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Abstract. The calculus of variations addresses the need to optimize certain quantities over sets of
functions. We begin by defining the notion of a functional and its role in performing calculus on
variations of curves. In order to identify those functions which are extremals of a functional, we
establish the first variation and the Euler-Lagrange Equations. A formulation of the second variation
follows, providing a means of identifying different types of extremals. Both the first and second
variations are illustrated using several examples. We then introduce the calculus of variations as
it applies to classical mechanics, resulting in the Principle of Stationary Action, from which we
develop the foundations of Lagrangianmechanics. Finally, we examine an extension of the calculus of
variations in optimal control. We concludewith Pontryagin’sMaximumPrinciple and its applications
in control theory.
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1. Introduction

On the first of January, 1697, Swiss mathematician Johann Bernoulli published a challenge prob-
lem as his New Year’s gift to the mathematical world. The problem, which he dubbed the “brachis-
tochrone” problem from the Greek words brachistos and chronos, meaning “shortest” and “time,”
respectively, stated:

To determine the curved line joining two given points, situated at different distances
from the horizontal and not in the same vertical line, along which a mobile body,
running down by its own weight and starting to move from the upper point, will
descend most quickly to the lowest point. [Ric96]

While not entirely new, having been attempted by Galileo in 1638, Bernoulli himself was the first
to provide a correct solution. Several solutions were submitted, including those of famed figures
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such as Leibniz, Newton, and L’Hospital. However, it was Johann’s older brother, Jakob, whose
solution eventually laid the groundwork for what would become known as the calculus of varia-
tions. Jakob noticed that the problem was of a new type: the variables were functions. Indeed, the
brachistochrone problem is an example of an instance in which one wishes to optimize a function
whose domain is a space of functions. Such a function is called a functional, the focal point of the
calculus of variations.

More generally, a functional is defined as “any mapping from the space of curves to the real
numbers” [Arn78]. Before we delve into defining functionals and the necessary conditions for
optimization, however, we will establish some basic notation:

(1) Let f : R→ Rk. Then, we denote by ḟ the time derivative, df/dt, or its equivalent in the
context of a given problem. Similarly, we use f̈ to denote d2f/dt2.

(2) For qi : R → R we use q : R → Rk to denote q (t) = (q1 (t) , q2 (t) , ..., qk (t)). Likewise,
q̇ and q̈ denote q̇ (t) = (q̇1 (t) , q̇2 (t) , ..., q̇k (t)) and q̈ (t) = (q̈1 (t) , q̈2 (t) , ..., q̈k (t)), re-
spectively. In the case of k = 1, we simply write q, q̇, and q̈.

(3) For x,y ∈ Rk, we write xy to denote the product xTy = (x1y1, x2y2, ..., xkyk) ∈ Rk.
(4) We say a function f : U → Rk is of class Cn if it is at least n-times continuously differen-

tiable on the open set U ⊂ R.
With this notation we can now begin to formally define a functional.

Definition 1.1. Let u ∈ C1 such that u : (t1, t2)→ U ⊂ R and L : U × Rk × R→ R be of class
C1. Then, the quantity J : C1 → R given by

J[u] =

∫ t2

t1

L (u, u̇, t) dt

is called an objective functional, which we refer to simply as a functional.

A functional has as its domain a set of functions and as its range the real numbers. The function
L (q, q̇, t) in the integrand is known as the Lagrangian. Often, quantities related to dynamical sys-
tems can be expressed using a Lagrangian. Thus, it is reasonable to suppose that if we construct the
appropriate Lagrangian for a specific system, the range of the functional will be a quantity which
we may want to optimize over a given set of functions. This is the basis for the study of the calculus
of variations. In this paper we will explore the fundamentals of the calculus of variations. We begin
by establishing the first variation and the Euler-Lagrange equations before introducing the second
variation through an analysis of the quadratic functional. Both the first and second variations are
illustrated through several well known examples, including geodesics, the minimal surface of revo-
lution, and the bractistochrone. We then utilize the first variation in the formulation of Lagrangian
mechanics via Hamilton’s Principle of Stationary Action. We conclude with a discussion of ba-
sic optimal control theory and Pontryagin’s Maximum Principle as an extension of the calculus of
variations.

2. The First Variation

Recall from calculus that, given a function f : Rk → R, a process of optimization was determin-
ing the points at which local maxima andminima of f were obtained. This involved two steps which
utilized derivatives of the function. First, candidates for local maxima and minima were found by
locating critical points, values for which the gradient, ∇f = (∂f/∂x1, ∂f/∂x2, ..., ∂f/∂xk, ), is
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zero (the first derivative test). Critical points were then classified as local maxima, minima, or sad-
dle points based on a concavity argument established using the second partial derivatives of f (the
second derivative test). In order to optimize a functional we wish to develop functional analogues
to these first and second derivative tests. For now, we will focus on finding the critical functions
which will be our candidates for local maxima and minima. Our treatment of the subject is inspired
by the work of [Olv12].

We turn first to the task of finding the functional gradient, denoted∇J[u], which will be the cen-
terpiece of our first derivative test for functionals. We treat the functional gradient as a directional
derivative,

〈∇J[u],v〉 =
d

dλ
J[u + λv]

∣∣∣
λ=0

,

where λ ∈ R. The function v representing the direction of the derivative is called a variation of the
function u and the resulting functional gradient is the first variation of J[u]. The inner product is
the standard L2 inner product for real functions, 〈f, g〉 =

∫
f (x) g (x) dx. We are now in a position

to explicitly define the functional gradient.

Proposition 2.1 (The First Variation). Let u : [t1, t2]→ Rk be a function of class C2 satisfying the
boundary conditions u (t1) = x1, u (t2) = x2. Then, the first variation of the functional J[u] is
given by the functional gradient,

∇J[u] =
∂

∂u
L (u, u̇, t)− d

dt

(
∂

∂u̇
L (u, u̇, t)

)
, (1)

where L (u, u̇, t) ∈ C2 is the associated Lagrangian.

Proof. Let v ∈ C2 be a variation of u. Then, v : [t1, t2] → Rk satisfies the boundary conditions
u (t1) + λv (t1) = x1 and u (t2) + λv (t2) = x2. By definition, the first variation of J[u] is given
by the inner product

〈∇J[u],v〉 =
d

dλ
J[u + λv]

∣∣∣
λ=0

=
d

dλ

[∫ t2

t1

L (u + λv, u̇ + λv̇, t) dt

] ∣∣∣
λ=0

=

∫ t2

t1

d

dλ
L (u + λv, u̇ + λv̇, t)

∣∣∣
λ=0

dt

for λ ∈ R. Applying the chain rule and evaluating at λ = 0 yields

〈∇J[u],v〉 =

∫ t2

t1

[
v
∂ [L (u + λv, u̇ + λv̇, t)]

∂ (u + λv)
+ v̇

∂ [L (u + λv, u̇ + λv̇, t)]

∂ (u̇ + λv̇)

] ∣∣∣
λ=0

dt

=

∫ t2

t1

[
v

∂

∂u
L (u, u̇, t) + v̇

∂

∂u̇
L (u, u̇, t)

]
dt .

We eliminate the v̇ term in the integrand by integrating the second summand by parts:∫ t2

t1

v̇
∂

∂u̇
L (u, u̇, t) dt = (v)L (u, u̇, t)

∣∣∣t2
t1
−
∫ t2

t1

v
d

dt

(
∂

∂u̇
L (u, u̇, t)

)
dt . (2)

Since u + λv and u satisfy the same boundary conditions, we see that v (t1) = v (t2) = 0. Thus,
substituting equation (2) back into the inner product gives us

〈∇J[u],v〉 =

∫ t2

t1

[
v

∂

∂u
L (u, u̇, t)− v

d

dt

(
∂

∂u̇
L (u, u̇, t)

)]
dt
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=

∫ t2

t1

v

[
∂

∂u
L (u, u̇, t)− d

dt

(
∂

∂u̇
L (u, u̇, t)

)]
dt .

Equating this result with the integral form of the inner product yields∫ t2

t1

v ∇J[u] dt =

∫ t2

t1

v

[
∂

∂u
L (u, u̇, t)− d

dt

(
∂

∂u̇
L (u, u̇, t)

)]
dt .

Because v is a random variation of u, this equality must hold for all choices of v. Thus, we obtain

∇J[u] =
∂

∂u
L (u, u̇, t)− d

dt

(
∂

∂u̇
L (u, u̇, t)

)
,

as desired. �

Much like the first derivative test in calculus, a function in the domain of a functional is a critical
function if it causes the functional gradient to vanish. Thus, our set of critical functions are stable
points of the first variation. This leads us to our first theorem.

Theorem 2.2 (The Necessary Condition of Euler-Lagrange). Suppose u and L (u, u̇, t) satisfy the
hypotheses of Proposition 2.1. Then, u is a critical function of J[u] if and only if

∂

∂u
L (u, u̇, t) =

d

dt

(
∂

∂u̇
L (u, u̇, t)

)
. (3)

Proof. In order to be a critical function, u must satisfy∇J[u] = 0. From Proposition 2.1, we have
that

∇J[u] =
∂

∂u
L (u, u̇, t)− d

dt

(
∂

∂u̇
L (u, u̇, t)

)
.

Equating this to zero immediately yields the desired result,

∂

∂u
L (u, u̇, t) =

d

dt

(
∂

∂u̇
L (u, u̇, t)

)
.

�

The set of equations (3) are refered to as the Euler-Lagrange Equations. Since the majority of
problems in the calculus of variations involve finding local minima of functionals, satisfying these
equations is a condition we will require of solutions. Indeed, the Euler-Lagrange Equations often
yield only the desired solutions to these problems, without the need for further analysis. Since we
will use them frequently, we abbreviate the Euler-Lagrange Equations by

∂L
∂u

=
d

dt

(
∂L
∂u̇

)
for the remainder of the text.

Example 2.3 (Planar Geodesic). Our first example of a variational problem is the planar geodesic:
given two points lying in a plane, we want to determine the path of shortest distance between them.
Let (x1, y1), (x2, y2) denote two points in the plane and u : [x1, x2] → R be of class C2 satisfying
the boundary conditions u (x1) = y1, u (x2) = y2. Our goal is to determine which function u has
minimal arclength between these points. Naturally, we expect this function to be linear.
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First, we must formulate the arclength Lagrangian. From calculus, we know that the arclength
of a curve, which we denote |u|, is given by the sum

|u| = lim
n→∞

n∑
i=1

|Pi − Pi−1| , (4)

where each Pi = (xi, yi) is a point on the curve between the boundaries. For |Pi − Pi−1|, the
arclength is calculated using the linear distance formula:

|Pi − Pi−1| =
√

(xi − xi−1)2 + (yi − yi−1)2 =
√

(∆xi)2 + (∆yi)2 .

By the Mean Value Theorem, we also have that ∆yi = u̇ (x∗i ) ∆xi for some x∗i ∈ (xi−1, xi). Thus,

|Pi − Pi−1| =
√

(∆xi)2
(
1 + u̇ (x∗i )

2) = ∆xi

√
1 + u̇ (x∗i )

2 .

Substiting this into equation (4) gives us

|u| = lim
n→∞

n∑
i=1

∆xi

√
1 + u̇ (x∗i )

2 =

∫ x2

x1

√
1 + u̇ (x)2 dx .

Notice that this result is a functional and the arclength Lagrangian is the integrand. Thus, to deter-
mine the planar geodesic we want to minimize the functional

J[u] =

∫ x2

x1

L (u, u̇, x) dx

with Lagrangian given by

L(u, u̇, x) =
√

1 + u̇2 .

From Theorem 2.2, we require that any minimizer of J[u] satisfy the Euler-Lagrange Equations. In
this case, there is only one:

∂L
∂u

=
d

dx

(
∂L
∂u̇

)
.

Taking each side of the equation separately, we have
∂L
∂u

= 0 ,

d

dx

(
∂L
∂u̇

)
=

d

dx

(
u̇√

1 + u̇2

)
=

ü

(1 + u̇2)3/2
.

Thus, any minimizing curve satisfies the differential equation
ü

(1 + u̇2)3/2
= 0 . (5)

Clearly, equation (5) is equivalent to ü = 0. The function which satisfies this equation is necessarily
linear. Explicitly, the shortest path between two points (x1, y1), (x2, y2) in the plane is the straight
line given by

u (x) =

(
y2 − y1

x2 − x1

)
x+

y1x2 − x1y2

x2 − x1

. (6)

5



This confirms our initial intuition, although further work is necessary to complete the proof that
this critical function is actually a minima and not a maxima or saddle point. Later, we will develop
the tools necessary to do this.

Let us look now at an alternative method for determining the critical functions of J[u]. For this,
we introduce Poisson’s variables and Hamilton’s Equations.

Definition 2.4. Let u ∈ C2 and L (u, u̇, t) be a Lagrangian. We define p ∈ C2 to be Poisson’s
variables,

p =
∂

∂u̇
L (u, u̇, t) , (7)

and the quantity
H (u,p, t) = pu̇− L (u, u̇, t)

to be theHamiltonian, which is the Legendre transform of the Lagrangian. Then,Hamilton’s Equa-
tions are given by

u̇ =
∂

∂p
H (u,p, t) ,

ṗ = − ∂

∂u
H (u,p, t) .

Further information on the Legendre transform of the Lagrangian is available in [Arn78]. Having
defined the Hamiltonian, we are now in a position to introduce our second theorem.

Theorem 2.5. Let u,p ∈ C2 satisfy equations (7), L (u, u̇, t) be a Lagrangian, and H (u,p, t) be
the associated Hamiltonian. Then, Hamilton’s Equations and the Euler-Lagrange Equations are
equivalent.

Proof. The total derivative of the Hamiltonian is given by the chain rule:
d

dt
H (u,p, t) = u̇

∂

∂u
H (u,p, t) + ṗ

∂

∂p
H (u,p, t) +

∂

∂t
H (u,p, t) .

Using the definition of the Hamiltonian, we also have that this total derivative is given by
d

dt
H (u,p, t) =

d

dt
(pu̇− L (u, u̇, t)) = −u̇

∂

∂u
L (u, u̇, t) + ṗu̇− ∂

∂t
L (u, u̇, t) .

Since these two expressions must be equal, we necessarily have
∂

∂u
H (u,p, t) = − ∂

∂u
L (u, u̇, t) ,

∂

∂p
H (u,p, t) = u̇ ,

∂

∂t
H (u,p, t) = − ∂

∂t
L (u, u̇, t) .

Clearly, the second of these equations is true since it is one of Hamilton’s Equations. Thus, we need
only show that

∂

∂u
H (u,p, t) = − ∂

∂u
L (u, u̇, t)
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if and only ifu satisfies both Hamilton’s Equations and the Euler-Lagrange Equations. First, assume
u satisfies Hamilton’s Equations. Then, we see by substitution that

ṗ =
∂

∂u
L (u, u̇, t) .

Second, assume u satisfies the Euler-Lagrange Equations. Then, taking the time derivative of equa-
tions (7),

ṗ =
d

dt

(
∂

∂u̇
L (u, u̇, t)

)
,

and applying the Euler-Lagrange Equations gives us

ṗ =
∂

∂u
L (u, u̇, t) .

Since both cases yield the same result, we conclude that Hamilton’s Equations and the Euler-
Lagrange Equations are equivalent, as desired. �

Due to the symmetry of Hamilton’s Equations, theywill lead us to some convenient ways of deter-
mining critical functions of J[u]. Since we will use them frequently, we abbreviate the Lagrangian
and Hamiltonian by L and H, respectively, and Hamilton’s Equations by

u̇ =
∂H
∂p

ṗ = −∂H
∂u

for the remainder of the text.

Example 2.6 (The Brachistochrone). Let us now consider the example which we introduced as the
origin of the calculus of variations, the brachistochrone problem. A bead, initially at rest, is allowed
to slide down a wire with endpoints fixed at different heights, not directly above one another, due
solely to its own weight. The length and shape of the wire are not specified. We want to determine
the shape of the wire which minimizes the time it takes for the bead to travel its length.

Without loss of generality, let (0, 0), (x1, y1) be the endpoints of a wire such that x1 > 0 and
y1 > 0 (we define our coordinate system so that the downward direction is +y). Moreover, let
u : [0, x1]→ R be of class C2 satisfying the boundary conditions u (0) = 0, u (x1) = y1. Our goal
is to determine which function u describes the path of the bead as it slides along the wire in the
least amount of time. Unlike in our first example, the result is far from intuitive.

First, we must formulate the time Lagrangian. From Example 2.3, we know that the arclength is
given by

|u| = lim
n→∞

n∑
i=1

∆xi

√
1 + u̇ (x∗i )

2 ,

from which we obtain the arclength element, ∆S:

∆S = ∆x
√

1 + u̇2 .

Since the instantaneous speed of the bead along the curve is given by

v (x) =
∆S

∆t
,

7



rearranging and substitution yields

∆t =
∆S

v
= ∆x

√
1 + u̇2

v
. (8)

To find v, we use the principle of energy conservation. Notice that u(0) = 0 and, since the bead
starts at rest, v(0) = 0. This means that at x = 0 the kinetic energy,

T =
1

2
mv2 ,

and potential energy,
U = −mgu ,

of the system are both zero. Thus, the total energy, T + U , is also zero, and by conservation of
energy we have that

T + U = 0 ⇒ 1

2
mv2 = mgu ⇒ v =

√
2gu .

Substituting this quantity into equation (8) gives us that the time Lagrangian is

L(u, u̇, x) =
∆t

∆x
=

√
1 + u̇2

2gu
.

Thus, to find the curve whichminimizes the time it takes for the bead to travel from (0, 0) to (x1, y1),
we want to minimize the functional

J[u] =

∫ x1

0

√
1 + u̇2

2gu
dx .

From Theorem 2.2, we require that any minimizer of J[u] satisfy the Euler-Lagrange Equations.
Once again, there is only one:

∂L
∂u

=
d

dx

(
∂L
∂u̇

)
.

Thus, we have

∂L
∂u

=
∂

∂u

(√
1 + u̇2

2gu

)
=
−g
√

1 + u̇2

(2gu)3/2
,

d

dx

(
∂L
∂u̇

)
=

d

dx

[
∂

∂u̇

(√
1 + u̇2

2gu

)]
=

d

dx

(
u̇√

2gu (1 + u̇2)

)
=

2guü− gu̇2 (1 + u̇2)

(2gu (1 + u̇2))3/2
.

Any minimizing curve must therefore satisfy the differential equation

2guü− gu̇2 (1 + u̇2)

(2gu (1 + u̇2))3/2
=
−g
√

1 + u̇2

(2gu)3/2
,

which can be simplified to

2uü+ u̇2 + 1 = 0 . (9)
8



This second order differential equation is rather complicated and difficult to solve. Luckily, Hamil-
ton’s Equations yield a much simpler solution. Using Hamilton’s Equations, we can write the
Hamiltonian as

H = pu̇− L = u̇
∂L
∂u̇
− L .

Since L does not depend explicitly on x, we have ∂L/∂x = 0. This necessarily means that

dH
dx

=
d

dx

(
u̇
∂L
∂u̇
− L

)
= 0 ⇒ u̇

∂L
∂u̇
− L = C ,

for some constant C. Thus,

u̇
∂L
∂u̇
− L = C

⇒ u̇

(
u̇√

2gu (1 + u̇2)

)
−

√
1 + u̇2

2gu
= C

⇒ −1√
2gu (1 + u̇2)

= C .

From this we conclude that any minimizing curve must also satisfy the differential equation(
1 + u̇2

)
u = k2 , where k2 =

−1

2gC2
. (10)

This equation is much more familiar than equation (9). Rearranging terms, we can express equation
(10) as

u̇2 =
k2 − u
u

,

which resembles the more general differential equation

ẏ2 =
2R− y
y

. (11)

Equation (11) is separable and can be solved by direct integration using the trigonometric substitu-
tion y = R (1− cos t):

ẏ =
dy

dx
=

√
2R− y
y

⇒
∫ √

y

2R− y
dy =

∫
dx

⇒
∫ √

(1− cos t)

(1 + cos t)
R sin (t) dt = x+ C

⇒
∫
R (1− cos t) dt = x+ C

⇒ x = R (t− sin t)− C
9



where C is a constant of integration. This solution, parametrized by the equations{
x = R (t− sin t)

y = R (1− cos t)
,

where C is taken to be zero for simplicity, is the cycloid formed by revolutions of a circle of radius
R. Thus, if we let R ≡ 1

2
k2, the solution to equation (10) is the cycloid given by{

x = 1
2
k2 (t− sin t)

u = 1
2
k2 (1− cos t)

. (12)

Explicitly, the path between the points (0, 0), (x1, y1) which minimizes the bead’s time of travel
is given by the parametrization in equation (12) with constant k and time t1 determined from the
boundary condition u (x1) = y1:

x1 =
1

2
k2 (t1 − sin t1) ,

y1 =
1

2
k2 (1− cos t1) .

The brachistochrone curve is therefore a cycloid. This result is not immediately obvious, illustrating
the utility of the calculus of variations.

Notice that the derivation of equation (10) required that the Hamiltonian be independent of the
variable x. In general, if dH/dt = 0 we call the Hamiltonian a conserved quantity. In such cases,
the Hamiltonian is the integral solution to a differential equation. For this reason, we refer to it
as a first integral solution. Problems in which the Hamiltonian is a first integral solution can be
somewhat easier to solve using Hamilton’s Equations than the Euler-Lagrange Equations. Because
of this, we would like to have a way of determining when the Hamiltonian is a conserved quantity.

Proposition 2.7. Let u,p,L, and H satisfy the hypotheses of Theorem 2.5. Then, the Hamiltonian
is a first integral solution satisfying dH/dt = 0 if and only if ∂L/∂t = 0.

Proof. Recall from the proof of Theorem 2.5 that the total derivative of the Hamiltonian is given
by

dH
dt

= −u̇
∂L
∂u

+ ṗu̇− ∂L
∂t

and that ṗ = ∂L/∂u. Combining these results yields

dH
dt

= −ṗu̇ + ṗu̇− ∂L
∂t

= −∂L
∂t

.

For the Hamiltonian to be a first integral solution, we require that dH/dt = 0. Clearly, this only
holds if ∂L/∂t = 0, as desired. �

Although both the Euler-Lagrange Equations and Hamilton’s Equations will yield the same critical
functions of J[u], in practice one is usually simpler and easier to work with than the other. We will
generally use the simpler of the two and omit the other whenever possible.
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3. The Second Variation

As we have already discussed, the first variation of a functional allows us to determine its critical
functions, those which are candidates for optimization. Often, it only gives us the minimizers we
are looking for, but we cannot fully prove that a particular critical function is actually a minimizer
with the first variation alone. To do that, we will need to develop more tools. To this end, we
now shift our attention toward determining the functional analogue to the second derivative test in
calculus. Let us begin by looking at the first few terms in the Taylor expansion of J[u +λv], where
v is a variation of u:

J[u + λv] = J[u] + λ 〈∇J[u],v〉+
1

2
λ2 Q[u,v] + ... .

If u is a critical function, we know that 〈∇J[u],v〉 vanishes by Theorem 2.2, so the behavior of the
functional is relient upon the second derivative terms, Q[u,v]. These terms are called the second
variation of J[u] and are given by the second functional derivative,

Q[u,v] =
d2

dλ2
J[u + λv]

∣∣∣
λ=0

.

Proposition 3.1 (The Second Variation). Let u, L (u, u̇, t) satisfy the hypotheses of Proposition 2.1
and v ∈ C2 be a variation of u. Then, the second variation of the functional J[u] is given by

Q[u,v] =

∫ t2

t1

[
v2 ∂2

∂u2
L (u, u̇, t) + 2vv̇

∂2

∂u∂u̇
L (u, u̇, t) + v̇2 ∂2

∂u̇2
L (u, u̇, t)

]
dt . (13)

Proof. By definition, the second variation of J[u] is given by the derivative

Q[u,v] =
d2

dλ2
J[u + λv]

∣∣∣
λ=0

=
d

dλ
〈∇J[u],v〉

∣∣∣
λ=0

for λ ∈ R. From the proof of Proposition 2.1, we know that

〈∇J[u],v〉 =

∫ t2

t1

[
v
∂ [L (u + λv, u̇ + λv̇, t)]

∂ (u + λv)
+ v̇

∂ [L (u + λv, u̇ + λv̇, t)]

∂ (u̇ + λv̇)

] ∣∣∣
λ=0

dt ,

so we have

Q[u,v] =

∫ t2

t1

d

dλ

[
v
∂ [L (u + λv, u̇ + λv̇, t)]

∂ (u + λv)
+ v̇

∂ [L (u + λv, u̇ + λv̇, t)]

∂ (u̇ + λv̇)

] ∣∣∣
λ=0

dt . (14)

Applying the chain rule to each summand yields

d

dλ

(
v
∂ [L (u + λv, u̇ + λv̇, t)]

∂ (u + λv)

)
= v2 ∂

2 [L (u + λv, u̇ + λv̇, t)]

∂ (u + λv)2 + vv̇
∂2 [L (u + λv, u̇ + λv̇, t)]

∂ (u + λv) ∂ (u̇ + λv̇)
,

d

dλ

(
v̇
∂ [L (u + λv, u̇ + λv̇, t)]

∂ (u̇ + λv̇)

)
= vv̇

∂2 [L (u + λv, u̇ + λv̇, t)]

∂ (u + λv) ∂ (u̇ + λv̇)
+ v̇2 ∂

2 [L (u + λv, u̇ + λv̇, t)]

∂ (u̇ + λv̇)2 ,

11



so substituting this back into equations (14) and evaluating at λ = 0 gives us

Q[u,v] =

∫ t2

t1

[
v2 ∂2

∂u2
L (u, u̇, t) + 2vv̇

∂2

∂u∂u̇
L (u, u̇, t) + v̇2 ∂2

∂u̇2
L (u, u̇, t)

]
dt

as desired. �

Much like for a critical point of a function in calculus, a critical function u is a minimizer of the
functional J[u] if it makes the second variation positive definite for any nonzero variation v. This
is the basis of our next theorem.

Theorem 3.2. Suppose u, v, and L (u, u̇, t) satisfy the hypotheses of Proposition 3.1 such that u
is a critical function of J[u]. Then, u is a local minimum of J[u] if and only if

v2 ∂2

∂u2
L (u, u̇, t) + 2vv̇

∂2

∂u∂u̇
L (u, u̇, t) + v̇2 ∂2

∂u̇2
L (u, u̇, t) > 0 (15)

for every nonzero variation v.

Proof. In order to be a minimizer, u must satisfy Q[u,v] > 0 for any nonzero variation v. From
Proposition 3.1, we have that

Q[u,v] =

∫ t2

t1

[
v2 ∂2

∂u2
L (u, u̇, t) + 2vv̇

∂2

∂u∂u̇
L (u, u̇, t) + v̇2 ∂2

∂u̇2
L (u, u̇, t)

]
dt .

Clearly, Q[u,v] > 0 if and only if the integrand is positive definite. This immediately yields the
desired result,

v2 ∂2

∂u2
L (u, u̇, t) + 2vv̇

∂2

∂u∂u̇
L (u, u̇, t) + v̇2 ∂2

∂u̇2
L (u, u̇, t) > 0 .

Since v is a random variation of u, we require that this holds for every nonzero variation v. �

Although we omit it here, it is interesting to point that if we replace the positive definiteness in
Theorem 3.2 with negative definiteness everywhere we obtain a similar result for the local maxima
of a functional.

Theorems 2.2 and 3.2 provide a complete framework for finding minimizing functions for any
functional. We will abbreviate equations (15) using the standard notation of this text,

v2 ∂
2L
∂u2

+ 2vv̇
∂2L
∂u∂u̇

+ v̇2 ∂
2L
∂u̇2

> 0 .

Example 3.3 (Planar Geodesic Revisited). Recall from Example 2.3 that the shortest path between
two points in the plane is the straight line given in equation (6). However, we did not actually prove
that this function is a minimizer of the associated functional, so at most we know that it is a critical
function. To prove that it is also a minimizer, we must look at the second variation. Since the
Lagrangian is given by

L (u, u̇, x) =
√

1 + u̇2 ,
we have that

∂2L
∂u2

= 0 ,

∂2L
∂u∂u̇

= 0 ,
12



∂2L
∂u̇2

=
∂

∂u̇

(
u̇√

1 + u̇2

)
=

1

(1 + u̇2)3/2
.

For our critical function we have

u =

(
y2 − y1

x2 − x1

)
x+

y1x2 − x1y2

x2 − x1

⇒ u̇ =
y2 − y1

x2 − x1

,

so, defining α ≡ (y2 − y1) / (x2 − x1), we obtain

v2 ∂
2L
∂u2

+ 2vv̇
∂2L
∂u∂u̇

+ v̇2 ∂
2L
∂u̇2

= v̇2

(
1

(1 + u̇2)3/2

)
=

v̇2

(1 + α2)3/2
.

According to Theorem 3.2, to be a minimizer we require that u satisfy v̇2/ (1 + α2)
3/2

> 0 for any
nonzero variation v. It is clear that (1 + α2)

3/2
> 0, so we need only check that v̇2 > 0. Since v

is a nonzero variation of u satisfying the boundary conditions v (x1) = v (x2) = 0, we necessarily
have that v is nonconstant. This gives us that v̇ 6= 0, so v̇2 > 0. Thus, u satisfies Theorem 3.2
and is a minimizer of the planar arclength functional. We have finally proven that the shortest path
between two points in the plane is indeed a straight line.

Unfortunately, equations (15) are often difficult to evaluate in practice. For this reason, we would
like to have an alternative approach to proving positive definiteness of the second variation. No-
tice that if we integrate the mixed partial derivative term in equations (13) by parts we obtain an
alternative form of the second variation:

Q[u,v] =

∫ t2

t1

[
v2 ∂

2L
∂u2

+ 2vv̇
∂2L
∂u∂u̇

+ v̇2 ∂
2L
∂u̇2

]
dt

=

∫ t2

t1

[
v2 ∂

2L
∂u2

+ v̇2 ∂
2L
∂u̇2

]
dt+

(
v2 ∂2L

∂u∂u̇

) ∣∣∣t2
t1
−
∫ t2

t1

v2 d

dt

(
∂2L
∂u∂u̇

)
dt

=

∫ t2

t1

[
v̇2 ∂

2L
∂u̇2

+ v2

(
∂2L
∂u2
− d

dt

(
∂2L
∂u∂u̇

))]
dt ,

where the third equality takes advantage of the boundary conditions on v, v (t1) = v (t2) = 0. If
we fix the function u and define R ≡ ∂2L/∂u̇2, S ≡ ∂2L/∂u2 − d

dt
(∂2L/∂u∂u̇), then the second

variation becomes a functional over the domain of admissible variations,

J[v] =

∫ t2

t1

(
Rv̇2 + Sv2

)
dt ,

with Lagrangian L (v, v̇, t) = Rv̇2+Sv2, which is the standard quadratic functional. Thus, in order
to determine when the second variation Q[u,v] is positive definite we can choose to concentrate
instead on finding conditions under which the quadratic functional J[v] is positive definite. Our
treatment of this subject draws from that of [GF63].

Proposition 3.4. Let v : [t1, t2]→ Rk be of class C1 such that v (t1) = v (t2) = 0, v 6= 0, and let
R, S be continuous functions of t. If the functional

J[v] =

∫ t2

t1

(
Rv̇2 + Sv2

)
dt

is positive definite, then R ≥ 0 for all t ∈ [t1, t2].
13



Proof. It will suffice to show that if R < 0 for some t ∈ [t1, t2], then J[v] ≤ 0. Without loss of
generality, let t0 ∈ [t1, t2] such that R (t0) = −2δ, δ > 0. Since R is continuous on the interval,
there exists ε > 0 such that t1 ≤ t0 − ε < t0 + ε ≤ t2 and R < −δ for all t ∈ [t0 − ε, t0 + ε].
Suppose we define v by

vi =

{
sin2

(
π
ε

(t− t0)
)

for t ∈ [t0 − ε, t0 + ε]

0 otherwise

for each i ∈ {1, 2, ..., k}. Then,∫ t2

t1

(
Riv̇2

i + Siv2
i

)
dt =

∫ t0+ε

t0−ε
Ri
[
π

ε
sin

(
2π

ε
(t− t0)

)]2

dt

+

∫ t0+ε

t0−ε
Si sin4

(π
ε

(t− t0)
)

dt

<

∫ t0+ε

t0−ε

(
−π

2

ε2
δ

)
dt+

∫ t0+ε

t0−ε
Mi dt

= −2π2

ε
δ + 2Mi ε

whereMi = maxt1≤t≤t2 |Si|. Since − (2π2/ε) δ + 2Mi ε < 0 for sufficiently small ε, we have that

J[v] =

∫ t2

t1

(
k∑
i=1

(
Riv̇2

i + Siv2
i

))
dt ≤

k∑
i=1

(
−2π2

ε
δ + 2Mi ε

)
< 0 .

Thus, J[v] ≤ 0 when R < 0 for some t ∈ [t1, t2], so we conclude that R ≥ 0 for all t ∈ [t1, t2]
whenever J[v] > 0, as desired. �

Proposition 3.4 leads us directly to our next theorem.

Theorem 3.5 (The Legendre Condition). Suppose u, v and L satisfy the hypotheses of Theorem
3.2. If u is a local minimum of J[u], then

∂2L
∂u̇2
≥ 0 (16)

for all t ∈ [t1, t2].

Proof. In order to be a minimizer, u must satisfy Q[u,v] > 0 for any nonzero variation v. Since
u is a fixed critical function of J[u], we can rewrite the second variation as the functional

J[v] =

∫ t2

t1

[
v̇2 ∂

2L
∂u̇2

+ v2

(
∂2L
∂u2
− d

dt

(
∂2L
∂u∂u̇

))]
dt .

Using this equality, it follows immediately from Proposition 3.4 that if Q[u,v] > 0, then

∂2L
∂u̇2
≥ 0

for all t ∈ [t1, t2]. Thus, equations (16) hold whenever u is a minimizer of J[u], as desired. �
14



The Legendre condition provides us with a necessary condition for minimization. Although it is
not sufficient for determining whether a critical function is a minimum, we can take advantage of it
in certain examples to further narrow our list of candidate functions obtained via the Euler-Lagrange
equations.

Example 3.6 (The Brachistochrone Revisited). Recall from Example 2.6 that the critical function
of the brachistochrone functional is the cycloid parametrized in equation (12). We want to show
that this function is a strong candidate for minimization. Earlier we determined that the Lagrangian
is given by

L(u, u̇, x) =

√
1 + u̇2

2gu
.

Thus,

∂2L
∂u̇2

=
∂

∂u̇

(
u̇√

2gu (1 + u̇2)

)
=

1
√

2gu (1 + u̇2)3/2
.

Clearly, (1 + u̇2)
3/2

> 0. Also, notice that the parametrized cycloid equation, u = (1/2) k2 (1− cos t),
is necessarily non-negative for all t. Thus, ∂2L/∂u̇2 ≥ 0 for all x. By Theorem 3.5, the cycloid
still meets the necessary conditions for a minimizer. We now have stronger evidence to support our
claim that the cycloid describes the path along which the bead falls in the least amount of time.

Let us now turn to the task of finding a sufficient condition for minimization. Legendre himself
postulated that strengthening the condition of Proposition 3.4 to strictly positive definite would do
the trick, however this is not enough. Luckily, we will only need one additional requirement. To
this end, we introduce a new definition:

Definition 3.7. Let v satisfy the hypotheses of Proposition 3.4 and J[v] be the quadratic functional,

J[v] =

∫ t2

t1

(
Rv̇2 + Sv2

)
dt .

Suppose further that v satisfies the associated Euler-Lagrange equations. It is easy to check that
this yields the Jacobi equations:

Sv − d

dt
(Rv̇) = 0 , (17)

which are first order differential equations. A point t0 6= t1 is said to be conjugate to t1 if there
exists a non-trivial solution v̄ to equations (17) such that v̄ (t0) = v̄ (t1).

We are now ready to look for a sufficient condition. Our presentation of its development follows
from the work of [GF63].

Proposition 3.8. Let v, R, and S satisfy the hypotheses of Proposition 3.4. Then, the quadratic
functional

J[v] =

∫ t2

t1

(
Rv̇2 + Sv2

)
dt

is positive definite whenever R > 0 for all t ∈ [t1, t2] and there is no point t0 ∈ (t1, t2) conjugate
to t1.
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Proof. Suppose there exists a function w ∈ C1 such that w2 = R (S + ẇ) for all t ∈ [t1, t2].
Consider the derivative d

dt
(wv2) of this function. Sincev satisfies the boundary conditionsv (t1) =

v (t2) = 0, it is clear that ∫ t2

t1

d

dt

(
wv2

)
dt = 0 ,

so we have that ∫ t2

t1

(
Rv̇2 + Sv2

)
dt =

∫ t2

t1

[
Rv̇2 + Sv2 +

d

dt

(
wv2

)]
dt .

Looking closer at the integrand, we see

Rv̇2 + Sv2 +
d

dt

(
wv2

)
= Rv̇2 + 2wvv̇ + (S + ẇ) v̇2

= Rv̇2 + 2wvv̇ +
w2v2

R

= R
(

v̇2 +
2wvv̇

R
+

w2v2

R2

)
= R

(
v̇ +

wv

R

)2

,

which necessarily yields

J[v] =

∫ t2

t1

(
Rv̇2 + Sv2

)
dt =

∫ t2

t1

R
(
v̇ +

wv

R

)2

dt .

Thus, J[v] is positive definite whenever R > 0, provided the function w exists. Using the substitu-
tion w = −R

(
ḣ/h

)
for some new function h ∈ C1, we obtain

w2 = R (S + ẇ) ⇒ R2ḣ2

h2
= R

S−

(
Rḧ + d

dt
(R) ḣ

)
h− Rḣ2

h2


⇒ Sh−

(
Rḧ +

d

dt
(R) ḣ

)
= 0

⇒ Sh− d

dt

(
Rḣ
)

= 0 ,

which are just the Jacobi equations for J[v]. Since w only exists for all t ∈ [t1, t2] if a nonzero h
exists, we want h to be a non-trivial solution to the Jacobi equations which has no conjugate points
to t1 in the interval (t1, t2). Therefore, J[v] > 0 whenever R > 0 and there is no point t0 ∈ (t1, t2)
conjugate to t1, as desired. �

Proposition 3.8 finally allows us to formulate our sufficient condition for minimization, which we
summarize with our next theorem.

Theorem 3.9. Suppose u, v, and L satisfy the hypotheses of Theorem 3.2. Then, u is a local
minimum of J[u] if

∂2L
∂u̇2

> 0
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for all t ∈ [t1, t2] and the Jacobi equations,[
∂2L
∂u2
− d

dt

(
∂2L
∂u∂u̇

)]
v − d

dt

(
∂2L
∂u̇2

v̇

)
= 0 ,

have only the trivial solution, v ≡ 0, for all t ∈ [t1, t2].

Proof. In order to be a minimizer, u must satisfy Q[u,v] > 0 for any nonzero variation v. Since u
is a fixed critical function of J[u], we can rewrite the second variation as the quadratic functional

J[v] =

∫ t2

t1

[
v̇2 ∂

2L
∂u̇2

+ v2

(
∂2L
∂u2
− d

dt

(
∂2L
∂u∂u̇

))]
dt .

Using this equality, it follows immediately from Proposition 3.8 that Q[u,v] > 0 if

∂2L
∂u̇2

> 0

for all t ∈ [t1, t2] and there is no point t0 ∈ (t1, t2) conjugate to t1. Since v (t1) = v (t2) = 0, the
latter requirement necessitates that the Jacobi equations,[

∂2L
∂u2
− d

dt

(
∂2L
∂u∂u̇

)]
v − d

dt

(
∂2L
∂u̇2

v̇

)
= 0 ,

have only the trivial solution, v ≡ 0, for all t ∈ [t1, t2]. Thus, u is a minimizer of J[u] if ∂2L/∂u̇2

is positive definite for all t ∈ [t1, t2] and the Jacobi equations have only the trivial solution for all
t ∈ [t1, t2], as desired. �

Theorem 3.9 will prove to be a much more efficient way of determining whether or not a critical
function for a functional is actually a minimizer. Again, however, we encounter an issue: finding
non-trivial solutions to the Jacobi equations is often a difficult task. Fortunately, there is an analytic
way of determining conjugate points acquired through detailed analysis of the Jacobi equations and
applications of the works of Hilbert and Picard. Although conjugate point theory and the Jacobi
equations are integral to our application of the second variation, we will not pursue them here.
Instead, we state the desired result without proof. For a more complete analysis, see [Ben08].

Lemma 3.10. Let y : [t1, t2] be of class C2 depending on two parameters, α and β, v ∈ C2 be a
variation of y, and R and S be continuous functions of t. Consider the Jacobi equations

Sv − d

dt
(Rv̇) = 0 . (18)

We assert that there is a non-trivial solution to equations (18) for t ∈ [t1, t2] whenever the determi-
nant ∣∣∣∣∣

∂
∂α

(yc)
∂
∂β

(yc)

∂
∂α

(y1) ∂
∂β

(y1)

∣∣∣∣∣ ,

where y1 = y (t1) and yc = y (tc) for tc ∈ (t1, t2], vanishes. Any such point tc is necessarily
conjugate to t1.
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4. Some Variational Examples

We will now work through two example problems requiring the use of variational calculus in
order to illustrate some of the applications of the first and second variations. These and other
examples are mentioned in [Olv12].

Example 4.1 (Minimal Surface of Revolution). Let (x1, y1), (x2, y2) be two points in the plane
such that x1 < x2, y1 > 0, and y2 > 0. Moreover, let u : [x1, x2]→ R be of class C2 satisfying the
boundary conditions u (x1) = y1, u (x2) = y2 with u ≥ 0 for x ∈ (x1, x2).1 Suppose we revolve
u about the x-axis and consider the surface area of the volume formed, neglecting the circular
vertical surfaces at either end. We want to determine the function u with least surface area. Thus,
our goal is to minimize the area of the surface formed by revolutions of u, which is called a surface
of revolution. The solution is not necessarily intuitive.

First, we must determine the surface area Lagrangian. Let Sx denote the surface area of a surface
of revolution formed from revolving the function u about the x-axis. Then, we have that

∆Sx = 2πu∆S ,

where ∆S = ∆x
√

1 + u̇2 is the arclength element we derived in Example 2.6. Explicitly, we have

∆Sx = 2πu∆x
√

1 + u̇2 ,

so the surface area Lagrangian is

L (u, u̇, x) =
∆Sx
∆x

= 2πu
√

1 + u̇2 .

Thus, to find the curve whose surface of revolution has minimal surface area between (x1, y1) and
(x2, y2), we want to minimize the functional

J[u] =

∫ x2

x1

2πu
√

1 + u̇2 dx .

From Theorem 2.2, we require that any minimizer of J[u] satisfy the Euler-Lagrange Equations.
By Theorem 2.5, any minimizer must also satisfy the equivalent Hamilton’s Equations. Since
∂L/∂x = 0, Proposition 2.7 tells us that the Hamiltonian is a first integral solution. Using Hamil-
ton’s Equations, we can write the Hamiltonian as

H = pu̇− L = u̇
∂L
∂u̇
− L ,

from which we obtain

u̇
∂L
∂u̇
− L = C

for some constant C. Thus, we see that

u̇
∂L
∂u̇
− L = C

⇒ u̇

(
∂

∂u̇

(
2πu
√

1 + u̇2
))
− 2πu

√
1 + u̇2 = C

1The requirement that u be nonnegative is strictly for simplicity in the calculations that follow. Given any curve in
the plane, we can always revolve it about an arbitrary horizontal axis as long as the curve does not cross that axis.
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⇒ 2πuu̇2

√
1 + u̇2

− 2πu
√

1 + u̇2 = C

⇒ 2π

(
−u√
1 + u̇2

)
= C .

This leads us to the conclusion that any minimizing curve must satisfy the differential equation
u√

1 + u̇2
= k , where k ≡ −C

2π
.

This equation is separable and can be solved by direct integration:

u̇ =
du

dx
=

√
u2 − k2

k

⇒
∫

k√
u2 − k2

du =

∫
dx

⇒ k cosh−1
(u
k

)
= x+ C

⇒ u = k cosh

(
x+ C

k

)
where C is now a constant of integration. From this result, we see that the critical function is given
by

u = a cosh

(
x− b
a

)
, (19)

for some constants a and b. This curve is called a catenary and its surface of revolution is known
as a catenoid. The constants a and b are determined from the boundary conditions,

y1 = a cosh

(
x1 − b
a

)
,

y2 = a cosh

(
x2 − b
a

)
.

All that remains to be proven is that the catenoid is the minimal surface of revolution. Theorem 3.9
says this can be done by showing that ∂2L/∂u̇2 > 0 and the Jacobi equation,[

∂2L
∂u2
− d

dt

(
∂2L
∂u∂u̇

)]
v − d

dt

(
∂2L
∂u̇2

v̇

)
= 0 ,

has only the trivial solution, v ≡ 0, for all x ∈ [x1, x2]. Notice that
∂2L
∂u̇2

=
∂

∂u̇

(
2πu
√

1 + u̇2
)

=
u

(1 + u̇2)3/2
> 0

since u = a cosh
(
x−b
a

)
is always postive, provided a > 0, so we need only show that the Jacobi

equation has no nontrivial solution in the interval. According to Lemma 3.10, we can do this by
examing solutions of the equation ∣∣∣∣∣ ∂

∂a
(uc)

∂
∂b

(uc)
∂
∂a

(u1) ∂
∂b

(u1)

∣∣∣∣∣ = 0 ,
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where u1 = u (x1) and uc = u (xc) for some xc ∈ (x1, x2]. Noting that
∂u

∂a
= cosh

(
x− b
a

)
−
(
x− b
a

)
sinh

(
x− b
a

)
∂u

∂b
= − sinh

(
x− b
a

)
,

expanding this determinant gives us∣∣∣∣∣ cosh (zc)− (zc) sinh (zc) − sinh (zc)

cosh (z1)− (z1) sinh (z1) − sinh (z1)

∣∣∣∣∣
= sinh (zc) cosh (z1)− cosh (zc) sinh (z1) + [(zc)− (z1)] sinh (zc) sinh (z1) ,

where we have substituted z1 = (x1 − b) /a and zc = (xc − b) /a for simplicity. Clearly, the
determinant is zero when zc = z1, which requires that xc = x1. However, x1 does not fall in our
interval of concern. If we assume x1 6= b (i.e. z1 6= 0) and solve for points where the determinant
vanishes we obtain the equation

coth

(
xc − b
a

)
−
(
xc − b
a

)
= coth

(
x1 − b
a

)
−
(
x1 − b
a

)
,

which has one solution other than xc = x1. It turns out that this solution is within the interval
(x1, x2] under certain circumstances, but in order to discuss this we must understand a little more
about our catenary curve. For the two points, (x1, y1) and (x2, y2), there are generally two catenaries
which pass through both points. For the sake of simplicity, let us assume that y1 < y2 (a similar
argument exists for the case where y1 > y2). Then, y1 lies on the descending branch of one of these
catenaries and the ascending branch of the other, while y2 lies on the ascending branch of both.
These two catenaries are called the deep and shallow catenaries connecting y1 and y2, respectively.
As discussed in [Bol61], the conjugate point xc may lie in the interval for the deep catenary but
not for the shallow catenary. Unfortunately, the surface area of the shallow catenary is greater than
that of the deep catenary, so it is usually not a viable minimizing curve. If the difference |y2 − y1|
is not too small relative to |x2 − x1|, the conjugate point of the deep catenary may fall outside of
our interval of concern, in which case it is the minimizing curve. If the difference |y2 − y1| is too
small relative to |x2 − x1|, however, the conjugate point of the deep catenary will fall within the
interval. In this case, the catenary is not the minimal surface of revolution. It can be shown that the
Goldschmidt discontinuous solution has minimal surface area under these conditions, but we will
not explore this here. In the end we conclude that, provided |y2 − y1| is not too small relative to
|x2 − x1|, the function whose surface of revolution between the points (x1, y1), (x2, y2) has minimal
surface area is indeed a catenoid, given by revolutions of the catenary in equation (19).

The minimal surface of revolution is more familiar to us than we may expect. Suppose we have
two thin rings of the same diameter held parallel to each other such that the separation distance
between them is zero. If we dip the rings in a liquid soap solution and slowly remove them, we
should see a thin film of soap stretched throughout the interior of the rings. Now, if we slowly
increase the separation distance between the rings the film of soap will remain connected to both
rings in such a way that the total energy of the soap molecules is minimized. It turns out that the
natural shape formed by the soap film is a catenoid, the minimal surface of revolution.2 When the

2In actuality, the surface is not a true catenoid due to gravity, which deforms it. However, this deformation is slight
due to the relatively small mass of the soap film, so the surface appears to be a catenoid.
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rings are separated by too great a distance, the soap film becomes unstable and breaks, forming
two separate surfaces in the interior of each ring. This configuration is that of the Goldschmidt
discontinuous solution.

Example 4.2 (Spherical Geodesic). Let (r1, θ1, φ1), (r2, θ2, φ2) be two points lying on a sphere of
radiusR in spherical coordinates. Moreover, let the functions r : [0, t1]→ R≥0, θ : [0, t1]→ [0, π],
and φ : [0, t1] → [0, 2π) represent a parametrization of the curve u : (r, θ, φ) → R3 satisfying the
boundary conditions r (t) = R for all t, θ (0) = 0, θ (t1) = θ0, and φ (t1) = φ0 (i.e. u (r1, θ1, φ1) =
(R, 0, ·) and u (r2, θ2, φ2) = (R, θ0, φ0)).3 Clearly, u is bounded to the sphere of radius R, and
we assume that θ(t) and φ(t) are both of class C2. We want to determine the function u which
describes the minimum distance between two points on the sphere. Thus, our goal is to minimize
the arclength, confined to the surface of the sphere, between the points (r1, θ1, φ1) and (r2, θ2, φ2).
First, wemust determine the arclength Lagrangian for curves confined to the surface of the sphere.

To do so, consider the three dimensional Cartesian arclength element,

∆S =

√
(∆x)2 + (∆y)2 + (∆z)2 . (20)

To constrain ∆S to the surface of the sphere, we will use the spherical coordinate substitution

x = R sin (θ) cos (φ)

y = R sin (θ) sin (φ)

z = R cos (θ) ,

from which we obtain

(∆x)2 =R2 cos2 (θ) cos2 (φ) (∆θ)2 +R2 sin2 (θ) sin2 (φ) (∆φ)2

− 2R2 sin (θ) cos (θ) sin (φ) cos (φ)∆θ∆φ

(∆y)2 =R2 cos2 (θ) sin2 (φ) (∆θ)2 +R2 sin2 (θ) cos2 (φ) (∆φ)2

+ 2R2 sin (θ) cos (θ) sin (φ) cos (φ)∆θ∆φ

(∆z)2 =R2 sin2 (θ)∆θ2 .

Then, the squared spherical arclength element is

(∆S)2 =R2
[
cos2 (θ) cos2 (φ) + cos2 (θ) sin2 (φ) + sin2 θ

]
(∆θ)2

+R2
[
sin2 (θ) sin2 (φ) + sin2 (θ) cos2 (φ)

]
(∆φ)2 ,

which can be simplified to

∆S = R

√
(∆θ)2 + sin2 (θ) (∆φ)2 . (21)

Evidently, the spherical arclength Lagrangian is

L(θ, φ, θ̇, φ̇, t) = R

√
θ̇2 + φ̇2 sin2 (θ) ,

3Using the point (R, 0, ·) as our initial point is done without loss of generality to make computation easier. The
result can be extended to any inititial point on the sphere.
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so finding the curve on the surface of the sphere with minimal arclength between (r1, θ1, φ1) and
(r2, θ2, φ2) requires minimizing the functional

J[θ, φ] =

∫ t1

0

R

√
θ̇2 + φ̇2 sin2 (θ) dt .

From Theorem 2.2, we require that any minimizer of J[θ, φ] satisfy the Euler-Lagrange equations
d

dt

(
∂L
∂θ̇

)
=
∂L
∂θ

and
d

dt

(
∂L
∂φ̇

)
=
∂L
∂φ

.

The Euler-Lagrange equation for θ does not reveal much about the desired curve. However, that for
φ is very useful, since ∂L/∂φ = 0. This gives us

∂L
∂φ

= 0 ⇒ d

dt

(
∂L
∂φ̇

)
= 0 ⇒ ∂L

∂φ̇
= C ,

for some constant C. Thus, we have
∂L
∂φ̇

= C

⇒ ∂

∂φ̇

(
R

√
θ̇2 + φ̇2 sin2 (θ)

)
= C

⇒ Rφ̇ sin2 (θ)√
θ̇2 + φ̇2 sin2 (θ)

= C .

Since this must be true for all possible values of θ, we choose θ = 0 in order to solve for C:
θ = 0 ⇒ C = 0 .

This tells us that, for all possible θ, we have

φ̇ sin2 (θ) = 0

⇒ φ̇ = 0

⇒ φ = k ,

for some constant k. The boundary condition φ (t1) = φ0 further tells us that k = φ0. Thus, the
curveuwhichminimizes the distance between the points (r1, θ1, φ1) and (r2, θ2, φ2) is parametrized
by functions θ and φ such that

θ = g (t) and φ = φ0 ,
for some increasing function g : [0, t1] → [0, π]. This means that u is bound to an arc of the great
circle defined by φ = φ0.
We must now determine the equation of the great circle arc connecting our two points. To do so,

note that
x sin (φ0) = [R cos (φ0) sin (θ)] sin (φ0)

y cos (φ0) = [R sin (φ0) sin (θ)] cos (φ0) ,
which means we have

x sin (φ0)− y cos (φ0) = 0 .
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Thus, the great circle can be expressed as the set of points{
(x, y, z) ∈ R3| x sin (φ0)− y cos (φ0) = 0 , x2 + y2 + z2 = R2

}
and the arc on which the curve u lies can be parametrized by

u (x, y, z) = R (cos (φ0) sin (t), sin (φ0) sin (t), cos (t)) , t ∈ [0, π] . (22)
The curve u is necessarily a critical function of the spherical arclength functional. All that re-
mains to be proven is that equation (22), with boundary conditions (r, θ, φ) |t=0 = (R, 0, φ0),
(r, θ, φ) |t=t1 = (R, θ0, φ0), is actually the minimizing curve. By Theorem 3.9, we must show
that ∂2L/∂φ̇2 > 0 and the Jacobi equation,[

∂2L
∂φ2
− d

dt

(
∂2L
∂φ∂φ̇

)]
v − d

dt

(
∂2L
∂φ̇2

v̇

)
= 0 ,

has only the trivial solution, v ≡ 0, for all θ ∈ [0, π]. We see fairly easily that ∂2L/∂φ̇2 > 0 in the
interval, since θ̇ > 0 implies

∂2L
∂φ̇2

=
∂

∂φ̇

(
R

√
θ̇2 + φ̇2 sin2 (θ)

)
=

Rφ̇ sin2 (θ)√
θ̇2 + φ̇2 sin2 (θ)

> 0 .

However, determining solutions to the Jacobi equation is difficult in this notation. For this, we will
utilize the fact that any great circle lies entirely in one plane.

Without loss of generality, assume u lies entirely in the x-y plane, so that we can write the
curve completely in terms of x and y. Thus, we have x2 + y2 = R2. Recall that we also have
x = R cos (φ0) sin (θ), so we can express the curve as a function of θ:

y = R
√

1− cos2 (φ0) sin2 (θ) , θ ∈ [0, π] .

We now have a two parameter family of curves in the plane, which we will use in order to apply
Lemma 3.10. According to the lemma, we can find conjugate points by examing solutions of the
equation ∣∣∣∣∣

∂
∂φ0

(yc)
∂
∂R

(yc)

∂
∂φ0

(y1) ∂
∂R

(y1)

∣∣∣∣∣ = 0 ,

where y1 = y (θ1) and yc = y (θc) for some θc ∈ (0, π]. Noting that
∂y

∂φ0

=
R sin (φ0) cos (φ0) sin2 (θ)√

1− cos2 (φ0) sin2 (θ)

∂y

∂R
=
√

1− cos2 (φ0) sin2 (θ) ,

expanding the determinant gives us∣∣∣∣∣∣∣
R sin (φ0) cos (φ0) sin2 (θc)√

1−cos2 (φ0) sin2 (θc)

√
1− cos2 (φ0) sin2 (θc)

R sin (φ0) cos (φ0) sin2 (θ1)√
1−cos2 (φ0) sin2 (θ1)

√
1− cos2 (φ0) sin2 (θ1)

∣∣∣∣∣∣∣
=
R sin (φ0) cos (φ0) sin2 (θc)

√
1− cos2 (φ0) sin2 (θ1)√

1− cos2 (φ0) sin2 (θc)
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− R sin (φ0) cos (φ0) sin2 (θ1)
√

1− cos2 (φ0) sin2 (θc)√
1− cos2 (φ0) sin2 (θ1)

.

After some manipulation, we find that the determinant is zero when sin2 (θc) = sin2 (θ1), which
has solutions θc = θ1 + πk, k ∈ Z. The only one of these in the interval we are concerned about,
(0, π], is θc = π. Thus, the curve u only contains a conjugate point when the points (R, 0, φ0) and
(R, θ0, φ0) are antipodal. In the antipodal case, any great circle arc between the two points has the
same length, so there is no single minimizing curve. Therefore, the function describing the shortest
path between two points on a sphere of radius R which are not antipodes is indeed an arc of the
great circle connecting them, parametrized by equation (22).

5. Lagrangian Mechanics

The theory of classical mechanics involves using Newton’s equations of dynamics,

d

dt

(
3n∑
i=1

mṙi

)
= −∇U ,

for a given mechanical system, where U , m and r describe the potential energy, mass, and position,
respectively, of a system of n physical objects, in order to determine equations governing the motion
of the objects. Lagrange successfully applied the principles of the calculus of variations directly
to the theory of classical mechanics, which Hamilton later refined. The result was what became
known as the Lagrangian method, or, more generally, Lagrangian mechanics. Our goal here is to
develop the theory of Lagrangian mechanics and illustrate some of its applications. We begin with
a proposition:

Proposition 5.1. Let r : [t1, t2] → R3k be of class C2 satisfying Newton’s equations of dynamics
with mass m, potential energy U = U (r), and kinetic energy T =

∑3k
i=1

(
mṙi

2/2
)
. Then, r is a

critical function of the functional

J[r] =

∫ t1

t0

L (r, ṙ, t) dt ,

where the Lagrangian, L (r, ṙ, t) = T−U , is the difference between the kinetic and potential energy
of the system.

Proof. A function r is a critical function of J[r] if it satisfies the Euler-Lagrange equations,
d

dt

(
∂L
∂ṙ

)
=
∂L
∂r

.

Using L = T − U , we have

d

dt

(
∂L
∂ṙ

)
=

d

dt

(
∂

∂ṙ
(T − U)

)
=

d

dt

(
3k∑
i=1

mṙi

)
∂L
∂r

=
∂

∂r
(T − U) = −∂U

∂r
= −∇U .

Thus, r satisfies the Euler-Lagrange equations whenever it satisfies Newton’s equations of dynam-
ics, d

dt

(∑3k
i=1 mṙi

)
= −∇U , as desired. �
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Because each r refers to a mechanical system, we use convenient terminology for most quantities
in Lagrangian mechanics. The ri are called generalized coordinates, with generalized velocities, ṙi,
generalized momenta, pi = ∂L/∂ṙi, and generalized forces, ∂L/∂ri. The functional J[r] is refered
to as the action and the Euler-Lagrange equations d

dt
(∂L/∂ṙ) = ∂L/∂r are called Lagrange’s

equations. Our next proposition, which builds upon Proposition 5.1 using this physical terminology,
formally defines the underlying principle upon which Lagrangian mechanics is built.

Proposition 5.2 (Hamilton’s Principle of Stationary Action). Let r : [t1, t2]→ R3k be of class C2

and L = T − U be the Lagrangian for a mechanical system of k masses with kinetic and potential
energy T and U , respectively. Then, each ri is a generalized coordinate for one of the k masses if
and only if the action is stationary. That is, if and only if∇J[r] = 0.

Proof. If the ri are the generalized coordinates of k masses in a physical system, then r necessarily
satisfies Newton’s equations of dynamics. Proposition 5.1 then states that r must also be a critical
function of the action, J[r]. Thus, J[r] = 0, so the action is stationary. Conversely, if the action is
stationary we must have J[r] = 0. Then, r necessarily satisfies Lagrange’s equations:

d

dt

(
∂L
∂ṙ

)
=
∂L
∂r

.

Since L = T − U , we can utilize the proof of Proposition 5.1 to obtain

d

dt

(
∂L
∂ṙ

)
− ∂L
∂r

=
d

dt

(
3k∑
i=1

mṙi

)
− (−∇U) = 0

⇒ d

dt

(
3k∑
i=1

mṙi

)
= −∇U ,

which are precisely Netwon’s equations of dynamics. Thus, the ri are generalized coordinates of k
masses in a physical system. We conclude that the ri are the generalized coordinates of k masses
in a mechanical system if and only if the action is stationary, as desired. �

Notice that Hamilton’s Principle of Stationary Action only requires that the action be stationary
at r rather than a minimum. This means that it is not necessary to utilize the second variation
when determining equations of motion via the Lagrangian method. As it turns out, equations of
motion often do correspond to a local minimum of the action. For this reason, Proposition 5.2 is
sometimes refered to as Hamilton’s Principle of Least Action, which is somewhat of a misnomer.
We will refrain from refering to the theorem by this name to avoid confusion.

Example 5.3 (Hooke’s Law). Suppose a mass m on a frictionless surface is attached to a horizontal
spring with spring contant k. If the mass is set in motion along the axis through the center of the
spring, then Newton’s equations of dynamics reduce to Hooke’s Law, which describes the motion
of the mass in terms of the spring constant:

mr̈ = −kr .

Our goal is to verify Hooke’s Law using Hamilton’s Principle of Least Action. Let r : [0, t]→ R,
of class C2, represent the position of the mass with repsect to its equilibrium positon, the point
where the spring is neither stretched nor compressed. The kinetic and potential energy of the mass
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are T = mṙ2/2 and U = kr2/2, respectively. Thus, we have that

L = T − U =
1

2

(
mṙ2 − kr2

)
.

By Proposition 5.2, r must cause the action to be stationary. This occurs when r satisfies the
Lagrange’s equation,

d

dt

(
∂L
∂ṙ

)
=
∂L
∂r

.

For the spring-mass system, this yields
d

dt

(
∂L
∂ṙ

)
=

d

dt
(mṙ) = mr̈

∂L
∂r

= −kr ,

so we have indeed arrived at Hooke’s Law, mr̈ = −kr.

Determining the equations of motion for a mechanical system via Hamilton’s Principle of Sta-
tionary Action is summarized conveniently in our next theorem. The process we outline is known
as the Lagrangian method.

Theorem 5.4 (The Lagrangian Method). Let r and L satisfy the hypotheses of Proposition 5.2.
Then, Newton’s equations of dynamics for a mechanical system of k masses are given by Lagrange’s
equations,

d

dt

(
∂L
∂ṙ

)
=
∂L
∂r

.

Proof. Since r and L satisfy the hypotheses of Proposition 5.2, the ri are the generalized coordinates
of the k masses if and only if the action is stationary. This occurs whenever r satisties Lagrange’s
equations. Thus, by Proposition 5.1, Lagrange’s equations must be equivalent to Newton’s equa-
tions of dynamics for the system. Therefore, Newton’s equations of dynamics for a mechanical
system of k masses are given by Lagrange’s equations, as desired. �

Since Theorem 5.4 does not specifically introduce anything new, it is mostly a formality. How-
ever, it succinctly defines the Lagrangian method, reducing the steps necessary to obtain equations
of motion for a mechanical system from the generalized coordinates of the masses within the sys-
tem. Lagrangian mechanics is simply the utilization of the Lagrangian method to solve problems
in classical mechanics.

Example 5.5 (Simple Pendulum). Suppose a mass m is suspended from a massless rod of length l
which hangs from a hinge allowing the rod to swing freely in a vertical plane. If this pendulum is
set in motion, the mass will oscillate about its equilibrium position directly below the hinge with a
predictable frequency, provided the oscillations are small. Our goal is to determine this frequency
of oscillation. Let r : [0, t] → R and θ : [0, t] → [−π/2, π/2] in C2 be the radial and angular
positions of the mass with respect to the hinge, respectively. Then, the kinetic energy of the mass
is

T =
1

2
m
(
ṙ2 + r2θ̇2

)
and its potential energy is

U = mgl (1− cos (θ)) .
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Since r = l and ṙ = 0, we have

L = T − U =
1

2
ml2θ̇2 −mgl (1− cos (θ)) .

By Theorem 5.4, we can obtain the equation of motion for the mass from Lagrange’s equations for
r and θ. Since r does not enter these equations, we need only use that for θ. Thus,

d

dt

(
∂L
∂θ̇

)
=

d

dt

(
ml2θ̇

)
= ml2θ̈

∂L
∂θ

= −mgl sin (θ) ,

so we obtain the equation of motion

θ̈ +
g

l
sin (θ) = 0 .

For small oscillations we have sin (θ) ≈ θ. Substituting this approximation into the equation of
motion yields

θ̈ +
g

l
θ = 0 ,

which has solution θ = k1 cos (ωt) + k2 sin (ωt), where ω2 = g/l and k1, k2 are constants deter-
mined by initial conditions. Thus, the frequency of small oscillations is given by the well known
quantity ω =

√
g/l.

Example 5.6 (Projectile Motion). Suppose a mass m is tossed into the air at an angle and allowed
to fall freely to the ground. If we neglect air resistance, the only force acting on the mass is gravity
in the vertical direction. We want to determine the equations of motion for the mass while it is in
the air. Let r : [0, t]→ R3 be of classC2 where r (t) = (x (t) , y (t) , z (t)) describes the orthogonal
components of the position of the mass, with ẑ the vertical direction. Then, the kinetic and potential
energy of the mass are given by T = m (ẋ2 + ẏ2 + ż2) /2 and U = mgz, respectively. Thus, we
have that

L = T − U =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
−mgz .

Theorem 5.4 states that we can obtain the equations of motion from Lagrange’s equations,
d

dt

(
∂L
∂ẋ

)
=
∂L
∂x

,
d

dt

(
∂L
∂ẏ

)
=
∂L
∂y

,
d

dt

(
∂L
∂ż

)
=
∂L
∂z

,

so we have
d

dt
(mẋ) = 0 ⇒ mẋ = px

d

dt
(mẏ) = 0 ⇒ mẏ = py

d

dt
(mż) = −mg ⇒ z̈ = −g ,

where the horizontal components of the linear momentum, px and py, are constants. This gives
us that the motion of the mass is described by the functions x = ẋ0t + x0, y = ẏ0t + y0, z =
ż0t − gt2/2 + z0, where r (0) = (x0, y0, z0) and ṙ (0) = (ẋ0, ẏ0, ż0) are the intial position and
velocity of the mass, respectively. As we expect from experience, the horizontal motion of the mass
is unaffected by the force of gravity and the horizontal component of its momentum is unchanged.
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Notice that the x and y independence of the projectile motion Lagrangian resulted in a conserved
quantity in each case. In Lagrangian mechanics, this common result is related to mechanical con-
servation laws. To this end, we introduce the following definition.
Definition 5.7. Let r : R→ Rk be of class C2 and L (r, ṙ, t) a Lagrangian. Then, any generalized
coordinate of the system, ri, such that ∂L/∂ri = 0 is called a cyclic coordinate.
Cyclic coordinates correspond directly to conserved quantities. It follows from the definition of
generalized momentum, pi = ∂L/∂ṙi, and Lagrange’s equations that the generalized momentum
pi corresponding to a cyclic coordinate ri is conserved. Example 5.6 illustrates this concept through
the conservation of linear momentum. However, generalized momenta need not be linear momenta,
as our next example shows.
Example 5.8 (Projectile Motion Revisited). Suppose we have the same scenario we had in Example
5.6 where a mass m is tossed into the air and allowed to fall freely to ground. This time, however,
let r : [0, t] → R × [0, π] × [0, 2π) be of class C2 where r (t) = (r (t) , θ (t) , φ (t)) describes
the radial, polar, and azimuthal components of the position of the mass, respectively, with θ =
0 the vertical direction. Then, the kinetic and potential energy of the mass are given by T =

m
(
ṙ2 + r2θ̇2 + r2 sin2 (θ)φ̇2

)
/2 and U = mgr cos (θ), respectively. Thus, we have that

L = T − U =
1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 (θ)φ̇2

)
−mgr cos (θ) .

Theorem 5.4 states that we can obtain the equations of motion from Lagrange’s equations,
d

dt

(
∂L
∂ṙ

)
=
∂L
∂r

,
d

dt

(
∂L
∂θ̇

)
=
∂L
∂θ

,
d

dt

(
∂L
∂φ̇

)
=
∂L
∂φ

,

so we have
r̈ = rθ̇2 + r sin2 (θ)φ̇2 − g cos (θ)

θ̈ = sin (θ) cos (θ)φ̇2 − g

r
cos (θ)

d

dt

(
mr2 sin2 (θ)φ̇

)
= 0 ⇒ mr2 sin2 (θ)φ̇ = Lφ ,

where the azimuthal component of the angular momentum, Lφ, is conserved. Although these equa-
tions for the motion of the mass are more complex than those found in Example 5.6, we obtain
the same result: the horizontal motion of the mass is unaffected by the force of gravity and the
horizontal component of its momentum is unchanged.

We can further apply the methods of the calculus of variations to classical mechanics by inves-
tigating the Hamiltonian. Recall that the Legendre transform of the Lagrangian, which utilizes
Poisson’s variables p = ∂L/∂u̇, yields the equivalent Hamiltonian, H = pu̇−L. Applying this to
Newton’s equations of dynamics gives us

p =
∂L
∂ṙ

, H = pṙ− L ,

where L = T − U . From this, we obtain the following result.
Proposition 5.9. Let r, U , T , and L satisfy the hypotheses of Proposition 5.1 for mass m. Then,
the Hamiltonian is given by the total energy of the system,

H = T + U .
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Proof. For mass m, the kinetic and potential energy are given by T =
∑3k

i=1 (mṙ2
i /2) and U =

U (r), respectively. Thus, we have

p =
∂L
∂ṙ

=
3k∑
i=1

(mṙi) ⇒ pṙ =
3k∑
i=1

(
mṙ2

i

)
= 2T ,

so the Hamiltonian becomes

H = pṙ− L = 2T − (T − U) = T + U .

Therefore, the Hamiltonian is given by the total energy of the system, as desired. �

Recalling Proposition 2.7, it is immediately evident that the equations of motion in a mechanical
system in which energy is conserved can be obtained directly from the Hamiltonian, which is a first
integral solution. Such systems are refered to as Hamiltonian systems, which are a primary topic in
[Hai10].

Example 5.10 (The Two Body Problem). Suppose two masses, M and m, are oriented such that the
only force acting on them is that of mutual gravitational attraction. If we assume M >> m and let
the center of mass of the larger mass M be the origin of our coodinate system, then the the smaller
mass m will follow an elliptical path in the plane containing both masses with the larger mass at
one of its foci. Our goal is to determine the equation of motion of the smaller mass and show that
its orbit is elliptical. Let r : [0, t] → R and θ : [0, t] → [0, 2π) in C2 be the radial and angular
positions of the smaller mass m in the plane, respectively. Then, the kinetic energy of the smaller
mass is

T =
1

2
m
(
ṙ2 + r2θ̇2

)
and its potential energy is

U = −GMm

r
,

where G is the universal gravitational constant. Because there are no external forces acting on the
system, the total energy is conserved. Thus, the Hamiltonian is a first integral solution. This gives
us the the equation

H = T + U =
1

2
m
(
ṙ2 + r2θ̇2

)
− GMm

r
= C

⇒ (mṙ)2

2m
+

(
mr2θ̇

)2

2mr2
− GMm

r
= C ,

for some constant C. Notice that this equation is equivalent to the equation
p2
r

2m
+

l2θ
2mr2

− γ

r
= E (23)

where pr is the linear momentum, lθ the angular momentum, E the total energy, and γ ≡ GMm the
force constant. Noting that L = T − U is independent of θ, we have that θ is a cyclic coordinate,
so lθ is conserved. We obtain the values of the constant quantities E and lθ from initial conditions,
so we proceed by rewriting equation (23) in terms of the nonconstant quantites containing r and ṙ:

mṙ2

2
+

l2θ
2mr2

− γ

r
= E
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⇒ ṙ2 =
2E

m
+

2γ

mr
− l2θ

(mr)2 .

We must manipulate ṙ in order to continue. Notice that

ṙ =
dr

dt
=

dr

dθ

dθ

dt
=

dr

dθ
θ̇ =

dr

dθ

(
lθ

mr2

)
=
lθ
m

d (1/r)

dθ
,

so we substitute and obtain(
lθ
m

)2(
d (1/r)

dθ

)2

=
2E

m
+

2γ

mr
− l2θ

(mr)2

⇒ lθ

∫
d (1/r)√

2Em + 2γm (1/r)− l2θ (1/r)2
= θ + θ0 ,

where θ0 is a constant of integration. Applying the change of variables u = (1/r) yields

lθ

∫
du√

2Em + 2γmu− l2θu2
= θ + θ0 ,

which, after completing the square in the denominator of the integrand, has solution

u =

(
1

lθ

)2√
2Em + (γm/lθ)

2 cos (θ + θ0)− γm .

Thus, we have that the position of the mass m is given by the equation

r =
α

1 + ε cos (θ + θ0)
,

where α ≡ (lθ)
2 /γm and ε ≡

√
2E/γ2m + (1/lθ)

2. Without loss of generality, we can choose the
intial condition (r0, θ0) = (α, π/2), in which case the equation of motion can be written

r =
α

1 + ε cos (θ)
. (24)

Equation (24) describes a conic section with eccentricity ε. When the conic section is bounded,
the mass m follows an elliptical orbit with mass M at one of its foci. Thus, the orbit is an ellipse
whenever 0 ≤ ε < 1. In particular, the orbit is circular when ε = 0 and becomes more and more
elongated as ε→ 1. The unbounded case, whenever ε ≥ 1, describes a hyperbolic path which does
not actually orbit the mass M. We conclude that the orbit of the smaller mass about the larger mass
in our two body problem is indeed an ellipse with the larger mass at one of the foci. This concept,
when applied to the more general two body problem, is known as Kepler’s First Law.

The Lagrangian method can be applied to most classical mechanics problems and is often easier
than working directly with Newton’s equations of dynamics. Further discussion of its applications
and more examples can be found in [Arn78].
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6. Optimal Control

The theory of the calculus of variations has a very logical extension into the realm of control
theory, in which we examine the behavior of dynamical systems subject to various constraints. If we
concentrate on optimizing this behavior under a given set of constraints we can develop a set of rules
for finding the solutions which yield optimal behavior, much like in the calculus of variations. This
particular area of control theory is known as optimal control, pioneered by Russian mathematician
Lev Pontryagin. Although we will not delve into the particulars of optimal control, we will look
to understand its relationship to the calculus of variations and consider some of its applications.
Proofs will be omitted, most of which can be found in [Lew06]. Before we begin, however, we
must establish some notation which will motivate our discussion. Whenever possible, our notation
here will mirror that used in our prior discussion of the calculus of variations.

Definition 6.1. Let S ∈ Rn, U ∈ Rn−1 be open sets and f : S × U × R → Rn−1 be of class C1.
Then, the dynamical system represented by

Σ (S, f, U, t)

is called a control system. The sets S and U are called the state space and control set, respectively.
Elements of the state space, u : R → Rn, are called trajectories, while those of the control set,
w : R→ Rn−1 are called controls. The pair (u,w) is called a controlled trajectory.

A control system is related to the differential equations

u̇ = f (u,w, t) , (25)

and problems in optimal control involve solving equations (25) for an optimal trajectory, (u∗,w∗),
which yields optimal behavior inΣ (S, f, U, t). Thus, the function f appears to play a role analogous
to that of the time derivative u̇ in the calculus of variations. Naturally, we would like to define
a Lagrangian for optimal control by simply substituting this function into the Lagrangian from
variational calculus. We could then let the remainder of the theory follow directly from that of the
calculus of variations. Although this approach illustrates the connection between the two theories,
it does not provide the result we are looking for. However, we can still define some quantities which
have similar meaning to their variational calculus counterparts.

Definition 6.2. Let (u,w) be a controlled trajectory for the control system Σ (S, f, U, t). Then, the
function LΣ : S × U × R → R of class C1 is called the control Lagrangian, or running cost, for
the system. The quantity

JΣ[(u,w)] = T (u, t1) +

∫ t1

t0

LΣ (u,w, t) dt

is called the objective functional forΣ (S, f, U, t), where the function T : S×R→ R is the terminal
cost.

By direct analogy to the calculus of variations, optimizing behavior in a control system requires
optimizing the objective functional. However, we will do this over all admissible controlled tra-
jectories rather than just all curves u. As discussed in [Lew06], this inadvertently leads us toward
analyzing the control Hamiltonian,

HΣ = pu̇− LΣ , p =
∂LΣ

∂u̇
.
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Unfortunately, this does not achieve the desired result, as a fundamental assumption of the calculus
of variations is that the curve u be of class C2. It turns out that this is too strong a restriction for
curves in controlled trajectories. Instead, we must consider the extended control Hamiltonian,

H+
Σ = hu̇ + λLΣ ,

whereh : R→ Rn is known as a costate trajectory and λ is a scalar. The costate trajectory is similar
to a Lagrange multiplier, which we recall from the process of optimization of functions under given
constraints in calculus. In particular, we are interested in the extended control Hamiltonianwhen the
costate trajectory is an adjoint response. That is, when the costate trajectory satisfies the differential
equations

u̇ =
∂H+

Σ

∂h

ḣ = −∂H
+
Σ

∂u
.

We immediately notice that these equations resemble Hamilton’s equations from the calculus of
variations. The adjoint response and extended control Hamiltonian are essential to solving optimal
control problems, but before we touch on this subject we must introduce one more new concept:

Definition 6.3. Let Σ (S, f, U, t) be a control system and Φ : S → Rn be of class C1 such that
S = ker (Φ) and dΦ/dt : S → Rn−1 is a surjective map for all u ∈ S. Then, S is called a smooth
control set.

It is generally useful to study controlled trajectories where the initial and final states lie in the smooth
control sets, S0 ⊂ S and S1 ⊂ S, respectively.

We are now in a position to establish one of the major accomplishments of early control theory,
Pontryagin’s Maximum Principle. Much like the Necessary Condition of Euler-Lagrange from
variational calculus, the Maximum Principle provides us with necessary conditions which must be
satisfied by any optimal trajectory. Although these conditions are not sufficient, they are usually
restrictive enough to allow intuition or numerical methods to determine which of the controlled
trajectories found are actually optimal. We will merely state the theorem here; a proof can be found
in [Lew06]. Our statement draws from those of both [Lew06] and [Nor07].

Theorem 6.4 (Pontryagin’sMaximum Principle). LetΣ (S, f, U, t) be a control system with control
Lagrangian LΣ, terminal cost T , and extended control HamiltonianH+

Σ for t ∈ [t0, t1]. Futhermore,
let S0 ⊂ S and S1 ⊂ S be smooth control sets such that u (t0) ∈ S0 and u (t1) ∈ S1 for any
admissible controlled trajectory (u,w). If (u∗,w∗) is an optimal trajectory for Σ (S, f, U, t), then
there exists adjoint response h∗ and scalar λ ∈ {0,−1} such that the following conditions hold:

(1) maxw∈U
[
H+

Σ (u∗,w,h∗, t)
]
≤ H+

Σ (u∗,w∗,h∗, t) for all t ∈ [t0, t1]

(2) ḣ∗ = −
(
∂H+

Σ/∂u
) ∣∣

u=u∗,w=w∗,h=h∗

(3) u̇∗ =
(
∂H+

Σ/∂h
) ∣∣

u=u∗,w=w∗,h=h∗

(4) [(h + ∂T/∂u) u]
∣∣
t1

= 0 for all u ∈ U

(5) λ2 + ‖h∗ (t1)‖2 6= 0
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Moreover, whenever t is unconstrained, H+
Σ (u∗,w∗,h∗, t) = 0 for all t.

Conditions (1) through (3) can also be expressed as
(1) 0 = ∂H+

Σ/∂w

(2) ḣ = −∂H+
Σ/∂u

(3) u̇ = ∂H+
Σ/∂h

which clearly shows how each of the variables are related. However, the reformulation of (1) re-
quires that the extended control Hamiltonian achieves its maximum within the interval (t0, t1),
which is not always the case. Conditions (4) and (5) are the boundary conditions. Notice that the
terminal cost T plays the role of the differentiable map Φ in the definition of a smooth control set.
Thus, condition (4) states that the adjoint response h is orthogonal to the state space S at the final
state of the system. This relationship is also true at the intial state, since S0 is a smooth control set.
Condition (5) states that the adjoint response at the final state and the scalar λ cannot both be zero.
This condition is sometimes refered to as the nontriviality condition for the total adjoint vector,
λ2 + ‖h∗ (t1)‖2.4
Pontryagin’s Maximum Principle is one of the triumphs of mathematics over the last half cen-

tury. Although we cannot fully appreciate its utility here, it is evident that it provides a powerful
method for solving optimal control problems. The Maximum Principle can be applied in a vast ar-
ray of subjects which utilize optimal control, anything from economics and financial mathematics
to mechanics and natural dynamical systems. Several examples of these applications can be found
in [Nor07].

Example 6.5 (Optimal Mining). Suppose a miner purchases the rights to a mine for a set period
of time and wishes to make the largest profit possible within that time period. The miner sells the
mined ore at a constant price, but the instantaneous value of the ore decreases at the rate at which
it is extracted from the mine. The miner also incurs a cost equal to the squared rate of extraction
divided by the amount of ore remaining in the mine. Our goal is to determine the extraction rate
which will maximize the miner’s profits. Let τ be the amount of time the miner owns the rights
to the mine, p the constant price at which the ore is sold, u the amount of ore in the mine, and w
the extraction rate. Then, the miner’s cost can be expressed by a control system Σ (S, f, U, t) with
u ∈ S, w ∈ U , f = −w, and t ∈ [0, τ ]. Suppose u (0) = X is the initial amount of ore in the mine
and that the miner places no value on any ore left in the mine at time τ . Thus, we know that the
control Lagrangian is given by

LΣ =
w2

u
− pw

and the terminal cost is T = 0. This means that to maximize the miner’s profit we must minimize
the objective functional,

JΣ[u,w] =

∫ τ

0

(
w2

u
− pw

)
dt .

To do so, wewill use Pontryagin’sMaximumPrinciple. Consider the extended control Hamiltonian,

H+
Σ = hu̇+ λLΣ = −hw + λ

(
w2

u
− pw

)
,

4Here, ‖·‖ denotes the standard Euclidean norm.
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where h is the adjoint response. Condition (4) of Theorem 6.4 states that h (τ)u (τ) = 0 for all u,
which necessarily requires that h (τ) = 0 since u (τ) is not necessarily zero. Thus, condition (5)
requires that λ = −1. Applying conditions (1) through (3) with λ = −1 then yields the equations

0 =
∂H+

Σ

∂w
= −h+ p− 2w

u

ḣ = −∂H
+
Σ

∂u
= −w

2

u2

u̇ =
∂H+

Σ

∂h
= −w .

The first two equations give us that

w

u
=
p− h

2
⇒ ḣ = −1

4
(p− h)2 ,

which is a separable differential equation that we can solve to obtain the adjoint response. Writing
ḣ as dh/dt, we have ∫

(p− h)2 dh = −1

4

∫
dt

⇒ h3 − 3ph2 + 3p2h = −3

4
t+ C ,

whereC is a constant of integration. The condition h (τ) = 0 allows us to determine thatC = 3τ/4,
so we have

h3 − 3ph2 + 3p2h− 3

4
(t− τ) = 0 .

This equation has one real solution for h:

h = p−
(
p3 − 3

4
(t− τ)

)1/3

.

Returning to the first condition, we see that the control is given by

w =
u (p− h)

2
.

Thus, the optimal trajectory (u∗, w∗) must satisfy the equation

w∗ =
1

2
u∗
(
p3 − 3

4
(t− τ)

)1/3

. (26)

Therefore, the extraction rate which will maximize the miner’s profit can be found by analyzing
controlled trajectories which satisfy equation (26) with initial condition u (0) = X .

We hinted earlier that the methods of optimal control require weaker assumptions on the domain
of the objective functional than does the calculus of variations. We will now conclude our discus-
sion of the Maximum Principle by illustrating how its relatively relaxed differentiability require-
ments, compared to those of the Euler-Lagrange equations, give it an advantage over the classical
techniques of the calculus of variations when determining candidate curves for optimization.
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Example 6.6 (The Brachistochrone and Optimal Control). Suppose we reformulate the setup of
Example 2.6 as an optimal control problem. Let the endpoints of the wire again be (0, 0), (x1, y1),
where x1 > 0, y1 > 0, and our coordinate system defines the downward direction as +y. Now,
however, let u : [0, t1]→ S ⊂ R2 be of class C1 satisfying the boundary conditions u (0) = (0, 0)
and u (t1) = (x1, y1). If we denote u = (u1, u2), then we have the equation

u̇2
1 + u̇2

2 = 2gu2 ,

which we have adapted from the time Lagrangian derived in Example 2.6. If we define the control
w = (w1, w2) by the relations u̇1 = w1

√
2gu2, u̇2 = w2

√
2gu2 for w ∈ {(w1, w2) |w2

1 + w2
2 = 1},

which we will call the set U , then it is easy to verify that w satisfies this time Lagrangian equation.
Let Σ (S, f, U, t) be a control system for the controlled trajectories (u,w), where

f =
(
h1w1

√
2gu2, h2w2

√
2gu2

)
for adjoint response h = (h1, h2). Notice that the control Lagrangian is given by LΣ = 1 and the
terminal cost is T = 0. Thus, in order to determine the shape of the wire which minimizes the time
it takes for the bead to travel its length, we must to minimize the objective functional

JΣ[u,w] =

∫ t1

0

dt .

To do so, wewill use Pontryagin’sMaximumPrinciple. Consider the extended control Hamiltonian,

H+
Σ = hu̇ + λLΣ = (h1w1 + h2w2)

√
2gu2 + λ .

Condition (4) of Theorem 6.4 states that the relations

h1 (t1)u1 (t1) = 0

h2 (t1)u2 (t1) = 0

are satisfied for all u1 and u2, which necessarily requires that h1 (t1) = h2 (t1) = 0 since u1 (t1),
u2 (t1) are nonzero by assumption. Thus, condition (5) requires that λ = −1. Applying conditions
(2) and (3) with λ = −1 then yields the equations

ḣ1 = −∂H
+
Σ

∂u1

= 0

ḣ2 = −∂H
+
Σ

∂u2

= −g (h1w1 + h2w2)√
2gu2

u̇1 =
∂H+

Σ

∂h1

= w1

√
2gu2

u̇2 =
∂H+

Σ

∂h2

= w2

√
2gu2 .

Condition (1) requires that the extended control Hamiltonian be maximized over the control set,
which occurs when

w1 =
h1√
h2

1 + h2
2

w2 =
h2√
h2

1 + h2
2

,
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although this is not immediately obvious (it can be verified by noting thatw2
1 +w2

2 = 1 is still valid).
Thus, we have that

ḣ2 = −g (h1w1 + h2w2)√
2gu2

= −g
√
h2

1 + h2
2√

2gu2

.

Since u̇1 is nonzero by assumption, we can use a series of substitutions to write u′2 = du2/du1 as

u′2 =
du2

du1

=
u̇2

u̇1

=
w2

w1

=
h2

h1

⇒ 1 + (u′2)
2

=
h2

1 + h2
2

h2
1

,

and because h1 is constant we have that

u′′2 =
1

h1

dh2

du1

=
ḣ2

h1u̇1

= −
√
h2

1 + h2
2

2u2h1w1

= −h
2
1 + h2

2

2u2h2
1

=
−1

2u2

(
h2

1 + h2
2

h2
1

)
.

It is now evident that 2u2u
′′
2 = −

(
1 + (u′2)2), so we obtain

2u2u
′′
2 + (u′2)

2
+ 1 = 0 .

This is exactly equation (9) from Example 2.6, whose solution is a cycloid. However, this time we
did not require that u2 be of classC2. It turns out there are solutions of classC1 which we left out in
Example 2.6, called spurious solutions. These solutions, which cannot be obtained via the methods
of the calculus of variations, are indeed viable minimizing curves, illustrating the advantages of
optimal control and the Maximum Principle over their variational calculus counterparts. For a
discussion of the spurious solutions to the brachistochrone problem, see [SW02].
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