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Presented by

Robert Wooster III, M.S. Math., B.S. Nat. Res.

Major Advisor

Maria Gordina

Associate Advisor

Richard Bass

Associate Advisor

Alexander Teplyaev

University of Connecticut

2009

ii



Dedicated to mom, my first math teacher, and dad, who never let me win and

never let me quit.

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Professor Maria Gordina.

This dissertation would not be possible without her insight, understanding, and

unending patience. Her support, mathematical, financial, and sometimes even

psychiatric is very much appreciated. And she helped open up opportunities that

would not have been possible had she not been an extraordinary advisor.

My gratitude goes to professors Rich Bass and Alexander Teplyaev, who served

on my graduate committee. I would like to thank them for their support, en-

couragement, and advice. Both were also my instructors in courses on stochastic

processes and helped spark my interest in the field.

I will always be indebted to Professor Joe McKenna. He is the reason I found my

way to mathematics graduate school in the first place, and was there throughout

the process to offer support.

Professor Manny Lerman served as the Graduate Program Director when I first

arrived. He gave me a chance when I had no real background in mathematics,

stood behind me when I stumbled, and always kept his word. It was my pleasure

to work with him when I was a graduate student representative.

I would also like to thank Professor Michael Röckner of the University of Bielefeld,
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2.1 Definition of a Lévy process . . . . . . . . . . . . . . . . . . . . . . . 6
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Chapter 1

Introduction

1.1 Notation

Throughout the thesis we will use the following notation:

• AT denotes the transpose of a matrix A.

• B(Rd) denotes the Borel σ-field on R
d.

• Br(a) = {x ∈ Rd : |x − a| < r} denotes the ball of radius r centered at

a ∈ Rd.

• Bb(R
d) denotes the space of all bounded Borel functions from R

d to R.

• Cb(Rd) denotes the space of all bounded continuous functions from R
d to R.

• L(Rd) denotes the space of all d× d matrices.

• µ ∗ ν denotes the convolution of two Borel probability measures on R
d,

(µ ∗ ν)(A) =

∫
Rd

µ(A− x)ν(dx),

1
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for any A ∈ B(Rd).

• a ∧ b = min{a, b}.

• X d
= Y : X and Y are equal in distribution.

• X ∼ N (µ,R): X is Gaussian with mean µ and covariance matrix R.

• µ̂ denote the Fourier transform of the probability measure µ on R(d),

µ̂(a) =

∫
Rd

ei〈a,x〉µ(dx), a ∈ Rd.

1.2 Introduction

Evolution systems of measures arise in place of invariant measures when looking

at time-dependent stochastic differential equations. The main topics of thesis con-

cern existence and uniqueness of evolution systems of measures for time-dependent

Ornstein-Uhlenbeck-type stochastic differential equations with Lévy noise and in

particular, examples where the noise term is a symmetric stable Lévy process.

Unlike mathematical Brownain motion, Lévy processes in general do not have

continuous sample paths (although Brownian motion is an example of a Lévy

process). Allowing for jumps makes Lévy processes much better for modeling

phenomenon with high variability, where quantities can change quickly, and the

interest in Lévy processes has grown significantly in the last twenty years or so.

Applications of jump processes occur in finance, the physical sciences, and engi-

neering.
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In Chapter 2 we review some basic facts and properties of Lévy processes and give

some examples, including the stable Lévy processes. In addition to offering more

flexibility in modeling, another advantage in working with Lévy processes is that

their characteristic functions have an especially useful form, which is given by the

Lévy-Khintchine formula (Theorem 2.3.5).

In Chapter 3 we give some background information on the Ornstein-Uhlenbeck

process. This process was introduced in 1930 by Leonard Ornstein and George

Eugene Uhlenbeck as a model of the velocity of physical Brownian motion, see [6].

We then consider the stochastic initial value problem

dX(t) = λ(µ−X(t−))dt+ σdZ(t).

X(0) = x, (1.2.1)

where λ > 0, µ ∈ R, σ ∈ R, and Z is a 1-dimensional Lévy process. The solution

to (1.2.1) is often referred to as the mean-reverting Ornstein-Uhlebeck process. In

particular, we state some of the well-known properties of the solution when Z is a

Brownian motion, including computing its law and its invariant measure. We make

a similar investigation when Z is a symmetric stable Lévy process. The important

thing, as far as this thesis is concerned, is that the solution to (1.2.1) is time-

homogeneous. The purpose here is meant to highlight the differences between the

autonomous case and the time-dependent case, which is investigated in Chapter

4.
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In Chapter 4 we consider a time-dependent, d-dimensional version of (1.2.1),

dX(t) = (A(t)X(t−) + f(t)) dt+B(t)dZ(t)

X(s) = x, (1.2.2)

where A : R→ L(Rd), B : R→ L(Rd), f : R→ R
d are all bounded and continuous,

Z is a d-dimensional Lévy process, x ∈ Rd, and s ∈ R. Since the solution to (1.2.2)

is not time-homogeneous, we cannot expect to be able to find a single invariant

measure. Instead we define the notion of an evolution system of measures.

The main result of this thesis is Theorem 4.3.8, where we give conditions in which

there exists a unique evolution system of measures. To do this we make a stability

assumption on the evolution family, U(t, s), associated to A(t). That is, U(t, s)

solves the matrix differential equation

∂U(t, s)

∂t
= A(t)U(t, s),

U(s, s) = I,

where s, t ∈ R and I is the identity operator. Our assumption is that

||U(t, s)|| ≤ Ce−ε(t−s), s, t ∈ R.

Previous work in this area was done by Da Prado and Lunardi in 2007, see [3].

In their paper Da Prado and Lunardi made the assumption that the coefficients

A,B, f were T -periodic and that the noise term was a Brownian motion. We do

not impose such restrictions in this thesis, although the result here coincides with
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Da Prado and Lunardi’s result in that particular case. By not assuming periodicity

and allowing for jump processes makes our proof much harder. We make extensive

use of the Lévy-Khintchine formula and the Lévy-Itô decomposition.

To prove Theorem 4.3.8 we use the theory of probability measures in metric spaces,

particularly from Parthasarthy’s book, [7]. In [4], Fuhrman and Röckner proved a

theorem about existence and uniqueness of an invariant measure for a semigroup

arising from an autonomous Ornstein-Uhlenbeck process. We use similar tech-

niques here, however there are some significant differences in our proof than in

the autonomous case.

We conclude the thesis with some examples were we compute the densities and

characteristic functions of evolutions systems of measures for the solution to a

1-dimensional version of (1.2.2) to which Theorem 4.3.8 applies. We return to the

cases where Z is Brownian motion and where Z is a stable process.



Chapter 2

Lévy processes

2.1 Definition of a Lévy process

This chapter consists of a brief introduction to Lévy processes. For a more detailed

treatment, see [1].

We fix without further mention a filtered probability space (Ω,F ,Ft,P) satisfying

the usual hypothesis. That is, Ft = ∩u>tFu and F0 is complete. A stochastic

process is a collection of random variables {Xt(ω), t ≥ 0} taking values in Rd. We

will often write the process Xt(ω) as Xt, X(t), or even just X. A process X is

said to be adapted if X(t) ∈ Ft for each t. A sample path of a stochastic process

X is a function, ω(t), from [0,∞)→ R
d, where

ω(t) := Xt(ω),

for fixed ω ∈ Ω.

We now state the definition of a Lévy process.

Definition 2.1.1. A stochastic process {Xt, t ≥ 0} is a Lévy process if

6
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(i) X(0) = 0 a.s.

(ii) X has independent increments, i.e. for each n ∈ N, and each 0 ≤ t1 ≤ t2 ≤

··· ≤ tn+1 <∞ the random variables (Xtj+1
−Xtj , 1 ≤ j ≤ n) are indepedent

for 1 ≤ j ≤ n.

(iii) X has stationary increments, i.e. for each n ∈ N, and each 0 ≤ t1 ≤ t2 ≤

· · · ≤ tn+1 <∞, the random variables Xtj+1
−Xtj

d
= Xtj+1−tj −X(0).

(iv) X is stochastically continuous, i.e. for all a > 0 and s ≥ 0

lim
t→s

P(|Xt −Xs| > a) = 0.

It is well-known (see e.g. [8]) that a Lévy process X has a unique càdlàg version

(right-continuous with left limits) which is also a Lévy process. Therefore we

assume, with no loss of generality, that every Lévy process is càdlàg.

2.2 Examples of Lévy processes

We now give some examples of Lévy processes.

Example 2.2.1 (Gaussian processes). A standard Brownian motion in R
d is

a Lévy process B(t) which satisfies

(i) B(t) ∼ N (0, tI) for each t ≥ 0,

(ii) B has continuous sample paths a.s.
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More generally let R be a nonnegative-definite symmetric d× d matrix and let σ

be a square root of R. The Lévy process

BR(t) := σB(t),

(where B is a standard Brownian motion) is called a Brownian motion with co-

variance R.

The process

Y (t) = bt+BR(t)

is a Gaussian Lévy process with drift b ∈ Rd and covariance R.

Gaussian processes are the only Lévy processes with continuous sample paths.

Example 2.2.2 (Poisson process). A Poisson process is a Lévy process N

taking values in N ∪ {0}, where for each t ≥ 0,

P(N(t) = n) =
(λt)n

n!
e−λt.

λ is a positive constant, which we call the intensity of the process.

Let T0 = 0, and define

Tn := inf{t ≥ 0;N(t) = n}, n ∈ N.

It is well known that the Tn are gamma distributed, and are often called the

waiting times of the Poisson process N .

The inter-arrival times, Tn−Tn−1, are i.i.d. exponentially distributed, with mean

1/λ.
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Example 2.2.3 (Compound Poisson process). Let Yn, n ∈ N be a sequence

of Rd-valued i.i.d. random variables with law µY and let N be a Poisson process

with intensity λ that is independent of all the Yn. A compound Poisson process is

defined

X(t) = Y1 + · · ·+ YN(t)

for each t ≥ 0.

Example 2.2.4 (α-stable process). A real-valued random variable X has an

α-stable distribution if, for some α ∈ (0, 2], its characteristic function is of the

form

φX(a) =



exp
{
iµa− σα|a|α

[
1− βsgn(a) tan

(πα
2

)]}
α 6= 1

exp

{
iµa− σ|a|

[
1 + iβ

2

π
sgn(a) log |a|

]}
α = 1,

where σ > 0,−1 ≤ β ≤ 1, µ ∈ R. The constant α is called the index of stability.

If α = 2, the random variable is Gaussian and has finite moments of all orders.

If α ∈ (1, 2) it has a finite mean but infinite variance. Finally for α ∈ (0, 1], an

α-stable random variable has infinite mean and variance. For this reason, α-stable

random variables are useful for describing phenomenon with large deviations. We

can only write the density function in closed form for an α-stable random variable

for the following values of α:
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• α = 2: X ∼ N (µ, 2σ2), i.e. X has density function

dX(x) =
1√

2π(2σ2)
e
− (x−µ)2

2(2σ2) .

• α = 1, β = 0: X has a Cauchy distribution with density function

dX(x) =
σ

π[(x− µ)2 + σ2]
.

• α = 1/2, β = 1: X has a Lévy distribution with density function

dX(x) =
( σ

2π

)1/2 1

(x− µ)3/2
exp

[
− σ

2(x− µ)

]
, for x > µ.

A stable Lévy process is a Lévy process where for each fixed t, X(t) is a stable

random variable. We are particularly interested in symmetric, stable Lévy pro-

cesses, i.e. stable processes where µ = β = 0. Such a process has characteristic

function

φX(t)(a) = exp (−tσα|a|α) .

2.3 Important properties of Lévy processes

In this section we state some of the well-known properties of Lévy processes.

The two most useful of which are the Lévy-Itô decomposition (Theorem 2.3.1)

and the Lévy-Khintchine formula (Theorem 2.3.4). The Lévy-Itô decomposition

essentially states that a Lévy process is the sum of a deterministic drift term, a

Brownian motion, and a jump part governed by an independent Poisson integral.

The Lévy-Khintchine formula gives the characteristic function of a Lévy process
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in terms of three parameters, (b, R,M), known as the triple of the process. This

triple uniquely determines the process.

Theorem 2.3.1 (Lévy-Itô decomposition [1]). LetX be a Lévy process. Then

there exists a b ∈ Rd, a Brownian motion BR with covariance matrix R, and an

independent Poisson random measure N on R+× (Rd−{0}) such that X has the

decomposition

X(t) = bt+BR(t) +

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xN(t, dx),

for each t ≥ 0.

The drift term, bt, and Poisson integral that controls the large jumps,
∫
|x|≥1

xN(t, dx),

are processes of bounded variation on compact sets. The Brownian part, BR(t),

and the compensated Poisson integral,
∫
|x|≥1

xÑ(t, dx), are martingales. There-

fore we have the following corollary which makes Lévy processes good candidates

for stochastic integrators, see [8].

Corollary 2.3.2. Every Lévy process is a semimartingale.

Definition 2.3.3. A Borel measure M on R
d is a Lévy measure if M({0}) = 0

and ∫
Rd

(1 ∧ |y|2)M(dy) <∞.

We now define infinitely divisible probability distributions. Such distributions

have an especially useful form for their characteristic functions, given by the Lévy-

Khintchine formula.
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A random variable X has an infinitely divisible distribution if for any n ∈ N there

exists i.i.d. random variables Y1, ..., Yn such that

X
d
= Y1 + · · ·+ Yn.

Theorem 2.3.4 (Lévy-Khintchine formula [1]). Let X be an infinitely divisi-

ble random variable. Then there exists a b ∈ Rd, a non-negative definite symmetric

matrix R, and a Lévy measure M such that for all a ∈ Rd,

Eei〈a,X〉 = exp

{
i〈b, a〉 − 1

2
〈a,Ra〉+

∫
Rd

[
ei〈a,y〉 − 1− i〈a, y〉

1 + |y|2

]
M(dy)

}
. (2.3.1)

Conversely, any mapping of the form (2.3.1) is the characteristic function of an

infinitely divisible distribution.

Theorem 2.3.5. Let X(t) be a Lévy process. Then for each t, Xt is infinitely

divisible, and

φX(t)(a) = e−tη(a), a ∈ R,

where

η(a) = −i〈b, a〉+
1

2
〈a,Ra〉 −

∫
Rd

[
ei〈a,y〉 − 1− i〈a, y〉

1 + |y|2

]
M(dy),

for each a ∈ Rd. The three-tuple (b, R,M) is called the triple or characteristics of

X, while η is called the Lévy symbol of X.

Proof. See Theorem 1.3.3, [1]. Qed



Chapter 3

The Ornstein-Uhlenbeck process and invariant measures

3.1 The Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process was first introduced in 1930 by Leonard Ornstein

and George Eugene Uhlenbeck as a model of physical Brownian motion [6]. They

argued that the force on a particle of mass suspended in a liquid should arise

from both a macroscopic frictional force and by random molecular bombardment.

Using Newton’s second law this can be written formally,

m
dv

dt
= −λmv +m

dB

dt
.

The constant λ > 0 is related to the viscosity of the liquid, and the formal quantity

‘dB
dt

’ describes random velocity changes due to molecular bombardment.

This equation can be interpreted as the Itô stochastic differential equation

dv(t) = −λv(t) + dB(t), (3.1.1)

where B is a Brownian motion.

We now modify (3.1.1) by adding a drift term µ ∈ R (which can be thought of

13
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as the velocity of the current in a moving liquid), a scaling of the strength of the

random molecular bombardment σ ∈ R, a starting point x ∈ R, and by replacing

the Brownian motion with a Lévy process,

Consider the stochastic initial value problem

dX(t) = λ(µ−X(t−))dt+ σdZ(t)

X(0) = x. (3.1.2)

We now solve (3.1.2) by multiplying by the integrating factor eλt:

d(eλtX(t)) = λeλtX(t) + eλtX(t) = eλtλµ dt+ eλtσdZ(t).

Integrating from 0 to t,

eλtX(t) = x+

∫ t

0

eλsλµ ds+

∫ t

0

eλsσdZ(s),

we obtain the solution to (3.1.2)

Xx(t) = e−λtx+ µ(1− e−λt) +

∫ t

0

e−λ(t−s)σdZ(s) (3.1.3)

The subscript in Xx(t) denotes the starting position. The process Xx(t) is often

called the mean-reverting Ornstein-Uhlenbeck process.

Example 3.1.1. Let Z(t) be a 1-dimensional Brownian motion. The first and

second moments of (3.1.3) are

EXx(t) = e−λtx+ µ(1− e−λt),
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and

E (Xx(t))
2 =

[
e−λtx+ µ(1− e−λt)

]2
+ 2E

[
e−λtx+ µ(1− e−λt)

∫ t

0

e−λ(t−s)σdZ(s)

]
+ E

(∫ t

0

e−λ(t−s)σdZ(s)

)2

=
[
e−λtx+ µ(1− e−λt)

]2
+

∫ t

0

e−2λ(t−s)σ2ds

=
[
e−λtx+ µ(1− e−λt)

]2
+
σ2

2λ
(1− e−2λt).

Thus for each fixed t, Xx(t) has a Gaussian distribution with mean

EXx(t) = e−λtx+ µ(1− e−λt),

and variance

V arXx(t) =
σ2

2λ
(1− e−2λt).

However, it is important to note that Xx(t) is not a Lévy process, as Xx(t) does

not have stationary increments.

The following figures are of simulations of sample paths of the mean-reverting

Ornstein-Uhlenbeck process done in Matlab.

Intuitively, think of the figures as graphs of the velocity of particles in different

fluids. Both fluids have a velocity in a direction opposite to the initial velocity

of each of the particles. The fluid in Figure 3.1 has less viscosity and stronger

molecular bombardments, which result in greater variations in the motion of the

particle. The fluid in Figure 3.2 has much stronger viscosity and the effect of
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Fig. 3.1: Ornstein-Uhlenbeck sample path with small λ and large σ

molecular bombardments is weaker. This is why there are only slight differences

between the velocity of the fluid and the velocity of the particle.

In Figure 3.3, we have the plots of two sample paths of the Ornstein-Uhlenbeck

process that differ only in their initial value. This can be thought of as two

particles in the same fluid with different initial velocities. Eventually, their ini-

tial values don’t matter, and it is only the characteristics of the fluid (viscosity,

strength of molecular bombardment, and velocity of the fluid) which governs the

motion of the particles. Indeed note that the distribution of both particles ap-
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Fig. 3.2: Ornstein-Uhlenbeck sample path with large λ and small σ
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Fig. 3.3: Two Ornstein-Uhlenbeck sample paths that differ only in their

initial values

pears to be approaching the same equilibrium distribution as time increases. This

phenomenon is exactly the notion of an invariant measure, which is made precise

in Section 3.2.
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Before we consider the case where Z(t) in (3.1.3) is a 1-dimensional, symmetric,

α-stable process, we will need the following fact about stochastic integrals with

respect to symmetric α-stable Lévy processes. A proof can be found in [9].

Proposition 3.1.2. Suppose Z(t) is a 1-dimensional, symmetric, α-stable Lévy

process with characteristic function

φZ(t)(a) = e−tσ
α|a|α

Then for each fixed t, the process

Y (t) =

∫ t

0

e−λ(t−s)dZ(s)

has an α-stable distribution with characteristic function

φY (t)(a) = exp

{
−σ

α

λα
(1− e−λαt)|a|α

}
.

Example 3.1.3. Let Z(t) be a 1-dimensional, symmetric, α-stable process. Then

for each t, (3.1.3) is α-stable with characteristic function

φXx(t) = exp

{
ia
[
e−λtx+ µ

(
1− e−λt

)]
− σα

λα

(
1− e−λαt

)
|a|α
}
. (3.1.4)

In the case where α = 1, we can write the density function for Xx(t),

dXx(t)(y) =
(σ/λ)(1− e−λt)

π
{

[y − (e−λtx+ µ(1− e−λt))]2 + [(σ/λ)(1− e−λt)]2
} .
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3.2 Invariant measures

Let X(t) be a Markov process taking values in R
d. The transition semigroup of

operators associated with X is the family operators defined

Ps,tf(x) = E [f(X(t)|X(s) = x] ,

for s ≤ t and f ∈ Bb(R
d).

If Ps,t = P0,t−s for all s ≤ t, then X is said to be time-homogeneous. In this

case the action of the semigroup only depends on the length of the time interval

and not the actual times involved. Therefore the transition semigroup for a time-

homogeneous Markov process is really a one-parameter semigroup, and in this

case we write P0,t as Pt.

Remark 3.2.1. The solution to (3.1.2) is a time-homogeneous Markov process,

see for e.g. Theorem 6.4.5, [1], which is why we assume the process starts at time

0, and not at some arbitrary time s.

Let pt(x, ·) denote the law of a time-homogeneous Markov process starting at x,

i.e.

pt(x,A) = P [X(t) ∈ A|X(0) = x] .

Definition 3.2.2. A Borel probability measure µ is an invariant measure for X

if ∫
Rd

(Ptf)(x)µ(dx) =

∫
Rd

f(x)µ(dx), (3.2.1)

for all t ≥ 0, f ∈ Bb(R
d).
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Remark 3.2.3. By taking indicator functions and using a standard monotone

class argument, it is not hard to show that µ is invariant for X if and only if

∫
Rd

pt(x,A)µ(dx) = µ(A)

for all A ∈ B(Rd), x ∈ Rd and t ≥ 0.

Similarly, for any f ∈ Bb(R
d), there exists a sequence in the linear span of the real

and imaginary parts of the set of all ga of the form ga(x) = ei〈a,x〉, for arbitrary

a ∈ Rd, converging to f and bounded by f in the supremum norm. Thus (3.2.1)

need only hold for g of the form ga(x) = ei〈a,x〉, a ∈ R
d. In this case (3.2.1)

becomes ∫
Rd

Pte
i〈a,x〉µ(dx) = µ̂(dx),

where µ̂ denotes the Fourier transform of µ.

Invariant measures, also commonly called stationary measures, intuitively de-

scribe the steady-state or long-term behavior of the process. Indeed if a time-

homogeneous Markov process X has a law which approaches a probability measure

µ as t→∞, in the sense that

lim
t→∞

pt(x,A) = µ(A), (3.2.2)

for all x ∈ Rd and A ∈ B(Rd), then µ is an invariant measure for X. Note µ does

not depend on the starting point x.

To prove this assertion, fix t, let A ∈ B(Rd), and x, y ∈ Rd. Using the Chapman-
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Kolomogorov equations,

∫
Rd

pt(x,A)µ(dx) =

∫
Rd

pt(x,A) lim
s→∞

ps(y, dx)

= lim
s→∞

∫
Rd

pt(x,A)ps(y, dx)

= lim
s→∞

ps+t(y, A) = µ(A).

3.3 Examples of transition semigroups and invariant measures

In this section we compute formulas for the transition semigroups for the mean-

reverting Ornstein-Uhlenbeck processes examined in Examples 3.1.1 and 3.1.3.

We will also compute invariant measures for these processes and in each case,

show that the invariant measure is unique. The results here are well-known and

we include them as a comparison with the time-dependent examples in Chapter

4.

Example 3.3.1. First we compute the transition semigroup of operators for

(3.1.3) where Z(t) is a Brownian motion, as in Example 3.1.1. This result is
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referred to as Mehler’s formula. For f ∈ Bb(R),

Ptf(x) = Ef(Xx(t)) =

∫ ∞
−∞

f(y)pt(x, dy)

=
1√

2π
[
σ2

2λ
(1− e−2λt)

] ∫ ∞
−∞

f(y) exp

{
− [y − (e−λtx+ µ(1− e−λt))]2

2
[
σ2

2λ
(1− e−2λt)

] }
dy

=
1√

2π
[
σ2

2λ
(1− e−2λt)

] ∫ ∞
−∞

f(e−λtx+ z) exp

{
− [z − µ(1− e−λt)]2

2
[
σ2

2λ
(1− e−2λt)

] } dz
=

∫ ∞
−∞

f(e−λtx+ z)pt(0, dz).

Since Xx(t) ∼ N
(
e−λtx+ µ(1− e−λt), σ2

2λ
(1− e−2λt)

)
→ N

(
µ, σ

2

2λ

)
as t → ∞,

we would expect a Gaussian measure ν, with mean µ and variance σ2

2λ
to be an

invariant measure based on (3.2.2). This is indeed the case. Using Mehler’s

formula,∫ ∞
−∞

Ptf(x)ν(dx) =
1√

2π
(
σ2

2λ

) ∫ ∞
−∞

∫ ∞
−∞

f(e−λtx+ z)pt(0, dz) exp

{
−(x− µ)2

2
(
σ2

2λ

) } dx
=

1√
2π
(
σ2

2λ

) ∫ ∞
−∞

∫ ∞
−∞

f(e−λtx+ z) exp

{
−(x− µ)2

2
(
σ2

2λ

) } dx pt(0, dz). (3.3.1)

After a change of variables, (3.3.1) is equal to

1√
2π
(
σ2

2λ

) ∫ ∞
−∞

∫ ∞
−∞

f(y + z) exp

{
−(eλty − µ)2

2
(
σ2

2λ

) }
e−λtdy pt(0, dz)

=
e−λt√
2π
(
σ2

2λ

) ∫ ∞
−∞

∫ ∞
−∞

f(y + z) exp

{
−e

2λt(y − e−λtµ)2

2
(
σ2

2λ

) }
dy pt(0, dz)

=
1√

2π
(
e−2λtσ2

2λ

) ∫ ∞
−∞

∫ ∞
−∞

f(y + z) exp

−(y − e−λtµ)2

2
(
e−2λtσ2

2λ

)
 dy pt(0, dz)

=

∫ ∞
−∞

f(x)(ν1 ∗ ν2)(dx),
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where ν1 ∼ N
(
e−λtµ, e

−2λtσ2

2λ

)
and ν2 ∼ N

(
µ(1− e−λt), σ2

2λ
(1− e−2λt)

)
. Thus if

we can show ν := ν1 ∗ ν2 ∼ N
(
µ, σ

2

2λ

)
, then µ is an invariant measure.

Taking characteristic functions,

ν̂(a) = ν̂1(a)ν̂2(a)

= exp

{
iae−λtµ− 1

2
· e
−2λtσ2

2λ
a2

}
exp

{
iaµ(1− e−λt)− 1

2
· σ

2

2λ
(1− e−2λt)a2

}
= exp

{
iaµ− 1

2
· σ

2

2λ
a2

}
.

And so ν ∼ N
(
µ, σ

2

2λ

)
as desired.

To show uniqueness, suppose ρ is also an invariant measure. Let a ∈ R, then

taking f(x) = eiax,

ρ̂(a) =

∫ ∞
−∞

eiaxρ(dx) =

∫ ∞
−∞

Pte
iaxρ(dx) =

∫ ∞
−∞

∫ ∞
−∞

eia(e−λtx+z)pt(0, dz)ρ(dx)

=

∫ ∞
−∞

eiae
−λtxρ(dx)

∫ ∞
−∞

eiazpt(0, dz)

= ρ̂(e−λta) exp

{
iaµ(1− e−λt)− 1

2
· σ

2

2λ
(1− e−2λt)a2

}
.

Since this holds for all t ≥ 0, by continuity we have

ρ̂(a) = lim
t→∞

[
ρ̂(e−λta) exp

{
iaµ(1− e−λt)− 1

2
· σ

2

2λ
(1− e−2λt)a2

}]
= ρ̂(0) exp

{
iaµ− 1

2
· σ

2

2λ
a2

}
= exp

{
iaµ− 1

2
· σ

2

2λ
a2

}
.

Thus ρ must be N
(
µ, σ

2

2λ

)
.

Example 3.3.2. Now we consider a jump case. As in Example 3.1.3, let Z(t) be

a 1-dimensional, symmetric, α-stable Lévy process. Similar to the computation
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of the transition semigroup in Example 3.3.1, we have the following version of

Mehler’s formula, generalized to the case where Z is symmetric, α-stable,

Ptf(x) =

∫ ∞
−∞

f(e−λtx+ z)pt(0, dz). (3.3.2)

In the case where α = 1, (3.3.2) can be written as an integral with respect to a

Cauchy density,

Ptf(x) =

∫ ∞
−∞

f
(
e−λtx+ z

) (σ/λ)(1− e−λt)
π [(z − (µ(1− e−λt)))2 + ((σ/λ)(1− e−λt))2]

dz.

Based on (3.1.4), by letting t → ∞, we expect the measure ν with characteristic

function

ν̂(a) = exp

{
iaµ− σα

λα
|a|α
}

(3.3.3)

to be an invariant measure for Xx(t). In light of Remark 3.2.3 we take f to be of

the form f(x) = eiax for some a ∈ R.∫ ∞
−∞

Pt{exp(iax)}ν(dx) =

∫ ∞
−∞

∫ ∞
−∞

exp[ia(e−λtx+ z)]pt(0, dz)ν(dx)

=

∫ ∞
−∞

exp(iae−λtx)ν(dx)

∫ ∞
−∞

exp(iaz)pt(0, dz)

= exp

{
iae−λtµ− σα

λα
e−λαt|a|α

}
exp

{
iaµ

(
1− e−λt

)
− σα

λα

(
1− e−λαt

)
|a|α
}

= exp

{
iaµ− σα

λα
|a|α
}

= ν̂(a).

In the case where α = 1, this measure has density function

dν(x) =
σ/λ

π[(x− µ)2 + (σ/λ)2]
.

A proof similar to that in Example 3.3.1 shows that this measure is the unique

invariant measure.



Chapter 4

Time-dependence and evolution systems of measures

4.1 Introduction

In this chapter we consider an Ornstein-Uhlenbeck-type stochastic differential

equation where the coefficients depend on time. We will assume that they are

bounded and continuous. In this case, there is a unique mild solution to the

initial value problem. However, because the coefficients depend on time, the

solution is not time-homogeneous. Therefore its associated transition semigroup

is a two-parameter semigroup, so we cannot expect to have an invariant measure.

Instead we define what is called an evolution system of measures, {νt, t ∈ R}. We

will see that this notion is a natural generalization of an invariant measure.

In the main result of the thesis, Theorem 4.3.8 in Section 4.3, we prove the exis-

tence and uniqueness of an evolution system of measures under certain conditions

on the coefficients in the stochastic differential equation. In 2007 Da Prato and Lu-

nardi proved existence and uniqueness of an evolution system where the noise was

Brownian motion and the coefficients were T -periodic [3]. We improve upon this

26
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result in two significant ways. First we allow the noise to be an arbitrary Lévy

process. In the Brownian noise case, the solution is again a Gaussian process.

However an Ornstein-Uhlenbeck-type process where the noise is a Lévy process

offers more flexibility because it allows one to model phenomenon with heavy tails,

as Gaussian tails decay exponentially. As in Chapter 3, of particular interest to

us is when the noise term is a symmetric α-stable process. The other significant

improvement is that we do not require the coefficients to be periodic. Removing

this restriction makes proving the theorem much harder. In [4], Fuhrman and

Röckner proved a theorem on the existence and uniqueness of an invariant mea-

sure (the coefficients were not time-dependent) with Lévy noise in a Hilbert space.

We have used some of the techniques there, adapted to the time-dependent case,

to prove Theorem 4.3.8.

4.2 Time-dependence

In this section we first explore properties of the solution to the stochastic initial

value problem

dX(t) = (A(t)X(t−) + f(t)) dt+B(t)dZ(t)

X(s) = x, (4.2.1)

where A : R→ L(Rd), B : R→ L(Rd), f : R→ R
d are all bounded and continuous,

s ∈ R, x ∈ Rd, and Z is a d-dimensional Lévy process with Lévy symbol η and

triple [b, R,M ].
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Remark 4.2.1. In previous chapters we have considered Lévy processes to be

defined for times t ≥ 0. To define {Z(t), t < 0}, take Z(t) to be an independent

copy of −Z(−t−). The resulting process satisfies all the conditions of a Lévy

process and has cadlag paths.

Definition 4.2.2. The evolution operator in R
d associated with A(t) is the solu-

tion of the matrix-valued equation

∂U(t, s)

∂t
= A(t)U(t, s),

U(s, s) = I, (4.2.2)

s, t ∈ R and I is the identity operator.

It satisfies the properties

U(t, s)U(s, r) = U(t, r), s, r, t ∈ R,

U(s, r)TU(t, s)T = U(t, r)T , s, r, t ∈ R,

∂U(t, s)

∂s
= −U(t, s)A(s), s, r ∈ R.

Assumption 1. We make the following exponential stability assumption on

U(t, s). There exists a C ≥ 1 and ε > 0 so that

||U(t, s)|| ≤ Ce−ε(t−s), s, t ∈ R.

There is no clear way to replace Assumption 1 with an assumption on A(t) itself.

For example, even if the eigenvalues of A(t) are negative and bounded away from

zero uniformly for all t, Assumption 1 need not hold. See [2] Example 3.5, p. 61.
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Definition 4.2.3. We called the process

X(t) = Xs,x(t) = U(t, s)x+

∫ t

s

U(t, r)f(r)dr +

∫ t

s

U(t, r)B(r)dZ(r) (4.2.3)

a mild solution of (4.2.1).

Remark 4.2.4. (4.2.3) is also the unique strong solution to (4.2.1). A strong

solution to (4.2.1) is an adapted process which satisfying the integral equation

X(t) = x+

∫ t

s

(A(r)X(r−) + f(r))dr +

∫ t

s

B(r)dZ(r)dr a.s.

In the next two propositions we see that for each fixed s < t ∈ R and x ∈

R
d, the process Xs,x(t) is an infinitely divisible random variable. In Proposition

4.2.5 we compute the characteristic function of this process. The property that

Lévy process have independent and stationary increments is important here. In

Proposition 4.2.6, we utilize the Lévy-Khintchine formula to compute the triple

of Xs,x(t).

Proposition 4.2.5. The characteristic function of the process

Y (t) =

∫ t

s

U(t, r)B(r)dZ(r)

is of the form

φY (t)(a) = exp

[
−
∫ t

s

η(B(r)TU(t, r)Ta)dr

]
.

Proof. Fix −∞ < s ≤ t <∞. Let Pn = {s = r
(n)
0 ≤ r

(n)
1 ≤ · · · ≤ r

(n)
m(n) = t} be a

sequence of partitions such that ||Pn|| → 0 as n→∞.
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By the construction of the Itô stochastic integral,

φY (t)(a) = E exp (i〈a, Y (t)〉)

= E exp

(
i〈a,

∫ t

s

U(t, r)B(r)dZ(r)〉
)

= E exp

i〈a, lim
n→∞

m(n)∑
j=1

U(t, r
(n)
j )B(r

(n)
j )(Z(r

(n)
j+1)− Z(r

(n)
j ))

〉 .

Next we take the limit out of the expectation using the Dominated Convergence

theorem,

φX0
s,t

(a) = lim
n→∞

E exp

i〈a,m(n)∑
j=1

U(t, r
(n)
j )B(r

(n)
j )(Z(r

(n)
j+1)− Z(r

(n)
j ))

〉
= lim

n→∞
E

m(n)∏
j=1

exp
(
i
〈
a, U(t, r

(n)
j )B(r

(n)
j )(Z(r

(n)
j+1)− Z(r

(n)
j ))

〉)
.

In the next several steps we use the fact that Z has independent and stationary

increments.

φX0
s,t

(a) = lim
n→∞

m(n)∏
j=1

E exp
(
i
〈
a, U(t, r

(n)
j )B(r

(n)
j )(Z(r

(n)
j+1)− Z(rnj ))

〉)

= lim
n→∞

m(n)∏
j=1

E exp
(
i
〈
B(r

(n)
j )TU(t, r

(n)
j )Ta, (Z(r

(n)
j+1)− Z(r

(n)
j ))

〉)

= lim
n→∞

m(n)∏
j=1

E exp
(
i
〈
B(r

(n)
j )TU(t, r

(n)
j )Ta, Z(r

(n)
j+1 − r

(n)
j )
〉)

.

Finally we use Theorem 2.3.5, continuity of the exponential function, and the
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definition of the integral to finish the proof.

φX0
s,t

(a) = lim
n→∞

m(n)∏
j=1

exp
(
−(r

(n)
j+1 − r

(n)
j )η(B(r

(n)
j )TU(t, r

(n)
j )Ta)

)

= lim
n→∞

exp

−m(n)∑
j=1

η(B(r
(n)
j )TU(t, r

(n)
j )Ta)(r

(n)
j+1 − r

(n)
j )


= exp

− lim
n→∞

m(n)∑
j=1

η(B(r
(n)
j )TU(t, r

(n)
j )Ta)(r

(n)
j+1 − r

(n)
j )


= exp

(
−
∫ t

s

η(B(r)TU(t, r)Ta)dr

)
.

Qed

Proposition 4.2.6. For each −∞ < s ≤ t < ∞, x ∈ Rd, the process Xs,x(t) is

infinitely divisible with the triple

(U(t, s)x+ bs,t, Rs,t,Ms,t),

where

bs,t =

∫ t

s

U(t, r)f(r)dr +

∫ t

s

U(t, r)B(r)b dr

+

∫ t

s

∫
Rd

U(t, r)B(r)y

(
1

1 + |U(t, r)B(r)y|2
− 1

1 + |y|2

)
M(dy)dr,

Rs,t =

∫ t

s

U(t, r)B(r)RB(r)TU(t, r)Tdr,

Ms,t(A) =

∫ t

s

M(B(r)−1U(t, r)−1(A))dr.
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Proof. Using Proposition 4.2.5,

φXs,x(t)(a) =E exp [i〈a,Xs,x(t)〉]

=E exp

[
i

〈
a, U(t, s)x+

∫ t

s

U(t, r)f(r)dr +

∫ t

s

U(t, r)B(r)dZ(r)

〉]
= exp

[
i

〈
a, U(t, s)x+

∫ t

s

U(t, r)f(r)dr

〉]
×

exp

[
−
∫ t

s

η(B(r)TU(t, r)Ta)dr

]
.

Now by Theorem 2.3.5,

φXs,x(t)(a) = exp

{
i

〈
a, U(t, s)x+

∫ t

s

U(t, r)f(r)dr

〉
+

+

∫ t

s

(
i
〈
b, B(r)TU(t, r)Ta

〉
− 1

2

〈
B(r)TU(t, r)Ta,RB(r)TU(t, r)Ta

〉
+

∫
Rd

[
ei〈B(r)TU(t,r)T a,y〉 − 1−

i
〈
B(r)TU(t, r)Ta, y

〉
1 + |y|2

]
M(dy)

)
dr

}
.

Next we rearrange some terms, and add and subtract i〈a,U(t,r)B(r)y〉
1+|U(t,r)B(r)y|2 to obtain

φXs,x(t)(a) = exp

{
i

〈
a, U(t, s)x+

∫ t

s

U(t, r)f(r)dr +

∫ t

s

U(t, r)B(r)b dr

〉

− 1

2

〈
a,

∫ t

s

U(t, r)B(r)RB(r)TU(t, r)Tdr a

〉
+

∫ t

s

∫
Rd

[
ei〈a,U(t,r)B(r)y〉 − 1− i 〈a, U(t, r)B(r)y〉

1 + |U(t, r)B(r)y|2

+
i 〈a, U(t, r)B(r)y〉
1 + |U(t, r)B(r)y|2

− i 〈a, U(t, r)B(r)y〉
1 + |y|2

]
M(dy)dr

}
.
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After more rearranging and a change of variables φ takes the desired form,

φXs,x(t)(a) = exp

{
i

〈
a, U(t, s)x+

∫ t

s

U(t, r)f(r)dr +

∫ t

s

U(t, r)B(r)b dr

〉

+ i

〈
a,

∫ t

s

∫
Rd

U(t, r)B(r)y

(
1

1 + |U(t, r)B(r)y|2
− 1

1 + |y|2

)
M(dy)dr

〉
− 1

2

〈
a,

∫ t

s

U(t, r)B(r)RB(r)TU(t, r)Tdr a

〉
+

∫ t

s

∫
Rd

[
ei〈a,z〉 − 1− i 〈a, z〉

1 + |z|2
M(B(r)−1U(t, r)−1dz)dr

}
.

Now we show Rs,t is non-negative definite, symmetric, and bounded, and that

Ms,t is a Lévy measure.

Let y ∈ Rd and s, t ∈ R.

〈y,Rs,ty〉 =

∫ t

s

〈
B(r)TU(t, r)Ty,RB(r)TU(t, r)Ty

〉
dr ≥ 0,

since R is non-negative definite.

Furthermore since R is symmetric,

〈y,Rs,ty〉 =

∫ t

s

〈
y, U(t, r)B(r)RB(r)TU(t, r)Ty

〉
dr

=

∫ t

s

〈
U(t, r)B(r)RB(r)TU(t, r)Ty, y

〉
dr = 〈Rs,ty, y〉 .

Let |y| ≤ 1. Since B is bounded, let CB be such that CB ≥ 1 and ||B(t)|| ≤ CB
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for all t ∈ R. By Assumption 1 we have,

|Rs,ty| =
∣∣∣∣∫ t

s

U(t, r)B(r)RB(r)TU(t, r)Tdr y

∣∣∣∣
≤
∫ t

s

∣∣U(t, r)B(r)RB(r)TU(t, r)T y
∣∣ dr

≤ C2C2
B||R||

∫ t

s

e−2ε(t−r)dr =
C2C2

B||R||
2ε

(
1− e−2ε(t−s)) .

Thus for all −∞ < s ≤ t <∞,

||Rs,t|| = sup
|y|≤1

|Rs,ty| ≤
C2C2

B||R||
2ε

<∞.

Since M is Lévy measure, set

K1 :=

∫
{|y|≤1}

|y|2M(dy),

and

K2 := M

({
|y| > 1

CCB

})
.

Then for −∞ < s ≤ t <∞, we have

∫
Rd

(
1 ∧ |y|2

)
Ms,t(dy) =

∫ t

s

∫
Rd

(
1 ∧ |y|2

)
M(B(r)−1U(t, r)−1dy)dr

=

∫ t

s

∫
Rd

(
1 ∧ |U(t, r)B(r)z|2

)
M(dz)dr ≤

∫ t

s

∫
Rd

(
1 ∧ C2C2

b |z|2
)
M(dz)dr

=

∫ t

s

[∫
n
|z|≤ 1

CCB

o (1 ∧ C2C2
b |z|2

)
M(dz)dr +

∫
n
|z|> 1

CCB

o (1 ∧ C2C2
b |z|2

)
M(dz)

]
dr

=

∫ t

s

∫
n
|z|≤ 1

CCB

o C2C2
B|y|2M(dy)dr +

∫ t

s

∫
n
|z|> 1

CCB

o M(dy)dr

≤
(
C2C2

BK1 +K2

)
(t− s) <∞.
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Qed

Note that as s→ −∞, Ms,t is an increasing family of measures. Similarly Rs,t is

an increasing family of nonnegative symmetric matrices. We define

R−∞,t :=

∫ t

−∞
U(t, r)B(r)RB(r)TU(t, r)Tdr,

and

M−∞,t(A) := sup
s<t

Ms,t(A) =

∫ t

−∞
M(B(r)−1U(t, r)−1(A))dr,

A ∈ B(Rd).

4.3 Evolution systems of measures

As in Chapter 3 we recall the transition semigroup of operators associated with

X

Ps,tf(x) = E[f(X(t)|X(s) = x] = E[f(Xs,x(t)],

for −∞ < s ≤ t <∞ and f ∈ Bb(R
d).

The transition probabilities of X are defined

ps,t(x,A) = P(X(t) ∈ A|X(s) = x),

for s < t, x ∈ Rd, A ∈ B(Rd).

Unlike in the autonomous case, the solution to (4.2.1) is not time-homogeneous,

and so we cannot expect to have a single invariant measure. Instead we look

for a family of probability measures, {νt, t ∈ R}, called an evolution family (or

evolution system) of measures.
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Definition 4.3.1. A family of Borel probability measures, {νt}t∈R is an evolution

family of measures for the semigroup of operators, Ps,t, if∫
Rd

(Ps,tf)(x)νs(dx) =

∫
Rd

f(x)νt(dx), (4.3.1)

for all −∞ < s ≤ t <∞, f ∈ Bb(R
d).

Remark 4.3.2. Similar to Remark 3.2.3, (4.3.1) need only hold for indicator

functions or for f of the form f(x) = exp(i〈a, x〉), a ∈ Rd.

In the case of f(x) = exp(i〈a, x〉), using Proposition 4.2.5, (4.3.1) becomes

ν̂s
(
U(t, s)Ta

)
exp

(
i

〈
a,

∫ t

s

U(t, r)f(r)dr

〉)
×

exp

{
−
∫ t

s

η(B(r)TU(t, r)Ta)dr

}
= ν̂t(a),

where ν̂ denotes the characteristic function of ν.

In the case of f = 11A, A ∈ B(Rd), (4.3.1) becomes

νt(A) = ps,t(0, ·) ∗ (νs ◦ U(t, s)−1·)(A). (4.3.2)

Lemma 4.3.3. Suppose Assumption 1 holds. If {νs}s∈R is an evolution system of

measures such that there exists an integer N0 where the sub-collection {νs}s<N0

is uniformly tight, then νs ◦ U(t, s)−1 → δ0 weakly as s→ −∞ for each fixed t.

Proof. Fix t and let f ∈ Cb(R
d) and choose M so that |f | ≤ M . Let ε > 0 be

given. Choose δ > 0 so that if |x| < δ, then |f(x)− f(0)| < ε/2.

Using the tightness assumption, choose R so that

νs(B̄R(0)) > 1− ε

4M



37

for s < N0.

By Assumption 1, U(t, s)x→ 0 for all x ∈ Rd as s→ −∞ Thus ||U(t, s)|| → 0 as

s→ −∞. Choose N < N0, such that if s < N , then ||U(t, s)|| ≤ δ

R
.

Then for s < N we have

∣∣∣∣∫
Rd

f(x)νs(U(t, s)−1dx)−
∫
Rd

f(x)δ0(dx)

∣∣∣∣ (4.3.3)

=

∣∣∣∣∫
Rd

f(U(t, s)x)νs(dx)−
∫
Rd

f(x)δ0(dx)

∣∣∣∣
=

∣∣∣∣∫
Rd

f(U(t, s)x)νsdx− f(0)

∣∣∣∣
Since νs is a probability measure, (4.3.3) is equal to

∣∣∣∣∫
Rd

[f(U(t, s)x)− f(0)] νs(dx)

∣∣∣∣
≤
∣∣∣∣∫
B̄R(0)

[f(U(t, s)x)− f(0)] νs(dx)

∣∣∣∣
+

∣∣∣∣∫
|x|>R

[f(U(t, s)x)− f(0)] νs(dx)

∣∣∣∣
< ε/2 + 2M · ε/4M = ε.

Qed

The next several lemmas are from [7], and are needed in the proof of Theorem

4.3.8. We will also need the notion of shift-relative compactness.

Definition 4.3.4. A set of Borel probability measures, H is said to be shift-

relatively compact if, for every sequence µn ∈ H, there is a sequence νn such that

νn is a right (or left) translate of mun, and νn has a convergent subsequence.
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Lemma 4.3.5 (Parthasarathy, Theorem III.2.2). Let X be a complete separable

metric group and let {λn}, {µn}, {νn} be three sequences of measures on X such

that λn = µn ∗ νn, n = 1, 2, ...If the sequence {λn} is relatively compact then the

sequences {µn} and {νn} are right- and left-shift compact, respectively.

Proof. See p. 59, [7]. Qed

Theorem 4.3.6 (Parthasarathy, Theorem VI.5.3). In order that a sequence µn

of infinitely divisible distributions with triples µn = [xn, Rn,Mn] be relatively

compact it is necessary and sufficient that the following hold:

(i) {Mn} restricted to to the compliment of any neighborhood of the origin is

weakly relatively compact.

(ii) {Sn} defined by (4.3.4) is compact.

(iii) xn is compact in X.

Proof. See p. 187, [7]. Qed

Theorem 4.3.7 (Parthasarathy, Theroem III.2.1). Let X be a complete separable

metric group and let {λn}, {µn}, {νn} be three sequences of measures on X such

that λn = µn∗νn for each n. If the sequences {λn} and {µn} are relatively compact

then so is the sequence {νn}.

Proof. See p. 58, [7]. Qed

Now we are ready to prove the main result of the thesis.
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Theorem 4.3.8. If there exists an evolution system of measures for Xs,x(t) then

the following conditions hold:

(i) For any t ∈ R, sup
s<t

trRs,t <∞,

(ii) For any t ∈ R,
∫ t

−∞

∫
Rd

(1 ∧ |U(t, r)B(r)y|2)M(dy)dr <∞.

If in addition,

(iii) for any t ∈ R and x ∈ Rd, U(t, s)x → 0 as s → −∞, and there exists an N

such that the collection {νt}t<N is uniformly tight,

then νt is unique and there exists b−∞,t := lims→−∞ bs,t.

Conversely if (i) and (ii) hold and lims→−∞ bs,t exists then for each t ∈ R, M−∞,t

is a Lévy measure and the evolution system of measures, νt, is given by

νt = [b−∞,t, R−∞,t,M−∞,t].

Proof. We prove the converse first. Suppose (i), (ii) hold and the limit (iii) exists.

Fix t ∈ R. Using (ii),

∫
Rd

(1 ∧ |y|2)M−∞,t(dy) =

∫
Rd

(1 ∧ |y|2)

∫ t

−∞
M(B(r)−1U(t, r)−1(dy))dr

=

∫ t

−∞

∫
Rd

(1 ∧ |y|2)M(B(r)−1U(t, r)−1(dy))dr

=

∫ t

−∞

∫
Rd

(1 ∧ |B(r)U(t, r)y|2)M(dy)dr <∞

shows that M−∞,t is a Lévy measure.
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From the computation of the Lévy triple of Xs,x(t) in Proposition 4.2.6, it follows

that

ν̂t(a) = exp

(
i

〈
a,

∫ t

−∞
U(t, r)f(r)dr

〉)
exp

{
−
∫ t

−∞
η(B(r)TU(t, r)Ta)dr

}
.

Then using Remark 4.3.2 once again,

ν̂s
(
U(t, s)Ta

)
exp

(
i

〈
a,

∫ t

s

U(t, r)f(r)dr

〉)
exp

{
−
∫ t

s

η(B(r)TU(t, r)Ta)dr

}
= exp

(
i

〈
U(t, s)Ta,

∫ s

−∞
U(s, r)f(r)dr

〉)
×

exp

{
−
∫ s

−∞
η(B(r)TU(s, r)TU(t, s)Ta)dr

}
×

exp

(
i

〈
a,

∫ t

s

U(t, r)f(r)dr

〉)
exp

{
−
∫ t

s

η(B(r)TU(t, r)Ta)dr

}
= exp

(
i

〈
a,

∫ t

−∞
U(t, r)f(r)dr

〉)
×

exp

{
−
∫ t

−∞
η(B(r)TU(t, r)Ta)dr

}
= ν̂t(a)

shows that νt is an evolution system of measures.

Suppose now that an evolution system of measures, νt, exists. Fix t, then using

Remark 4.3.2, for s < t,

νt = ps,t(0, ·) ∗ (νs ◦ U(t, s)−1) = δbs,t ∗ [0, Rs,t, 0] ∗ [0, 0,Ms,t] ∗ (νs ◦ U(t, s)−1),

where δy is the Dirac measure.

Set s = −n. Then by Lemma 4.3.5, the sequence δb−n,t ∗ [0, R−n,t, 0]∗ [0, 0,M−n,t] is

shift relatively compact. This means that there is a sequence yn ∈ Rd (depending

on t) such that

δyn ∗ δb−n,t ∗ [0, R−n,t, 0] ∗ [0, 0,M−n,t] = [yn + b−n,t, R−n,t,M−n,t]
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is weakly relatively compact.

Let Sn : Rd → R
d be a sequence of operators defined by

〈Sny, y〉 = 〈R−n,ty, y〉+

∫
|x|≤1

〈x, y〉2dM−n,t(x) (4.3.4)

By Theorem 4.3.6, the following hold:

(a) {M−n,t} restricted to the compliment of any neighborhood of the origin is

weakly relatively compact,

(b) {Sn} is compact,

(c) yn + b−n,t is compact in R
d.

Since we are in finite dimensions, part (b) simply means that supn trSn <∞ (see

Definition VI.2.4 of [7]). Part (a) implies

M−∞,t({|x| ≥ 1}) = sup
n
M−n,t({|x| ≥ 1}) <∞.

By (b) we have

trR−∞,t +

∫
|x|≤1

|x|2M−∞,t(dx) = sup
n

(
trR−∞,t +

∫
|x|≤1

|x|2M−n,t(dx)

)
= sup

n
trSn <∞.

Thus M−∞,t is a Lévy measure for each t, and (i) and (ii) hold by Lemma 3.4

of [4].

Now suppose in addition that U(t, s)x → 0 as s → −∞ and there exists an

N such that the collection {νt}t<N is uniformly tight. Then by Lemma 4.3.3,
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νs ◦ U(t, s)−1 → δ0 weakly as s → −∞. By Lemma 3.4 [4], [0, Rs,t, 0] →

[0, R−∞,t, 0] and [0, 0,Ms,t]→ [0, 0,M−∞,t] weakly as s→ −∞. Thus by the weak

continuity of convolution we conclude

[0, Rs,t, 0] ∗ [0, 0,Ms,t] ∗ (νs ◦ U(t, s)−1)→ [0, R−∞,t, 0] ∗ [0, 0,M−∞,t].

Let sn be a sequence decreasing to −∞. Then

νt = δbs,t ∗ [0, Rs,t, 0] ∗ [0, 0,Ms,t] ∗ (νs ◦ U(t, s)−1),

and by Theorem 4.3.7, the collection {δsn,t}n∈N is weakly relatively compact. Thus

there is a probability measure σt and a subsequence nk such that δsnk ,t → σ weakly.

Letting k →∞,

νt = σt ∗ [0, R−∞,t, 0] ∗ [0, 0,M−∞,t].

Taking Fourier transforms of both sides we have

σ̂t = ν̂t( ̂[0, R−∞,t, 0] · ̂[0, 0,M−∞,t])
−1,

We see that σt does not depend on the subsequence, and so δbsn,t converges weakly.

This implies that b−∞,t := limn→∞ bsn,t exists. Since sn is arbitrary, we have

b−∞,t = lims→−∞ bs,t,

Thus we have shown that

νt = δb−∞,t ∗ [0, R−∞,t, 0] ∗ [0, 0,M−∞,t]

is uniquely determined.

Qed
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4.4 Examples of evolution systems measures

In this section we give some examples where we explicitly compute the characteris-

tic functions and densities of evolution systems of measures for the time-dependent

1-dimensional Ornstein-Uhlenbeck process to which Theorem 4.3.8 applies. As in

Chapter 3, the noises we consider are a Brownian motion and an symmetric α-

stable process.

Consider a 1-dimensional version of (4.2.1),

dX(t) = λ(t) [µ(t)−X(t−)] dt+ σ(t)dZ(t),

X(s) = x, (4.4.1)

where λ, µ, σ are bounded and continuous on R. In addition we require λ(t) ≥ ε >

0 for all t ∈ R. This is essentially a time-dependent version of the mean-reverting

Ornstein-Uhlenbeck process given by (3.1.2). In one dimension the evolution

operator has the form U(t, s) = e−
R t
s λ(r)dr. The positivity condition on λ implies

Assumption 1 is satisfied.

We write the solution to (4.4.1),

X(t) = Xs,x(t) =e−
R t
s λ(u)dux+

∫ t

s

e−
R t
r λ(u)duλ(r)µ(r)dr

+

∫ t

s

e−
R t
r λ(u)duσ(r)dZ(r). (4.4.2)

The transition semigroup associated with X is computed in a manner similar to
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Examples 3.3.1 and 3.3.2,

Ps,tf(x) = Ef(Xs,x(t)) =

∫ ∞
−∞

f
(
e−

R t
s λ(r)drx+ y

)
ps,t(0, dy).

Example 4.4.1. Let Z(t) be 1-dimensional Brownian motion. Then for each

t > s,

Xs,x(t) ∼ N
(
e−

R t
s λ(u)dux+

∫ t

s

e−
R t
r λ(u)duλ(r)µ(r)dr,

∫ t

s

e−2
R t
r λ(u)duσ(r)2dr

)
.

By Theorem 4.3.8, the collection of Gaussian measures, {νt, t ∈ R}, given by

νt ∼ N
(∫ t

−∞
e−

R t
r λ(u)duλ(r)µ(r)dr,

∫ t

−∞
e−2

R t
r λ(u)duσ(r)2dr

)
,

is the unique evolution system of measures for X.

Example 4.4.2. Now we consider the case where Z(t) is symmetric, α-stable

for 0 < α < 2. Then for each t > s, the law of Xs,x(t) is α-stable and has

characteristic function

φXs,x(t)(a) = exp

{
i

(
e−

R t
s λ(u)dux+

∫ t

s

e−
R t
r λ(u)duλ(r)µ(r)dr

)
a

−
∫ t

s

e−α
R t
r λ(u)du[σ(r)]αdr |a|α

}
.

The collection of measures, {νt, t ∈ R}, with characteristic functions

ν̂t = exp

{
i

∫ t

−∞
e−

R t
r λ(u)duλ(r)µ(r)dr a−

∫ t

−∞
e−α

R t
r λ(u)du[σ(r)]αdr |a|α

}
,

is the unique evolution system of measures for X. In the case where α = 1, we

can write the densities of the νt,

fνt(y) =
a(t)

π
[
(y − b(t))2 + (a(t))2] ,
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where

a(t) =

∫ t

−∞
e−

R t
r λ(u)duσ(r)dr,

and

b(t) =

∫ t

−∞
e−

R t
r λ(u)duλ(r)µ(r)dr.
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