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Abstract. An embedding of the group Diff(S1) of orientation preserving
diffeomorphims of the unit circle S1 into an infinite-dimensional symplectic
group, Sp(∞), is studied. The authors prove that this embedding is not sur-
jective. A Brownian motion is constructed on Sp(∞). This study is motivated
by recent work of H. Airault, S. Fang and P. Malliavin.

1. Introduction

The group Diff(S1) of orientation preserving diffeomorphims of the unit circle
S1 has been extensively studied for a long time. One of the goals of the research
has been to construct and study the properties of a Brownian motion on this
group. In [1] H. Airault and P. Malliavin considered an embedding of Diff(S1)
into an infinite-dimensional symplectic group.

This group, Sp(∞), can be represented as a certain infinite-dimensional matrix
group. For such matrix groups, the method of[6, 7] can be used to construct a
Brownian motion living in the group. This construction relies on the fact that these
groups can be embedded into a larger Hilbert space of Hilbert-Schmidt operators.
We use the same method to construct a Brownian motion on Sp(∞). One of
the advantages of Hilbert-Schmidt groups is that one can associate an infinite-
dimensional Lie algebra to such a group, and this Lie algebra is a Hilbert space.
This is not the case with Diff(S1), as an infinite-dimensional Lie algebra associated
with Diff(S1) is not a Hilbert space with respect to the inner product compatible
with the symplectic structure on Diff(S1).

In the current paper, we describe in detail the embedding of Diff(S1) into
Sp(∞), and construct a Brownian motion on Sp(∞). Our motivation comes
from an attempt to use this embedding to better understand Brownian motion
in Diff(S1) as studied by H. Airault, S. Fang and P. Malliavin in a number of pa-
pers (e.g. [1, 2, 4, 5]). One of the main results of the paper is Theorem 4.6, where
we describe the embedding of Diff(S1) into Sp(∞) and prove that the map is not
surjective. Theorem 6.17 gives the construction of a Brownian motion on Sp(∞).
In order for this Brownian motion to live in the group we are forced to choose
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a non-Ad-invariant inner product on the Lie algebra of Sp(∞). This fact has a
potential implication for this Brownian motion not to be quasi-invariant for the
appropriate choice of the Cameron-Martin subgroup of Sp(∞). This is in contrast
to results in [2]. The latter can be explained by the fact that the Brownian motion
we construct in Section 6 lives in a subgroup of Sp(∞) whose Lie algebra is much
smaller than the full Lie algebra of Sp(∞).

2. The spaces H and Hω

Definition 2.1. Let H be the space of complex-valued C∞ functions on the unit
circle S1 with the mean value 0. Define a bilinear form ω on H by

ω(u, v) =
1
2π

∫ 2π

0

uv′dθ, for any u, v ∈ H.

Remark 2.2. By using integration by parts, we see that the form ω is anti-
symmetric, that is, ω(u, v) = −ω(v, u) for any u, v ∈ H.

Next we define an inner product (·, ·)ω on H which is compatible with the form
ω. First, we introduce a complex structure on H, that is, a linear map J on H such
that J2 = −id. Then the inner product is defined by (u, v)ω = ±ω(u, Jv̄), where
the sign depends on the choice of J . The complex structure J in this context is
called the Hilbert transform.

Definition 2.3. Let H0 be the Hilbert space of complex-valued L2 functions on
S1 with the mean value 0 equipped with the inner product

(u, v) =
1
2π

∫ 2π

0

uv̄dθ, for any u, v ∈ H0.

Notation 2.4. Denote ên = einθ, n ∈ Z\{0}, and BH = {ên, n ∈ Z\{0}} . Let H+

and H− be the closed subspaces of H0 spanned by {ên : n > 0} and {ên : n < 0},
respectively. By π+ and π− we denote the projections of H0 onto subspaces H+

and H−, respectively. For u ∈ H0, we can write u = u+ + u−, where u+ = π+(u)
and u− = π−(u).

Definition 2.5. Define the Hilbert transformation J on BH by

J : ên 7→ i sgn(n)ên

where sgn(n) is the sign of n, and then extended by linearity to H0.

Remark 2.6. In the above definition, J is defined on the space H0. We need
to address the issue whether it is well–defined on the subspace H. That is, if
J(H) ⊆ H. We will see that if we modify the space H a little bit, for example,
if we let C1

0 (S1) be the space of complex-valued C1 functions on the circle with
mean value zero, then J is not well–defined on C1

0 (S1). This problem really lies
in the heart of Fourier analysis. To see this, we need to characterize J by using
the Fourier transform.

Notation 2.7. For u ∈ H0, let F : u 7→ û be the Fourier transformation with
û(n) = (u, ên). Let Ĵ be a transformation on l2(Z\{0}) defined by

(
Ĵ û

)
(n) =

i sgn(n)û(n) for any û ∈ l2(Z\{0}).
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The Fourier transformation F : H0 → l2(Z\{0}) is an isomorphism of Hilbert
spaces, and J = F−1 ◦ Ĵ ◦ F .

Proposition 2.8. The Hilbert transformation J is well–defined on H, that is
J(H) ⊆ H.

Proof. The key of the proof is the fact that functions in H can be completely
characterized by their Fourier coefficients. To be precise, let u ∈ H0 be continuous.
Then u is in C∞ if and only if limn→∞ nkû(n) = 0 for any k ∈ N. From this fact,
it follows immediately that J is well–defined on H, because J only changes the
signs of the Fourier coefficients of a function u ∈ H.

For completeness of exposition, we give a proof of this characterization. Though
this is probably a standard fact in Fourier analysis, we found a proof (in [8]) of
only one direction.

We first assume that u is C∞. Then u(θ) = u(0) +
∫ θ

0
u′(t)dt. So

û(n) =
1
2π

( ∫ 2π

0

∫ 2π

0

u′(t)χ[0,θ]dt
)
e−inθdθ =

1
2π

∫ 2π

0

( ∫ 2π

t

e−inθdθ
)
u′(t)dt

= − 1
2πin

∫ 2π

0

u′(t)− u′(t)e−intdt =
û′(n)
in

,

where we have used Fubini’s theorem and the continuity of u′. Now, u′ is itself

C∞, so we can apply the procedure again. By induction, we get û(n) =
du(k)(n)

(in)k .

But from the general theory of Fourier analysis, û(k)(n) → 0 as n →∞. Therefore
nkû(n) → 0 as n →∞.

Conversely, assume u is such that for any k, nkû(n) → 0 as n →∞. Then the
Fourier series of u converges uniformly. Also by assumption that u is continuous,
the Fourier series converges to u for all θ ∈ S1 (see Corollary I.3.1 in [8]). So we
can write u(θ) =

∑
n6=0 û(n)einθ. Fix a point θ ∈ S1, then

u′(θ) =
d

dt

∣∣∣∣
t=θ

∑

n6=0

û(n)eint = lim
t→θ

lim
N→∞

N∑

n=−N

û(n)
eint − einθ

t− θ
.

Note that the derivatives of cos nt and sin nt are all bounded by |n|. So by the
mean value theorem, | cos nt− cosnθ| ≤ |n||t− θ|, and | sin nt− sin nθ| ≤ |n||t− θ|.
So ∣∣∣e

int − einθ

t− θ

∣∣∣ ≤ 2|n|, for any t, θ ∈ S1.

Therefore, by the growth condition on the Fourier coefficients û, we have

lim
N→∞

N∑

n=−N

û(n)
eint − einθ

t− θ

converges at the fixed θ ∈ S1 and the convergence is uniform in t ∈ S1. Therefore
we can interchange the two limits, and obtain

( ∑

n6=0

û(n)einθ
)′

=
∑

n6=0

û(n)ineinθ,
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which means we can differentiate term by term. So the Fourier coefficients of u′ are
given by û′(n) = inû(n). Clearly, û′ satisfies the same condition as û: nkû′(n) → 0
as n → ∞. By induction, u is j-times differentiable for any j. Therefore, u is in
C∞. ¤

Proposition 2.9. Let C1
0 (S1) be the space of complex-valued C1 functions on

the circle with the mean value zero. Then the Hilbert transformation J is not
well–defined on C1

0 (S1), i.e., J(C1
0 (S1)) * C1

0 (S1).

Proof. Let C(S1) be the space of continuous functions on the circle. In [8], it is
shown that there exists a function in C(S1) such that the corresponding Fourier
series does not converges uniformly [8, Theorem II.1.3], and therefore there exists
an f ∈ C(S1) such that Jf /∈ C(S1) [8, Theorem II.1.4]. Now take u = f − f0

where f0 is the mean value of f . Then u is a continuous function on the circle
with the mean value zero, and Ju is not continuous.

Using Notation 2.4 let us write u = u+ + u−. Then we can use the relation

iu + Ju = 2iu+ and iu− Ju = 2iu−.

to see that u+ and u− are not continuous. Integrating u = u+ + u−, we have
∫ t

0

u(θ)dθ =
∫ t

0

u+(θ)dθ +
∫ t

0

u−(θ)dθ.

Denote the three functions in the above equation by v, v1, v2. By theorem I.1.6 in
[8],

v̂(n) =
û(n)
in

, and v̂1(n) =
û+(n)

in
, v̂2(n) =

1
in

û−(n) for n 6= 0.

Let g = v − v0 where v0 is the mean value of v. Then g ∈ C1
0 (S1). Write

g = g+ + g− 2.4. Then g+ = v1 − (v1)0 and g− = v2 − (v2)0 where (v1)0 and
(v2)0 are the mean values of v1 and v2 respectively. Then g+, g− /∈ C1

0 (S1) since
v′1 = u+, v′2 = u− are not continuous.

By the relation

ig + Jg = 2ig+ and ig − Jg = 2ig−,

we see that Jg /∈ C1
0 (S1). ¤

Notation 2.10. Define an R-bilinear form (·, ·)ω on H by

(u, v)ω = −ω(u, Jv̄) for any u, v ∈ H.

Proposition 2.11. (·, ·)ω is an inner product on H.

Proof. We need to check that (·, ·)ω satisfies the following properties (1) (λu, v)ω =
λ(u, v)ω for λ ∈ C; (2) (v, u)ω = (u, v)ω; (3) (u, u)ω > 0 unless u = 0.

(1) for λ ∈ C,

(λu, v)ω = −ω(λu, Jv̄) = −λ · ω(u, Jv̄) = λ · (u, v)ω.

To prove (2) and (3), we need some simple facts: H+ = π+(H) ⊆ H and H− =
π−(H) ⊆ H, and H = H+ ⊕H−. If u ∈ H+, v ∈ H−, then (u, v) = 0. If u ∈ H+,
then ū ∈ H−, Ju = iu, Ju ∈ H+. If u ∈ H−, then ū ∈ H+, Ju = −iu, Ju ∈ H−.
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Jū = Ju. û′(n) = inû(n). In particular, if u ∈ H+, then u′ ∈ H+; if u ∈ H−,
then u′ ∈ H−.

(2) By definition,

(v, u)ω = −ω(v, Jū) = ω(Jū, v) =
1
2π

∫
(Jū)v′dθ

(u, v)ω = −ω(u, Jv̄) = ω(Jv̄, u) =
1
2π

∫
Jv̄ū′dθ =

1
2π

∫
(Jv)ū′dθ.

Write u = u+ + u− and v = v+ + v− as in Notation 2.4. Using the above fact, we
can show that the above two quantities are equal to each other.

(3) Write u = u+ + u−, then

(u, u)ω =
1
2π

∫
(−iu+u′+ + iu−u′−)dθ =

∑

n6=0

|n||û(n)|2.

Therefore, (u, u)ω > 0 unless u = 0. ¤

Definition 2.12. Let Hω be the completion of H under the norm ‖ · ‖ω induced
by the inner product (·, ·)ω. Define

Bω =
{

ẽn =
1√
n

einθ, n > 0
}
∪

{
ẽn =

1
i
√
|n|e

inθ, n < 0

}
.

Remark 2.13. Hω is a Hilbert space. Also the norm ‖ · ‖ω induced by the inner
product (·, ·)ω is strictly stronger than the norm ‖ · ‖ induced by the inner product
(·, ·). So Hω can be identified as a proper subspace of H0. The inner product (·, ·)ω

or the norm induced by it is sometimes called the H1/2 metric or the H1/2 norm
on the space H.

One can verify that Bω is an orthonormal basis of Hω. From the definition of
the inner product (·, ·)ω, we have the relation ω(u, v) = (u, Jv)ω for any u, v ∈ H.
This can be used to extend the form ω to Hω.

Finally, from the non–degeneracy of the inner product (·, ·)ω, we see that the
form ω(·, ·) on Hω is also non–degenerate.

3. An infinite-dimensional symplectic group

Definition 3.1. Let B(Hω) be the space of bounded operators on Hω equipped
with the operator norm. For an operator A ∈ B(Hω)

(1) suppose Ā is an operator on Hω satisfying Āu = Aū for any u ∈ Hω, then
Ā is the conjugate of A;

(2) suppose A† is an operator on Hω satisfying (Au, v)ω = (u,A†v)ω for any
u, v ∈ Hω, then A† is the adjoint of A;

(3) then AT = Ā† is the transpose of A;
(4) suppose A# is an operator on Hω satisfying ω(Au, v) = ω(u,A#v) for any

u, v ∈ Hω, then A# is the symplectic adjoint of A.
(5) A is said to preserve the form ω if ω(Au,Av) = ω(u, v) for any u, v ∈

Hω.
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In the orthonormal basis Bω, an operator A ∈ B(Hω) can be represented by
an infinite-dimensional matrix, still denoted by A, with (m,n)th entry equal to
Am,n = (Aẽn, ẽm)ω.

Remark 3.2. If we represent an operator A ∈ B(Hω) by a matrix {Am,n}m,n∈Z\{0},
the indices m and n are allowed to be both positive and negative following Defi-
nition 2.12 of Bω.

The next proposition collects some simple facts about operations on B(Hω)
introduced in Definition 3.1.

Proposition 3.3. Let A,B ∈ B(Hω). Then
(1) ẽn = iẽ−n, Jẽn = i sgn(n)ẽn, (ẽn)′ = inẽn;
(2) (Ā)m,n = A−m,−n;
(3) (A†)m,n = An,m;
(4) Ā† = A†, and (AT )m,n = A−n,−m;
(5) if A = Ā, then (A#)m,n = sgn(mn)An,m;
(6) AB = ĀB̄, (AB)† = B†A†, (AB)T = BT AT , (AB)# = B#A#;
(7) If A is invertible, then Ā, AT , A†, A# are all invertible, and (Ā)−1 = A−1,

(AT )−1 = (A−1)T , (A†)−1 = (A−1)†, (A#)−1 = (A−1)#;
(8) (π+)m,n = 1

2 (δmn + sgn(m)δmn), (π−)m,n = 1
2 (δmn − sgn(m)δmn), π+ =

π−, π− = π+, (π+)T = π−, (π−)T = π+, (π+)† = π+, (π−)† = π−;
(9) Jm,n = i sgn(m)δmn, J̄ = J , J = i(π+ − π−), JT = −J , J† = −J ,

J2 = −id;
(10) (A#)m,n = sgn(mn)A−n,−m.

Proof. All of these properties can be checked by straight forward calculations. We
only prove (10).

(A#)m,n = (A#ẽn, ẽm)ω = −ω(A#ẽn, Jẽm) = ω(Jẽm, A#ẽn)

= ω(AJẽm, ẽn) = −ω(ẽn, AJẽm) = −ω(ẽn, J(−J)AJẽm)

= −ω(ẽn, J(−JĀJẽm)),

where in the last equality we used property (6), AB = ĀB̄, and property (9),
J̄ = J , so that −JĀJẽm = −J̄ ¯̄AJ̄ẽm = −JAJẽm. Therefore,

(A#)m,n = −ω(ẽn, J(−JĀJẽm)) = (ẽn,−JĀJẽm)ω = −(ẽn, JĀJẽm)ω

= −(J†ẽn, ĀJẽm)ω = −(−Jẽn, ĀJẽm)ω = (i sgn(n)ẽn, Āi sgn(m)ẽm)ω

= sgn(mn)(ẽn, Āẽm)ω = sgn(mn)(Āẽm, ẽn)ω = sgn(mn)(Ā)n,m

= sgn(mn)A−n,−m.

¤
Notation 3.4. For A ∈ B(Hω), let a = π+Aπ+, b = π+Aπ−, c = π−Aπ+, and
d = π−Aπ−, where a : H+

ω → H+
ω , b : H−ω → H+

ω , c : H+
ω → H−ω , d : H−ω → H−ω .

Then A = a + b + c + d can be represented as the following block matrix(
a b
c d

)
.
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If A,B ∈ B(Hω), then the block matrix representation for AB is exactly the
multiplication of block matrices for A and B.

Proposition 3.5. Suppose A ∈ B(Hω) with the matrix {Am,n}m,n∈Z\{0}. Then
the following are equivalent

(1) A = Ā;
(2) if u = ū, then Au = Au;
(3) Am,n = A−m,−n (3.2);

(4) as a block matrix, A has the form
(

a b
b̄ ā

)
.

Proof. Equivalence of (1), (3) and (4) follows from Proposition3.3 and Notation3.4.
First we show that (1) is equivalent to (2).

[(1)=⇒(2)]. If u = ū, then Au = Āu = Aū = Au.
[(2)=⇒(1)]. Let u = ẽn + ẽn, and v = ẽ−n + ẽ−n. Then u, v are real-valued

functions on the circle. Using Proposition 3.3 we have ẽn = iẽ−n, and therefore
Au = Au and Av = Av imply

Aẽn + iAẽ−n = Aẽn − iAẽ−n

Aẽn − iAẽ−n = −Aẽn − iAẽ−n.

Solving the above two equations for Aẽn, we have

Aẽn = −iAẽ−n = Aẽn = Āẽn

with this being true for any n 6= 0, and so A = Ā. ¤

Proposition 3.6. Let A ∈ B(Hω). The following are equivalent:
(1) A preserves the form ω;
(2) ω(Au,Av) = ω(u, v) for any u, v ∈ Hω;
(3) ω(Aẽm, Aẽn) = ω(ẽm, ẽn) for any m,n 6= 0;
(4) AT JA = J ;
(5)

∑
k 6=0 sgn(mk)Ak,mA−k,−n = δm,n for any m,n 6= 0.

If we further assume that A = Ā, then the following two are equivalent to the
above:

(I) aT ā− b†b = π− and aT b̄− b†a = 0;
(II)

∑
k 6=0 sgn(mk)Ak,mAk,n = δm,n for any m,n 6= 0.

Proof. Equivalence of (1),(2) and (3) follows directly from Definition 3.1. Let us
check the equivalency of (2) and (4). First assume that (2) holds. By Remark 2.13
we have ω(u, v) = (u, Jv̄)ω , and therefore

ω(Au,Av) = (Au, JAv)ω = (u,A†JAv)ω.

By assumption, ω(Au,Av) = ω(u, v) for any u, v ∈ Hω. So by the non-degeneracy
of the inner product (·, ·)ω, we have A†JAv = Jv̄ for any v ∈ Hω. By definition
of Ā, we have Av = Āv̄. So A†JĀv̄ = Jv̄ for any v ∈ Hω, or A†JĀ = J . Taking
conjugation of both sides and using J̄ = J , we see that AT JA = J .

Every step above is reversible, therefore we have implication in the other direc-
tion as well.
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Now we check the equivalency of (3) and (5). First, by Remark 2.13 ω(u, v) =
(u, Jv̄)ω and Proposition 3.3

ω(ẽm, ẽn) = (ẽm, Jẽn)ω = − sgn(m)δm,−n.

On the other hand, by the continuity of the form ω(·, ·) in both variables, we have

ω(Aẽm, Aẽn) = ω
( ∑

k

Ak,mẽk,
∑

k

Al,nẽl

)

=
∑

k,l

Ak,mAl,n(− sgn(k))δk,−l = −
∑

k

sgn(k)Ak,mA−k,n.

Now assuming ω(Aẽm, Aẽn) = ω(ẽm, ẽn), we have

−
∑

k

sgn(k)Ak,mA−k,n = − sgn(m)δm,−n, for any m, n 6= 0.

By multiplying by sgn(m) both sides, and replacing −n with n, we get (5). Con-
versely, note that every step above is reversible, therefore we have implication in
the other direction.

We have proved equivalence of (1)-(5). Now assume A = Ā. To prove equiv-
alence of (4) and (I), just notice that as block matrices, A,AT and J have the
form (

a b
b̄ ā

)
,

(
a† bT

b† aT

)
, and i

(
π+ 0
0 −π−

)
.

Equivalence of (5) and (II) follows from the relation A−k,−n = Ak,n. ¤
Proposition 3.7. Let A ∈ B(Hω). If A preserves the form ω, then the following
are equivalent:

(1) A is invertible.
(2) AJAT = J .
(3) AT preserves the form ω.
(4)

∑
k sgn(mk)Am,kA−n,−k = δm,n for any m,n 6= 0.

If we further assume that A = Ā, then the following are equivalent to the above:
(I) āaT − b̄bT = π− and b̄a† − āb† = 0.

(II)
∑

k sgn(mk)Am,kAn,k = δm,n for any m,n 6= 0.

Proof. We will use several times the fact that if A preserves ω, then AT JA = J .
[(1)⇒(2)] Multiplying on the left by (AT )−1 and multiplying on the right by

A−1 both sides, we get J = (AT )−1JA−1, and so (A−1)T JA−1 = J . Taking
inverse of both sides, and using J−1 = −J , we have AT JA = J .

[(2)⇒(1)] As J is injective, so is AT JA, and therefore A is injective. On the
other hand, by assumption AJAT = J . As J is surjective, so AJAT is surjective
too. This implies that A is surjective, and therefore A is invertible.

Equivalence of (2) and (3) follows from (AT )T = A and Proposition 3.6. Equiv-
alence of (3) and (4) follows directly from Proposition 3.6 and the fact that
(AT )m,n = A−n,−m.

Now assume that A = Ā. Then equivalence of (3) and (I)can be checked by
using multiplication of block matrices as in the proof of Proposition 3.6. Finally
(4) is equivalent to (II) as if A = Ā, then A−m,−n = Am,n. ¤
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Corollary 3.8. Let A ∈ B(Hω) and A = Ā. Then the following are equivalent:
(1) A preserves the form ω and is invertible;
(2) A#A = A#A = id;

Proof. By Proposition 3.3

(A#A)m,n =
∑

k 6=0

(A#)m,kAk,n =
∑

k 6=0

sgn(mk)Ak,nAk,m,

(AA#)m,n =
∑

k 6=0

Am,k(A#)k,n =
∑

k 6=0

sgn(nk)Am,kAn,k.

Therefore, by (II) in Proposition 3.6 and (II) in Proposition 3.7 we have equiva-
lence. ¤
Definition 3.9. Define a (semi)norm ‖ · ‖2 on B(Hω) such that for A ∈ B(Hω),
‖A‖22 = Tr(b†b) = ‖b‖HS , where b = π+Aπ−. That is, the norm ‖A‖2 is just the
Hilbert-Schmidt norm of the block b.

Definition 3.10. An infinite-dimensional symplectic group Sp(∞) is the set
of bounded operators A on H such that

(1) A is invertible;
(2) A = Ā;
(3) A preserves the form ω;
(4) ‖A‖2 < ∞.

Remark 3.11. If A is a bounded operator on H, then A can be extended to a
bounded operator on Hω. Therefore, we can equivalently define Sp(∞) to be the
set of operators A ∈ B(Hω) such that

(1) A is invertible;
(2) A = Ā;
(3) A preserves the form ω;
(4) ‖A‖2 < ∞.
(5) A is invariant on H, i.e., A(H) ⊆ H.

Remark 3.12. By Corollary 3.8, the definition of Sp(∞) is also equivalent to
(1) A = Ā;
(2) A#A = AA# = id;
(3) ‖A‖2 < ∞.

Proposition 3.13. Sp(∞) is a group.

Proof. First we show that if A ∈ Sp(∞), then A−1 ∈ Sp(∞). By the assumption
on A, it is easy to verify that A−1 satisfies (1), (2), (3) and (5) in Remark 3.11.
We need to show that A−1 satisfies the condition (4), i.e. ‖A−1‖2 < ∞. Suppose

A =
(

a b
b̄ ā

)
and A−1 =

(
a′ b′

b′ a′

)
,

where by our assumptions all blocks are bounded operators, and in addition b is a
Hilbert-Schmidt operator. We want to prove b′ is also a Hilbert-Schmidt operator.
AA−1 = I and A−1A = I imply that

ab′ = −ba′, a′a + b′b̄ = I.
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The last equation gives a′ab′ + b′b̄b′ = b′, and so

b′ = a′ab′ + b′b̄b′ = −a′ba′ + b′b̄b′

which is a Hilbert-Schmidt operator as b and b̄ are Hilbert-Schmidt. Therefore
‖A−1‖2 < ∞ and A−1 ∈ Sp(∞).

Next we show that if A, B ∈ Sp(∞), then AB ∈ Sp(∞). By the assumption on
A and B, it is easy to verify that AB satisfies (1), (2), (3) and (5) in Remark 3.11.
We need to show that AB satisfies the condition (4), i.e. ‖AB‖2 < ∞. Suppose

A =
(

a b
b̄ ā

)
and B =

(
c d
d̄ c̄

)
,

where all blocks are bounded, and ‖b‖HS , ‖d‖HS < ∞. Then

AB =
(

ac + bd̄ ad + bc̄
b̄c + ād̄ b̄d + āc̄

)
.

Then
‖AB‖22 = ‖ad + bc̄‖HS 6 ‖ad‖2 + ‖bc̄‖HS < ∞,

since both ad and bc̄ are Hilbert-Schmidt operators. Therefore ‖AB‖2 < ∞ and
AB ∈ Sp(∞). ¤

4. Symplectic Representation of Diff(S1)

Definition 4.1. Let Diff(S1) be the group of orientation preserving C∞ diffeo-
morphisms of S1. Diff(S1) acts on H as follows

(φ.u)(θ) = u(φ−1(θ))− 1
2π

∫ 2π

0

u(φ−1(θ))dθ.

Note that if u ∈ H is real-valued, then φ.u is real-valued as well.

Proposition 4.2. The action of Diff(S1) on H gives a group homomorphism

Φ : Diff(S1) → Aut H

defined by Φ(φ)(u) = φ.u, for φ ∈ Diff(S1) and u ∈ H, where AutH is the group
of automorphisms on H.

Proof. Let u ∈ H, then φ.u is a C∞ function with the mean value 0, and so
φ.u ∈ H. It is also clear that φ.(u + v) = φ.u + φ.v and φ.(λu) = λφ.u. So Φ is
well–defined as a map from Diff(S1) to End H, the space of endomorphisms on H.
Now let us check that Φ is a group homomorphism. Suppose φ, ψ ∈ Diff(S1) and
u ∈ H, then

Φ(φψ)(u)(θ) = u
(
(φψ)−1(θ)

)− 1
2π

∫ 2π

0

u
(
(φψ)−1(θ)

)
dθ

= u
(
(ψ−1φ−1)(θ)

)− 1
2π

∫ 2π

0

u
(
(ψ−1φ−1)(θ)

)
dθ.
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On the other hand,

Φ(φ)Φ(ψ)(u)(θ) = Φ(φ)
[
u(ψ−1(θ))− 1

2π

∫ 2π

0

u(ψ−1(θ))dθ

]

= Φ(φ)
[
u(ψ−1(θ))

]
= u

(
(ψ−1φ−1)(θ)

)− 1
2π

∫ 2π

0

u
(
(ψ−1φ−1)(θ)

)
dθ.

So Φ(φψ) = Φ(φ)Φ(ψ). In particular, the image of Φ is in the AutH. ¤

Lemma 4.3. Any φ ∈ Diff(S1) preserves the form ω, that is, ω(φ.u, φ.v) = ω(u, v)
for any u, v ∈ H.

Proof. By Definition 4.1 φ.u = u(ψ) − u0, φ.v = v(ψ) − v0, where ψ = φ−1 and
u0, v0 are the constants. Then

ω(φ.u, φ.v) = ω(u(ψ)− u0, v(ψ)− v0)

=
1
2π

∫ 2π

0

(
u(ψ(θ))− u0

)(
v(ψ(θ))− v0

)′
dθ

=
1
2π

∫ 2π

0

u(ψ)v′(ψ)ψ′(θ)dθ − 1
2π

∫ 2π

0

u0v(ψ(θ))dθ

=
1
2π

∫ 2π

0

u(ψ)v′(ψ)dψ

= ω(u, v).

¤

We are going to prove that a diffeomorphism φ ∈ Diff(S1) acts on H as a
bounded linear map, and that Φ(φ) is in Sp(∞). The next lemma is a generaliza-
tion of a proposition in a paper of G. Segal[9].

Lemma 4.4. Let ψ 6= id ∈ Diff(S1) and φ = ψ−1. Let

In,m = (ψ.eimθ, einθ) =
1
2π

∫ 2π

0

eimφ−inθdθ.

Then
(1)

∑
n>0,m<0

|n||In,m|2 < ∞, and
∑

m>0,n<0

|n||In,m|2 < ∞.

(2) For sufficiently large |m| there is a constant C independent of m such that
∑

n6=0

|n||In,m|2 < C|m|. (4.1)

Proof. Let

mφ′ = min{φ′(θ)|θ ∈ S1}; and Mφ′ = max{φ′(θ)|θ ∈ S1}.
Since φ is a diffeomorphism, we have 0 < mφ′ < Mφ′ < ∞.

Take four points a, b, c, d on the unit circle such that a corresponds to mφ′ in the
sense tan(a) = mφ′ , b corresponds to Mφ′ in the sense tan(b) = Mφ′ , c is opposite
to a, i.e., c = a+π, d is opposite to b, i.e., d = b+π. The four points on the circle
are arranged in the counter-clockwise order, and 0 < a < b < π

2 , π < c < d < 3
2π.
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Let τ ∈ S1 such that τ 6= π
4 , 5

4π. Define a function φτ on S1 by

φτ (θ) =
cos τ · φ(θ)− sin τ · θ

cos τ − sin τ
.

We will show that if τ ∈ (b, c) or τ ∈ (d, a), then φτ is an orientation preserving
diffeomorphism of S1, where (b, c) is the open arc from the point b to the point c,
and (d, a) is the open arc from the point d to the point a.

Clearly φτ is a C∞ function on S1. Also, φτ (0) = 0 and φτ (2π) = 2π. Taking
derivative with respect to θ, we have

φ′τ (θ) =
cos τ · φ′(θ)− sin τ

cos τ − sin τ
.

By the choice of τ , we can prove that φ′τ (θ) > 0. Therefore, φτ is an orientation
preserving diffeomorphism as claimed.

Let m,n ∈ Z\{0}. Let τmn = Arg(m + in), i.e., the argument of the complex
number m+ in, considered to be in [0, 2π]. Then we have mφ−nθ = (m−n)φτmn

.
If τmn ∈ (b, c), then φτmn is a diffeomorphism. Let ψτmn = φ−1

τmn
. Then

In,m =
1
2π

∫ 2π

0

ei(m−n)φτmn dθ =
1
2π

∫ 2π

0

ei(m−n)θψ′τmn
(θ)dθ,

where the last equality is by change of variable. On integration by parts k times,
we have

In,m =
(

1
i(m− n)

)k 1
2π

∫ 2π

0

ei(m−n)θψ(k+1)
τmn

(θ)dθ.

Let α = [α0, α1] be a closed arc contained in the arc (b, c). Let Sα be the set of all
pairs of nonzero integers (m,n) such that α0 < τmn < α1, where τmn = Arg(m +
in). We are going to consider an upper bound of the sum

∑
(m,n)∈Sα

|n||In,m|2.
For the pair (m, n), if |m− n| = p, the condition α0 < τmn < α1 gives us both

an upper bound and a lower bound for n:

mφ′

mφ′ − 1
p ≤ n ≤ Mφ′

Mφ′ − 1
p.

So |n| ≤ C1p where C1 is a constant which does not depend on the pair (m,n).
Also, the number of pairs (m,n) ∈ Sα such that |m − n| = p is bounded by C2p

for some constant C2. Let C3 = max
{
|ψ(k+1)

τ (θ)| : θ ∈ S1, τ ∈ [α0, α1]
}

. Then

|In,m| ≤ C3

∣∣∣ 1
i(m− n)

∣∣∣
k 1
2π

∫ 2π

0

ei(m−n)θdθ = C3p
−k.

Therefore,
∑

(m,n)∈S

|n||In,m|2 =
∑

p

∑

(m,n)∈Sα;|m−n|=p

|n||In,m|2

≤
∑

p

C1p · C2
3p−2k · C2p = Cα

∑
p

p−(2k−2),

where the constant Cα depends on the arc α.
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Similarly, for a closed arc β = [β0, β1] contained in the arc (d, a), we have
∑

(m,n)∈Sβ

|n||In,m|2 ≤ Cβ

∑
p

p−(2k−2),

where the constant Cβ depends on the arc β.
Now let α = [π

2 , π], and β = [ 32π, 2π]. Then α is contained in (b, c) and β is
contained in (d, a). We have

∑
n>0,m<0

|n||In,m|2 = Cα ·
∑

p

p−(2k−2) < ∞

and ∑
n<0,m>0

|n||In,m|2 = Cβ ·
∑

p

p−(2k−2) < ∞,

which proves (1) of the lemma.
To prove (2), we let α = [α0, α1] be a closed arc contained in the arc (b, c) such

that b < α0 < π
2 and π < α1 < c, and β = [β0, β1] be a closed arc contained in the

arc (d, a) such that d < β0 < 3
2π and 0 < β1 < a. Then we have

∑

(m,n)∈Sα

|n||In,m|2 +
∑

(m,n)∈Sβ

|n||In,m|2 6 Cαβ

for some constant Cαβ .
Let m > 0 be sufficiently large, and Nm be the largest integer less than or equal

to m tan(α0), ∑

0<n6Nm

|In,m|2 6
∑

n6=0

|In,m|2.

Note that In,m is the nth Fourier coefficient of ψ.eimθ. Therefore,
∑

n6=0

|In,m|2 = ‖ψ.eimθ‖L2

which is bounded by a constant K. Therefore,
∑

0<n6Nm

|n||In,m|2 6 Km tan (α0) .

On the other hand,
∑
n<0

|n||In,m|2 +
∑

n>Nm

|n||In,m|2 6
∑

(m,n)∈Sα

|n||In,m|2 +
∑

(m,n)∈Sβ

|n||In,m|2 = Cαβ .

Therefore, ∑

n6=0

|n||In,m|2 6 Cαβ + Km tan(α0) 6 mC+,

where C+ can be chosen to be, for example, K tan(α0)+Cαβ , which is independent
of m.

Similarly, for m < 0 with sufficiently large |m|
∑

n6=0

|n||In,m|2 6 mC−.
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Let C = max{C+, C−}. Then we have, for sufficiently large |m|,
∑

n6=0

|n||In,m|2 6 |m|C,

which proves (2) of the lemma. ¤
Lemma 4.5. For any ψ ∈ Diff(S1), Φ(ψ) ∈ B(H), the space of bounded linear
maps on H. Moreover,

‖Φ(ψ)‖ 6 C, ‖Φ(ψ)‖2 6 C,

where C is the constant in Equation 4.1.

Proof. First observe that the operator norm of Φ(ψ) is

‖Φ(ψ)‖ = sup{‖ψ.u‖ω | u ∈ H, ‖u‖ω = 1}.
For any u ∈ H, let û be its Fourier coefficients, that is û(n) = (u, ên), and let ũ
be defined by ũ = (u, ẽn)ω (2.10,2.12). It can be verified that the relation between
û and ũ is: if n > 0, then ũ(n) =

√
nû(n); if n < 0, then ũ(n) = i

√
|n|û(n). We

have
‖u‖2ω = (u, u)ω = (ũ, ũ)l2 =

∑

n 6=0

|ũ(n)|2 =
∑

n6=0

|n||û(n)|2.

Let φ = ψ−1. We have u(φ) =
∑

m 6=0 û(m)eimφ. Using the notation In,m (4.4),
we have

‖ψ.u‖2ω =
∑

n6=0

|n||ψ̂.u(n)|2 =
∑

n6=0

|n|
∣∣∣ 1
2π

∫ 2π

0

u(φ(θ))e−inθdθ
∣∣∣
2

=
∑

n6=0

|n|
∣∣∣ 1
2π

∫ 2π

0

∑

m 6=0

û(m)eimφe−inθdθ
∣∣∣
2

=
∑

n6=0

|n|
∣∣∣
∑

m 6=0

û(m)
1
2π

∫ 2π

0

eimφ−inθdθ
∣∣∣
2

=
∑

n6=0

|n|
∣∣∣
∑

m 6=0

û(m)In,m

∣∣∣
2

6
∑

m,n 6=0

|n||û(m)|2|In,m|2 =
∑

m 6=0

|û(m)|2
∑

n6=0

|n||In,m|2

=
∑

|m|6M0

|û(m)|2
∑

n6=0

|n||In,m|2 +
∑

|m|>M0

|û(m)|2
∑

n6=0

|n||In,m|2,

where the constant M0 in the last equality is a positive integer large enough so
that we can apply part (2) of Lemma 4.4. It is easy to see that the first term in
the last equality is finite. For the second term we use Lemma 4.4∑

|m|>M0

|û(m)|2
∑

n6=0

|n||In,m|2 6 C
∑

|m|>M0

|û(m)|2|m| 6 C.

Thus for any u ∈ H with ‖u‖ω = 1, ‖ψ.u‖ω is uniformly bounded. Therefore,
Φ(ψ) is a bounded operator on H.

Now we can use Lemma 4.4 again to estimate the norm ‖Φ(ψ)‖2
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‖Φ(ψ)‖2 =
∑

n>0,m<0

|(ψ.ẽm, ẽn)ω|2 =
∑

n>0,m<0

|n||(ψ.êm, ên)|2

=
∑

n>0,m<0

|n||In,m|2 < ∞.

¤
Theorem 4.6. Φ : Diff(S1) → Sp(∞) is a group homomorphism. Moreover, Φ is
injective, but not surjective.

Proof. Combining Lemma 4.3 and Lemma 4.5 we see that for any diffeomorphism
ψ ∈ Diff(S1) the map Φ(ψ) is an invertible bounded operator on H, it preserves
the form ω, and ‖Φ(ψ)‖2 < ∞. In addition, by our remark after Definition 4.1
ψ.u is real-valued, if u is real-valued. Therefore, Φ maps Diff(S1) into Sp(∞).

Next, we first prove that Φ is injective. Let ψ1, ψ2 ∈ Diff(S1), and denote
φ1 = ψ−1

1 , φ2 = ψ−1
2 . Suppose Φ(ψ1) = Φ(ψ2), i.e. ψ1.u = ψ2.u, for any u ∈ H.

In particular, ψ1.e
iθ = ψ2.e

iθ. Therefore

eiφ1 − C1 = eiφ2 − C2,

where C1 = 1
2π

∫ 2π

0
eiφ1dθ, and C2 = 1

2π

∫ 2π

0
eiφ2dθ. Note that eiφ1 and eiφ2 have

the same image as maps from S1 to C. This implies C1 = C2, since otherwise eiφ1 =
eiφ2 + (C1 − C2) and eiφ1 and eiφ2 would have had different images. Therefore,
we have eiφ1 = eiφ2 . But the function eiτ : S1 → S1 is an injective function, so
φ1 = φ2. Therefore ψ1 = ψ2, and so Φ is injective.

To prove that Φ is not surjective, we will construct an operator A ∈ Sp(∞)
which can not be written as Φ(ψ) for any ψ ∈ Diff(S1). Let the linear map A be
defined by the corresponding matrix {Am,n}m,n∈Z with the entries

A1,1 = A−1,−1 =
√

2
A1,−1 = i, A−1,1 = −i

Am,m = 1, for m 6= ±1

with all other entries being 0.
First we show that A ∈ Sp(∞). For any u ∈ H, we can write u =

∑
n 6=0 ũ(n)ẽn.

Then A acting on u changes only ẽ1 and ẽ−1 . Therefore, Au ∈ H, and clearly
A is a well–defined bounded linear map on H to H. Moreover, ‖A‖2 < ∞. It is
clear that Am,n = A−m,−n, and therefore A = Ā by Proposition 3.3. Moreover, A
preserves the form ω by part(II) of Proposition 3.6, as

∑

k 6=0

sgn(mk)Ak,mAk,n = δm,n.

Finally, A is invertible, since {Ak,m}m,n∈Z is, with the inverse {Bk,m}m,n∈Z given
by

B1,1 = B−1,−1 =
√

2
B1,−1 = −i, B−1,1 = i

Bm,m = 1, for m 6= ±1
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with all other entries being 0. Next we show that A 6= Φ(ψ) for any ψ ∈ Diff(S1).
First observe that if we look at any basis element ẽ1 = eiθ as a function from S1

to C, then the image of this function lies on the unit circle. Clearly, when acted
by a diffeomorphism φ ∈ Diff(S1), the image of the function φ.eiθ is still a circle
with radius 1. But if we consider Aẽ1 as a function from S1 to C, we will show
that the image of the function Aẽ1 : S1 → C is not a circle. Therefore, A 6= Φ(ψ)
for any ψ ∈ Diff(S1). Indeed, by definition of A we have

Aẽ1 =
√

2ẽ1 − iẽ−1.

Let us write it as a function on S1

Aẽ1(θ) =
√

2eiθ − e−iθ = (
√

2− 1) cos θ + i(
√

2 + 1) sin θ,

and then we see that the image lies on an ellipse, which is not the unit circle

x2

(
√

2− 1)2
+

y2

(
√

2 + 1)2
= 1.

¤

5. The Lie algebra associated with Diff(S1)

Let diff(S1) be the space of smooth vector fields on S1. Elements in diff(S1)
can be identified with smooth functions on S1. The space diff(S1) is a Lie algebra
with the following Lie bracket

[X, Y ] = XY ′ −X ′Y, X, Y ∈ diff(S1),

where X ′ and Y ′ are derivatives with respect to θ.
Let X ∈ diff(S1), and ρt be the corresponding flow of diffeomorphisms. We

define an action of diff(S1) on H as follows: for X ∈ diff(S1) and u ∈ H, X.u is
a function on S1 defined by

(X.u)(θ) =
d

dt

∣∣∣∣
t=0

[(ρt.u)(θ)] ,

where ρt acts on u via the representation Φ : Diff(S1) → Sp(∞).
The next proposition shows that the action is well–defined, and also gives an

explicit formula of X.u.

Proposition 5.1. Let X ∈ diff(S1). Then

(X.u)(θ) = u′(θ)(−X(θ))− 1
2π

∫ 2π

0

u′(θ)(−X(θ))dθ,

that is, X.u is the function −u′X with the 0th Fourier coefficient replaced by 0.

Proof. Let ρt be the flow that corresponds to X, and λt be the flow that corre-
sponds to −X. Then λt is the inverse of ρt for all t.

(X.u)(θ) =
d

dt

∣∣∣∣
t=0

[(ρt.u)(θ)] =
d

dt

∣∣∣∣
t=0

[
u(λt(θ))− 1

2π

∫ 2π

0

u(λt(θ))dθ

]
.
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Using the chain rule, we have

d

dt

∣∣∣∣
t=0

u(λt(θ)) = u′(θ)(−X̃(θ)),

and
d

dt

∣∣∣∣
t=0

1
2π

∫ 2π

0

u(λt(θ))dθ =
1
2π

∫ 2π

0

u′(θ)(−X(θ))dθ.

¤

Notation 5.2. We consider diff(S1) as a subspace of the space of real-valued L2

functions on S1. The space of real-valued L2 functions on S1 has an orthonormal
basis

B = {Xl = cos(mθ), Yk = sin(kθ), l = 0, 1, ..., k = 1, 2, ...}
which is contained in diff(S1).

Let us consider how these basis elements act on H.

Proposition 5.3. For any l = 0, 1, ..., k = 1, 2, ... the basis elements Xl, Yk act
on H as linear maps. In the basis Bω of H, they are represented by infinite
dimensional matrices with (m,n)th entries equal to

(Xl)m,n = (Xl.ẽn, ẽm)ω = s(m, n)
1
2

√
|mn|(δm−n,l + δn−m,l)

(Yk)m,n = (Yk.ẽn, ẽm)ω = s(m,n)(−i)
1
2

√
|mn|(δm−n,k − δn−m,k)

where m,n 6= 0,

s(m,n) =





−i m, n > 0
1 m > 0, n < 0
1 m < 0, n > 0
i m, n < 0.

Proof. By Proposition 5.1 and a simple verification depending on the signs of m,n
we see that

Xl.e
inθ = −ineinθ cos(lθ) = −1

2
in

[
ei(n+l)θ + ei(n−l)θ

]

Yk.einθ = −ineinθ sin(kθ) = −1
2
n

[
ei(n+k)θ − ei(n−k)θ

]
.

Indeed, recall that a basis element ẽn ∈ Bω has the form

ẽn =

{
1√
n
einθ n > 0

1

i
√
|n|e

inθ n < 0.

Suppose m,n > 0

Xl.ẽn =
1√
n

Xl.e
inθ = −1

2
i
√

n
[
ei(n+l)θ + ei(n−l)θ

]
,

and
(ei(n+l)θ, ẽm)ω =

√
mδm−n,k; (ei(n−l)θ, ẽm)ω =

√
mδn−m,l.
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Therefore,

(Xl)m,n = (Xl.ẽn, ẽm)ω = (−i)
1
2

√
|mn|(δm−n,l + δn−m,l).

All other cases can be verified similarly. ¤
Remark 5.4. Recall that Hω is the completion of H under the metric (·, ·)ω. The
above calculation shows that the trigonometric basis Xl, Yk of diff(S1) act on Hω

as unbounded operators. They are densely defined on the subspace H ⊆ Hω.

6. Brownian motion on Sp(∞)

Notation 6.1. As in [1], let sp (∞) be the set of infinite-dimensional matrices A
which can be written as block matrices of the form(

a b
b̄ ā

)

such that a + a† = 0, b = bT , and b is a Hilbert-Schmidt operator.

Remark 6.2. The set sp (∞) has a structure of Lie algebra with the operator
commutator as a Lie bracket, and we associate this Lie algebra with the group
Sp(∞).

Proposition 6.3. Let {Am,n}m,n∈Z\{0} be the matrix corresponding to an operator
A. Then any A ∈ sp (∞) satisfies (1) Am,n = A−m,−n; (2) Am,n + An,m = 0, for
m,n > 0; (3) Am,n = A−n,−m, for m > 0, n < 0.

Moreover, A ∈ sp (∞) if and only if (1) A = Ā; (2) π+Aπ− is Hilbert-Schmidt;
(3) A + A# = 0.

Proof. The first part follows directly from definition of sp (∞). Then we can use
this fact and the formula for the matrix entries of A# in Proposition 3.3 to prove
the second part. ¤
Definition 6.4. Let HS be the space of Hilbert-Schmidt matrices viewed as a
real vector space, and spHS = sp (∞) ∩HS.

The space HS as a real Hilbert space has an orthonormal basis

BHS = {eRe
mn : m,n 6= 0} ∪ {eIm

mn : m, n 6= 0},
where eRe

mn is a matrix with (m,n)-th entry 1 all other entries 0, and eIm
mn is a

matrix with (m, n)th entry i all other entries 0.
The space spHS is a closed subspace of HS, and therefore a real Hilbert space.

According to the symmetry of the matrices in spHS, we define a projection π :
HS → spHS, such that

π(eRe
mn) =

1
2
(
eRe
mn − eRe

nm + eRe
−m,−n − eRe

−n,−m

)
, if sgn(mn) > 0

π(eIm
mn) =

1
2
(
eIm
mn + eIm

nm − eIm
−m,−n − eIm

−n,−m

)
, if sgn(mn) > 0

π(eRe
mn) =

1
2
(
eRe
mn + eRe

−n,−m + eRe
−m,−n + eRe

n,m

)
, if sgn(mn) < 0

π(eIm
mn) =

1
2
(
eIm
mn + eIm

−n,−m − eIm
−m,−n − eIm

nm

)
, if sgn(mn) < 0
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Notation 6.5. We choose BspHS
= π(BHS) to be the orthonormal basis of spHS.

Clearly, if A ∈ spHS, then |A|spHS
= |A|HS .

Definition 6.6. Let Wt be a Brownian motion on spHS which has the mean zero
and covariance Q, where Q is assumed to be a positive symmetric trace class
operator on H. We further assume that Q is diagonal in the basis BspHS

.

Remark 6.7. Q can also be viewed as a positive function on the set BspHS
, and the

Brownian motion Wt can be written as

Wt =
∑

ξ∈BspHS

√
Q(ξ)Bξ

t ξ, (6.1)

where {Bξ
t }ξ∈BspHS

are standard real-valued mutually independent Brownian mo-
tions.

Our goal now is to construct a Brownian motion on the group Sp(∞) using the
Brownian motion Wt on spHS. This is done by solving the Stratonovich stochastic
differential equation

δXt = XtδWt. (6.2)

This equation can be written as the following Itô stochastic differential equation

dXt = XtdWt +
1
2
XtDdt, (6.3)

where D = Diag(Dm) is a diagonal matrix with entries

Dm = −1
4

sgn(m)
∑

k

sgn(k)
[
QRe

mk + QIm
mk

]
(6.4)

with QRe
mk = Q(π(eRe

mk)) and QIm
mk = Q(π(eIm

mk)).

Notation 6.8. Denote by spQ
HS = Q1/2(spHS) which is a subspace of spHS. Define

an inner product on spQ
HS by 〈u, v〉

sp
Q
HS

= 〈Q−1/2u,Q−1/2v〉spHS
. Then B

sp
Q
HS

=

{ξ̂ = Q1/2ξ : ξ ∈ BspHS
} is an orthonormal basis of the Hilbert space spQ

HS.

Notation 6.9. Let L0
2 be the space of Hilbert-Schmidt operators from spQ

HS to
spHS with the norm

|Φ|2L0
2

=
∑

ξ̂∈B
sp

Q
HS

|Φξ̂|2spHS
=

∑

ξ,ζ∈BspHS

Q(ξ)|〈Φξ, ζ〉spHS
|2 = Tr[ΦQΦ∗],

where Q(ξ) means Q evaluated at ξ as a positive function on BspHS
.

Lemma 6.10. If Ψ ∈ L(spHS, spHS), a bounded linear operator from spHS to spHS,
then Ψ restricted on spQ

HS is a Hilbert-Schmidt operator from spQ
HS to spHS, and

|Ψ|L0
2

6 Tr(Q)‖Ψ‖2, where ‖Ψ‖ is the operator norm of Ψ.
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Proof.

|Ψ|2L0
2

=
∑

ξ̂∈B
sp

Q
HS

|Ψξ̂|2spHS
6 ‖Ψ‖2

∑

ξ̂∈B
sp

Q
HS

|ξ̂|2spHS

= ‖Ψ‖2
∑

ξ∈BspHS

〈Q1/2ξ,Q1/2ξ〉spHS
= ‖Ψ‖2

∑

ξ∈BspHS

〈Qξ, ξ〉spHS
= ‖Ψ‖2 Tr(Q)

¤

Notation 6.11. Define B : spHS → L0
2 by B(Y )A = (I + Y )A for A ∈ spQ

HS, and
F : spHS → spHS by F (Y ) = 1

2 (I + Y )D.

Note that B is well–defined by Lemma 6.10. Also D ∈ spHS, and so F (Y ) ∈ spHS

and F is well–defined as well.

Theorem 6.12. The stochastic differential equation

dYt = B(Yt)dWt + F (Yt)dt (6.5)
Y0 = 0

has a unique solution, up to equivalence, among the processes satisfying

P

(∫ T

0

|Ys|2spHS
ds < ∞

)
= 1.

Proof. To prove this theorem we will use Theorem 7.4 from the book by G. DaPrato
and J. Zabczyk [3] as it has been done in [6, 7]. It is enough to check

1. B is a measurable mapping.
2. |B(Y1)−B(Y2)|L0

2
6 C1|Y1 − Y2|spHS

for Y1, Y2 ∈ spHS;
3. |B(Y )|2

L0
2

6 K1(1 + |Y |2spHS
) for any Y ∈ spHS;

4. F is a measurable mapping.
5. |F (Y1)− F (Y2)|spHS

6 C2|Y1 − Y2|spHS
for Y1, Y2 ∈ spHS;

6. |F (Y )|2spHS
6 K2(1 + |Y |2spHS

) for any Y ∈ spHS.

Proof of 1. By the proof of 2, B is a continuous mapping, therefore it is measurable.
Proof of 2.

|B(Y1)−B(Y2)|2L0
2

=
∑

ξ̂∈B
sp

Q
HS

|(Y1 − Y2)ξ̂|2spHS
=

∑

ξ∈BspHS

Q(ξ)|(Y1 − Y2)ξ|2spHS

6
∑

ξ∈BspHS

Q(ξ)‖ξ‖2|Y1 − Y2|2spHS
6 max

ξ∈BspHS

‖ξ‖2

 ∑

ξ∈BspHS

Q(ξ)


 |Y1 − Y2|2spHS

= TrQ

(
max

ξ∈BspHS

‖ξ‖2
)
|Y1 − Y2|2spHS

= C2
1 |Y1 − Y2|2spHS

,

where ‖ξ‖ is the operator norm of ξ, which is uniformly bounded for all ξ ∈ BspHS
.
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Proof of 3.

|B(Y1)|2L0
2

=
∑

ξ̂∈B
sp

Q
HS

|(I + Y )ξ̂|2spHS
=

∑

ξ∈BspHS

Q(ξ)|(I + Y )ξ|2spHS

6 |(I + Y )ξ|2spHS

∑

ξ∈BspHS

Q(ξ)‖ξ‖2 ≤ (1 + |Y |2spHS
) ·K1.

Proof of 4. By the proof of 5, F is a continuous mapping, therefore it is measurable.
Proof of 5.

|F (Y1)− F (Y2)|spHS
= |1

2
(Y1 − Y2)D|spHS

≤ ‖1
2
D‖|Y1 − Y2|spHS

Proof of 6.

|F (Y )|2spHS
= |1

2
(I + Y )D|2spHS

≤ ‖1
2
D‖2|I + Y |2spHS

6 K2(1 + |Y |2spHS
).

¤
Notation 6.13. Let B# : spHS → L0

2 be the operator B#(Y )A = A#(I +Y ), and
F# : spHS → spHS be the operator F#(Y ) = 1

2D#(Y + I).

Proposition 6.14. If Yt is the solution to the stochastic differential equation

dXt = B(Xt)dWt + F (Xt)dt

X0 = 0,

where B and F are defined in Notation 6.11, then Y #
t is the solution to the sto-

chastic differential equation

dXt = B#(Xt)dWt + F#(Xt)dt (6.6)
X0 = 0,

where B# and F# are defined in Notation 6.13.

Proof. This follows directly from the property (AB)# = B#A# for any A and B,
which can be verified by using part (5) of Proposition 3.3. ¤
Lemma 6.15. Let U and H be real Hilbert spaces. Let Φ : U → H be a bounded
linear map. Let G : H → H be a bounded linear map. Then

TrH(GΦΦ∗) = TrU (Φ∗GΦ)

Proof.

TrH(GΦΦ∗) =
∑

i,j∈H;k∈U

GijΦjk(Φ∗)ki =
∑

i,j∈H;k∈U

GijΦjkΦik

TrU (Φ∗GΦ) =
∑

i,j∈H;k∈U

(Φ∗)kiGijΦjk =
∑

i,j∈H;k∈U

GijΦjkΦik.

Therefore TrH(GΦΦ∗) = TrU (Φ∗GΦ). ¤
Lemma 6.16. ∑

ξ∈BspHS

(
Q1/2ξ

)(
Q1/2ξ

)# = −D
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Proof. If ξ ∈ BspHS
, then ξ ∈ sp (∞), so ξ# = −ξ. We will use the fact that

(eRe
ij eRe

kl )pq = δipδjkδlq

where eRe
ij is the matrix with the (i, j)th entry being 1 and all other entries being

zero. Using this fact, we see
(1) for ξ = 1

2

(
eRe
mn − eRe

nm + eRe
−m,−n − eRe

−n,−m

)
with sgn(mn) > 0,

(
Q1/2ξ

)(
Q1/2ξ

)# = −1
4
QRe

mn

[−eRe
mm − eRe

nn − eRe
−m,−m − eRe

−n,−n

]

(2) for ξ = 1
2

(
eIm
mn + eIm

nm − eIm
−m,−n − eIm

−n,−m

)
with sgn(mn) > 0,

(
Q1/2ξ

)(
Q1/2ξ

)# = −1
4
QIm

mn

[−eRe
mm − eRe

nn − eRe
−m,−m − eRe

−n,−n

]

(3) for ξ = 1
2

(
eRe
mn + eRe

−n,−m + eRe
−m,−n + eRe

n,m

)
with sgn(mn) < 0,

(
Q1/2ξ

)(
Q1/2ξ

)# = −1
4
QRe

mn

[
eRe
mm + eRe

nn + eRe
−m,−m + eRe

−n,−n

]

(4) for ξ = 1
2

(
eIm
mn + eIm

−n,−m − eIm
−m,−n − eIm

nm

)
with sgn(mn) < 0,

(
Q1/2ξ

)(
Q1/2ξ

)# = −1
4
QIm

mn

[
eRe
mm + eRe

nn + eRe
−m,−m + eRe

−n,−n

]
.

Each of the above is a diagonal matrix. The lemma can be proved by looking
at the diagonal entries of the sum. ¤
Theorem 6.17. Let Yt be the solution to Equation 6.5. Then Yt + I ∈ Sp(∞) for
any t > 0 with probability 1.

Proof. The proof is adapted from papers by M. Gordina [6, 7]. Let Yt be the
solution to Equation (6.5) and Y #

t be the solution to Equation (6.6). Consider the
process Yt = (Yt, Y

#
t ) in the product space spHS × spHS. It satisfies the following

stochastic differential equation

dYt = (B(Yt), B#(Y #
t ))dW + (F (Yt), F#(Y #

t ))dt.

Let G be a function on the Hilbert space spHS × spHS defined by G(Y1, Y2) =
Λ((Y1 + I)(Y2 + I)), where Λ is a nonzero linear real bounded functional from
spHS × spHS to R. We will apply Itô’s formula to G(Yt) = G(Yt, Y

#
t ). Then

(Yt + I)(Y #
t + I) = I if and only if Λ((Yt + I)(Y #

t + I)− I) = 0 for any Λ.
In order to use Itô’s formula we must verify that G and the derivatives Gt, GY,

GYY are uniformly continuous on bounded subsets of [0, T ]× spHS × spHS, where
GY is defined as follows

GY(Y)(S) = lim
ε→0

G(Y + εS)−G(Y)
ε

for any Y,S ∈ spHS × spHS

and GYY is defined as follows

GYY(Y)(S⊗T) = lim
ε→0

GY(Y + εT)(S)−GY(Y)(S)
ε

for any Y,S,T ∈ spHS × spHS. Let us calculate Gt, GY, GYY. Clearly, Gt = 0. It
is easy to verify that for any S = (S1, S2) ∈ spHS × spHS

GY(Y)(S) = Λ(S1(Y2 + I) + (Y1 + I)S2)
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and for any S = (S1, S2) ∈ spHS × spHS and T = (T1, T2) ∈ spHS × spHS

GYY(Y)(S⊗T) = Λ(S1T2 + T1S2).

So the condition is satisfied.
We will use the following notation

GY(Y)(S) = 〈ḠY(Y),S〉spHS×spHS

GYY(Y)(S⊗T) = 〈ḠYY(Y)S,T〉spHS×spHS
,

where ḠY(Y) is an element of spHS×spHS corresponding to the functional GY(Y)
in (spHS× spHS)∗ and ḠYY(Y) is an operator on spHS× spHS corresponding to the
functional GYY(Y) ∈ ((spHS × spHS)⊗ (spHS × spHS))∗.

Now we can apply Itô’s formula to G(Yt)

G(Yt)−G(Y0) =
∫ t

0

〈ḠY(Ys),
(
B(Ys)dWs, B

#(Y #
s )dWs

)〉spHS×spHS

+
∫ t

0

〈ḠY(Ys),
(
F (Ys), F#(Y #

s )
)〉spHS×spHS

ds

+
∫ t

0

1
2

TrspHS×spHS

[
ḠYY(Ys)

(
B(Ys)Q1/2, B#(Y #

s )Q1/2
)

(
B(Ys)Q1/2, B#(Y #

s )Q1/2
)∗]

ds.

Let us calculate the three integrands separately. The first integrand is

〈ḠY(Ys),
(
B(Ys)dWs, B

#(Y #
s )dWs

)〉spHS×spHS

=
(
B(Ys)dWs

)
(Y #

s + I) + (Ys + I)
(
B#(Y #

s )dWs

)

= (Ys + I)dWs(Y #
s + I) + (Ys + I)dW#

s (Y #
s + I) = 0.

The second integrand is

〈ḠY(Ys),
(
F (Ys), F#(Y #

s )
)〉spHS×spHS

= F (Ys)(Y #
s + I) + (Ys + I)F#(Y #

s )

=
1
2
(Ys + I)D(Y #

s + I) +
1
2
(Ys + I)D#(Y #

s + I)

=
1
2
(Ys + I)(D + D#)(Y #

s + I)

= (Ys + I)D(Y #
s + I),

where we have used the fact that D = D#, since D is a diagonal matrix with all
real entries.



24 MARIA GORDINA AND MANG WU

The third integrand is

1
2

TrspHS×spHS

[
ḠYY(Ys)

(
B(Ys)Q1/2, B#(Y #

s )Q1/2
) (

B(Ys)Q1/2, B#(Y #
s )Q1/2

)∗]

=
1
2

TrspHS

[(
B(Ys)Q1/2, B#(Y #

s )Q1/2
)∗

ḠYY(Ys)
(
B(Ys)Q1/2, B#(Y #

s )Q1/2
)]

=
1
2

∑

ξ∈BspHS

GYY(Ys)
((

B(Ys)Q1/2ξ, B#(Y #
s )Q1/2ξ

)

⊗
(
B(Ys)Q1/2ξ, B#(Y #

s )Q1/2ξ
))

=
∑

ξ∈BspHS

(
B(Ys)Q1/2ξ

)(
B#(Y #

s )Q1/2ξ
)

=
∑

ξ∈BspHS

(Ys + I)
((

Q1/2ξ
)(

Q1/2ξ
)#

)
(Y #

s + I)

= −(Ys + I)D(Y #
s + I),

where the second equality follows from Lemma 6.15, and the last equality follows
from Lemma 6.16.

The above calculations show that the stochastic differential of G is zero. So
G(Yt) = G(Y0) = Λ(I) for any t > 0 and any nonzero linear real bounded
functional Λ on spHS × spHS. This means (Yt + I)(Y #

t + I) = I almost surely for
any t > 0. Similarly we can show (Y #

t +I)(Yt +I) = I almost surely for any t > 0.
Therefore Yt + I ∈ Sp(∞) almost surely for any t > 0. ¤

References

1. Airault, H. and Malliavin, P.: Regularized Brownian motion on the Siegel disk of infinite
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