt matrices with complex entries and indexed
by Z\{0} x Z\{0}. That is, the matrix {a,,} € HS if and only if ¥, ,c7) (0} |amn|? < 0. Let
spys = 5p (o) NHS.

The space HS as a real Hilbert space has an orthonormal basis
Bus = {eny : myn 70} U{ey, - m,n # 0},

where eR¢ is a matrix with (m,n)-th entry 1 all other entries 0, and €™ is a matrix with (m,n)th

entry i all other entries 0.
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The space sp,; is a closed subspace of HS, and therefore a real Hilbert space. According to the
symmetry of the matrices in sp,, we define a projection 7 : HS — sp, such that

m(eRe) = %(e%l —efe —i—e’fem,,n - e’f‘;ﬁm)j if sgn(mn) >0
w(e™) %(elmnzl +elm el_mmj_n — e’_”;h_m), if sgn(mn) >0
) = (e vl fsgnlon) <0
(el = 5 (e e = ey —el). if sgn{mn) <0

Notation 2.6.5. We choose ;... = m(HAus) to be the orthonormal basis of spy.

PHs

Clearly, if A € spyq, then A, = |A|ns-

Definition 2.6.6. Let W, be a Brownian motion on sp,,; which has the mean zero and covariance Q,
where Q is assumed to be a positive symmetric trace class operator on H. We further assume that Q

is diagonal in the basis By, .

Remark 2.6.7. Q can also be viewed as a positive function on the set %; and the Brownian

motion W, can be written as

PHS

wi= Y VOB, 2.6.1)

E€Bspys

where {Bg} 9 are standard real-valued mutually independent Brownian motions.
t éejspHS

Our goal now is to construct a Brownian motion on the group Sp(eo) using the Brownian motion
W; on spy. This is done by solving the Stratonovich stochastic differential equation

This equation can be written as the following Itd stochastic differential equation
1

where D = Diag(D,,) is a diagonal matrix with entries
1
Dy = —gsgn(m) ) sen(k) [Qnfc + O] (2.6.4)
k

with QR¢ = Q(7(eR¢)) and Q™ = Q(m(e™)).

Notation 2.6.8. Denote by spS = Q'/?(sp,,) which is a subspace of sp,s. Define an inner prod-
uct on sps by <u,v>5pgs = (Q"%u,Q7"/?V) 4. Then %ﬁpgs ={E =028 : & € By} is an
orthonormal basis of the Hilbert space spy.
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Notation 2.6.9. Let Lg be the space of Hilbert-Schmidt operators from spg to sp,,s with the norm

@2 = Y [0ER, = L Q)DL {)epyl = Tr@QP],
éef%spQ évcegspl_ls
HS

where Q(&) means Q evaluated at & as a positive function on Hiy,.

Lemma 2.6.10. If W € L(sp,,5p,;), a bounded linear operator from sp,, to sp,, then W restricted
on sp% is a Hilbert-Schmidt operator from spg to sp s, and |V TS Tr(Q)||P||%, where ||P|| is the
operator norm of V.

Proof.

Who= Y MEL <IN Y IEG,

EE% Q éeﬂ Q
“PHS PHSs

=P Y (0%6.0" E)ay = IFI° Y. (0. &)apys = I¥IPTr(Q)
ée@sms 56@5;:]_[5

O

Notation 2.6.11. Define B : sp,; — LI by B(Y)A = (I +Y)A for A € spg, and F : sp,s — 5Py by
F(Y)=3(I+Y)D.

Note that B is well-defined by Lemma 2.6.10. Also D € sp,, and so F(Y) € sp,s and F is
well-defined as well.

Theorem 2.6.12. The stochastic differential equation

dY, = B(Y,)dW, + F (Y, )dt (2.6.5)
Yo=0

has a unique solution, up to equivalence, among the processes satisfying

T
2 _
P </0 Y2, ds < oo> 1.

Proof. To prove this theorem we will use Theorem 7.4 from the book by G. DaPrato and J. Zabczyk
[7] as it has been done in [10, 12]. It is enough to check

1. Bis a measurable mapping.
2. |B(Y1) —B(Yz)‘Lg < C1|Y1 —Yz’spHs for Y1,Y» € spys;
3. ]B(Y)\ig <Ki(14[Y[3,,) forany ¥ € spyg;

4. F is a measurable mapping.
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5. |F(Y1) _F(Y2)|5PHS < C2|Y1 —Yg‘ﬁpHS for Y1, € SPuss
6. |F(Y) |3, < Ka(1+[Y[3,, ) forany Y € spyq.

Proof of 1. By the proof of 2, B is a continuous mapping, therefore it is measurable.
Proof of 2.

!B(Yl)—B(YZ)\ig: Y (n-n)iéR. = Y 0@Irn-n)ER.,

EE%WQ 56‘%5%[5
“PHS

< X Q(é)H?SIIZIYl—Yz\ﬁpHS<émaX IEIP ] Y &) |-,

EeBs €Psrns 1397

PHS SPHS

=TrQ (5 max H§H2> M —Yal5,, =Cin —Yals,

€Pspys

where ||£|| is the operator norm of &, which is uniformly bounded for all § € %,
Proof of 3.

PHS *

B = X 0+0ER, = ¥ e@II+)ER,,

Eex »Q E€Pspys
SPHS
<IT+V)ER,, X QOIEIP < (1+1Y,, ) K.
E€Bspys

Proof of 4. By the proof of 5, F is a continuous mapping, therefore it is measurable.
Proof of 5.

1 1
|F (Y1) = F(Y2)spys = ’§(Y1 —¥2)Dspys < HEDH\Yl — Valopys

Proof of 6.
1 1
IF(Y)|op = |5(1+Y)D\§pHS < H§D|!2\1+Y|§pHS <K (1+Y3,.)-
O

Notation 2.6.13. Let B : sp,; — L9 be the operator B*(Y)A = A*(I+Y), and F* : sp,s — sp, be
the operator F*(Y) = 1D*(Y +1).

Proposition 2.6.14. IfY; is the solution to the stochastic differential equation

Xo =0,
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where B and F are defined in Notation 2.6.11, then Y;* is the solution to the stochastic differential
equation

dX, = B*(X,)dW, + F*(X,)dt (2.6.6)
Xo =0,

where B* and F* are defined in Notation 2.6.13.

Proof. This follows directly from the property (AB)* = B*A* for any A and B, which can be verified
by using part (5) of Proposition 2.3.3. O

Lemma 2.6.15. Let U and H be real Hilbert spaces. Let @ : U — H be a bounded linear map. Let
G : H — H be a bounded linear map. Then

Tri (GDD*) = Try (D*GP)

Proof.
TI'H(GqDCI)*) = Z G,'.,'(I)jk(q)*)ki = Z Gijq)jkq)ik
i,jeH keU i,jeH keU
Try(@°GP) = Y (P)Gij®Pix= Y, Gij®jPu.
i,jeH keU i,jeH keU
Therefore Try (GPP*) = Try (P*GD). O
Lemma 2.6.16.

Y (0¢)(e"*¢)" =-p

E€Bspys

Proof. If & € By, ., then & € s5p (=), so E¥ = —&. We will use the fact that

PHs>
Re Re
(eu el )pg = Oip0ikdig

where e ij s the matrix with the (i, j)th entry being 1 and all other entries being zero. Using this

fact, we see

1. for & = J(efe —eRe eRe | —eR ) with sgn(mn) > 0,

—m,—n —n,—m

(0'2¢)(0"2&)" = —%Qﬁi [—eRe —efe—eRe | —e® ]

2. for & =L (elm yelm —em _ —em ) with sgn(mn) > 0,

—m,—n n,—m

(91/25)(@/25)#——*9%[ Re —eRe _oRe R ]
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3. for & = 1(eRe +eRe _ +eRe | +efe

—n,—m —m,—n n,m

) with sgn(mn) < 0,

(0'26)(01126)" =~ 0 e+ e+, e, ]

4. for & =L (elm +elm _ —e™ el™) with sgn(mn) <0,

—n,—m —m,—n "~ “nm
1
(0'728)(2"28)" = — 0 [ehou el e e, ).

Each of the above is a diagonal matrix. The lemma can be proved by looking at the diagonal
entries of the sum. O

Theorem 2.6.17. Let Y, be the solution to Equation 2.6.5. Then Y, +1 € Sp(eo) for any t > 0 with
probability 1.

Proof. The proof is adapted from papers by M. Gordina [10, 12]. Let ¥; be the solution to Equation
(2.6.5) and Yt# be the solution to Equation (2.6.6). Consider the process Y, = (¥, Yt#) in the product
space spy X 5Py It satisfies the following stochastic differential equation

dY, = (B(Y,),B*(Y}))aW + (F (¥,),F*(v}"))dr.

Let G be a function on the Hilbert space sp,; X sp,s defined by G(Y1,Y2) = A((Y1 +1)(Y2+1)),
where A is a nonzero linear real bounded functional from sp, X sp, to R. We will apply Itd’s
formula to G(Y,) = G(Y;,Y*). Then (Y, +1)(Y* +1) = I if and only if A(Y, +1)(Y* +1)—1) =0
for any A.

In order to use It6’s formula we must verify that G and the derivatives G;, Gy, Gyy are uniformly
continuous on bounded subsets of [0, 7] X sp,,s X §p,s, where Gy is defined as follows

_ G(Y+€S)—G(Y)
Gy (Y)(8) = lim -

for any Y,S € spy¢ X 8Py

and Gyy is defined as follows

Gyy(Y)(S®T) = lim GY(Y+8T)(§) —Gy(Y)(S)

forany Y,S, T € sp,s X sp,s. Let us calculate Gy, Gy, Gyy. Clearly, G; = 0. It is easy to verify that
for any S = (51,52) € spys X 5Pys

Gy(Y)(S) = A(Sl (Y2 —|—I) + (Yl —|—I)Sz)
and for any S = (51,52) € spy X spys and T = (T, T2) € sPyg X 5Py
Gyy(Y)(S®T) =A(S1Th+T157).

So the condition is satisfied.
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We will use the following notation

Gy (Y) (S) = <G_Y (Y> ) S>5pHs XSsPys
Gyy(Y)(S®T) = (Gyy(Y)S, T)spys xopys

where Gy (Y) is an element of sp,¢ x s5p, corresponding to the functional Gy (Y) in (spyg X 5Pys)*
and Gyy (Y) is an operator on sp,,s X §p,,s corresponding to the functional Gyy (Y) € (8P, X Pys) @

(8Pus X 5Pys))"-
Now we can apply Itd’s formula to G(Y,)

G(Yt) - G(YO) :/OI<GY(YS)3 (B(YS)dWS?B#(X;#)dWS)>5pHSX5pHS
+ [ GV, (F)F ) e ams
[ 3 Toamsons |G (Y.) (BOOQ2. (111017

(B0 25 1)0"2) | as

Let us calculate the three integrands separately. The first integrand is
<GY (YS) ’ (B(YY>dWYa B* (Ys#)dWV) >5PHS XSPHs
= (BOGAW) (v + 1)+ (% + 1) (B* (v)aw,)
= (Y +DdW (Y] + 1)+ (Y, + Ddw} (Y} +1) =0.
The second integrand is

<GY (YS)7 (F(YS)7F#(YS#)) >5PHs X5Pys
Y) (¥ +1) + (Y + DFH(Y)

1
Yo+ DD(Y¥+1)+ 3 (Y, +1)D*(Y¥ +1)

= (Y,+I)D(Y{ +1),

where we have used the fact that D = D¥, since D is a diagonal matrix with all real entries.
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The third integrand is

1
2 Tr5PHs X5PHs

Gy (Y) (B)QY2, B (71102 (B(X,) 2, B* (/)02 |
= T [(BUDQ2 B (1)0'7) Gy (Y,) (B()0' 2, B (110"
1

5 L onv((B00e" e s 0 )

EeBspys

o ()0 76500 %)
— ¥ (o) (B o' )

56%5”HS

- (Ys+1)((Ql/zi)(Ql/zé)#>(Ys#+1)
E€Bspys

—(Y+1)D(Y} +1),

where the second equality follows from Lemma 2.6.15, and the last equality follows from Lemma
2.6.16.

The above calculations show that the stochastic differential of G is zero. So G(Y,) = G(Yy) =
A(I) for any ¢ > 0 and any nonzero linear real bounded functional A on sp,s X sp,s. This means
(Y, +1)(Y;* +1) = I almost surely for any ¢ > 0. Similarly we can show (Y 4+1)(Y; +1) = I almost
surely for any ¢ > 0. Therefore Y, + 1 € Sp(eo) almost surely for any ¢ > 0.

O
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Chapter 3

Geometric Analysis of
Infinite-dimensional Symplectic Group

Sp(°)

3.1 Introduction

For finite dimensional manifolds, it is well known that the behavior of the Brownian motion is
closely related to the geometric properties of the manifolds. In particular, Ricci curvature plays an
important role. For example, one can construct an example of a manifold whose Ricci curvature
grows fast enough to negative infinity with the distance from an origin, and on such a manifold
the Brownian motion has explosion [5]. In [15], A. Grigor’yan summarized the relationship be-
tween recurrence and explosion/non-explosion properties of Brownian motion on the one hand, and
geometric properties of the manifold on the other hand.

In my research, I am dealing with infinite-dimensional groups Diff(S') and Sp(e). As infinite-
dimensional manifolds, T expect geometric properties of Diff(S!) and Sp(e0) play similar roles as
in finite-dimensional cases. But Diff(S') and Sp(eo) are not merely infinite-dimensional manifolds.
They are infinite-dimensional Lie groups. Therefore, all geometric properties should be the same
around every element of the groups. As a consequence, one cannot make the Ricci curvature grows
fast enough to negative infinity to construct a Brownian motion that has explosion as in [5]. In
fact, in Chapter 1 Theorem (1.3.19), I proved that the Brownian motion I constructed on Diff(S') is
non-explosive. Nevertheless, geometric analysis of infinite-dimensional groups is still important.

In [13], M. Gordina studied the geometric properties of the group Diff(S')/S!, in particular, she
computed the Ricci curvature of Diff(S!)/S!. In[11], using the same method, Gordina computed the
Ricci curvatures of several Hilbert-Schmidt groups which can be represented as infinite-dimensional
matrix groups. In this chapter, following Gordina’s method, I will compute the Ricci curvature of
the infinite-dimensional symplectic group Sp(ee).

Let G be a finite dimensional Lie group, and g its Lie algebra. Let (-, ), be an inner product on
g. Then (-,-)4 defines a unique left-invariant metric on the Lie group G compactible with the Lie
group structure. In [23], J. Milnor studied the Riemannian geometry of Lie groups. For x,y,z € g,
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the Levi-Civita connection V, is given by

(V2,hg = 5 (2], g = (2l b + (.13 (3.1.1)

The Riemann curvature tensor Ry, is given by
Ry = Vi, = VuV, +V,V, (3.1.2)
For any orthogonal x,y € g, the sectional curvature K (x,y) is given by

K(X,y) = <ny(x)ay>g (3]3)

Let us choose an orthonormal basis {&;}Y | of g, where N is the dimension of the Lie group G. Let
x € g. Then the Ricci curvature Ric(x) is given by

=
=

Ric(x) = 1K(x, &) =) (R (x).8)q (3.1.4)

3.2 Ricci curvature of Sp(co)

In this section, we apply the Ricci curvature theory to the infinite-dimensional symplectic group
Sp(eo) and its Lie algebra sp(e). The group Sp(ee) and its Lie algebra sp(eo) are defined in Def-
inition 2.3.10 and Definition 2.6.1. Basically, elements in both the Lie group Sp(eo) and the Lie
algebra sp(eo) are block matrices of the form:

(52)

where each of the blocks is an infinite-dimensional matrix. The blocks a and a are complex conju-
gate with each other. The blocks b and b are also complex conjugate with each other, are required
to be a Hilbert-Schmidt matrices. For a block matrix to be an element of Sp(ee), it is also required
that the matrix is invertible, and preserve a certain symplectic form. For a block matrix to be an
element of sp (o), it is required that a+a’ = 0 or a’ +a = 0, which means the block a is conjugate
skew-symmetric, and b = b’ , which means the block b is symmetric.

To write the block matrix explicitly, we index the matrix by Z\{0} x Z\{0}, so the matrix is
written as {Amn}m,neZ\{O}- An entry in block a has m,n > 0; an entry in block a has m,n < 0; an
entry in block b has m > 0,n < 0; an entry in block » has m < 0,n > 0. The condition that blocks a
and b are conjugate to blocks @ and b can be expressed as A, , = A_,;, _,. The condition a + a'=0
or a’ +a =0 can be expressed as A,,, +A,,, = 0 where m,n > 0 or m,n < 0. The condition b = b
can be expressed as A,, , = A_, _,, where m > 0,n < 0. These are summarized in Proposition 2.3.3
and Proposition 2.6.3.

To find Ricci curvature, we need to choose a metric for the Lie algebra sp(eo). Let us define a
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sequence of positive numbers
{M eRL|A4i=2A;,i € Z\{0}}

The sequence {A;} will serve as parameters to fine tune the metric that we are going to choose.

Remark 3.2.1. Let us first consider the space HS of Hilbert-Schmidt matrices which we defined in
Definition 2.6.4. The Hilbert space HS, if viewed as a complex Hilbert space, has a canonical inner
product given by:

(A,B) =Tr(AB") = Tr(ABT), A,BcHS

If viewed as real Hilbert space, HS has a canonical inner product given by: for A, B € HS, writing
A=A|+iA; and B = B| +iB;, where A|,A,, B}, B; are matrices with real value entries, then

(A,B) =Tr(A|BT) + Tr(4,B))

Let e, be the infinite-dimensional matrix with 1 in the entry (a,b), and 0 in all other entries, where
a,b are indices of the matrix such that a,b € Z\{0}. Then the above canonical inner product on HS
viewed as real Hilbert space is equivalent to choosing the set

{eaba ieab|aab € Z\{O}}
as an orthonormal basis.

Definition 3.2.2. Let
Eab = 2AuApeap (3.2.1)

We define an inner product (-, -)gs on HS by choosing the following set

{8ab:iCala,b € Z\{0}} (3.2.2)

as an orthonormal basis for the real Hilbert space HS.
Remark 3.2.3. If we set the parameter A; = 1/4/2 for all i € Z\{0} in Definition 3.2.2, we can
recover the canonical inner product of HS (remark 3.2.1) as a real Hilbert space.

The Lie algebra sp(eo) may contain unbounded opertors. For simplicity, we consider the sub-
space sp,s = $p(e0) NHS. Now we can choose orthonormal set of the space sp,s according to the
symmety of matrices in the Lie algebra sp(oo).

Definition 3.2.4. Let
e = Aadp(€ap — €pa+e—a—p—e—p_q), a>b>0
ph = Aadp(ieqp —iepq+ie_q_p—ie_p_4), a>b>0

vf,f = Aahp(eqp+e_p_aqte_q-p+epqs), a>—b>0
Va[g = )Lalb(iea,b + ie_ba_a — ie_av_b — iebﬂ), a>—-b>0
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Let AR = {u®|a > b > 0}, A™ = {u!"a > b > 0}, BR = {v&a > —b > 0}, B"™ = {v["|a >
—b >0}, and 8; = AReuAlm yBRe yBm,

Remark 3.2.5. It is easy to verify that matrices in the set %, all belong to the space sp,s. So %, is
a subset of sp,,; and sp(e0). Also, by definition of &, (equation 3.2.1), it is easy to verify

1
uly = E(ga,b ~&hat&ab—8b-a)
L. . : :
Hay = 5 (8ap—ipati€as—i&ba) (3.2.3)

1
Vclflf =5 (Cap+Ep—at+Ea—b+Ea)

1, . ) :
Vi = E(l‘ga,b +i8p—a—i& g —p—i&pa)

Definition 3.2.6. We define an inner product (-, ), on both sp,; and sp(eo) by choosing the set %,
as an orthonormal set.

Remark 3.2.7. We note that the inner product on sp,s and sp(eo) is equivalent to the subspace
inner product induced from the inner product on HS defined in Definition (3.2.2). Therefore, for
X,y € 5Py, <xay>HS = <x’y>5]3'

Remark 3.2.8. For uflf, the indices satisfy a > b > 0, which means the entry is in the strict upper
triangular block. For ,uéZﬂ the indices satisfy a > b > 0, which means the entry is in the upper
triangular block including the diagonal. For vflf, the indices satisfy a > —b > 0, which means
the entry is in the other upper triangular block including the diagonal. For vé’l?, the indices satisfy
a > —b > 0, which means the entry is in the other upper triangular block including the diagonal.

Definition 3.2.9. Using Ricci curvature formula (Equation 3.1.4) for Sp(ec) and sp(ee), we define,
for x € sp(e0),

Ric() = ¥ K(x.&) = ¥ (Re(x). ) (3.24)

Ee), Ee),

By definition of %, , the above sum will break into four parts:

Ric(x) = Y Kxui)+ Y Kxuph+ Y Kxvi)+ Y Kxvy) (325

a>b>0 a>b>0 a>—b>0 a>—b>0

For computational reason, we define the following truncated Ricci curvature:

Ric" (x) = ) K(x,uf)+ Y K(x, tgy)

N>a>b>0 N>a>b>0
+ Y KkxvE)+ Y K&V (3.2.6)
N>a>—b>0 N>a>—b>0

We have Ric(x) = limy_,. Ric" (x).

In the rest of the section, we will compute the following Ricci curvatures via the corresponding
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truncated Ricci curvatures:
< (1R <ol < (R <yl
Ric (g ), Ric(pgp ), Ric(Vgy ), Ric(vp')
All of these computations boil down to matrix multiplications. The following lemma is an important

tool to the computation of Ricci curvature.

Lemma 3.2.10. We have the following Levi-Civita connection formula, where § is the Kronecker
delta:

Ve, Eca = Opeli€ad — SuakiEeb — ScalgEap + SapAdEac + Spaliyca — Sachi Epa
Vi, i&ea = —OpeAiEad + 8aahg Ect — ScalgEap + SunAZ Eac + Spa Eca — Bac ki Epa
Ve, ilea = 8peiibaa — Suahiiep + Sealfibap — SapAlilac + SpaAiibea — Sachiipa
Vi, Eca = OpeAZiEaa — Saaliilep — BeadGilap + SupAliac — SpatiiCea + SacAiipa
Proof. We have
Eavlea =22 Benaa
So
[Eabs Eea] = Eavbea — Ecalab = 2A7 epad — 22 Baach

In the following, (-,-) stands for (-,-)gs. Using orthonormality,

2<V5ab Ced> Ser)
= <[§ab7 écd]7‘:ef> - <[§cd7 éefL éab) + <[§ef7 &zb};écd)
= 28584604 A2 — 2844006 O f A2 — 2840 80aSpp Al
+287¢80aOap A2 + 287480 OpaAZ — 28peSucBall

and
2(Ve,, Ecasiber) = ([8abs Eeal iGer) — ([Ecas ier]s Sav) + ([i8ery Eab)s Eca) = O
Therefore,
Ve, &ed = SpcAiEad — SuakiEep — Scald an + SapAd Eac + Opatiy ca — SuchiEpa
Similarly,
2(Vie,, icd; Cer)
= <[i§aba iécd]7 éef> - <[i€cd7 éef]v iéab) + <[§ef7 iéab]7i€cd>
- _6b66ae 6dflc2 + Sda5ce5bfkgz - 5de6ca6fble2
87800 OapAZ + 874 OecOpar? — SpeOucOall

and

2<Vi§a;,i§cda igef> = <[i§ab7i§cd]v iéef> - <[i§cd7i§ef]7i§ah> + <[i§efa i&ab}viécd> =0
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Therefore,

Vi’g'l,b iécd = _SbClczéad + 5dalaz§cb - 6&115&11) + 5dblc2§ac + 6bd7Laz éca - 6ac)bbz ébd

Similarly,
2(Ve,, i6ca,iCer)
= <[§ab7i§cd}vi§ef> - <[i€cd7i§ef]7 ‘Sab> =+ <[i§ef7 ‘éab]viécd>
- 5bc6ae5dfl(;2 - Sda(sce(gsbf)ta2 + 6de6cu6fb)be2
—81e8eaOapAZ 4 87aOecOpa? — SpeOucSrall
and
2<V§ahi§cd7§ef> = <[‘Sabai‘§cd]a§ef> - <[i§cda§ef]a§ab> + <[§efa§ab]ai§cd> =0

Therefore,

Ve, il = OpcAlibad — Saahiibep + 8calgiCap — SapAZiEac + Spadibca — SucAjiEpa

Similarly,
2(Vig,, 6ea»i&er)
= <[i§aba gcd}viéﬁ - <[§cd7 i‘:'ef]v iéab> + <[i§ef7i‘§ab]a écd>
= 5b65a66df7%2 - Sda(sce(sbf}taz - 6d36ca6fb)bg2
+6f06ea5dblc2 - 6f(l5€c5bd)t’a2 + 6be6a06fd/l(32
and
2(Vig, ScarEer) = ([i8abs Ecals Ser) — ([Eeds Gerls i6ab) + ([Eersi8ab], Eca) = O

Therefore,

Vie, Ecd = SpcAliEaa — Sualiibep — ScalgiCap + Sup Al i€ac — Spaliibca+ Sac Ay ipa

O]

Remark 3.2.11. Once we have the above lemma, we can use equation (3.2.3) to change the basis
elements of sp(0) into the basis elements of HS, and then use formula (3.1.1), (3.1.2), (3.1.3) and
(3.1.4) to compute the Ricci curvature of Sp(ee). But since each basis uX¢, u™, vR¢ and v has
four terms, and each connection formula in the above lemma has six terms, the combination will be

huge. For example, the sectional curvature

K(”{flfv .ufde) = <Rpfb"p£f(“5;)v .uLRde>
= <V[Hf;f#fj (.ufbe) - V/Jf,fvyfd“ (#515) + V/,tfdevu(f,f (“5176)7”5(1e>

will have 21,504 terms. Thereore, I use a computer program to facilitate the computation.
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Theorem 3.2.12. Let a,b € Z\{0}.
Fora>b>0,

1 a—1 b—1 a—1
Ric® (i) = = | =240 =242} + 484227 — 124 X 23 +822 X 23 +8A2 X I

—12/1,,2led+8Zxd+827Ld—16N7L4—16N)L4—127LZ Z Al

d= c=a+1

+382 Z A2 + 822 Z A2 - 1222 Z A2+38 z AX+8 Z ;L;*].

c=b+1 c=a+1 c=b+1 c=a+1 c=b+1
Fora>b >0,
Ny, Im 1 4 4 212 e 0, 20 )
Ric® (uly) = < [—40/1[, 400 — 322222 — 12 Z A2~ 8A] Z A2~ 8A Z A2
d=
—1zx§ZAd+SZAd+8ZAd —16NAY — 16NA;} — 12472 Z A2
d= c=a+1
— 822 Z A2 — 82 Z A2 - 1222 Z A2+38 Z AX+8 Z A;‘]
c=b+1 c=a+1 c=b+1 c=a+1 c=b+1
Fora=>b>0,
RlC (I'Lab)

Fora> —b >0,
Ric¥ (v = L [—40&4—4014—481212—12&26121&2—8&2})2"1&2—8126121&2
ab 16 a b a’ b a d a d b d

—122; Z?Ld—i-SZld—l—Sde—16N7L4—16N/lb—12&2 Z 2

=1 d=1 c=a+1
N N

—822 Y A2-8A2 Z 22— 1227 Z A2+ Z My A
c=b+1 c=a+1 c=b+1 c=a+1 c=b+1

Fora=—-b>0,

RicV (v a,,)—l%[—wzx“ 322/1d—192N/14 32 le“}
c=a+
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Fora> —b >0,

! a—1 b—1 a—1
RY (Vi) = +¢ [_4013 — 402} = 322222 — 1222 Y. A3 —822 Y A2 —8A2 Y A3
d=1 d=1 d=1

a—

b—1 1 b—1 N
—122; Y A7 +8 Y A;+8 Y Aj—16NA; —16NAS — 1227 Y AZ
d=1 1 d=1

d= c=a+1

N N N N N
—822 Y 22-8 Y A2-1222 ¥ 248 Y Ad+8 ) z.;‘]

c=b+1 c=a+1 c=b+1 c=a+1 c=b+1

Fora=—-b>0,
RicV(vim) = 0.

Corollary 3.2.13. If we set the parameter A; = 1//2, for all i € Z\{0}, then we recover the canon-
ical inner product on the space HS (remark 3.2.3). In this case, we have

3 1
RicN(,ufbe):—gN—g, fora>b>0;
- N Im 7 11
Ric (:uab):_gN_§7 fora>b>0;
Ric" () =0, fora=b>0;
. N(y,Re 7 13
Ric (vab):—gN—g, fora>—b>0;
N (,Re 7 5
Ric <v“b)__§N_§’ fora=—b>0;
- N (,Im 7 11
Ric (Vab):_gN_§7 fora>—b>0;
RicN (vim) =0, fora=—b>0.

Remark 3.2.14. By the above corollary, we see that for most of the basis element § € %, , we have
Ric(&) = limy_e RicV (§) = —oo.

Proof. (of the theorem.)

The method of computing Ricci curvature and truncated Ricci curvature is stated in Definition
3.2.9. Ricci curvature is defined in terms of sectional curvature, which can be expressed in terms
of Riemann tensor and the inner product of the Lie algebra. Riemann tensor is defined in terms of
Levi-Civita connection. The formula of Levi-Civita connection is the content of Lemma 3.2.10. So
the method of computing Ricci curvature is straightforward. But there are huge number of terms.
Therefore, I used a computer program to facilitate the computation.
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Ric" (uf)
= Y K@.oufH+ Y kwhoulh+ Y KWEoE)+ Y KulviD

N>c>d>0 N>c>d>0 N>c>—d>0 N>c>—d>0
R R R 1 R R R 1

- Z K(nuabe7 nucde) + Z K(uabev :uc:?) + Z K(nuabev vc,id) + Z K(uabev vc,nid)

N>c>d>0 N>c>d>0 N>c>d>0 N>c>d>0
= X (Kl + Kl )+ Kl vE )+ Kl v )]

N>c>d>0

Y[Rl ) - Rl )+ K (s VA ) K (il Vi)
N>c=d>0

= Z Aupper + Z Adiagonal

N>c>d>0 N>c=d>0

We have

1
spper = T |~ 16804 — 248, 80Ad + 248,08 A — 168,47

+248a,d 5b,cxj + 85a7c5a’d7tazkhz + 85b7c5b7d7tazlbz — 12507611“2162

188y dAAE — 128, AZAT + 88y AZAT + 248, .8y ahit + 248,48, Nt
168 Ay — 248, 8y ady — 168y g X)) + 88, aAf AZ — 128, yAE A2

+884  AfAT — 128y AZAT +88,aAd + 88 aA + 88, + 86;,,0/13}

A

and

1
5 [f 128, A4 — 168,08, aA} + 188,85 a2} — 128,421

+188,.a8p Ay + 128408y aAZAE + 1284 48y AZAE — 188, 4A2A2
F128, g AZA2 — 188,  AZAT + 128, AZAT + 188,08 aky + 188,48 st
—1251,761;7‘ — 165b,c5b,d11§l — 1251,7[11; + 125&711113%52 — 1861,#15162

F128,, APAZ — 188y AFAZ + 68, 403 + 685 aAd +68, AT + 66;,76&?}

diagonal =
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So

N
Y Aupper:%[—16(61—1)13—1—24/1;—16(N—a)lj—127taz Y A

N>c>d>0 c=a+1

N a—1 b—1
+84; Y AZ—1247 Y AG+8A; Y AJ+244,
d=1 1

c=b+1 d=

N N a—1
—16(b—1)A; —16(N—b)A, +827 Y. AZ—12A7 Y AZ+8A; Y A7
d=1

c=a+1 c=b+1
b—1 N N a—1 b—1
122 2348 Y 2448 ) xj+szz;+szx;;}
d=1 c=a+1 c=b+1 d=1 d=1
and
1
Y Adagona = 1¢ [— 1243 — 16A% — 1224 — 1844 + 124242 — 18A% + 122242 — 124}
N>c=d>0

—164} — 124} + 120242 — 184} + 122227 — 181} + 6A% + 61} + 644 + 62}
Therefore, fora > b > 0,

: N/, Re
Ric (auab ) = Z Aupper + Z Adiagonal
N>c>d>0 N>c=d>0

| a1 b—1 a—1
S [— 2408 — 242} +482202 — 1202 Y. 20 +8A2 Y A2 +822 ¥ A2
d=1 d=1 d=1

16
b—1 a—1 b—1 N
—122; Y A5 +8Y Aj+8Y Aj—16NA; —16NA — 1247 Y A2
d=1 d=1 d=1 c=a+1
N N N N N
+822 Y A24+822 Y A2—1222 ¥ 2248 ¥ a4+8 ) ;Lj}
c=b+1 c=a+1 c=b+1 c=a+1 c=b+1
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Next,

Ric" (uy')
= Y KWpui)+ Y K.+ Y Kwipve)+ Y Kwpvi
N>c>d>0 N>c>d>0 N>c>—d>0 N>c>—d>0
= Y Kupuf)+ Y Kuwywih+ )Y KwipoviEo+ Y Kwipovity)
N>c>d>0 N>c>d>0 N>c>d>0 N>c>d>0
= X (Kl ) Kl )+ K (VA )+ Kl v )]
N>c>d>0
Y[Rl ) Kl )+ Kl vEe )+ Kl vim )]
N>c=d>0
= Z Bupper + Z Bdiagonal
N>c>d>0 N>c=d>0
We have

1

Bupper = 7¢ [+ 328,580 At + 328,580t — 168, AL — 248,84 a A + 884,08y gl

168, 427 + 88440 At — 881080 dAIAL 4+ 168,08y yAZ AL 4168, 48 AZAL
—88p Oy a A2 AL +408, 58, aAIAZ — 128, A2 A2 — 88y aAZA2 + 408,58, AZA]
128, AZAT — 885 AZAT 48840 8p.ahy +88,a8p.cAy — 168y Ay — 248 By aly
168y gA) — 884 aAPAZ — 128y aAFAZ — 884 AFAT — 128, APAS

1684480423 + 884403 + 88y aAY — 168,84 A] + 884N + 88y Af

and

16
168400y a2y — 128, At 4 68448y AL +208, 08y gAZAE +208, 48 AZAE
1608, 584 g AZAE — 188,422 A2 — 128, 4A2A2 + 608,484 AZAT — 188, AZAS
—128y AZAG + 68408y ady + 68440 Ay — 128 Ay — 168y -8p aly

— 128, aMy — 128, aAPAZ — 188y yAZAE — 128, AFAT — 188, AZAS

128,584 aAd + 68, aAE + 68, aAd — 128,58, AT + 684 A7 + 68, A)

Bdiagnnal = + 248a,b8a,c)~j - 326a,b5a7c6a,dl; +248a,b8a,d)t; - 123a,c)~; - 168a,68a,d7t:
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Fora>b >0,

N
y Bupper:%6[—16(a—1)kj+87tj—16(N—a)7tj+16l,12/l,,2—12&3 Y 22

N>c>d>0 c=a+1

N a—1 b—1
—8A; Y AZ— 12&3;13 — 8&3;7@ +8A) — 16(b—1)2;

c=b+1
N N a—1 b—1
—16(N=b)Ay —84; Y A2—122; Y A2=84; Y A7 —122; Y A7
c=a+1 c=b+1 d=1 d=1

N
+8 Y A4+8 Z 7L4+821d+827nd]

c=a+1 c=b+1 d=
Fora=5 >0,

Y, Bupper = i6 | +32(a— DA +32(N = a)Af ~ 16(a— 1)A} — 16(N — a)2;}

N>c>d>0

a—1 a—1
+40A,; Z AZ—12A; Z A2 —82; Z 12+401227Ld 1227 Y A7 —8A; Y Aj
d=1 d=1

c=a+1 c=a+1 c=a+1

a—1
—16(a—1)A* —16(N —a)A} — 822 Z A2 —12)2 Z /13—8/132/13

c=a+1 c=a+1
—121227%—16 Z 2+ Z 248 Z 14—1621(1—1—82/1[,—1—82%4
c=a+1 c=a+1 c=a+1
Fora>b >0,
1
Y Buiagona = 6 [— 1222 —16A% — 124 —18A% — 120227 — 184 — 12A247 — 12M}
N>c=d>0
—16A} — 124} — 122227 — 184} — 12222 — 18A + 6A% + 64, + 642 + 64,
Fora=b >0,

Z Bdiagonal =0
N>c=d>0
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Therefore, fora > b > 0,

N, Im
Ric (nuah ) = Z Bupper + Z Bdiagonal
N>c>d>0 N>c=d>0

a—1 b—1 a—1
- %6 [—40/1;‘ —40AY — 322202 — 122 Z A2 — 822 Z A2 — 822 Z A2

b—
—121§Zld+821d+82)td 16NA, — 16N, —122; Z A
d= c=a+1
N
822 Y A2-8A2 Z A2 — 1222 Z A2 +38 z A2 +8 Z /1;‘]
c=b+1 c=a+1 c=b+1 c=a+1 c=b+1

and fora=>5b >0,

N (1
R ('ua?) = Z Bupper + Z Bdiagonal =0
N>c>d>0 N>c=d>0

Next, we compute RV (vfbe ) for a > —b > 0. Replacing b with —b, it’s equivalent to computing
RN(vﬁib) fora>b>0.

RIC (a b)
= Z K( a, b,,ucd)—F Z K( a, bmucd)

N>c>d>0 N>c>d>0

+ Z K(erbv"cd)+ Z K(Vﬁe—ba"cly)

N>c>—d>0 N>c>—d>0

= Z K( a, b’:ucd) Z K(Vf,e_bvﬂgy)

N>c>d>0 N>c>d>0

+ Z K(Vﬁib,vge,d)+ Z K(vf;ﬂb,vg’id)

N>c>d>0 N>c>d>0

= X (RO B+ KOE i)+ K (VR vE )+ K (v Vi)

N>c>d>0

X KR ) K (VA ol + K (VB VB )+ K (VR i )|
N>c=d>0

= Z Cupper + Z Cdiaganal

N>c>d>0 N>c=d>0
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‘We have

1

Cupper = el 1608, 58,0 A7 +4808,404.84 a2y — 1608, 584 aAs — 168, Ay

248, 0 8aad + 8848 als — 168, 403 + 88,40y AL — 884080arA7
—88,.:8.arg Ay — 2484 8aadi Ay — 128, aA; A2 — 88, dAZ AL
248, 584 AZNT — 128, AZAT — 88y AZAG +884c8p.akiy + 88,48 A
168, A} — 248, 8y gyt — 168y gyt — 88, yAZAZ — 128, yAZAE — 88, AZA]

128y AZAZ 168,584 a3 + 884 aAd + 885 aAd + 168,58, AT +884cA] + 88y )

and

1
Cuiagonal = Tl 1208,84 A 448084584 08 ads — 1208, 58, als — 128, A}

—168,.084.aA) — 68,00 ake — 128, aAy — 68,48y A + 48,08y aAIA7

448,485 AZAE — 368,505 aAZAZ — 188, dAZAE — 128, gAZ A2 — 368,58, AT
188, AZAT — 128y AZAG — 68,08y ady — 68,08 Ay — 128y Ay — 168y :8p aly
128y g Ay — 128, aAZAE — 188y yAPAZ — 128, APAT — 188, AEAS

128,500 a A + 68,28 + 68y gAY + 128,58, AL + 68, A% + 65,,,6/1;}]

Fora>b >0,

Z Cupper =

N>c>d>0

N
[— 16(a— A +822 —16(N —a)t —1222 ) A2
c=a+1

M= 3|~

a—1 b—1
—812 21202 Y 27822 Y A3 +8A;
d=1 d=1

c=b+1

N N a—1
—16(b—1)A, —16(N—b)A; =847 Y. AZ—124; Y AZ—8A; Y A;
d=1

c=a+1 c=b+1

b—1 N N a—1 b—1
122 2348 Y 248 Y zj+szz;+szxg}
d=1 d=1 d=1

c=a+1 c=b+1

61



Fora=b >0,

Y, Cupper= 1 [— 160(a— 1A —160(N —a) A} —16(a — 1)A} — 16(N —a)A}
N>c>d>0 16
—247; Z AZ—122; Z Al —8A; Z Al — 247LZZ)Ld—12/122/1d
c=a+1 c=a+1 c=a+1
—8A2Z)Ld—16 (a— 1A —16(N —a)A} —8A2 Z A2
c=a+1
—12A; Z AZ— WZM 12/122/ld+16 Z Al+8 Z Al
c=a+1 c=a+1 c=a+1
+8 z z4+16zxd+szzd+szxd}
c=a+1 = d=
Fora > b >0,
Y, Cuiagonar = 1 [— 1222 — 1623 — 120 — 184 — 120247 — 182} — 122227 — 122
N>c=d>0 16
C16AF — 124 — 122202 — 1824 — 122222 — 1844 + 644 + 644 + 64 +6/1;‘]
Fora=b >0,

Z Cdiagonul =0
N>c=d>0

Therefore, fora > —b > 0,

RIC ( ab) = Z Cupper + Z Cdiagonal
N>c>d>0 N>c=d>0

a—1 b—1 a—1
- 11—6 [—40/1;‘ _40AY — 482222 — 1202 Z A2 - 872 Z A2 - 872 Z A2

—12M} Z A +8 Z Aj+8 Z A5 —16NA} — 16NA, — 12A7 Z Az

d= d=1 c=a+1
822 z A2 - 872 Z A2~ 1202 z A2+8 z A4 +8 Z xj}
c=b+1 c=a+1 c=b+1 c=a+1 c=b+1
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and, fora = —b > 0,

RN(vc?;) = Z Cupper + Z Cdiagonal

N>c>d>0 N>c=d>0
1 4 4 4
:R[—wzx 32;11[,—1921\% 3202;11”

Next, we compute RV (V! i) for a > —b > 0. Replacing b with —b, it’s equivalent to computing
RY(vIm ) fora>b>0.

RIC (a b)

- Z K( a, bnucd) Z K(véfribv.uggl)

N>c>d>0 N>c>d>0

+ Z K(‘Q?.Zh? vfde) + Z K(Véﬁb, vcbdn)
N>c>—d>0 N>c>—d>0

= Z K(a " M) + Z K(v, immnucd)

N>c>d>0 N>c>d>0

+ )Y K(ahvcd)+ Y K(ab?cd)

N>c>d>0 N>c>d>0

= Z [K( a, hv.ucd)_'_K( a, bvucd)+K( a, —b Y, )+K< a,—b> led)}

N>c>d>0

+ ) [K(véj’ib,uﬁl)—i—l(( i) K (VI VR )+ KV, Zmd)}
N>c=d>0

= Z Dupper + Z Ddiagonal
N>c>d>0 N>c=d>0

We have

1
upper = T¢ [+ 328,500 At + 328,500 aAt — 168, AL — 248,85, 44"

+85a,c6b,dkg — 1646, dl4 + 80, dSb 014 86a Oy dlzﬁtbz + 165,1706},7011313

168,48 AZAE — 88 OpaAZAL +408, 58, aAIAZ — 128, 4 A2 A2 —88paA 222
4408, 504, AZAT — 128, AZAT —88p AZAT 4 88,.08pa)y + 88448 Ay

168 Ay — 248, :8p ady — 168y g X)) — 884 aAf AZ — 1285 yAFAZ — 884 AZA]
1285 AZAG — 168,580 a Al + 88, aA + 88,40t — 168,18, A% + 88, AT + 88, Ad

D,
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and

1
Ddiagonal 16 + 24851 b8a cﬂv 325a,b5a,c5a,d2'; + 248a,b 8a,d)t': - 128{1,613

168, 080ad + 6848 ahs — 128,403 + 68,48y AL 4208, 85 a A2 A}
4208448 AZAL + 608,58, aAZAE — 188, A2 A% — 128, g A2 A2 + 608,58, AZAS
—1854’61315 — 1251,’010215 + 6561705[,7‘1%, + 65a,d6b,ckl? — 125[,7clg

— 168,08y adiy — 128y g Ay — 128, g AZAE — 188, gAFAZ — 128, AZA]

188, AEAT — 128,58, aAd + 68, aAE + 68y gAd — 128, 584 A + 684 AT + 68 A

Fora > b >0,
1
Y Dupper = — [— 16(a— DA% + 844 — 16(N — a) A4 + 16A2A2
N>c>d>0 16
N N a—1 b—1
—124; Y A2-8a; ¥ AZ—122; Y A7 827 Y A;+38A;
c=a+1 c=b+1 d=1 d=1
N N
—16(b—1)A, —16(N—b)A, —8A; Y. AZ—124; Y A2
c=a+1 c=b+1
a—1
822 Y A2 - 127Lb227td+8 z A4 +38 Z A4+8Z7Ld+827ud}
d=1 c=a+1 c=b+1 d=
Fora=b >0,
1
Y Dupper = — [+32(a S DAY 132N —a)Ad —16(a— 1)AY — 16(N — a)A?
N>c>d>0 16

+402,; Z AZ—12A7 Z Al —8A; Z 12+401227Ld—12122/1d

c=a+1 c=a+1 c=a+1

—8A72 Z A7 —16(a— 1A} —16(N —a)A} —8A2 Z A2
d=1

c=a+1

N
—124; Y AZ- AZZAd—uxZZAd—m Z Al

c=a+1 c=a+1

+8 Z 2+8 Z /14—1621d+82/1d+82/1d}

c=a+1 c=a+1
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Fora>b >0,
1
Y. Duiagonal = 6 [— 1202 — 1612 — 1244 — 184 — 120242 — 184} — 124227
N>c=d>0

C12AF S 16A% — 1204 — 124202 — 1844 — 124242 — 184 + 644 + 644 + 6A% + 6/1,;*}
Fora=5b >0,

Z Ddiagonal =0
N>c=d>0

Therefore, fora > —b > 0,

: Ny, Im
Ric (Va ): Z Dupper"‘ Z Ddiagonal
N>c>d>0 N>c=d>0

1 a—1 b—1 a—1
- = [—40,1;‘ 400 — 320202 — 12&3;15 - 8,13;15 . 815;15

b—1 a—1 b—1 N
—122; Y A5 +8Y Aj+8Y Aj—16NA; —16NA, —124; Y A2
d=1 d=1 d=1 c=a+1l

N N N N N
822 Y 22-822 ¥ 22-122 ¥ 248 ¥ At48 ¥ xj}

c=b+1 c=a+1 c=b+1 c=a+1 c=b+1

and, fora = —b > 0,

« Ny,
Ric (Varbn) = Z Dupper + Z Ddiag()nal =0
N>c¢>d>0 N>c=d>0
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