
LÉVY PROCESSES IN A STEP 3 NILPOTENT LIE GROUP

MARIA GORDINA† AND JOHN HAGA∗

Abstract. The infinitesimal generators of Lévy processes in Euclidean space

are pseudo-differential operators with symbols given by the Lévy-Khintchine
formula. This classical analysis relies heavily on Fourier analysis which in the
case when the state space is a Lie group becomes much more subtle. Still the
notion of pseudo-differential operators can be extended to connected, simply

connected nilpotent Lie groups by employing the Weyl functional calculus.
With respect to this definition, the generators of Lévy processes in the simplest
step 3 nilpotent Lie group G are pseudo-differential operators which admit

Cc(G) as its core.
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1. Introduction

Let K be a Lie group with the identity e and let Xt be a Lévy process with
values in K starting at e. One obtains a semigroup of operators (T (t), t > 0) on
the Banach space C0(K) of functions on K which vanish at infinity, by defining

(T (t)f)(k) = E(f(kXt))

for each t > 0, k ∈ K and f ∈ C0(K).
When K = Rn the characteristic function of the process Xt is given by the

Lévy-Khintchine formula

E(eiu·Xt) = etφ(u)

for all u ∈ Rn, t > 0, where

φ(u) = im · u− 1

2
u · au+

∫
Rn−{0}

(
eiu·y − 1− i

u · y
1 + |y|2

)
ν(dy).(1.1)
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Here m ∈ Rn, a is a non-negative symmetric n×n matrix and ν is a Lévy measure
on Rn\{0} (see [6] for details).

Let the differential operator D be defined on C0(Rn) by D = (D1, . . . ,Dn) with
Dj =

1
i

∂
∂xj

. The generator A of this semigroup satisfies the relation

A = φ(D)(1.2)

where φ is as in (1.1). Indeed, one makes the observation that A is in fact a
pseudo-differential operator (see [8, pp. 139-170]) with symbol φ(u) [1].

There has been interest in extending this characterization of Lévy processes to
Lie groups, including the book by M. Liao [11]. For an arbitrary Lie group K, one

may define the group Fourier transform f̂ of a suitably chosen function by

f̂(π) =

∫
K

f(k)π(k) d k,(1.3)

where π is a unitary irreducible representation ofK and dk is Haar measure (see [7]).
This Fourier transform may be inverted if a complete set of unitary irreducible
representations of K is known. Fourier inversion is necessary when formulating a
theory of pseudo-differential operators. Because the representation theory of Lie
groups is only fully understood for specific subclasses of Lie groups, (1.3) might
have to be adopted to each case separately.

In the current paper we consider a step 3 nilpotent group. If K is a general
nilpotent group, then Kirillov’s method of co-adjoint orbits provides explicit for-
mulae of all unitary irreducible representations of K (refer to Theorem 3.1 below
for details). In [4], Beltiţa and Beltiţa apply this technique to describe the Weyl
functional calculus for arbitrary nilpotent Lie groups. In what follows, we make use
of this symbolic calculus, and of general results from [2] to describe the quantized
generator Lπ of a Lévy processes Xt in a step 3 nilpotent Lie group G. We describe
G and the collection of all unitary irreducible representations of G in Sections 2
and 3. In Section 4 we describe the Weyl functional calculus for G and in Section
5 we prove the following theorem which is the main result of this paper.

Theorem 1.1. The operator Lπ is a pseudo-differential operator. Moreover, the
space C∞

c (R) is a core for Lπ.

Here C∞
c (R) denotes the collection of infinitely differentiable functions of com-

pact support on R.
The case when K is the Heisenberg group was treated in [2]. Then one may make

use of the classical Schrödinger representations. The resulting pseudo-differential
calculus (referred to as the classical Weyl functional calculus) has been used to
express the generators of these semigroups as

(Aπf)(x) = (2π)−n

∫
R2n

σ

(
1

2
(x+ y), ξ

)
ei(x−y)·ξf(y)dydξ.

Here one works through the Schrödinger representations and deals not with the
original semigroup generator, but with their images Aπ (henceforth referred to as
the quantization of the generator A). Lévy processes in the Heisenberg group have
been thoroughly investigated; the reader may refer to the work of D. Applebaum
and S. Cohen in [2] for a complete treatment of the Heisenberg group case. We
restricted our study to finding an explicit form of the quantized generator, and as
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a result developed the method which is potentially applicable to a larger class of
nilpotent groups.

2. A Step 3 Nilpotent Lie Group

Let G denote R4 with the multiplication law

{w1, x1, y1, z1} ∗ {w2, x2, y2, z2} =
{
w1 + w2, x1 + x2, y1 + y2 + w1x2,

z1 + z2 + w1

(
y2 +

w1x2
2

)}
.

With respect to this operation G is a Lie group with identity {0, 0, 0, 0} and inver-
sion given by

{w, x, y, z}−1 =
{
−w,−x,−y + wx,−z + w

(
y − wx

2

)}
.

The Lie algebra g of left invariant vector fields of G is spanned by {W,X, Y, Z}
where

W =
∂

∂w
,

X =
∂

∂x
+ w

∂

∂y
+
w2

2

∂

∂z
,

Y =
∂

∂y
+ w

∂

∂z
,

Z =
∂

∂z
.

These vector fields satisfy the following commutation relation

[W,X] = Y,

[W,Y ] = Z,

with all other brackets zero. This Lie algebra g is step 3 nilpotent, and the expo-
nential map exp : g → G is given by

exp(w, x, y, z) =

{
w, x, y +

wx

2
, z +

xy

2
+
w2x

6

}
.

Because both the underlying manifold of G and g are R4, we adopt the convention
of {w, x, y, z} when referring to a point in G and (w, x, y, z) when referring to a
point in g.

Any Lie group naturally acts on its Lie algebra via the adjoint representation.
The adjoint action of G on g is given by

Ad({w, x, y, z})(a, b, c, d) =
(
a, b, c+ (wb− ax), d+ (wc− ay) +

w2b

2

)
.

Let g∗ denote the linear dual of g. The adjoint action induces the co-adjoint action
of G on g∗, defined for each l ∈ g∗ as

Ad∗({w, x, y, z}) (l(a, b, c, d)) = l(Ad({w, x, y, z}−1)(a, b, c, d)).

In the following sections we will make use of unitary irreducible representations
of G. These representations for nilpotent Lie groups can be classified by using
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Kirillov’s method of co-adjoint orbits, as stated in Theorem 3.1. To this end we
need to identify the co-adjoint orbits of G in g∗. If

l(a, b, c, d) = αa+ βb+ γc+ δd

for (a, b, c, d) ∈ g then we will adopt the convention of writing l = [α, β, γ, δ]. In
these coordinates, the co-adjoint action of G on g∗ is given by

Ad∗({w, x, y, z})[α, β, γ, δ] =(2.1) [
α+ xγ + (y − wx)δ, β − wγ +

w2δ

2
, γ − wδ, δ

]
.

3. Representation Theory of G

To describe a complete set of unitary irreducible representations of G, we make
use of the fact that G is nilpotent. The following result, due to Kirillov is presented
in [5, Section 2.2].

Theorem 3.1. (Kirillov) Let K be any connected nilpotent Lie group with Lie
algebra k.

(1) If l ∈ k∗ then there exists a subalgebra ml of k of maximal dimension such
that l([m1,m2]) = 0 for all m1,m2 ∈ ml.

(2) Ml = exp(ml) is a closed subgroup of K, and ρl(exp(m)) = e2πil(m) is one
dimensional representation of Ml.

(3) The induced representation IndKMl,ρl
is a unitary irreducible representation

of K.
(4) If π is any unitary irreducible representation of K, then there exists l ∈ k∗

such that π is unitarily equivalent to IndKMl,ρl
.

(5) Two irreducible representations π1 = IndKMl1
,ρl1

and π2 = IndKMl2
,ρl2

are

unitarily equivalent if and only if l1 and l2 are elements of the same coad-
joint orbit of K in k∗.

If l and ml are as in Theorem 3.1, then the subalgebra ml is said to be a maximal
subordinate algebra for l.

Theorem 3.1 implies that the set of unitary irreducible representations of G is
indexed by the set of co-adjoint orbits of G in g∗. The coadjoint action described
by (2.1) allows for an explicit parametrization of these orbits. This parametrization
can be used to give an explicit expression of unitary dual of G, as presented in the
following proposition. This calculation can be found in [5, 10], but we include it
here for completeness.

Proposition 3.2. If π is a unitary irreducible representation of G, then π is uni-
tarily equivalent to a representation of one of the following classes.

Class 1. π is a unitary character of G given by

π({w, x, y, z})(z) = e2πi(αw+βx)z

for some α, β ∈ R and any z ∈ C.
Class 2. π is a representation on L2(R) given by

π({w, x, y, z})f(k) = e2πiγ(y+
kx
2 )f(k + w)

for some γ ∈ R.
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Class 3. π is a representation on L2(R) given by

π({w, x, y, z})f(k) = e2πi(βx+δ(z+k(y+ kx
2 )))f(k + w)

where δ ∈ R×, β ∈ R.

Proof. If [α, β, γ, δ] ∈ g∗ and {w, x, y, z} ∈ G then π[α,β,γ,δ]({w, x, y, z}) can be
computed by considering some individual cases.
Case 1: (δ = γ = 0). In this case Ad∗(w, x, y, z)[α, β, 0, 0] = [α, β, 0, 0] for all
w, x, y, z. These are 1 point orbits determined by α and β. The maximal subor-
dinate algebra corresponding to any such orbit is the entire Lie algebra g, since
[A,B] ∈ Span{Y,Z} for each A,B ∈ g. Therefore Ml = G and G/Ml

∼= 0. For any
point {w, x, y, z} ∈ G, we write

{w, x, y, z} = exp

(
w, x, y − wx

2
, z − x

2

(
y − wx

2
+
w2

6

))
and π[α,β,0,0] is the one dimensional representation of G given in C as

π[α,β,0,0]{w, x, y, z}z

= e
2πi[α,β,0,0]

(
w,x,y−wx

2 , z− x
2

(
y−wx

2 +w2

6

))
z

= e2πi(αw+βx)z,

for each z ∈ C.
Case 2: (δ = 0, γ ̸= 0). In this case Ad∗(w, x, y, z)[α, β, γ, 0] = [α+xγ, β−wγ, γ, 0],
and so

Ad∗(G)[α, β, γ, δ] = {[p, q, γ, 0] : p, q ∈ R} .

These are 2-dimensional orbits parametrized by γ. For any such orbit, the unitary
irreducible representations induced by elements of the orbit are all unitarily equiv-
alent and so it suffices to choose a convenient representative. There is a one-to-one
correspondence between the set

R2 = {[0, 0, γ, 0] : γ ∈ R×}

and the collection of orbits of this type. Since γ ̸= 0,

lγ([W,X]) = γ ̸= 0

and so g is not subordinate to [0, 0, γ, 0]. The three dimensional subalgebra m =
Span{X,Y, Z} is Abelian and is therefore maximal subordinate to any element of
g∗. The subgroup

M = exp(m) = {{w, x, y, 0} : w, x, y ∈ R}

and G/M ∼= R. As indicated in [13], π[0,0,γ,0] acts on

Hγ =
{
f : G→ C

∣∣∣f ∈ L2(G/M) and

f(exp(q)g) = e2πilγ(q)f(g) for each q ∈ m and g ∈ G
}
.
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First note that Haar measure µ on G is given by µ(exp(E)) = Λ(E) where Λ is
Lebesgue measure on g, and so Hπ := L2(G/M,µ) ∼= L2(R,Λ). We have that(
π[0,0,γ,0]({w, x, y, z})f

)
(k)

= f({k, 0, 0, 0} ∗ {w, x, y, z})

= f

({
k + w, x, y + kx, z + k

(
y +

kx

2

)})
= f

({
0, x, y +

kx

2
, z + k

(
y +

kx

2

)}
∗ {k + w, 0, 0, 0}

)
= e2πiγ(y+

kx
2 )f(k + w).

Case 3: (δ ̸= 0). We have that

Ad∗({w, x, y, z})[α, β, γ, δ]

=

[
α+ xγ + (y − wx)δ, β − wγ +

w2δ

2
, γ − wδ, δ

]
.

Defining q = γ − wδ we have that w = γ−q
δ and so

Ad∗({w, x, y, z})[α, β, γ, δ]

=

[
α+ xγ + (y − wx)δ,

(
β − γ2

2δ

)
+
q2

2δ
, q, δ

]
.

Hence

Ad∗(G)[α, β, γ, δ] =

{[
p,

(
β − γ2

2δ

)
+
q2

2δ
, q, δ

]
: p, q ∈ R

}
.

These orbits are 2-dimensional parabolic cylinders parametrized by δ and the quan-

tity β − γ2

2δ . As in the previous case we have that

R3 = {[0, β, 0, δ] : δ ∈ R×, β ∈ R}

is a collection of orbit representatives and M = Span{X,Y, Z} is a maximal sub-
ordinate subalgebra for each representative. Therefore, Hβ,δ = L2(R) and

π[0,β,0,δ]({w, x, y, z})f(k)
= f ({k, 0, 0, 0} ∗ {w, x, y, z})

= f

({
0, x, y +

kx

2
, z + k

(
y +

kx

2

)}
∗ {k + w, 0, 0, 0}

)
= e2πi(βx+δ(z+k(y+ kx

2 )))f(k + w).

�

4. The Weyl Functional Calculus for G

In Euclidean space, there is a well-developed theory of pseudo-differential oper-
ators and the corresponding symbolic calculus [12]. The classical Weyl functional
calculus provides an analogous construction for the simplest step 2 nilpotent case.
A functional calculus for general nilpotent groups has been developed in [4]. We
will describe this functional calculus for G, and begin by stating the general con-
struction for arbitrary nilpotent groups.
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Definition 4.1. As above, let K be an n dimensional nilpotent Lie group with
corresponding Lie algebra k.

(1) Let ξ0 ∈ k∗ with corresponding co-adjoint orbit O. The isotropy group of
K at ξ0 is Kξ0 := {k ∈ K|Ad∗(k)ξ0 = ξ0}.

(2) Kξ0 is a Lie group with corresponding isotropy Lie algebra

kξ0 = {X ∈ k|ξ0 ◦ ad(k)X = 0}.
(3) Fix a sequence of ideals in k,

{0} = k0 ⊂ k1 ⊂ · · · ⊂ kn = k

such that dim(kj/kj−1) = 1 and [k, kj ] ⊂ kj−1 for j = 1, . . . , n. Pick any
Xj ∈ kj \ kj−1 for j = 1, . . . , n so that the set {X1, . . . , Xn} is a Jordan-
Hölder basis in k.

(4) Consider the set of jump indices of the coadjoint orbit O with respect to
the Jordan-Hölder basis,

Jξ0 = {j ∈ {1, . . . , n}|kj ̸⊆ kj−1 + kξ0}
= {j ∈ {1, . . . , n}|Xj ̸⊆ kj−1 + kξ0}

and then define the corresponding predual of the coadjoint orbit O,

ke := Span{Xj : j ∈ Jξ0}.
(5) The Fourier transform S (O) → S (ge) is given by the formula

â(P ) =

∫
O

e−i⟨ξ,P ⟩a(ξ) d ξ for P ∈ ge,

where d ξ is Liouville measure on O.
(6) The Weyl calculus Opπ(·) for the unitary representation π is defined for

every a ∈ S (O) by

Opπ(a) =

∫
ke

â(V )π(expK V ) dV,

where â(V ) is the Fourier transform of a ∈ S (O). The operator Opπ(a) is
called the pseudo-differential operator with symbol a.

The following result appears in [4].

Theorem 4.2. The Weyl calculus Opπ has the following properties:

(1) For every symbol a ∈ S (O) we have Opπ(a) ∈ B(H )∞ (the space of
smooth operators for the representation π) and the mapping

S (O) → B(H )∞ a 7→ Opπ(a)

is a linear topological isomorphism.
(2) For every T ∈ B(H )∞ we have T = Opπ(a) where a ∈ S (O) satisfies the

condition â(V ) = Tr(π(expK V )−1A) for every V ∈ ke.

If π is a representation of the nilpotent group G, then π can be classified as in
Proposition 3.2. If π is of class 1 or class 2, then Opπ(·) is understood [13]. From
above results one can explicitly describe the Weyl functional calculus for class 3
representations of G.
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Proposition 4.3. If π is an irreducible unitary representation of G of class 3
corresponding to the orbit O and a ∈ S (O), then the Fourier transform of a is
given by

â (yY + wW ) =

∫
R2

e−i(qy+pw)a (q, p) d q d p

and the pseudo-differential operator Opπ(a) is given for each f ∈ L2(R2) by

Opπ(a)f(k) =

∫
R2

[∫
R2

e−i(qy+pw)a(q, p) d q d p

]
e2πi(δky+

1
2 δyw)f(k + w) d y dw.

Proof. The basis {W,X, Y, Z} is a Jordan-Hölder basis for G, and the predual of
the co-adjoint orbit O is given by ge = {W,Y }. The chart O → R

pW ∗ +

[
β − q2

2δ

]
X∗ + qY ∗ + δZ∗ 7→ (p, q)

is a map which brings Liouville measure on O to Lebesgue measure on R. Direct
substitution implies that the Fourier transform is given by

â (yY + wW ) =

∫
R2

e−i(qy+pw)a (q, p) d q d p.

For (π({w, x, y, z})f) (k) = e2πi(βx+δ(z+k(y+ kx
2 )))f(k + w) and (w, 0, y, 0) ∈ ge we

have that

π(exp(w, 0, y, 0))f(k) = π({w, 0, y, 0})f(k) = e2πi(δ(ky+
k2x
2 ))f(k + w),

and direct substitution yields the result.
�

5. Lévy Processes in G

The expository material of this section can be found in [11]. Suppose that K
is an arbitrary (not necessarily nilpotent) Lie group with Lie algebra k. A Lévy
process in K is a K-valued stochastic process Xt, t > 0 which satisfies the following

(1) Xt has stationary and independent left increments, where the increment
between s and t with s 6 t is Xt(s)

−1Xt.
(2) Xt(0) = e a.s.
(3) Xt is stochastically continuous, i.e.

lim
s→t

P (X−1
s Xt ∈ A) = 0

for all A ∈ B(K) such that e ̸∈ A.

Let C0(K) be the Banach space (with respect to the supremum norm) of functions
on K which vanish at infinity. Just as in the Euclidean case, one obtains a Feller
semigroup on C0(K) by the prescription

(T (t)f)(k) = E(f(kXt)),

for each t > 0, k ∈ K, f ∈ C0(K) and its infinitesimal generator will be denoted as
L.
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We fix a basis {Z1, . . . , Zn} for k and define a dense subspace C2(K) of C0(K)
as follows:

C2(K) = {f ∈ C0(K) :

ZL
i (f) ∈ C0(K) and ZL

i Z
L
j (f) ∈ C0(K) for all 1 6 i, j 6 n

}
,

where ZL denotes the left invariant vector field associated to Z ∈ k.
In [9], Hunt proved that there exist local coordinate functions yi ∈ C2(K),

1 6 i 6 n so that each

yi(e) = 0 and ZL
i yj(e) = δij ,

and a map h ∈ Dom(L) which is such that:

(1) h > 0 on K − {e}.
(2) There exists a compact neighborhood of the identity U such that for all

τ ∈ U ,

h(τ) =

n∑
i=1

yi(τ)
2.

Any such function is called a Hunt function in K. A positive measure ν
defined on B(Q− {e}) is called a Lévy measure whenever

(5.1)

∫
Q−{e}

h(σ)ν(dσ) <∞.

Theorem 5.1 (Hunt). Let Xt be a Lévy process in K with infinitesimal generator
L then,

(1) C2(K) ⊂ Dom(L).
(2) For each τ ∈ K, f ∈ C2(K)

L(τ) =
n∑

i=1

biZ
L
i f(τ) +

n∑
i,j=1

cijZ
L
i Z

L
j f(τ)

+

∫
K−{e}

(f(τσ)− f(τ)−
n∑

i=1

yi(σ)Z
L
i f(τ))ν(dσ),(5.2)

where b = (b1, . . . , bn) ∈ Rn, c = (cij) is a non-negative-definite, symmetric
n× n real-valued matrix and ν is a Lévy measure on K − {e}.

Furthermore, any linear operator with a representation as in 5.2 is the restriction to
C2(K) of a unique weakly continuous, convolution semigroup of probability measures
in K.

Let H be a complex, separable Hilbert space and U(H ) be the group of unitary
operators in H . Let π : K → U(H ) be a strongly continuous unitary repre-
sentation of K in H and let C∞(π) = {ψ ∈ H ; k → π(k)ψ is C∞} be the dense
linear space of smooth vectors for π in H . Define a strongly continuous contraction
semigroup Tt of linear operators on H by

Ttψ = E(π(Xt)ψ)
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for each ψ ∈ H . Let Lπ denote the infinitesimal generator of this semigroup. It
follows from the work in [2] that C∞(π) ⊆ Dom(Lπ) and for f ∈ C∞(π) we have

Lπf =
n∑

i=1

bi dπ(Zi)f +
n∑

i,j=1

cij dπ(Zi) dπ(Zj)f+

+

∫
K−{e}

(
π(σ)− I −

n∑
i=1

yi(σ) dπ(Zi)

)
fν(dσ).(5.3)

We now investigate Lπ where K = G. Since G is nilpotent, the Haar measure dσ
is related to Lebesgue measure on g via the exponential map. Therefore it will
be convenient to adopt exponential coordinates in G. To this end we impose the
identification of (w, x, y, z) with exp(w, , y, z). Fix real numbers β and δ ̸= 0. Let
π = πδ,β be a representation of class 3. Define

Kf(k) = kf(k),

Df(k) =
1

i

d f

d k
.

We have that

(π(w, x, y, z)f) (k) = e
2πi

((
βx+δ

(
z+ xy

2 +w2x
6

))
I+(y+wx

2 )K+ x
2K

2
)
+2πiwD

f(k)(5.4)

and

dπ(W ) = 2πiD,

dπ(X) = 2πiβI + πiK2,

dπ(Y ) = 2πiδK,

dπ(Z) = 2πiδI.

Denote

Lπ
1 :=

n∑
i=1

bi dπ(Zi),

Lπ
2 :=

n∑
i,j=1

cij dπ(Zi) dπ(Zj),

Lπ
3 :=

∫
G−{e}

(
π(σ)− I −

n∑
i=1

yi(σ) dπ(Zi)

)
fν(dσ).

Then the drift part can be written as follows.

Lπ
1 = b1(2πiδI) + b2(2πiδK) + b3(2πiβI + πiK2) + b4(2πiD).(5.5)

Using the Weyl functional calculus described in Proposition 4.3, Lπ
1 is a pseudo-

differential operator with symbol given by

Sπ1 = 2πiδb1 + 2πiδb2t+ b3(2πiβ + πit2) + 2πib4
∂

∂t
.
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The Brownian part can be expressed

Lπ
2 =c11(−4π2δ2I) + c22(−4π2δ2K2)(5.6)

+ c33(−4π2β2I − 4π2βK2 − π2K4)

+ c44(−4π2D2) + 2c12(−2π2δ2K) + 2c13(−4π2δβI − 2π2δK2)

+ 2c14(−4π2δD) + 2c23(−4π2δβK − 2π2δK3) + c24(−4π2δKD)

+ c34(−4π2βD − 2π2K2D) + c42(−4π2δ(KD + I))

+ c43(−4π2βD − 2π2(2K +K2D)),

which is a pseudo-differential operator with symbol

Sπ2 =− 4π2δ2c11 − 4π2δ2c22t
2 + c33(−4π2β2 − 4π2βt2 − π2t4)

+ c44

(
−4π2 ∂

2

∂t2

)
− 4π2δ2c12t+ 2c13(−4π2δβ − 2π2δt2)

− 8π2δc14
∂

∂t
+ 2c23(−4π2δβt− 2π2δt3)− 8π2δc24t

∂

∂t

+ c34

(
−4π2β

∂

∂t
− 2π2t2

∂

∂t

)
− 4π2δc42

(
t
∂

∂t
+ 1

)
+ c43

(
−4π2β

∂

∂t
− 2π2

(
2t+ t2

∂

∂t

))
.

Before expressing the jump part Lπ
3 , observe that (5.4) can be rewritten as

π(w, x, y, z)f(k) = exp(iΦ(w, x, y, z))f(k)

where

Φ(w, x, y, z) =2π

[
δI

(
z +

1

2
w2x+

1

2
wy

)
+ δK

(
y +

1

2
wx

)
+

(
βI +

1

2
K2

)
(x) + wD

]
is essentially self-adjoint. This form suggests the following choices for local coordi-
nate functions

y1(w, x, y, z) = wχB(w, x, y, z),

y2(w, x, y, z) = xχB(w, x, y, z),

y3(w, x, y, z) =

(
y +

1

2
wx

)
χB(w, x, y, z),

y4(w, x, y, z) =

(
z +

1

2
w2x+

1

2
wy

)
χB(w, x, y, z),

where yi(w, x, y, z) = yi(exp(w, x, y, z)), B = exp(B(0, 1)). With respect to these
local coordinate functions we have that

Lπ
3 =∫

R4\{0}
(π(w, x, y, z)− I − iΦ(w, x, y, z)χB(w, x, y, z)) ν(d z d y dxdw).
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Therefore Lπ
3 is a pseudo-differential operator with symbol

Sπ3 =∫
R4\{0}

(τ(w, x, y, z)− I − iΘ(w, x, y, z)χB(w, x, y, z)) ν(d z d y dxdw),

where

τ(w, x, y, z) = exp(iΘ(w, x, y, z))

for

Θ(w, x, y, z) =2π

[
δ

(
z +

1

2
w2x+

1

2
wy

)
+ δt

(
y +

1

2
wx

)
+

(
β +

1

2
t2
)
(x) + w

∂

∂t

]
and π is as in (5.4). We are now ready to state the main theorem of this paper.

Theorem 5.2. The operator Lπ is a pseudo-differential operator. Moreover, the
space C∞

c (R) is a core for Lπ.

Proof. We have that

Lπ = Lπ
1 + Lπ

2 + Lπ
3 ,

and consequently we have shown that Lπ is pseudo-differential with symbol

Sπ = Sπ1 + Sπ2 + Sπ3 .

We write Lπ
3 = Lπ

3,1 + Lπ
3,2 with

Lπ
3,1 =

∫
Bc

(π(w, x, y, z)− I) ν(d z d y dxdw)

Lπ
3,2 =

∫
B−{0}

(
π(w, x, y, z)− I − iΦ(w, x, y, z)

)
ν(d z d y dxdw).

For each f ∈ C∞
c (R), we have that

∥Lπ
3,1f∥ 6

∫
Bc

∥(π(w, x, y, z)− I) f∥ ν(d z d y dxdw)

62ν(Bc)∥f∥.

Let P (w, x, y, z) denote the projection-valued measure associated to the spectral
decomposition of the self adjoint operator Φ. By the spectral theorem and Taylor’s
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theorem, and referring again to (5.4) we see that

∥(π(w, x, y, z)− I−iΦ(w, x, y, z))f∥2

=

∫
R4

∣∣eiλ − 1− iλ
∣∣2 ∥P (w, x, y, z)(dλ)f∥2

61

4

∫
R4

|λ|4∥P (w, x, y, z)(dλ)f∥2

=
1

4

∥∥∥∥2π [δI (z + 1

2
w2x+

1

2
wy

)
+ δK

(
y +

1

2
wx

)

+

(
βI +

1

2
K2

)
(x) + wD

]2
f

∥∥∥∥∥
2

6π2

∥∥∥∥[y1(w, x, y, z)D + y2(w, x, y, z)

(
βI +

1

2
K2

)

+ y3(w, x, y, z)δK + y4(w, x, y, z)δI

]2
f

∥∥∥∥∥
2

616π2C2
f · h2(w, x, y, z).

The last inequality follows from Young’s inequality. The Hunt function h corre-
sponds to the local coordinate functions {yi}4i=1 and

Cf =((β + δ)2 + δ)∥f∥+ (2δ(β + δ) + 1)∥Kf∥+ (δ2 + β + δ)∥K2f∥

+ δ∥K3f∥+ 1

4
∥K4f∥+ 2(β + δ)∥Df∥+ 2δ∥KDf∥+ 2∥K2Df∥

+ ∥D2f∥.
Therefore we have that

∥Lπ
3,2f∥ 64πCf

∫
B

h(w, x, y, z)ν(dw dxd y d z),

and the latter integral is finite by (5.1). Applying these bounds for Lπ
3,1 and Lπ

3,2

and the expressions (5.5) and (5.6) there exist non-negative constants ω(f)ij such
that

∥Lπf∥ 6
4∑

i=1

2∑
j=1

ω(f)ij∥KiDjf∥.(5.7)

Let f ∈ Dom(Lπ), then we can find (fn, n ∈ N) in C∞
c (R) such that

lim
n→∞

∥fn − f∥ = 0.

Applying (5.7) to the sequence fn − fm, we deduce by integration by parts and
the Schwarz inequality that limm,n→∞ ∥Lπ(fn − fm)∥ = 0. Hence the sequence
(Lπfn, n ∈ N) is Cauchy and so convergent to some g ∈ L2(R). The operator Lπ

is closed, hence g = Lπf and the result is established. �

Example 5.1. Let B1
t and B2

t be independent one-dimensional Brownian motions
and define Xt = exp(B1

t , B
2
t , 0, 0). Then its generator is the sub-Laplacian

L =

(
∂

∂w

)2

+

(
∂

∂x
+ w

∂

∂y
+
w2

2

∂

∂z

)2

.
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If π = πδ,β is a representation of class 3, the quantization of this generator is given
as

Lπ = −π2
(
4D2 + 4β2I + 4βK2 +K4

)
.

The symbol of Lπ is the operator Sπ defined for each φ(t) ∈ C∞
c (R) by

Sπφ(t) = −π2

(
4
∂2φ

∂t2
+ 4β2 + 4βt2φ(t) + t4φ(t)

)
.

In [3] it is shown that fractional Brownian motion in Carnot groups exhibits a
scaling property reminiscent of the property for Brownian motion in Rn. If one
defines

V1 = Span{W,X},
V2 = Span{Y },
V3 = Span{Z},

then g = V1 ⊕ V2 ⊕ V3 and it is clear that G has the structure of a Carnot group.
A fractional Brownian motion is not a Lévy process unless o the Hurst parameter
H is equal to 1

2 . By a standard application of Ito’s Lemma

Xt =

{
B1

t , B
2
t ,

1

2

∫ t

0

(B1
sdB

2
s −B2

sdB
1
s ) +

1

2
B1

tB
2
t ,∫ t

0

(∫ s

0

(
1

6
B2

rdB
1
r − 1

3
B1

rdB
2
r

))
dB1

s+

B1
t

4

∫ t

0

(B1
sdB

2
s −B2

sdB
1
s ) +

(B1
t )

2B2
t

6

}
.

It is easy to verify that Xt solves the stochastic differential equation

dXt = Xt(WdB1
t +XdB2

t ),

X0 = e.

Finally, the scaling property as formulated in [3, Proposition 3.8] implies that

(Xct)t>0
law
= (∆√

cXt)t>0,

where

∆√
c{w, x, y, z} = {

√
cw,

√
cx, cy,

√
c3z}.
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