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Abstract. We construct a non-Markovian coupling for hypoelliptic diffusions

which are Brownian motions in the three-dimensional Heisenberg group. We
then derive properties of this coupling such as estimates on the coupling rate,

and upper and lower bounds on the total variation distance between the laws

of the Brownian motions. Finally we use these properties to prove gradient
estimates for harmonic functions for the hypoelliptic Laplacian which is the

generator of Brownian motion in the Heisenberg group.
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1. Introduction

Recall that a coupling of two probability measures µ1 and µ2, defined on respec-
tive measure spaces (Ω1,A1) and (Ω2,A2), is a measure µ on the product space
(Ω1 ×Ω2,A1 ×A2) with marginals µ1 and µ2. In this article, we will be interested
in coupling of the laws of two Markov processes (Xt : t > 0) and (Yt : t > 0) in a
geometric setting of a sub-Riemannian manifold such as the Heisenberg group H3.
Namely, we discuss couplings of two Markov processes having the same generator
but starting from different points joining together (coupling) at some random time,
and how these can be used to obtain total variation bounds and prove gradient
estimates for harmonic functions on H3. Couplings have been an extremely useful
tool in probability theory and has resulted in establishing deep connections between
probability, analysis and geometry.
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We start by providing some background on couplings and then on gradient es-
timates in our setting. The coupling is said to be successful if the two processes
couple within finite time almost surely, that is, the coupling time for Xt and Yt
defined as

τ(X,Y ) = inf{t > 0 : Xs = Ys for all s > t}.
is almost surely finite.

A major application of couplings arises in estimating the total variation distance
between the laws of two Markov processes at time t which in general is very hard to
compute explicitly. Such an estimate can be obtained from the Aldous’ inequality

(1.1) µ {τ(X,Y ) > t} > ||L(Xt)− L(Yt)||TV ,
where µ is the coupling of the Markov processes X and Y , L(Xt) and L(Yt) denote
the laws (distributions) of Xt and Yt respectively, and

||ν||TV = sup{|ν(A)| : A measurable}
denotes the total variation norm of the measure ν.

This, in turn, can be used to provide sharp rates of convergence of Markov
processes to their respective stationary distributions, when they exist (see [28] for
some such applications in studying mixing times of Markov chains).

This raises a natural question: how can we couple two Markov processes so that
the probability of failing to couple by time t (coupling rate) is minimized (in an
appropriate sense) for some, preferably all, t? Griffeath [16] was the first to prove
that maximal couplings, that is, the couplings for which the Aldous’ inequality
becomes an equality for each t in the time set of the Markov process, exist for
discrete time Markov chains. This was later greatly simplified by Pitman [33]
and generalized to non-Markovian processes by Goldstein [14] and continuous time
càdlàg processes by Sverchkov and Smirnov [35].

These constructions, though extremely elegant, have a major drawback: they
are typically very implicit. Thus, it is very hard, if not impossible, to perform
detailed calculations and obtain precise estimates using these couplings. Part of
the implicitness comes from the fact that these couplings are non-Markovian.

A Markovian coupling of two Markov processes X and Y is a coupling where,
for any t > 0, the joint process {(Xs, Ys) : s > t} conditioned on the filtration
σ{(Xs, Ys) : s 6 t} is again a coupling of the laws of X and Y , but now starting
from (Xt, Yt). These are the most widely used couplings in deriving estimates
and performing detailed calculations as their constructions are typically explicit.
However, these couplings usually do not attain the optimal rates. In fact, it has
been shown in [3] that the existence of a maximal coupling that is also Markovian
imposes enormous constraints on the generator of the Markov process and its state
space. Further, [2] describes an example using Kolmogorov diffusions defined as
a two dimensional diffusion given by a standard Brownian motion along with its
running time integral, where for any Markovian coupling, the probability of failing
to couple by time t does not even attain the same order of decay (with t) as the
total variation distance. More precisely, they showed that if the driving Brownian
motions start from the same point, then the total variation distance between the
corresponding Kolmogorov diffusions decays like t−3/2 whereas for any Markovian
coupling, the coupling rate is at best of order t−1/2.
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This brings us to the main subject of this article: when can we produce non-
Markovian couplings that are explicit enough to give us good bounds on the total
variation distance between the laws of Xt and Yt when Markovian couplings fail
to do so? And what information can such couplings provide about the geome-
try of the state space of these Markov processes? In this article, we look at the
Heisenberg group which is the simplest example of a sub-Riemannian manifold and
Brownian motion on it. The latter is the Markov process whose generator is the
sub-Laplacian on the Heisenberg group as described in Section 2. We construct
an explicit successful non-Markovian coupling of two copies of this process starting
from different points in H3 and use it to derive sharp bounds on the total variation
distance between their laws at time t. We also use this coupling to produce gradi-
ent estimates for harmonic functions on the Heisenberg group (more details below),
thus providing a non-trivial link between probability and geometric analysis in the
sub-Riemannian setting.

We note here that successful Markovian couplings of Brownian motions on the
Heisenberg group have been constructed in [23] and rates of these couplings have
been studied in [24]. However, the rates for the coupling we construct are much
better. In fact, we show in Remark 3.2 that it is impossible to derive the rates we
get from Markovian couplings. Moreover, the coupling we consider is efficient, that
is, the coupling rate and the total variation distance decay like the same power of
t as pointed out in Remark 3.7.

Now we would like to describe gradient estimates in geometric settings and how
couplings have been used to prove them previously. Let us start with a classical
gradient estimate for harmonic functions in Rd. Suppose u is a real-valued function
u on Rd which is harmonic in a ball B2δ(x0), then there exists a positive constant
Cd (which depends only on the dimension d and not on u) such that

sup
x∈Bδ(x0)

|∇u(x)| 6 Cd
δ

sup
x∈B2δ(x0)

|u(x)| .

In 1975, Cheng and Yau (see [10,34,37]) generalized the classical gradient estimate
to complete Riemannian manifolds M of dimension d > 2 with Ricci curvature
bounded below by −(d − 1)K for some K > 0. They proved that any positive
harmonic function on a Riemannian ball Bδ(x0) satisfies

sup
x∈Bδ/2(x0)

|∇u(x)|
u(x)

6 Cd

(
1

δ
+
√
K

)
.

Moreover, in addition to such estimates, there is a vast literature on functional
inequalities such as heat kernel gradient estimates, Poincaré inequalities, heat kernel
estimates, elliptic and parabolic Harnack inequalities etc on Riemannian manifolds
or more generally on measure metric spaces. Quite often these results require
assumptions such as volume doubling and curvature bounds.

In 1991, M. Cranston in [11] used the method of coupling two diffusion processes
to obtain a similar gradient estimate for solutions to the equation

(1.2)
1

2
∆u+ Zu = 0

on a Riemannian manifold (M, g) whose Ricci curvature is bounded below and Z is
a bounded vector field. This coupling is known as the Kendall-Cranston coupling



4 BANERJEE, GORDINA, AND MARIANO

as it was based on the techniques in [22]. In particular, M. Cranston proved the
following gradient estimate.

Theorem 1.1 (Cranston). Suppose (M, g) is a complete d-dimensional Riemann-
ian manifold with distance ρM and assume RicM > −Kg. Let Z be a C1 vector
field on M such that |Z(x)| 6 m for all x ∈M . There is a constant c = c (K, d,m)
such that whenever δ > 0 and (1.2) is satisfied in some Riemannian ball B2δ (x0),
we have

|∇u(x)| 6 c
(

1

δ
+ 1

)
sup

x∈B(x0,3δ/2)

|u(x)|, x ∈ B (x0, δ) .

If (1.2) is satisfied on M and u is bounded and positive, then

|∇u(x)| ≤ 2
(√

K (d− 1) +m
)
‖u‖∞ .

Cranston’s approach generalized the coupling of Brownian motions on manifolds
of Kendall [21] to couple processes with the generator L = 1

2∆ + Z. The methods
in that paper required tools from Riemannian geometry such as the Laplacian
comparison theorem and the index theorem to obtain estimates on the processes
ρM (Xt, Yt) and ρM (Xt, X0) where ρM is the Riemannian distance. M. Cranston
also proved similar results on Rd in [12].

In this paper we consider the simplest sub-Riemannian manifold, the Heisenberg
group H3 as a starting point of using couplings for proving gradient estimates in
such a setting. As the generator of H3-valued Brownian motion is a hypoelliptic
operator, functional inequalities for the corresponding harmonic functions or hypo-
elliptic heat kernels are much more challenging to prove. There was recent progress
in using generalized curvature-dimension inequalities for such results (e.g. [1, 4, 5],
as well as results in the spirit of optimal transport (e.g. [26]). The main point of
the current paper is not whether a coupling can be constructed, as these have been
known since [6], but rather finding a (necessarily non-Markovian) coupling that
gives sharp total variation bounds and explicit gradient estimates. The properties
of the coupling we construct in the current paper are crucial in this, and it is
interesting to contrast this with optimality (or the lack of it) for the Kendall-
Cranston coupling in the Riemannian manifolds as described in [25,27].

The paper is organized as follows. Section 2 gives basics on sub-Riemannian
manifolds and the Heisenberg group H3 including Brownian motion on H3. In
Section 3 we construct the non-Markovian coupling of Brownian motions in H3,
and describe its properties. Finally, in Section 4 we prove the gradient estimates
for harmonic functions for the hypoelliptic Laplacian which is the generator of
Brownian motion in the Heisenberg group.

2. Preliminaries

2.1. Sub-Riemannian basics. A sub-Riemannian manifold M can be thought of
as a Riemannian manifold where we have a constrained movement. Namely, such
a manifold has the structure (M,H, 〈·, ·〉), where allowed directions are only the
ones in the horizontal distribution, which is a suitable subbundle H of the tangent
bundle TM . For more detail on sub-Riemannian manifolds we refer to [31].

Namely, for a smooth connected d-dimensional manifold M with the tangent
bundle TM , let H ⊂ TM be an m-dimensional smooth sub-bundle such that the
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sections of H satisfy Hörmander’s condition (the bracket generating condition) for-
mulated in Assumption 1. We assume that on each fiber ofH there is an inner prod-
uct 〈·, ·〉 which varies smoothly between fibers. In this case, the triple (M,H, 〈·, ·〉)
is called a sub-Riemannian manifold of rank m, H is called the horizontal distribu-
tion, and 〈·, ·〉 is called the sub-Riemannian metric. The vectors (resp. vector fields)
X ∈ H are called horizontal vectors (resp. horizontal vector fields), and curves γ in
M whose tangent vectors are horizontal, are called horizontal curves.

Assumption 1. (Hörmander’s condition) We will say that H satisfies Hörmander’s
(bracket generating) condition if horizontal vector fields with their Lie brackets span
the tangent space TpM at every point p ∈M .

Hörmander’s condition guarantees analytic and topological properties such as
hypoellipticity of the corresponding sub-Laplacian and topological properties of
the sub-Riemannian manifold M . We explain briefly both aspects below. First we
define the Carnot-Carathéodory metric dCC on M by

dCC(x, y) =(2.1)

inf

{∫ 1

0

‖γ′(t)‖H dt where γ(0) = x, γ(1) = y, γ is a horizontal curve

}
,

where as usual inf(∅) :=∞. Here the norm is induced by the inner product on H,

namely, ‖v‖H := (〈v, v〉p)
1
2 for v ∈ Hp, p ∈M . The Chow-Rashevski theorem says

that Hörmander’s condition is sufficient to ensure that any two points in M can
be connected by a finite length horizontal curve. Moreover, the topology generated
by the the Carnot-Carathéodory metric coincides with the original topology of the
manifold M .

As we are interested in a Brownian motion on a sub-Riemannian manifold
(M,H, 〈·, ·〉), a natural question is what its generator is. While there is no canon-
ical operator such as the Laplace-Beltrami operator on a Riemannian manifold,
there is a notion of a sub-Laplacian on sub-Riemannian manifolds. A second or-
der differential operator defined on C∞ (M) is called a sub-Laplacian ∆H if for
every p ∈ M there is a neighborhood U of p and a collection of smooth vector
fields {X0, X1, ..., Xm} defined on U such that {X1, ..., Xm} are orthonormal with
respect to the sub-Riemannian metric and

∆H =

m∑
k=1

X2
k +X0.

By the classical theorem of L. Hörmander in [18, Theorem 1.1] Hörmander’s con-
dition (Assumption 1) guarantees that any sub-Laplacian is hypoelliptic. For more
properties of sub-Laplacians which are generators of a Brownian motion on a sub-
Riemannian manifold we refer to [15].

Finally, the horizontal gradient ∇H is a horizontal vector field such that for any
smooth f : M → R we have that for all X ∈ H,

〈∇Hf,X〉 = X (f) .

We define the length of the gradient as in [26]. For a function f on M , let

(2.2) |∇Hf | (x) := lim
r↓0

sup
0<dCC(x,x̃)6r

∣∣∣∣f (x)− f (x̃)

dCC (x, x̃)

∣∣∣∣ ,
and set ‖∇Hf‖∞ := supx∈H3 |∇Hf | (x).
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2.2. The Heisenberg group. The Heisenberg group H3 is the simplest non-trivial
example of a sub-Riemannian manifold. Namely, let H3 ∼= R3 with the multiplica-
tion defined by

(x1, y1, z1) ? (x2, y2, z2) := (x1 + x2, y1 + y2, z1 + z2 + (x1y2 − x2y1)) ,

with the group identity e = (0, 0, 0) and the inverse given by (x, y, z)
−1

= (−x,−y,−z).
We define X , Y, and Z as the unique left-invariant vector fields with Xe = ∂x,

Ye = ∂y, and Ze = ∂z, so that

X = ∂x − y∂z,
Y = ∂y + x∂z,

Z = ∂z.

The horizontal distribution is defined by H = span{X ,Y} fiberwise. Observe that
[X ,Y] = 2Z, so Hörmander’s condition is easily satisfied. Moreover, as any iterated
Lie bracket of length greater than two vanishes, H3 is a nilpotent group of step 2.
The Lebesgue measure on R3 is a Haar measure on H3. We endow H3 with the sub-
Riemannian metric 〈·, ·〉 so that {X ,Y} is an orthonormal frame for the horizontal
distribution. As pointed out in [15, Example 6.1], the (sum of squares) operator

(2.3) ∆H = X 2 + Y2

is a natural sub-Laplacian for the Heisenberg group with this sub-Riemannian struc-
ture.

In general it is very cumbersome to compute the Carnot-Carathéodory distance
dCC explicitly. In the case of the Heisenberg group an explicit formula for the
distance is known. Let r (x) = dCC (x, e) be the distance between x = (x, y, z) ∈ H3

and the identity e = (0, 0, 0). In [9] the distance is given by the formula

r (x)
2

= ν (θc)
(
x2 + y2 + |z|

)
,

where θc is the unique solution of µ (θ)
(
x2 + y2

)
= |z| in the interval [0, π) and

µ(z) = z
sin2 z

− cot z and where

ν(z) =
z2

sin2 z

1

1 + µ(z)
=

z2

z + sin2 z − sin z cos z
, ν(0) = 2.

Since the distance is left-invariant, we have

dCC (x, x̃) = dCC
(
x̃−1 ? x, e

)
which gives us an explicit expression for dCC on the Heisenberg group. Although
ν is not continuous it was shown in [8] that dCC is continuous.

We will not use this explicit expression for dCC . Instead, since ν > 0 and
bounded below and above by positive constants in the interval [0, π), it is clear
that the Carnot-Carathéodory distance is equivalent to the pseudo-metric

(2.4) ρ (x,y) =
(

(x− x̃)
2

+ (y − ỹ)
2

+ |z − z̃ + xỹ − yx̃|
) 1

2

.

Finally, we can describe Brownian motion whose generator is ∆H/2 explicitly as
follows. Let B1, B2 be real-valued independent Brownian motions starting from 0.
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Define Brownian motion on the Heisenberg group Xt : [0,∞) × Ω → H to be the
solution of the following Stratonovich stochastic differential equation (SDE)

dXt = X (Xt) ◦ dB1(t) + Y (Xt) ◦ dB2(t),

X0 = (b1, b2, a) .

Letting Xt = (X1(t), X2(t), X3(t)) we see that the SDE reduces to

dXt =

 1
0

−X2(t)

 ◦ dB1(t) +

 0
1

X1(t)

 ◦ dB2(t),

so that one needs to solve the following system of equations

dX1(t) = dB1(t)

dX2(t) = dB2(t),

dX3(t) = −X2(t) ◦ dB1(t) +X1(t) ◦ dB2(t).

Since the covariation of two independent Brownian motions is zero we get that

X1(t) = b1 +B1(t),

X2(t) = b2 +B2(t),

X3(t) = a+

∫ t

0

(B1(s) + b1)dB2(s)−
∫ t

0

(B2(s) + b2)dB1(s).(2.5)

3. Coupling results

Let B1, B2 be independent real-valued Brownian motions, starting from b1 and
b2 respectively. We call the process

(3.1) Xt =

(
B1(t), B2(t), a+

∫ t

0

B1(s)dB2(s)−
∫ t

0

B2(s)dB1(s)

)
Brownian motion on the Heisenberg group, with driving Brownian motion B =

(B1, B2), starting from (b1, b2, a). Let X and X̃ be coupled copies of this process

starting from (b1, b2, a) and
(
b̃1, b̃2, ã

)
respectively. Denote the coupling time

τ = inf
{
t > 0 : Xs = X̃s for all s > t

}
.

We will construct a non-Markovian coupling
(
X, X̃

)
of two Brownian motions

on the Heisenberg group. This, via the Aldous’ inequality, will yield an upper

bound on the total variation distance between the laws of X and X̃. Before we
state and prove the main theorem, we describe the tools required in its proof.

For T > 0, let
(
Bbr, B̃br

)
be a coupling of standard Brownian bridges defined

on the interval [0, T ]. If G(T ) is a Gaussian variable with mean zero and variance

T independent of
(
Bbr, B̃br

)
, a standard covariance computation shows that the

assignment

B(t) = Bbr(t) +
t

T
G(T )

B̃(t) = B̃br(t) +
t

T
G(T )(3.2)
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gives a non-Markovian coupling of two standard Brownian motions on [0, T ] satis-

fying B (T ) = B̃ (T ). This coupling is similar in spirit to the one developed in [2].
The usefulness of this coupling strategy arises when we want to couple two copies of
the process ((B(t), F ([B]t)) : t > 0), where B is a Brownian motion, [B]t denotes
the whole Brownian path up until time t (thought of as an element of C [0, t]),
and F is a (possibly random) functional on C [0, t]. We first reflection couple the
Brownian motions until they meet. Then, by dividing the future time into intervals
[Tn, Tn+1] (usually of growing length) and constructing a suitable non-Markovian
coupling of the Brownian bridges on each such interval, we can obtain a coupling
of the Brownian paths by the above recipe in such a way that the corresponding
path functionals agree at one of the deterministic times Tn. As by construction,
the coupled Brownian motions agree at the times Tn, we achieve a successful cou-
pling of the joint process (B,F ). Further, the rate of coupling attained by this
non-Markovian strategy is usually significantly better than Markovian strategies,
and is often near optimal (see [2]).

We will be interested in the particular choice of the random functional, namely,

F ([w]t) =

∫ t

0

w(s)dB1(s),

where B1 is a standard Brownian motion and w ∈ C [0, t]. Our coupling strategy
for the Brownian bridges on [0, T ] will be based on the Karhunen-Loève expansion
which goes back to [20, 30] and for examples of such expansions see [36, p.21]. For
the Brownian bridge we have

(3.3) Bbr(t) =
√
T

∞∑
k=1

Zk

√
2 sin

(
kπt
T

)
kπ

=
√
T

∞∑
k=1

ZkgT,k (t)

for t ∈ [0, T ] , where Zk are i.i.d. standard Gaussian random variables. Thus, in
order to couple two Brownian bridges on [0, T ], we will couple the random variables
{Zk}k>1. We now state and prove the following lemmas.

Lemma 3.1. There exists a non-Markovian coupling of the diffusions

{(
B1(t), B2(t), a+

∫ t

0

B2(s)dB1(s)

)
: t > 0

}
,{(

B̃1(t), B̃2(t), ã+

∫ t

0

B̃2(s)dB̃1(s)

)
: t > 0

}
,

B1(0) = B̃1(0) = b1, B2(0) = B̃2(0) = b2, and a > ã,

for which the coupling time τ satisfies

P (τ > t) 6 C
(a− ã)

t

for some constant C > 0 that does not depend on the starting points and t > (a− ã).

Proof. We will write I(t) = a +
∫ t
0
B2(s)dB1(s) and Ĩ(t) = ã +

∫ t
0
B̃2(s)dB̃1(s).

From Brownian scaling, it is clear that for any r ∈ R, the following distributional
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equality holds(
B1(t)

r
,
B2(t)

r
,
a+

∫ t
0
B2(s)dB1(s)

r2

)
(3.4)

d
=

(
B′1(t/r2), B′2(t/r2),

a

r2
+

∫ t/r2

0

B′2(s)dB′1(s)

)
,

where B′1, B
′
2 are independent Brownian motions with B′1(0) = b1/r, B

′
2(0) = b2/r.

Thus we can assume a−ã = 1. For the general case, we can obtain the corresponding
coupling by applying the same coupling strategy to the scaled process using (3.4)

with r =
√
a− ã.

Let us divide the non-negative real line into intervals
[
2n − 1, 2n+1 − 1

]
, n > 0.

We will synchronously couple B1 and B̃1 at all times. Thus, we sample the same

Brownian path for B1 and B̃1. Conditional on this Brownian path {B1(t) : t > 0}
we describe the coupling strategy for B2 and B̃2 inductively on successive intervals.
Suppose we have constructed the coupling on [0, 2n − 1] in such a way that the

coupled Brownian motions B2 and B̃2 satisfy B2(2n − 1) = B̃2(2n − 1) = b2 and

I(2n− 1) > Ĩ(2n− 1). Conditional on
{(
B2(t), B̃2(t)

)
: t 6 2n − 1

}
and the whole

Brownian path B1, we will construct the coupling of B2(t)− b2 and B̃2(t)− b2 for
t ∈

[
2n − 1, 2n+1 − 1

]
. To this end, we will couple two Brownian bridges Bbr and

B̃br on
[
2n − 1, 2n+1 − 1

]
, then sample an independent Gaussian random variable

G(2n) with mean zero, variance 2n and finally use the recipe (3.2) to get the coupling

of B2 and B̃2 on
[
2n − 1, 2n+1 − 1

]
.

Let
(
Z

(n)
1 , Z

(n)
2 , . . .

)
and

(
Z̃

(n)
1 , Z̃

(n)
2 , . . .

)
denote the Gaussian coefficients in

the Karhunen-Loève expansion (3.3) corresponding to Bbr and B̃br respectively.

Sample i.i.d Gaussians Zk and set Z
(n)
k = Z̃

(n)
k = Zk for k > 2. Now we construct

the coupling of Z
(n)
1 and Z̃

(n)
1 . Let W (n) be a standard Brownian motion starting

from zero, independent of
{(
B2(t), B̃2(t)

)
: t 6 2n − 1

}
, {Zk}k>2 and B1. In what

follows we will repeatedly use the following random functional

(3.5) λn (t) =
2

π

∫ t

2n−1

√
2 sin

(
π(s− 2n + 1)

2n

)
dB1(s), 2n − 1 6 t 6 2n+1 − 1.

Define the random time σ(n) by

σ(n) =

 inf

{
t > 0 : W (n)(t) = − (I(2n−1)−Ĩ(2n−1))

λn(2n+1−1)

}
, if λn

(
2n+1 − 1

)
6= 0,

∞, otherwise.

As λn
(
2n+1 − 1

)
is a Gaussian random variable with mean zero and variance

4

π2

∫ 2n+1−1

2n−1
2 sin2

(
π(s− 2n + 1)

2n

)
ds =

2n+2

π2
,
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the time σ(n) is finite for almost every realization of the Brownian path B1. Now,

define W̃ (n) as follows

W̃ (n)(t) =

{
−W (n)(t) if t 6 σ(n)

W (n)(t)− 2W (n)
(
σ(n)

)
if t > σ(n).

Conditional on
{(
B2(t), B̃2(t)

)
: t 6 2n − 1

}
, {Zk}k>2 and B1, σ(n) is a stopping

time for W (n). Thus W̃ (n) defined above is also a Brownian motion independent of{(
B2(t), B̃2(t)

)
: t 6 2n − 1

}
, {Zk}k>2 and B1.

Finally, we set Z
(n)
1 = 2−n/2W (n) (2n) and Z̃

(n)
1 = 2−n/2W̃ (n) (2n). Under this

coupling we get

(3.6) I(t)− Ĩ(t) = I (2n − 1)− Ĩ (2n − 1) +W (n)
(

2n ∧ σ(n)
)
λn (t) ,

for t ∈
[
2n − 1, 2n+1 − 1

]
. In particular, I

(
2n+1 − 1

)
− Ĩ
(
2n+1 − 1

)
> 0 and equals

to zero if and only if σ(n) 6 2n. If I (2n − 1) − Ĩ (2n − 1) = 0, we synchronously

couple B2, B̃2 after time 2n − 1. By induction, the coupling is defined for all time.
Now, we claim that the coupling constructed above gives the required bound

on the coupling rate. Using Lévy’s characterization of Brownian motion and the
fact that the

{
W (n)

}
n>1

are independent of the Brownian path B1, we obtain a

Brownian motion B? independent of B1 such that for all t > 0,

∞∑
k=0

λk
(
2k+1 − 1

)
W (k)

((
t− 2k + 1

)+ ∧ 2k
)

= B? (T (t)) ,

where

T (t) =

∫ t

0

∞∑
k=0

λ2k
(
2k+1 − 1

)
1
(
2k − 1 < s 6 2k+1 − 1

)
ds.

Note that for any n > 0, the coupling happens after time 2n+1 − 1 if and only if
σ(k) > 2k for all k 6 n, that is, B?(t) > (ã− a) = −1 for all t 6 T

(
2n+1 − 1

)
.

Therefore, if for y ∈ R, τ?y denoted the hitting time of level y for the Brownian
motion B?, then we have

P
(
τ > 2n+1 − 1

)
= P

(
τ?−1 > T

(
2n+1 − 1

))
.

By a standard hitting time estimate for Brownian motion, we see that there is a
constant C > 0 that does not depend on b1, b2, a, ã such that

(3.7) P
(
τ > 2n+1 − 1

)
6 CE

[
1√

T (2n+1 − 1)

]
.

Thus, we need to obtain an estimate for the right hand side in (3.7). Note that
2−2nT

(
2n+1 − 1

)
has the same distribution as

Ψn :=
4

π2

n∑
k=0

2−2kU2
k ,

where the Uk are i.i.d. standard Gaussian random variables.
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For n > 1, Ψ
−1/2
n 6 Ψ

−1/2
1 6 π

(
U2
0 + U2

1

)−1/2
. As

√
U2
0 + U2

1 has density

re−r
2/2dr with respect to the Lebesgue measure for r > 0, we conclude that

E
[
π
(
U2
0 + U2

1

)−1/2]
<∞. Thus, for n > 1

E

[
1√

2−2nT (2n+1 − 1)

]
= E

[
Ψ−1/2n

]
6 E

[
Ψ
−1/2
1

]
6 E

[
π
(
U2
0 + U2

1

)−1/2]
<∞.

This, along with (3.7), implies that there is a positive constant C not depending
on b1, b2, a, ã such that for n > 1,

P
(
τ > 2n+1 − 1

)
6

C

2n
.

It is easy to check that the above inequality implies the lemma. �

Remark 3.2. Under the hypothesis of Lemma 3.1, it is not possible to obtain
the given rate of decay of the probability of failing to couple by time t (coupling
rate) with any Markovian coupling. The proof of this proceeds similar to that
of [2, Lemma 3.1]. We sketch it here. Under any Markovian coupling µ, a simple
Fubini argument shows that there exists a deterministic time t0 > 0 such that

µ
(
B(t0) 6= B̃(t0)

)
> 0. Let τB represent the first time when the Brownian motions

B and B̃ meet after time t0 (which should happen at or before the coupling time

of X and X̃). Let Ft0 denote the filtration generated by B and B̃ up to time t0
and let Eµ denote expectation under the coupling law µ. Then, from the fact that
the maximal coupling rate of Brownian motion (equivalently the total variation

distance between B(t) and B̃(t)) decays like t−1/2, we deduce that for sufficiently
large t

µ(τ > t) = EµEµ [τ > t | Ft0 ] > EµEµ
[
τB > t | Ft0

]
> Cµ(t− t0)−1/2 > Cµt

−1/2,

where Cµ denotes a positive constant that depends on the coupling µ. Thus, any

Markovian coupling has coupling rate at least t−1/2, but the non-Markovian cou-
pling described in Lemma 3.1 gives a rate of t−1.

The next lemma gives an estimate of the tail of the law of the stochastic integral∫ t
0
B2(s)dB1(s) run until the first time B2 hits zero.

Lemma 3.3. Let B1, B2 be independent Brownian motions with B2(0) = b > 0.
For z ∈ R, let τz denote the hitting time of level z by B2. Then

P
(∫ τ0

0

B2(s)dB1(s) > y

)
6

2b
√
y

for y > b2.
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Proof. For any level z > b, we can write

P
(∫ τ0

0

B2(s)dB1(s) > y

)
=

P
(∫ τ0

0

B2(s)dB1(s) > y, τz < τ0

)
+ P

(∫ τ0

0

B2(s)dB1(s) > y, τz > τ0

)
6

P (τz < τ0) +
E
[∫ τ0∧τz

0
B2

2(s)ds
]

y2
6

P (τz < τ0) +
z2

y2
E [τ0 ∧ τz] ,

where the second step follows from Chebyshev’s inequality. From standard esti-
mates for Brownian motion, P (τz < τ0) = b/z and E [τ0 ∧ τz] = b(z − b) 6 bz.
Using these in the above, we get

P
(∫ τ0

0

B2(s)dB1(s) > y

)
6
b

z
+
bz3

y2
.

As this bound holds for arbitrary z > b, the result follows by choosing z =
√
y. �

Consider two coupled Brownian motions
(
X, X̃

)
on the Heisenberg group start-

ing from (b1, b2, a) and
(
b1, b̃2, ã

)
respectively. A key object in our coupling con-

struction for Brownian motions on the Heisenberg group H3 will be the invariant
difference of stochastic areas given by

A(t) = (a− ã) +

(∫ t

0

B1(s)dB2(s)−
∫ t

0

B2(s)dB1(s)

)
(3.8)

−
(∫ t

0

B̃1(s)dB̃2(s)−
∫ t

0

B̃2(s)dB̃1(s)

)
+B1(t)B̃2(t)−B2(t)B̃1(t).

Note that the Lévy stochastic area is invariant under rotations of coordinates.

If the Brownian motions B1 and B̃1 are synchronously coupled at all times, then

as the covariation between B1 and B2 (and between B1 and B̃2) is zero,

(3.9) A(t)−A(0) = −2

∫ t

0

B2(s)dB1(s) + 2

∫ t

0

B̃2(s)dB1(s),

where

(3.10) A(0) = a− ã+ b1b̃2 − b2b̃1,

for t > 0. The next lemma establishes a control on the invariant difference evaluated
at the time when the Brownian motions B2 and B̃2 first meet, provided they are
reflection coupled up to that time.

Lemma 3.4. Let B1 be a real-valued Brownian motion starting from b1, and let

B2, B̃2 be reflection coupled one-dimensional Brownian motions starting from b2
and b̃2 respectively. Consider the invariant difference of stochastic areas given by

(3.8) with B1 = B̃1. Define T1 = inf
{
t > 0 : B2(t) = B̃2(t)

}
. Then there exists
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a positive constant C that does not depend on b1, b2, b̃2, a, ã such that for any t >

max

{∣∣∣b2 − b̃2∣∣∣2 , 2 ∣∣∣a− ã+ b1b̃2 − b2b̃1
∣∣∣},

E
[
|A (T1)|

t
∧ 1

]
6 C


∣∣∣b2 − b̃2∣∣∣
√
t

+

∣∣∣a− ã+ b1b̃2 − b2b̃1
∣∣∣

t

 .

Proof. In the proof, C,C ′ will denote generic positive constants that do not depend

on b1, b2, b̃2, a, ã, whose values might change from line to line. For any t > 0,

E
[
|A (T1)|

t
∧ 1

]
6
∞∑
k=0

E
[
|A (T1)|

t
∧ 1; 2−k−1t < |A (T1)| 6 2−kt

]
+ P (|A (T1)| > t)

6
∞∑
k=0

2−kP
(
2−k−1t < |A (T1)| 6 2−kt

)
+ P (|A (T1)| > t)

6
∞∑
k=0

2−kP
(
|A (T1)| > 2−k−1t

)
+ P (|A (T1)| > t) .(3.11)

As B2 and B̃2 are reflection coupled, we can rewrite (3.9) as

A(t)−A(0) = −2

∫ t

0

(
B2(s)− B̃2(s)

)
dB1(s)

where 1
2

(
B2 − B̃2

)
is a Brownian motion starting from 1

2

(
b2 − b̃2

)
and indepen-

dent of B1. By Lemma 3.3, for t > max

{∣∣∣b2 − b̃2∣∣∣2 , 2 |A(0)|
}
,

P (|A (T1)| > t) 6 P (|A (T1)−A (0)| > t− |A (0)|)

6 P
(
|A (T1)−A (0)| > t

2

)
6 C

∣∣∣b2 − b̃2∣∣∣
√
t

.(3.12)

Further, for t > max

{∣∣∣b2 − b̃2∣∣∣2 , 2 |A(0)|
}
,

(3.13)

∞∑
k=0

2−kP
(
|A (T1)| > 2−k−1t

)
=

∑
k:2−k−1t6max

{
|b2−b̃2|2,2|A(0)|

} 2−kP
(
|A (T1)| > 2−k−1t

)
+

∑
k:2−k−1t>max

{
|b2−b̃2|2,2|A(0)|

} 2−kP
(
|A (T1)| > 2−k−1t

)
.
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To estimate the first term on the right hand side of (3.13), let k0 be the smallest

integer k such that 2−k−1t 6 max

{∣∣∣b2 − b̃2∣∣∣2 , 2 |A(0)|
}

. Then,

(3.14)
∑

k:2−k−1t6max
{
|b2−b̃2|2,2|A(0)|

} 2−kP
(
|A (T1)| > 2−k−1t

)

6
∞∑

k=k0

2−k = 2−k0+1 =
4

t
2−k0−1t 6

4

t
max

{∣∣∣b2 − b̃2∣∣∣2 , 2 |A(0)|
}

6 8


∣∣∣b2 − b̃2∣∣∣2

t
+
|A(0)|
t

 6 8


∣∣∣b2 − b̃2∣∣∣
√
t

+

∣∣∣a− ã+ b1b̃2 − b2b̃1
∣∣∣

t

 ,

where we used the facts that
|b2−b̃2|2

t 6
|b2−b̃2|√

t
for t >

∣∣∣b2 − b̃2∣∣∣2 and A(0) =

a− ã+ b1b̃2 − b2b̃1 to get the last inequality.
To estimate the second term on the right hand side of (3.13), we use Lemma 3.3

to get

(3.15)
∑

k:2−k−1t>max
{
|b2−b̃2|2,2|A(0)|

} 2−kP
(
|A (T1)| > 2−k−1t

)
6

C√
t

∑
k:2−k−1t>max

{
|b2−b̃2|2,2|A(0)|

} 2−k/2
∣∣∣b2 − b̃2∣∣∣

6
C
∣∣∣b2 − b̃2∣∣∣
√
t

∞∑
k=0

2−k/2 6 C ′

∣∣∣b2 − b̃2∣∣∣
√
t

.

Using (3.14) and (3.15) in (3.13),

(3.16)

∞∑
k=0

2−kP
(
|A (T1)| > 2−k−1t

)
6 C


∣∣∣b2 − b̃2∣∣∣
√
t

+

∣∣∣a− ã+ b1b̃2 − b2b̃1
∣∣∣

t

 .

Using (3.12) and (3.16) in (3.11), we complete the proof of the lemma. �

Now, we state and prove our main theorem on coupling of Brownian motions on
the Heisenberg group H3.

Theorem 3.5. There exists a non-Markovian coupling
(
X, X̃

)
of two Brownian

motions on the Heisenberg group starting from (b1, b2, a) and
(
b̃1, b̃2, ã

)
respectively,

and a constant C > 0 which does not depend on the starting points such that the
coupling time τ satisfies

P (τ > t) 6 C


∣∣∣b− b̃

∣∣∣
√
t

+

∣∣∣a− ã+ b1b̃2 − b2b̃1
∣∣∣

t


for t > max

{∣∣∣b− b̃
∣∣∣2 , 2 ∣∣∣a− ã+ b1b̃2 − b2b̃1

∣∣∣}. Here b = (b1, b2) and b̃ =
(
b̃1, b̃2

)
.
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Proof. We will explicitly construct the non-Markovian coupling. In the proof, C
will denote a generic positive constant that does not depend on the starting points.

Since the Lévy stochastic area is invariant under rotations of coordinates, it suf-

fices to consider the case when b1 = b̃1. Recall the invariant difference of stochastic
areas A defined by (3.8). We will synchronously couple the Brownian motions B1

and B̃1 at all times. Recall that under this setup, the invariant difference takes the
form (3.9). The coupling comprises the following two steps.

Step 1. We use a reflection coupling for B2 and B̃2 until the first time they meet.

Let T1 = inf
{
t > 0 : B2(t) = B̃2(t)

}
.

Step 2. After time T1 we apply the coupling strategy described in Lemma 3.1 to
the diffusions

{(
B1(t), B2(t), A(T1) +

∫ t

T1

B2(s)dB1(s)

)
: t > T1

}
,{(

B̃1(t), B̃2(t),

∫ t

T1

B̃2(s)dB̃1(s)

)
: t > T1

}
.

By standard estimates for the Brownian hitting time we have

(3.17) P (T1 > t) 6
C
∣∣∣b2 − b̃2∣∣∣
√
t

for t >
∣∣∣b2 − b̃2∣∣∣2. By Lemma 3.1 and Lemma 3.4, for t > max

{∣∣∣b2 − b̃2∣∣∣2 , 2 |A(0)|
}

,

(3.18) P (τ − T1 > t) 6 CE
[
|A (T1)|

t
∧ 1

]

6 C


∣∣∣b2 − b̃2∣∣∣
√
t

+

∣∣∣a− ã+ b1b̃2 − b2b̃1
∣∣∣

t

 .

Equations (3.17) and (3.18) together yield the required tail bound on the coupling
time probability stated in the theorem. �

An interesting observation to note from Theorem 3.5 is that, if the Brownian
motions start from the same point, then the coupling rate is significantly faster.

The above coupling can be used to get sharp estimates on the total variation dis-
tance between the laws of two Brownian motions on the Heisenberg group starting
from distinct points.

Theorem 3.6. If dTV denotes the total variation distance between probability mea-

sures, and L (Xt) ,L
(
X̃t

)
denote the laws of Brownian motions on the Heisenberg

group starting from (b1, b2, a) and
(
b̃1, b̃2, ã

)
respectively, then there exists positive
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constants C1, C2 not depending on the starting points such that

dTV

(
L (Xt) ,L

(
X̃t

))
6 C1


∣∣∣b− b̃

∣∣∣
√
t

+

∣∣∣a− ã+ b1b̃2 − b2b̃1
∣∣∣

t


dTV

(
L (Xt) ,L

(
X̃t

))
> C2


∣∣∣b− b̃

∣∣∣
√
t

1(b 6= b̃) +
|a− ã|
t

1(b = b̃)


for t > max

{∣∣∣b− b̃
∣∣∣2 , 2 ∣∣∣a− ã+ b1b̃2 − b2b̃1

∣∣∣}.

Proof. The upper bound on the total variation distance follows from Theorem 3.5
and the Aldous’ inequality (1.1).

To prove the lower bound, we first address the case b 6= b̃. It is straightforward
to see from the definition of the total variation distance that

dTV

(
L (Xt) ,L

(
X̃t

))
> dTV

(
L (Bt) ,L

(
B̃t

))
.

Thus, when b 6= b̃, the lower bound in the theorem follows from the standard
estimate on the total variation distance between the laws of Brownian motions
using the reflection principle

dTV

(
L (Bt) ,L

(
B̃t

))
= P

|N(0, 1)| 6

∣∣∣b− b̃
∣∣∣

2
√
t

 > 1√
2πe

∣∣∣b− b̃
∣∣∣

√
t

.

where N(0, 1) denotes a standard Gaussian variable.

Now, we deal with the case b = b̃. As the generator of Brownian motion on
the Heisenberg group is hypoelliptic, the law of Brownian motion starting from
(u, v, w) has a density with respect to the Lebesgue measure on R3 which coin-

cides with the Haar measure on H3. We denote by p
(u,v,w)
t (·, ·, ·) this density (the

heat kernel) at time t. The heat kernel p
(u,v,w)
t (x, y, z) is a symmetric function of

((u, v, w), (x, y, z)) ∈ H3 × H3 and is invariant under left multiplication, that is,

p
(u,v,w)
t (x, y, z) = pet ((u, v, w)

−1
(x, y, z)) = pet ((x, y, z) (u, v, w)

−1
). Using the fact

that (u, v, w)
−1

= (−u,−v,−w) we see that

(3.19) p
(u,v,w)
t (x, y, z) = pet (x− u, y − v, z − w − uy + vx), where e = (0, 0, 0).

Then

dTV

(
L (Xt) ,L

(
X̃t

))
=

∫
R3

∣∣∣p(b1,b2,a)t (x, y, z)− p(b1,b2,ã)t (x, y, z)
∣∣∣ dxdydz

=

∫
R3

|pet (x− b1, y − b2, z − a− b1y + b2x)

−pet (x− b1, y − b2, z − ã− b1y + b2x)| dxdydz

=

∫
R3

|pet (x, y, z − a)− pet (x, y, z − ã)| dxdydz

>
∫
R
|ft(z − a)− ft(z − ã)| dz,
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where ft denotes the density with respect to the Lebesgue measure of the Lévy
stochastic area at time t when the driving Brownian motion starts at the origin.
The third equality above follows by a simple change of variable formula and the
last step follows from two applications of the inequality

∣∣∫
R f(x)dx

∣∣ 6 ∫R |f(x)|dx
for real-valued measurable f .

From Brownian scaling, it is easy to see that

ft(z) =
1

t
f1

(z
t

)
, z ∈ R.

Substituting this in the above and using the change of variable formula again, we
get

dTV

(
L (Xt) ,L

(
X̃t

))
>
∫
R

∣∣∣∣f1 (z − a

t

)
− f1

(
z − ã

t

)∣∣∣∣ dz
=

∫
R

∣∣∣∣f1(z − a− ã
t

)
− f1 (z)

∣∣∣∣ dz
>
∫
|z|>1

∣∣∣∣f1(z − a− ã
t

)
− f1 (z)

∣∣∣∣ dz.
The explicit form of f1 is well-known (see, for example, [38] or [32, p. 32])

f1(z) =
1

coshπz
, z ∈ R.

Without loss of generality, we assume a > ã. By the mean value theorem and the
assumption made in the theorem that a−ã

t 6
1
2 ,∣∣∣∣f1(z − a− ã

t

)
− f1 (z)

∣∣∣∣ > a− ã
t

inf
ζ∈[z− a−ãt ,z]

|f ′1(ζ)|

>
a− ã
t

inf
ζ∈[z− 1

2 ,z]
|f ′1(ζ)|.

We can explicitly compute

|f ′1(ζ)| = 2π|eπζ − e−πζ |
(eπζ + e−πζ)2

.

This is an even function which is strictly decreasing for ζ > 1/2. Thus, for |z| > 1,

inf
ζ∈[z− 1

2 ,z]
|f ′1(ζ)| > |f ′1(3z/2)|.

Thus,

dTV

(
L (Xt) ,L

(
X̃t

))
>
∫
|z|>1

∣∣∣∣f1(z − a− ã
t

)
− f1 (z)

∣∣∣∣ dz
>
|a− ã|
t

∫
|z|>1

|f ′1(3z/2)|dz = C2
|a− ã|
t

,

which completes the proof of the theorem. �

Several remarks are in order.

Remark 3.7. Theorem 3.6 shows that the non-Markovian coupling strategy we
constructed is, in fact, an efficient coupling strategy in the sense that the coupling
rate decays according to the same power of t as the total variation distance between
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the laws of the Brownian motions X and X̃. We refer to [2, Definition 1] for the
precise notion of efficiency.

Remark 3.8. Although we have stated our results without any quantitative bounds
on the constants appearing in the coupling time and total variation estimates, it is
possible to track concrete numerical bounds from the proofs presented above.

We need the following elementary fact. For any x > 0 and 0 6 y 6 1

(3.20) x+ y 6
√

2
(
x2 + y

) 1
2 .

Indeed,

(x+ y)
2 6 2x2 + 2y2 6 2

(
x2 + y

)
,

since y 6 1. This immediately gives us the following result.

Proposition 3.9. Assume that
∣∣∣a− ã+ b1b̃2 − b2b̃1

∣∣∣ < 1. Then there exists a

constant C > 0 such that

P (τ > t) 6
C√
t
dCC

(
(b1, b2, a) ,

(
b̃1,b̃2, ã

))
for t > max

{∣∣∣b− b̃
∣∣∣2 , 2 ∣∣∣a− ã+ b1b̃2 − b2b̃1

∣∣∣ , 1}.

Proof. Since t > 1, then 1
t 6

1√
t
, so by Theorem 3.5

P (τ > t) 6 C


∣∣∣b− b̃

∣∣∣
√
t

+

∣∣∣a− ã+ b1b̃2 − b2b̃1
∣∣∣

t


6

C√
t

(∣∣∣b− b̃
∣∣∣+
∣∣∣a− ã+ b1b̃2 − b2b̃1

∣∣∣)
6

C√
t

(∣∣∣b− b̃
∣∣∣2 +

∣∣∣a− ã+ b1b̃2 − b2b̃1
∣∣∣) 1

2

where we used (3.20) in the last inequality. Now we consider

ρ
(

(b1, b2, a) ,
(
b̃1,, b̃2, ã

))
=

(∣∣∣b− b̃
∣∣∣2 +

∣∣∣a− ã+ b1b̃2 − b2b̃1
∣∣∣) 1

2

,

as defined by (2.4). Recall from Section 2 that this pseudo-metric is equivalent to

the Carnot-Carathéodory distance dCC

(
(b1, b2, a) ,

(
b̃1, b̃2, ã

))
. This gives us the

desired inequality. �

Liouville type theorems have been known for the Heisenberg group and other
types of Carnot groups (e.g. [7, Theorem 5.8.1]). Using the coupling we constructed,
we derive a functional inequality (a form of which appeared as [1, Equation (24)])
which consequently gives us the Liouville property rather easily.

In the following, for any bounded measurable function u : H3 → R and any
x ∈ H3, we define

Ptu(x) = Eu (Xx
t ) ,

where Xx is a Brownian motion on the Heisenberg group starting from x. By ‖ ·‖∞
we denote the sup norm.
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Corollary 3.10. For any bounded u ∈ C∞(H3) there exists a positive constant C,
which does not depend on u, such that for any t > 1

‖∇HPtu‖∞ 6
C√
t
‖u‖∞.(3.21)

Consequently, if ∆Hu = 0, then u is a constant.

Proof. Fix t > 1. Take two distinct points (b1, b2, a) and
(
b̃1, b̃2, ã

)
in
(
H3, dCC

)
sufficiently close to (b1, b2, a) with respect to the distance dCC in such a way that

max

{∣∣∣b− b̃
∣∣∣2 , 2 ∣∣∣a− ã+ b1b̃2 − b2b̃1

∣∣∣} 6 1.

Then, using the coupling (X, X̃) constructed in Theorem 3.5 and by Proposition
3.9, we get∣∣∣Ptu (b1, b2, a)− Ptu

(
b̃1, b̃2, ã

)∣∣∣ =
∣∣∣E(u (Xt)− u

(
X̃t

)
: τ > t

)∣∣∣
6 2 ‖u‖∞ P (τ > t) 6

2C√
t
‖u‖∞ dCC

(
(b1, b2, a) ,

(
b̃1,b̃2, ã

))
.

Dividing by dCC

(
(b1, b2, a) ,

(
b̃1,b̃2, ã

))
on both sides above and taking a supre-

mum over all points
(
b̃1,b̃2, ã

)
6= (b1, b2, a), we get (3.21).

Finally if ∆Hu = 0, then Ptu = u for all t > 0. Taking t→∞ in (3.21), we get
∇Hu ≡ 0 and hence u ∈ C∞(H3) is constant by [7, Proposition 1.5.6].

�

4. Gradient estimates

The goal of this section is to prove gradient estimates using the coupling con-

struction introduced earlier. Let x = (b1, b2, a) and x̃ = (b̃1, b̃2, ã). We let (X, X̃) be

the non-Markovian coupling of two Brownian motions X and X̃ on the Heisenberg
group starting from x and x̃ respectively as described in Theorem 3.5. For a set Q,
define the exit time of a process Xt from this set by

τQ (X) = inf {t > 0 : Xt /∈ Q} .

The oscillation of a function over a set Q is defined by

osc
Q
u ≡ sup

Q
u− inf

Q
u.

Before we can formulate and prove the main results of this section, Theorems
4.3 and 4.4, we need two preliminary results. Lemma 4.1 gives second moment esti-

mates for supt6τ∧1 |
∫ t
0
(B2(s)−b2)dB1(s)|, supt6τ∧1 |B1(t)−b1| and supt6τ∧1 |B2(t)−

b2| under the coupling constructed above, when the coupled Brownian motions start
from the same point (b1, b2). It would be natural to want to apply here Burkholder-
Davis-Gundy (BDG) inequalities such as [19, p. 163]) which give sharp estimates of
moments of supt6T |Mt| for any continuous local martingale M in terms of the mo-
ments of its quadratic variation 〈M〉T when T is a stopping time. But the coupling
time τ is not a stopping time with respect to the filtration generated by (B1, B2),
and therefore we can not apply these inequalities to get the moment estimates.
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Lemma 4.1. Consider the coupling of the diffusions

{(
B1(t), B2(t), a+

∫ t

0

B2(s)dB1(s)

)
: t > 0

}
{(

B̃1(t), B̃2(t), ã+

∫ t

0

B̃2(s)dB̃1(s)

)
: t > 0

}
,

described in Lemma 3.1, with B1(0) = B̃1(0) = b1, B2(0) = B̃2(0) = b2 and a > ã,
with coupling time τ . Then there exists a positive constant C not depending on
b1, b2, a, ã such that we have the following

(i) E
(

supt6τ∧1

∣∣∣∫ t0 (B2(s)− b2)dB1(s)
∣∣∣)2 6 CE(τ ∧ 1)2,

(ii) E
(
supt6τ∧1 |B1(t)− b1|

)4
6 CE(τ ∧ 1)2,

(iii) E
(
supt6τ∧1 |B2(t)− b2|

)4
6 CE(τ ∧ 1)2.

Proof. In this proof, C will denote a generic positive constant whose value does not
depend on b1, b2, a, ã. Our basic strategy will be to find appropriate enlargements
of the natural filtration generated by (B1, B2) under which τ becomes a stopping
time, and then use the Burkholder-Davis-Gundy inequality.

It suffices to prove the statement for b1 = b2 = 0. Moreover, using scaling of
Brownian motion, it is straightforward to check that it is sufficient to prove the
statement with a− ã = 1 and τ ∧ 1 replaced by τ ∧M (for arbitrary M > 0). We
write B2(t) = Y1(t) + Y2(t), where

Y1(t) =

∞∑
n=0

2n/2Z
(n)
1 gn,1((t− 2n + 1)+ ∧ 2n)

Y2(t) =

∞∑
n=0

2n/2

(
(t− 2n + 1)+ ∧ 2n

2n
Z

(n)
0 +

∞∑
k=2

Z
(n)
k gn,k((t− 2n + 1)+ ∧ 2n)

)(4.1)

with gn,k(t) = g2n,k (t) as defined in the Karhunen-Loève expansion (3.3) and

Z
(n)
0 = 2−n/2G(2n) for a a Gaussian variable with mean zero and variance 2n as we

used in (3.2).
Consider the filtration

F∗t = σ
(
{B1(s) : s 6 t} ∪ {W (n)(s) : n > 0, 0 6 s 6∞} ∪ {Z(n)

k : n > 0, k > 2}
)
.

We assume without loss of generality that {F∗t }t>0 is augmented, in the sense that
all the null sets of F∗∞ and their subsets lie in F∗0 . We claim that τ is a stopping
time under the above filtration. To see this, recall that by the definition of coupling
time, the coupled processes must evolve together after the coupling time and thus,
by the coupling construction given in Lemma 3.1 (in particular, see (3.6)),

(4.2) P[τ ∈ {2n+1 − 1 : n > 0}] = 1.

Thus, to show that τ is a stopping time with respect to F∗t , it suffices to show that
{τ > 2n+1 − 1} is measurable with respect to F∗2n+1−1 for each n > 0. This is

because, for t ∈ [2n+1 − 1, 2n+2 − 1) (n > 0),

{τ > t} = {τ > 2n+1 − 1}
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almost surely with respect to the coupling measure P, by (4.2). Note that for any
n > 0,

{τ > 2n+1 − 1} =

n⋂
m=0

{σ(m) > 2m}.

Recall that

σ(m) = inf
{
t > 0 : W (m)(t) =

−
(
I(2m − 1)− Ĩ(2m − 1)

)/(
2

∫ 2m+1−1

2m−1
gm,1(s− 2m + 1)dB1(s)

)}
and on the event {τ > 2m+1 − 1},

B2(s)− B̃2(s) = Y1(s)− Ỹ1(s) = 2Y1(s), for all 0 6 s 6 2m+1 − 1.

As {Y1(t) : 0 6 t 6 2m+1 − 1} depends measurably on {Z(k)
1 : 0 6 k 6 m} and

hence on {W (k)(s) : k > 0, 0 6 s < ∞}, the above representation for σ(m) implies
that the event {σ(m) > 2m} is measurable with respect to F∗2m+1−1. Thus, for each

n > 0, {τ > 2n+1−1} is measurable with respect to F∗2n+1−1 and hence, τ is indeed

a stopping time with respect to {F∗t }t>0.

Also, note that
(∫ t

0
B2(s)dB1(s)

)
t>0

remains a continuous martingale under this

enlarged filtration. Thus, by the Burkholder-Davis-Gundy inequality, we get

E
(

sup
t6τ∧M

∣∣∣∣∫ t

0

B2(s)dB1(s)

∣∣∣∣)2

6 CE

(∫ τ∧M

0

B2
2(s)ds

)
6

CE

((
sup

t6τ∧M
|B2(t)|

)2

(τ ∧M)

)
Now, by the Cauchy-Schwarz inequality

E

((
sup

t6τ∧M
|B2(t)|

)2

(τ ∧M)

)
6

(
E
(

sup
t6τ∧M

|B2(t)|
)4
)1/2 (

E(τ ∧M)2
)1/2

.

Thus, to complete the proof (i) and (iii), it suffices to show that

E
(

sup
t6τ∧M

|B2(t)|
)4

6 CE(τ ∧M)2.

To show this, define the Brownian motion

W (t) =

∞∑
n=0

W (n)
(
(t− 2n + 1)+ ∧ 2n

)
and the following (augmented) filtration

F∗∗t = σ
(
{(B1(s),W (s)) : s 6 t} ∪ {Z(n)

k : n > 0, k > 2}
)
.

Exactly as before, we can check that τ is a stopping time with respect to this new
filtration and W is a Brownian motion (hence a continuous martingale) under it.
From the representation (4.1), note that

sup
t6τ∧M

|Y1(t)| =
√

2

π
sup

n:2n+1−16τ∧M
|W (2n+1 − 1)−W (2n − 1)| 6 2

√
2

π
sup

t6τ∧M
|W (t)|.
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Thus, by the the Burkholder-Davis-Gundy inequality

E
(

sup
t6τ∧M

|Y1(t)|
)4

6
64

π4
E
(

sup
t6τ∧M

|W (t)|
)4

6 CE(τ ∧M)2.(4.3)

To estimate supt6τ∧M |Y2(t)|, note that Y2 and τ are independent. Thus, by a
conditioning argument, it suffices to show that for fixed T > 0,

E
(

sup
t6T
|Y2(t)|

)4

6 CT 2.(4.4)

To see this, observe that Y2(t) = B2(t)− Y1(t) for each t > 0 and thus

sup
t6T
|Y2(t)| 6 sup

t6T
|B2(t)|+ sup

t6T
|Y1(t)|.

Again by the the Burkholder-Davis-Gundy inequality

E
(

sup
t6T
|B2(t)|

)4

6 CT 2.

By exactly the same argument as the one used to estimate the supremum of Y1,
but now applied to a fixed time T , we get

E
(

sup
t6T
|Y1(t)|

)4

6 CT 2.

The two estimates above yield (4.4), and hence complete the proof of (i) and (iii).
Similarly, (ii) follows from the fact that B1 is a Brownian motion under the

filtration {F∗t }t>0 and the Burkholder-Davis-Gundy inequality. �

The next lemma estimates E(τ ∧ 1)2.

Lemma 4.2. Under the coupling of Lemma 3.1, there exists a positive constant C
not depending on b1, b2, a, ã such that

E(τ ∧ 1)2 6 C(|a− ã| ∧ 1).

Proof. Without loss of generality, we assume |a− ã| 6 1. We can write

E(τ ∧ 1)2 =

∫ 1

0

P(τ >
√
t)dt

6 |a− ã|2 +

∫ 1

|a−ã|2
P(τ >

√
t)dt.

From Lemma 3.1, we get a constant C that does not depend on b1, b2, a, ã such that
for t > |a− ã|2,

P(τ >
√
t) 6 C

|a− ã|√
t
.

Using this we get

E(τ ∧ 1)2 6 |a− ã|2 + C|a− ã|
∫ 1

0

1√
t
dt 6 (1 + 2C)|a− ã|,

which proves the lemma. �



HEISENBERG COUPLING 23

Let D ⊂ H3 be a domain. Later in Theorem 4.4 we give gradient estimates for
harmonic functions in D, but we start by a result on the coupling time τ . Define
the Heisenberg ball of radius r > 0 with respect to the distance ρ

B(x, r) = {y ∈ H3 : ρ(x, y) < r}.
Recall that ρ is the pseudo-metric equivalent to dCC defined by (2.4). For x ∈ D,
let δx = ρ (x,Dc).

Consider the coupling of two Brownian motions on the Heisenberg group X and

X̃ starting from points x, x̃ ∈ D respectively as described by Theorem 3.5. We
choose these points in such a way that ρ(x, x̃) is small enough compared to δx. The
following theorem estimates the probability (as a function of δx and ρ(x, x̃)) that
one of the processes exits the ball B(x, δx) before coupling happens. This turns out
to be pivotal in proving the gradient estimate.

Theorem 4.3. Let x = (b1, b2, a) ∈ D, x̃ = (̃b1, b̃2, ã) ∈ D such that ρ(x, x̃) <

δx/32, |b− b̃| 6 1 and |a− ã+ b1b̃2 − b2b̃1| 6 1/2. Then, under the same coupling
of Theorem 3.5, there exists a constant C > 0 that does not depend on x, x̃ such
that

P
(
τ > τB(x,δx) (X) ∧ τ̃B(x,δx)

(
X̃
))
6 C

(
1 +

1

δx
+

1

δ4x
+

(1 + δx)3

δ4x

)
ρ(x, x̃).

Proof. In this proof, C will denote a generic positive constant (whose value might
change from line to line) that does not depend on x, x̃.

Let b̂i = bi+b̃i
2 for i = 1, 2 and â = a+ã

2 . We define the Heisenberg cube by

Q =

{
(y1, y2, y3) ∈ R3 : max

i=1,2

∣∣∣yi − b̂i∣∣∣ ≤ δx
8
,
∣∣∣â− y3 + b̂1y2 − b̂2y1

∣∣∣ 6 δ2x
16

}
.

Write x̂ = (b̂1, b̂2, â). It is straightforward to check that ρ(x, x̂) 6 ρ(x, x̃)/
√

2 <

δx/32
√

2. Moreover, for y ∈ Q

ρ(x̂, y) =
(
|y1 − b̂1|2 + |y2 − b̂2|2 +

∣∣∣â− y3 + b̂1y2 − b̂2y1
∣∣∣)1/2

6 |y1 − b̂1|+ |y2 − b̂2|+
∣∣∣â− y3 + b̂1y2 − b̂2y1

∣∣∣1/2 6 δx/2.
Thus, by the triangle inequality, for any y ∈ Q

ρ(x, y) 6 ρ(x, x̂) + ρ(x̂, y) < δx

and hence, Q ⊂ B(x, δx). Note that we can write Q = Q1 ∩Q2 where

Q1 =

{
(y1, y2, y3) ∈ R3 : max

i=1,2

∣∣∣yi − b̂i∣∣∣ ≤ δx
8

}
,

Q2 =

{
(y1, y2, y3) ∈ R3 :

∣∣∣â− y3 + b̂1y2 − b̂2y1
∣∣∣ 6 δ2x

16

}
.

As the Lévy stochastic area is invariant under rotations of coordinates, it suffices

to assume that b1 = b̃1. We define

U(t) = a− â+

∫ t

0

B1(s)dB2(s)−
∫ t

0

B2(s)dB1(s) +B1(t)b̂2 −B2(t)b̂1.

Note that
dU(t) = (B1(t)− b̂1)dB2(t)− (B2(t)− b̂2)dB1(t).
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Writing

σu = inf{t > 0 : |U(t)| > u},

we observe that τQ2
(X) = σδ2x/16 and hence, τQ (X) = τQ1

(X)∧τQ2
(X) = τQ1

(X)∧
σδ2x/16. We can write

P
(
τ > τB(x,δx) (X) ∧ τ̃B(x,δx)

(
X̃
))
6 P(τ > τQ(X) ∧ τQ(X̃))

6 P(τ > τQ(X)) + P(τ > τQ(X̃)).

Now we estimate P(τ > τQ(X)), the second term in the inequality above can be
estimated similarly. First we define

Q∗1 =

{
(y1, y2, y3) ∈ R3 : max

i=1,2

∣∣∣yi − b̂i∣∣∣ 6 δx
16

}
.

We have

P(τ > τQ(X)) = P(τ > τQ1(X) ∧ σδ2x/16)

6 P(T1 > τQ∗
1
(X)) + P(τ > τQ1(X) ∧ σδ2x/16, T1 6 τQ∗

1
(X))

6 P(T1 > τQ∗
1
(X)) + P(σδ2x/32 6 T1 ∧ τQ∗

1
(X))

+ P(τ > τQ1
(X) ∧ σδ2x/16, T1 6 τQ∗

1
(X) ∧ σδ2x/32).(4.5)

It follows from a computation involving standard Brownian estimates (see, for ex-
ample, the proof of [12, Theorem 1]) that

P(T1 > τQ∗
1
(X)) 6 C

|b− b̃|
δx

.(4.6)

To estimate the second term in (4.5), note that

P(σδ2x/32 6 T1 ∧ τQ∗
1
(X)) = P

(
sup

t6T1∧τQ∗
1
(X)

|U(t)| > δ2x
32

)
.

Now, as T1 ∧ τQ∗
1
(X) is a stopping time with respect to the natural filtration gen-

erated by (B1, B2), by the the Burkholder-Davis-Gundy inequality

E

(
sup

t6T1∧τQ∗
1
(X)

|U(t)− U(0)|

)2

6 CE

(∫ T1∧τQ∗
1
(X)

0

|B(s)− b̂|2ds

)

6 CE

(∫ T1∧τQ∗
1
(X)

0

δ2xds

)
6 Cδ2xE(T1 ∧ τQ∗

1
(X)).

We can again appeal to standard Brownian estimates (e.g. see the proof of [12,
Theorem 1]) to see that

(4.7) E
(
T1 ∧ τQ∗

1
(X))

)
6 Cδx|b− b̂|.
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Using this estimate gives us

E

(
sup

t6T1∧τQ∗
1
(X)

|U(t)|

)2

6 2E

(
sup

t6T1∧τQ∗
1
(X)

|U(t)− U(0)|

)2

+ 2|U(0)|2

6 Cδ3x|b− b̂|+ 2|a− â+ b1b̂2 − b2b̂1|2 6
C

2
δ3x|b− b̃|+ 1

2
|a− ã+ b1b̃2 − b2b̃1|2.

By assumption |a− ã+ b1b̃2 − b2b̃1| < 1, and therefore

E

(
sup

t6T1∧τQ∗
1
(X)

|U(t)|

)2

6 C(1 + δx)3(|b− b̃|+ |a− ã+ b1b̃2 − b2b̃1|)

6 C(1 + δx)3ρ(x, x̃),

where the last inequality follows from (3.20). Thus, by the Chebyshev inequality

P

(
sup

t6T1∧τQ∗
1
(X)

|U(t)| > δ2x
32

)
6 C

(1 + δx)3

δ4x
ρ(x, x̃),

which, in turn, gives us

P(σδ2x/32 6 T1 ∧ τQ∗
1
(X)) 6 C

(1 + δx)3

δ4x
ρ(x, x̃).(4.8)

To estimate the last term in (4.5), we write

P(τ > τQ1
(X) ∧ σδ2x/16, T1 6 τQ∗

1
(X) ∧ σδ2x/32) 6 P(τ − T1 > 1)

+ P(τ > τQ1
(X) ∧ σδ2x/16, T1 6 τQ∗

1
(X) ∧ σδ2x/32, τ − T1 6 1).(4.9)

By Lemma 3.1, we get

P(τ − T1 > 1) 6 CE|A(T1) ∧ 1|,

where A is the invariant difference of stochastic areas defined in (3.8).

Applying Lemma 3.4 with t = 1 and appealing to our assumption that |b−b̃| 6 1

and |a− ã+ b1b̃2 − b2b1| 6 1/2, we have

E|A(T1) ∧ 1| 6 C(|b− b̃|+ |a− ã+ b1b̃2 − b2b1|) 6 Cρ(x, x̃).

which gives

P(τ − T1 > 1) 6 Cρ(x, x̃).(4.10)
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Finally, we need to estimate P(τ > τQ1
(X)∧σδ2x/16, T1 6 τQ∗

1
(X)∧σδ2x/32, τ −T1 6

1). Note that

P(τ >τQ1
(X) ∧ σδ2x/16, T1 6 τQ∗

1
(X) ∧ σδ2x/32, τ − T1 6 1)

6 P

(
sup

T16t6T1+(τ−T1)∧1
|B1(t)−B1(T1)| > δx/16

)
+

P

(
sup

T16t6T1+(τ−T1)∧1
|B2(t)−B2(T1)| > δx/16

)

+ P

(
sup

T16t6T1+(τ−T1)∧1
|U(t)− U(T1)| > δ2x/32,

sup
T16t6T1+(τ−T1)∧1

|B1(t)−B1(T1)| < δx/16, T1 6 τQ∗
1
(X)

)
.(4.11)

By the strong Markov property applied at T1, along with parts (ii) and (iii) of
Lemma 4.1 and the Chebyshev inequality, we get

P

(
sup

T16t6T1+(τ−T1)∧1
|Bi(t)−Bi(T1)| > δx/16

)
6 C

E((τ − T1) ∧ 1)2

δ4x

for i = 1, 2. From the explicit construction of the coupling strategy given in Theo-
rem 3.5 and Lemma 4.2 and Lemma 3.4, we obtain

E((τ − T1) ∧ 1)2 6 E|A(T1) ∧ 1| 6 Cρ(x, x̃).

and thus,

P

(
sup

T16t6T1+(τ−T1)∧1
|Bi(t)−Bi(T1)| > δx/16

)
6 C

ρ(x, x̃)

δ4x
.(4.12)

for i = 1, 2. To handle the last term in (4.11), define

U∗(t) = U(t)− (B1(t)− b̂1)(B2(t)− b̂2).

Note that

dU∗(t) = −2(B2(t)− b̂2)dB1(t).

and U∗(T1) = U(T1) as B2(T1) = b̂2. Further, observe that

sup
T16t6T1+(τ−T1)∧1

|U(t)− U(T1)| 6

sup
T16t6T1+(τ−T1)∧1

|U∗(t)− U∗(T1)|+ sup
T16t6T1+(τ−T1)∧1

|B1(t)− b̂1||B2(t)− b̂2|.
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Using this, we can bound the last term in (4.11) as

(4.13) P

(
sup

T16t6T1+(τ−T1)∧1
|U(t)− U(T1)| > δ2x/32,

sup
T16t6T1+(τ−T1)∧1

|B1(t)−B1(T1)| < δx/16, T1 6 τQ∗
1
(X)

)

6 P

(
sup

T16t6T1+(τ−T1)∧1
|U∗(t)− U∗(T1)| > δ2x/64

)

+ P

(
sup

T16t6T1+(τ−T1)∧1
|B1(t)− b̂1||B2(t)− b̂2| > δ2x/64,

sup
T16t6T1+(τ−T1)∧1

|B1(t)−B1(T1)| < δx/16, T1 6 τQ∗
1
(X)

)
.

By conditioning at time T1 and part (i) of Lemma 4.1, followed by applications of
Lemma 4.2 and Lemma 3.4, we obtain

E

(
sup

T16t6T1+(τ−T1)∧1
|U∗(t)− U∗(T1)|

)2

6

4E

(
sup

T16t6T1+(τ−T1)∧1

∣∣∣∣∫ t

T1

(B2(s)− b̂2)dB1(s)

∣∣∣∣
)2

6

CE((τ − T1) ∧ 1)2 6 E|A(T1) ∧ 1| 6 Cρ(x, x̃).

Consequently, by the Chebyshev inequality

P

(
sup

T16t6T1+(τ−T1)∧1
|U∗(t)− U∗(T1)| > δ2x/64

)
6 C

ρ(x, x̃)

δ4x
.(4.14)

Moreover,

(4.15) P

(
sup

T16t6T1+(τ−T1)∧1
|B1(t)− b̂1||B2(t)− b̂2| > δ2x/64,

sup
T16t6T1+(τ−T1)∧1

|B1(t)−B1(T1)| < δx/16, T1 6 τQ∗
1
(X)

)

6 P

(
sup

T16t6T1+(τ−T1)∧1
|B2(t)− b̂2| > δx/8

)

+ P

(
sup

T16t6T1+(τ−T1)∧1
|B1(t)− b̂1| > δx/8,

sup
T16t6T1+(τ−T1)∧1

|B1(t)−B1(T1)| < δx/16, T1 6 τQ∗
1
(X)

)
.
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We use the fact B2(T1) = b̂2 and proceed exactly along the lines of the proof of
(4.12) to obtain

(4.16) P

(
sup

T16t6T1+(τ−T1)∧1
|B2(t)− b̂2| > δx/8

)
6 C

ρ(x, x̃)

δ4x
.

The second probability appearing on the right hand side of (4.15) can be bounded
as follows

(4.17) P

(
sup

T16t6T1+(τ−T1)∧1
|B1(t)− b̂1| > δx/8,

sup
T16t6T1+(τ−T1)∧1

|B1(t)−B1(T1)| < δx/16, T1 6 τQ∗
1
(X)

)

6 P

(
sup

(T1∧τQ∗
1
(X))6t6(T1∧τQ∗

1
(X))+(τ−(T1∧τQ∗

1
(X)))∧1

|B1(t)− b̂1| > δx/8,

sup
(T1∧τQ∗

1
(X))6t6(T1∧τQ∗

1
(X))+(τ−(T1∧τQ∗

1
(X)))∧1

|B1(t)−B1(T1 ∧ τQ∗
1
(X))| < δx/16

)
6 P

(
|B1(T1 ∧ τQ∗

1
(X))− b̂1| > δx/16

)
.

We will use the fact that b1 = b̂1. By an application of the Chebyshev inequality
followed by the Burkholder-Davis-Gundy inequality, and using (4.7), we get

P
(
|B1(T1 ∧ τQ∗

1
(X))− b̂1| > δx/16

)
6 C

E|B1(T1 ∧ τQ∗
1
(X))− b̂1|2

δ2x

6 C
E sup06t6T1∧τQ∗

1
(X) |B1(t)− b1|2

δ2x
6 C

E(T1 ∧ τQ∗
1
(X))

δ2x
6 C
|b− b̂|
δx

.

Using this in (4.17),

(4.18) P

(
sup

T16t6T1+(τ−T1)∧1
|B1(t)− b̂1| > δx/8,

sup
T16t6T1+(τ−T1)∧1

|B1(t)−B1(T1)| < δx/16, T1 6 τQ∗
1
(X)

)
6 C
|b− b̂|
δx

.

Using (4.16) and (4.18) in (4.15), we obtain

(4.19) P

(
sup

T16t6T1+(τ−T1)∧1
|B1(t)− b̂1||B2(t)− b̂2| > δ2x/64,

sup
T16t6T1+(τ−T1)∧1

|B1(t)−B1(T1)| < δx/16, T1 6 τQ∗
1
(X)

)

6 C

(
1

δx
+

1

δ4x

)
ρ(x, x̃).
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Finally, using (4.14) and (4.19) in (4.13),

(4.20) P

(
sup

T16t6T1+(τ−T1)∧1
|U(t)− U(T1)| > δ2x/32,

sup
T16t6T1+(τ−T1)∧1

|B1(t)−B1(T1)| < δx/16, T1 6 τQ∗
1
(X)

)

6 C

(
1

δx
+

1

δ4x

)
ρ(x, x̃).

Using the estimates from (4.12) and (4.20) in (4.11), we get

(4.21) P(τ > τQ1(X) ∧ σδ2x/16, T1 6 τQ∗
1
(X) ∧ σδ2x/32, τ − T1 6 1)

6 C

(
1

δx
+

1

δ4x

)
ρ(x, x̃).

Using (4.10) and (4.21) in (4.9), we get

P(τ > τQ1(X) ∧ σδ2x/16, T1 6 τQ∗
1
(X) ∧ σδ2x/32) 6 C

(
1 +

1

δx
+

1

δ4x

)
ρ(x, x̃).(4.22)

Using the estimates (4.6), (4.8) and (4.22) in (4.5), we obtain

P(τ > τQ(X)) 6 C

(
1 +

1

δx
+

1

δ4x
+

(1 + δx)3

δ4x

)
ρ(x, x̃).(4.23)

The same estimate for P(τ > τQ(X̃)) is obtained by interchanging the roles of x
and x̃. This completes the proof of the theorem. �

The above theorem yields the gradient estimate formulated in Theorem 4.4.
Before we can formulate our result, we explain the argument in the proof of [26,
Proposition 4.1] that leads to (4.24).

Recall that ∆H denotes the sub-Laplacian which is the generator of the Brownian
motion on H3, and for any function f on H3, |∇Hf | denotes the associated length
of the horizontal gradient of f defined by (2.2). As before ‖·‖H denotes the norm
induced by the sub-Riemannian metric on horizontal vectors. We can use the fact
that {X ,Y} is an orthonormal frame for the horizontal distribution, therefore for
any Lipschitz continuous function u defined on a domain D in H3,

‖∇Hu‖2H = (Xu)
2

+ (Yu)
2

holds in D (where Xu and Yu are interpreted in the distributional sense). Now we
can use [17, Theorem 11.7] for the vector fields {X ,Y} in H3 identified with R3. We
need to check some assumptions in this theorem. First, if u is Lipschitz continuous
on D, it is clear that

|∇Hu| (x) 6 sup
z,z̃∈D,z 6=z̃

|u(z)− u (z̃)|
dCC (z, z̃)

<∞,

for all x ∈ D, and hence |∇Hu| is locally integrable. In addition, as u is Lipschitz
continuous, |∇Hu| is an upper gradient of u by [26, Lemma 2.1], so [17, Theorem
11.7] is applicable and we have that

(4.24) ‖∇Hu‖H 6 |∇Hu| ,
a.e. with respect to the Lebesgue measure.
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Let C
(
D
)

be the space of functions that are continuous on the closure of the

domain D. We also let C2 (D) be the space of functions that are twice continuously
differentiable in D.

Theorem 4.4. Suppose u ∈ C
(
D
)
∩ C2 (D) such that ∆Hu = 0 on D ⊂ H3. Fix

any constant α ∈ (0, 1]. There exists a constant C > 0 that does not depend on u
such that for every x ∈ D

(4.25) ‖∇Hu(x)‖H 6 |∇Hu| (x) 6 C

(
1 +

1

δx
+

1

δ4x
+

(1 + δx)3

δ4x

)
osc

B(x,αδx)
u.

Proof. It clearly suffices to consider the case α = 1. Since u is continuous on

D, oscB(x,δx) u < ∞. Let x = (b1, b2, a) ∈ D, x̃ = (̃b1, b̃2, ã) ∈ D such that

ρ(x, x̃) < δx/32, |b− b̃| 6 1 and |a− ã+ b1b̃2 − b2b̃1| 6 1/2. Consider the coupling

from Theorem 3.5 of two Brownian motions, X and X̃, on the Heisenberg group
starting from the points x and x̃ respectively.

By Theorem 4.3 and the equivalence of the Carnot-Carathéodory metric dCC
and the pseudo-metric ρ, we have

P
(
τ > τB(x,δx) (X) ∧ τ̃B(x,δx)

(
X̃
))
6 C

(
1 +

1

δx
+

1

δ4x
+

(1 + δx)3

δ4x

)
dCC (x, x̃) .

Using the coupling from Theorem 3.5 and Itô’s formula we have that

|u (x)− u (x̃)| =
∣∣∣E [u(XτB(x,δx)(X)

)
− u

(
X̃τ̃B(x,δx)(X̃)

)]∣∣∣
6 E

[∣∣∣u(XτB(x,δx)(X)

)
− u

(
X̃τ̃B(x,δx)(X̃)

)∣∣∣]
6

(
osc

B(x,δx)
u

)
· P
(
τ > τB(x,δx) (X) ∧ τ̃B(x,δx)

(
X̃
))

6 C

(
osc

B(x,δx)
u

)(
1 +

1

δx
+

1

δ4x
+

(1 + δx)3

δ4x

)
dCC (x, x̃) .

Since u ∈ C
(
D
)
∩ C2 (D) therefore (4.24) holds for every x ∈ D. Dividing out by

dCC (x, x̃) and using (4.24) we have that for every x ∈ D,

‖∇Hu(x)‖H 6 |∇Hu| (x) = lim
r↓0

sup
0<dCC(x,x̃)≤r

|u (x)− u (x̃)|
dCC (x, x̃)

6 C

(
1 +

1

δx
+

1

δ4x
+

(1 + δx)3

δ4x

)
osc

B(x,δx)
u,

as needed. �

Corollary 4.5. Let u ∈ C
(
D
)
∩ C∞ (D) be a non-negative solution to ∆Hu = 0

on D ⊂ H3. There exists a constant C > 0 that does not depend on u, δx, x,D such
that

‖∇Hu (x)‖H 6 |∇Hu| (x) 6 C

(
1 +

1

δx
+

1

δ4x
+

(1 + δx)
3

δ4x

)
u(x)

for every x ∈ D.

Proof. By [7, Corollary 5.7.3] we have the following Harnack inequality

(4.26) sup
B(x,α∗δx)

u 6 C inf
B(x,α∗δx)

u
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for x ∈ D ⊂ H3, where α∗ ∈ (0, 1], C > 0 are constants not depending on u, δx, x,D.
Then Equations (4.25) and (4.26) give the desired result. �

We can use Corollary 4.5 and the stratified structure of H3 to prove the Cheng-
Yau gradient estimate. In particular, this recovers the fact that non-negative har-
monic functions on the Heisenberg group must be constant. We thank F. Baudoin
for pointing out the connection between the gradient estimate in Corollary 4.5 and
the Cheng-Yau inequality.

Corollary 4.6. If u is any positive harmonic function in a ball B (x0, 2r) ⊂ H3,
then there exists a universal constant C > 0 not dependent on u and x0 such that

sup
B(x0,r),

‖∇H log u(x)‖H ≤
C

r
.

Moreover, if u is any positive harmonic function on H3, then u must be a constant.

Proof. Suppose u > 0 is harmonic in B (0, 2). By Corollary 4.5

(4.27)
‖∇Hu(x)‖H

u(x)
≤ C ′ = C sup

x∈B(0,1)

(
1 +

1

δx
+

1

δx
+

(1 + δx)
3

δ4x

)
, x ∈ B(0, 1),

where C is the same constant as in Corollary 4.5. This implies that

(4.28) sup
B(0,1),

‖∇H log u‖H 6 C
′.

Now suppose that u > 0 is harmonic in B (x0, 2r) for r > 0. By left invariance
and the dilation properties of H3 we see that (4.28) implies

sup
B(x0,r),

‖∇H log u‖H 6
C ′

r
.

If u is harmonic on all of H3, taking r →∞ gives us that u must be constant. �

5. Concluding remarks

Our work gives the first use of explicit non-Markovian coupling techniques to
get geometric information in the sub-Riemannian setting. We would like to point
out some potentially significant connections with a different approach to such a
setting. K. Kuwada in [26] proved an important result on the duality of Lq-gradient
estimates for the heat kernel of diffusions and their Lp-Wasserstein distances under
the assumptions of volume doubling and a local Poincaré inequality, for any p ∈
[1,∞], 1

p + 1
q = 1. Using this duality, he used the L1-gradient estimate of the

heat kernel for Brownian motion on the Heisenberg group obtained in [29] and [1]
to derive L∞-Wasserstein bounds. More precisely, he proved that if dW (x, y; t)
denotes the L∞-Wasserstein distance between the laws of Brownian motion on H3

starting from x and y at time t > 0, then

(5.1) dW (x, y; t) 6 KdCC(x, y)

for some constant K that does not depend on x, y, t. The constant K is not known,
the best estimate obtained so far is K >

√
2 (see [13]). Although we work with the

total variation distance instead of the Wasserstein distance, Theorem 3.6 gives a
better estimate of the distance between the laws of the two Brownian motions on
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H3, as it not only captures the dependence on the starting points, but also gives
the “polynomial decay” in time.

Our intention is to use the techniques developed in this article and in [2], to
give a systematic way to explicitly construct non-Markovian couplings via spectral
expansions, and connect it to the previous results on the heat kernels such as those
in [13,26,29]. This will be addressed in future work.
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358(3-4):833–860, 2014.
[5] Fabrice Baudoin and Nicola Garofalo. Curvature-dimension inequalities and Ricci lower

bounds for sub-Riemannian manifolds with transverse symmetries. J. Eur. Math. Soc.

(JEMS), 19(1):151–219, 2017.
[6] Gérard Ben Arous, Michael Cranston, and Wilfrid S. Kendall. Coupling constructions for

hypoelliptic diffusions: two examples. In Stochastic analysis (Ithaca, NY, 1993), volume 57
of Proc. Sympos. Pure Math., pages 193–212. Amer. Math. Soc., Providence, RI, 1995.

[7] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni. Stratified Lie groups and potential theory for

their sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin, 2007.
[8] Ovidiu Calin, Der-Chen Chang, and Peter Greiner. Geometric analysis on the Heisenberg

group and its generalizations, volume 40 of AMS/IP Studies in Advanced Mathematics.

American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2007.
[9] Shu-Cheng Chang, Jingzhi Tie, and Chin-Tung Wu. Subgradient estimate and Liouville-type

theorem for the CR heat equation on Heisenberg groups. Asian J. Math., 14(1):41–72, 2010.

[10] S. Y. Cheng and S. T. Yau. Differential equations on Riemannian manifolds and their geo-
metric applications. Comm. Pure Appl. Math., 28(3):333–354, 1975.

[11] M. Cranston. Gradient estimates on manifolds using coupling. J. Funct. Anal., 99(1):110–124,

1991.
[12] M. Cranston. A probabilistic approach to gradient estimates. Canad. Math. Bull., 35(1):46–

55, 1992.
[13] Bruce K. Driver and Tai Melcher. Hypoelliptic heat kernel inequalities on the Heisenberg

group. J. Funct. Anal., 221:340–365, 2005.

[14] Sheldon Goldstein. Maximal coupling. Z. Wahrsch. Verw. Gebiete, 46(2):193–204, 1978/79.
[15] Maria Gordina and Thomas Laetsch. Sub-Laplacians on Sub-Riemannian Manifolds. Poten-

tial Anal., 44(4):811–837, 2016.
[16] David Griffeath. A maximal coupling for Markov chains. Z. Wahrscheinlichkeitstheorie und

Verw. Gebiete, 31:95–106, 1974/75.
[17] Piotr Haj lasz and Pekka Koskela. Sobolev met Poincaré. Mem. Amer. Math. Soc.,
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[23] Wilfrid S. Kendall. Coupling all the Lévy stochastic areas of multidimensional Brownian

motion. Ann. Probab., 35(3):935–953, 2007.

[24] Wilfrid S. Kendall. Coupling time distribution asymptotics for some couplings of the Lévy
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