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Abstract. A small ball problem and Chung’s law of iterated logarithm
for a hypoelliptic Brownian motion in Heisenberg group are proven. In
addition, bounds on the limit in Chung’s law are established.
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1. Introduction

Let E be a topological space and {Xt}06t61 be an E-valued stochastic
process with continuous paths such that X0 = x0 ∈ E a.s. Denote by
Wx0 (E) the space of E-valued continuous functions on [0, 1] starting at x0,
then we can view Xt as a Wx0 (E)-valued random variable. Given a norm
‖ · ‖ on Wx0 (E), the small ball problem for Xt consists in finding the rate
of explosion of

− logP (‖X‖ < ε)

as ε → 0. More precisely, a process Xt is said to satisfy a small deviation
principle with rates α and β if there exist a constant c > 0 such that
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(1.1) lim
ε→0
−εα| log ε|β logP (‖X‖ < ε) = c.

The values of α, β and c depend on the process Xt and on the chosen norm
on Wx0 (E). Small deviation principles have many applications including
metric entropy estimates and Chung’s law of the iterated logarithm. We
refer to the survey paper [15] for more details. In our paper we are mostly
interested in connections of a small deviation principle to Chung’s law of
the iterated logarithm.

We say that a process Xt satisfies Chung’s law of the iterated logarithm
with rate a ∈ R+ if there exists a constant C such that

(1.2) lim inf
t→∞

(
log log t

t

)a
max
06s6t

|Xs| = C.

When Xt is a Brownian motion, it was proven in a famous paper by K.-
L. Chung in 1948 that 1.2 holds with a = 1

2 and C = π√
8
. If Wx0 (E) is a

Banach space, and the law µ of Xt is a Gaussian measure on Wx0 (E), then
one can use a scaling property of the process Xt to prove Chung’s law of the
iterated logarithm from a small deviation principle.

Small deviation principle for a Brownian motion and related processes
have been extensively studied, we mention only a few most relevant to our
results. In [2] the authors considered the case of a one-dimensional Brownian
motion and Hölder norms, in [14] a Brownian sheet in Hölder norms has
been considered, [13] studied the integrated Brownian motion in the uniform
norm, and [6] the m-fold integrated Brownian motion in both the uniform
and L2-norm. In [18] a small deviation principle and Chung’s law of iterated
logarithm is proven for some stochastic integrals and in particular for Lévy’s
stochastic area.

In the current paper we consider a hypoelliptic Brownian motion gt on
the Heisenberg group H starting at the identity e in H. The group H is
the simplest example of a sub-Riemannian manifold, and it comes with a
natural left-invariant distance, the Carnot-Carathéodory distance dcc. We
then consider the uniform norm

‖g‖W0(H) := max
06t61

|gt|

on the path space W0 (H) of H-valued continuous curves starting at the
identity, where | · | is a norm on H equivalent to the Carnot-Carathéodory
distance dcc. We refer for details to Section 2.

Our main results include Theorem 3.2 where we prove Chung’s law of the
iterated logarithm with a = 1

2 for a hypoelliptic Brownian motion gt. As
a consequence of Theorem 3.2, we prove Theorem 3.4 which represents a
small deviation principle for the hypoelliptic diffusion gt with respect to the
norm ‖ · ‖W0(H). More precisely, we prove that there exists a finite positive
constant c such that (1.1) holds with α = 2 and β = 0, and we provide a
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lower and upper bound on c. Note that finding the constant c explicitly is
difficult even in more studied cases, see for example [13, Remark 2.2].

Let us explain now how our setting differs from known results. First ob-
serve that the hypoelliptic Brownian motion gt is an R3-valued stochastic
process, but it is not a Gaussian process. Therefore we can not rely on the
properties of Gaussian measures on Banach spaces, such as log-concavity
and Anderson’s inequality which are common tools in the subject. We refer
to [1,5] for more details about Gaussian measures on Banach spaces. These
properties have been used to show the existence of a small deviations prin-
ciple for some processes such as an integrated Brownian motion in [13], and
a Brownian motion with values in a finite dimensional Banach space in [7].

Generally, if a small deviations principle is known, then it can be used
together with scaling properties of the process to show Chung’s law of the
iterated logarithm. For example, in [18] a small deviation principle for

Lévy’s stochastic area At is first proven and then, using that Aεt
(d)
= εAt for

any t and ε > 0, Chung’s law of the iterated logarithm for the process At
follows. For related work we also refer to [8]. It is also possible to prove the
converse. In [13] the authors first prove Chung’s law of the iterated logarithm

for the integrated one-dimensional Brownian motion
∫ t
0 bsds. Then, using

the scaling property
∫ εt
0 bsds

(d)
= ε

3
2

∫ t
0 bsds, a small deviation principle for∫ t

0 bsds is shown.
Most relevant to our work is [13], where the existence of the limit (1.1)

for Xt :=
∫ t
0 bsds follows from Anderson’s inequality for Gaussian measures.

Chung’s law of the iterated logarithm is then used to prove that the limit
is finite. This method can not be used directly in our setting since the
hypoelliptic Brownian motion gt is not a Gaussian process, and therefore
we can not rely on Anderson’s inequality. In our case we first prove in
Proposition 4.3 that if the limit (1.1) exists then it is strictly positive and
finite. We then prove Chung’s law of the iterated logarithm for gt and
use it in place of Anderson’s inequality to show the existence of the limit
1.1. As a by-product we have bounds on this limit in terms of the lowest
Dirichlet eigenvalues as given in Theorem 5.6. The mathematical literature
on the subject is vast, and we mention only the most relevant in terms of
the techniques and results. In particular, a similar state space is considered
in [16,17] though the results are different.

The paper is organized as follows. In Section 2 we describe the Heisenberg
group H and the corresponding sub-Laplacian and hypoelliptic Brownian
motion. In Section 3 we state the main results of this paper, namely Chung’s
law of the iterated logarithm in Theorem 3.2 and a small deviation principle
in Theorem 3.4. Section 4 contains estimates that are needed to prove
Theorem 3.2 and Theorem 3.4. We conclude 5 with the proof of the main
results.
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2. Hypoelliptic Brownian motion on the Heisenberg group

2.1. Heisenberg group as Lie group. The Heisenberg group H as a set
is R3 ∼= R2 × R with the group multiplication given by

(v1, z1) · (v2, z2) :=

(
x1 + x2, y1 + y2, z1 + z2 +

1

2
ω (v1,v2)

)
,

where v1 = (x1, y1) ,v2 = (x2, y2) ∈ R2,

ω : R2 × R2 −→ R,
ω (v1,v2) := x1y2 − x2y1

is the standard symplectic form on R2. The identity in H is e = (0, 0, 0) and

the inverse is given by (v, z)−1 = (−v,−z).
The Lie algebra of H can be identified with the space R3 ∼= R2 × R with

the Lie bracket defined by

[(a1, c1) , (a2, c2)] = (0, ω (a1,a2)) .

The set R3 ∼= R2 × R with this Lie algebra structure will be denoted by h.
Let us now recall some basic notation for Lie groups. Suppose G is a

Lie group, then the left and right multiplication by an element k ∈ G are
denoted by

Lk : G −→ G, g 7−→ k−1g,

Rk : G −→ G, g 7−→ gk.

Recall that the tangent space TeG can be identified with the Lie algebra
g of left-invariant vector fields on G, that is, vector fields X on G such that
dLk ◦X = X ◦Lk, where dLk is the differential of Lk. More precisely, if A is
a vector in TeG, then we denote by Ã ∈ g the (unique) left-invariant vector

field such that Ã(e) = A. A left-invariant vector field is determined by its

value at the identity, namely, Ã (k) = dLk ◦ Ã (e).
For the Heisenberg group the differential of left and right multiplication

can be described explicitly as follows.

Proposition 2.1. Let k = (k1, k2, k3) = (k, k3) and g = (g1, g2, g3) = (g, g3)
be two elements in H. Then, for every v = (v1, v2, v3) = (v, v3) in TgH, the
differentials (pushforward) of the left and right multiplication are given by

dLk = Lk∗ : TgH −→ Tk−1gH,
dRk = Rk∗ : TgH −→ TgkH,

dLk(v) =

(
v1, v2, v3 +

1

2
ω(v,k)

)
,

dRk(v) =

(
v1, v2, v3 +

1

2
ω(v,k)

)
.(2.1)
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2.2. Heisenberg group as a sub-Riemannian manifold. The Heisen-
berg group H is the simplest non-trivial example of a sub-Riemannian man-
ifold. We define X, Y and Z as the unique left-invariant vector fields satis-
fying Xe = ∂x, Ye = ∂y and Ze = ∂z which are given by

X = ∂x −
1

2
y∂z,

Y = ∂y +
1

2
x∂z,

Z = ∂z.

Note that the only non-zero Lie bracket for these left-invariant vector fields
is [X,Y ] = Z, so the vector fields {X,Y } satisfy Hörmander’s condition.
We define the horizontal distribution as H := span {X,Y } fiberwise, thus
making H a sub-bundle in the tangent bundle TH. To finish the description
of the Heisenberg group as a sub-Riemannian manifold we need to equip the
horizontal distribution H with an inner product. For any p ∈ H we define
the inner product 〈·, ·〉Hp on Hp so that {X (p) , Y (p)} is an orthonormal
(horizontal) frame at any p ∈ H. Vectors in Hp will be called horizontal,
and the corresponding norm is denoted by ‖ · ‖Hp .

In addition, Hörmander’s condition ensures that a natural sub-Laplacian
on the Heisenberg group

(2.2) ∆H = X2 + Y 2

is a hypoelliptic operator by [10].
We recall now another notion in sub-Riemannian geometry, namely, of

horizontal curves. Suppose γ(t) = (x (t) , y (t) , z (t)) = (x (t) , z (t)) is an
absolutely continuous curve with values in H, and the corresponding tangent
vector γ′(t) in THγ(t) is

γ′(t) =
(
x′ (t) , y′ (t) , z′ (t)

)
=
(
x′ (t) , z′ (t)

)
.

We denote by cg the Maurer–Cartan form on H, i.e. the h-valued 1-form
on H defined by cg (v) = dLgv, v ∈ TgH. Note that the pushforward of a
vector in TgH along the left translation can be found explicitly. Namely for
γ(t) = (x (t) , z (t)) the Maurer-Cartan form is

cγ (t) = c (t) = dLγ(t)
(
γ′(t)

)
(2.3)

=

(
x′ (t) , z′ (t)− 1

2
ω(x (t) ,x′ (t))

)
,

where we used Proposition 2.1.

Definition 2.2. An absolutely continuous curve t 7−→ γ(t) ∈ H, t ∈ [0, 1] is
said to be horizontal if γ′(t) ∈ Hγ(t) for a.e. t, that is, the tangent vector to
γ (t) is horizontal for a.e. t. Equivalently we can say that γ is horizontal if
cγ (t) ∈ He for a.e. t.
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Equation (2.3) can be used to characterize horizontal curves in terms of
the components as follows. An absolutely continuous curve γ is horizontal
if and only if

(2.4) z′(t)− 1

2
ω(x (t) ,x′ (t))) = 0 a.e. t.

The horizontal length is defined as

LH (γ) :=

∫ 1

0
|cγ (s) |Heds,

where we set LH (γ) =∞ if γ is not horizontal. The Heisenberg group as a
sub-Riemannian manifold comes with a natural left-invariant distance.

Definition 2.3. For any g1, g2 ∈ H the Carnot-Carathéodory distance is
defined as

dcc(g1, g2) := inf {L (γ) , γ : [0, 1] −→ H, γ(0) = g1, γ(1) = g2} .

Another consequence of Hörmander’s condition for left-invariant vector
fields X, Y and Z is that by the Chow–Rashevskii theorem there exists a
horizontal curve connecting any two points in H, and therefore the Carnot-
Carathéodory distance is finite on H.

In addition to the Carnot-Carathéodory distance on the Heisenberg group,
we will use the following homogeneous distance

(2.5) ρ(g1, g2) :=
(
‖x1 − x2‖4R2 + |z1 − z2 + ω(x1,x2)|2

) 1
4 ,

which is equivalent to the Carnot-Carathéodory distance, that is, there exist
two positive constants c and C such that

(2.6) cρ(g1, g2) 6 dcc(g1, g2) 6 Cρ(g1, g2)

for all g1, g2 ∈ H. We denote by | · | the norm on H induced by ρ, that is,
|g| = ρ(g, e) for all g ∈ H. In particular, by the left-invariance of ρ we have
that for any g1, g2 ∈ H
(2.7) |g−12 g1| = ρ

(
g−12 g1, e

)
= ρ (g1, g2) 6 ρ (g1, e) + ρ (g2, e) = |g1|+ |g2|.

This is discussed in a more general setting in [4, Proposition 5.1.4].
Finally, we need to describe a hypoelliptic Brownian motion with values

in H. This is a stochastic process whose generator is the sub-Laplacian 1
2∆H

defined by Equation (2.2).

Notation 2.4. Throughout the paper we use the following notation. Let
(Ω,F ,Ft,P) be a filtered probability space. We denote the expectation
under P by E.

By a standard real-valued Brownian motion {Bt}t>0 we mean a contin-
uous adapted R-valued stochastic process on (Ω,F ,Ft,P) such that for all
0 6 s 6 t the increment Bt − Bs is independent of Fs and has a normal
distribution with mean 0 and the variance t− s.
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Definition 2.5. Let Wt = (W1(t),W2(t), 0) be an h-valued stochastic pro-
cess, where Wt := (W1(t),W2(t)) is a standard two-dimensional Brownian
motion. A hypoelliptic Brownian motion gt = (g1(t), g2(t), g3(t)) on H is
the continuous H-valued process defined by

(2.8) gt := (Wt, At) ,

where At := 1
2

∫ t
0 ω (Ws, dWs) is Lévy’s stochastic area.

Note that we used Itô’s integral in this definition rather than Stratonovich’
integral. However, these two integrals are equal in our setting since the
symplectic form ω is skew-symmetric, and therefore Lévy’s stochastic area
functional is the same for both integrals as was observed in [9, Remark 4.3].

One can also write a stochastic differential equation for gt = (xt, yt, zt),
g0 = (0, 0, 0) = e ∈ H as a stochastic differential equation for a Lie group-
valued Brownian motion

Lgt∗ (dgt) = g−1t dgt = dWt,(2.9)

g0 = e.

Equation (2.8) gives an explicit solution to this stochastic differential equa-
tion for the Heisenberg group.

3. Main results

Notation 3.1. Let Xt be a stochastic process with values in a metric space
(X, d) with X0 = x ∈ X, then X∗t denotes the process defined by

X∗t := max
06s6t

d (Xs, X0) .

For X = H we use the homogeneous distance ρ with X0 = e, and on
X = Rn we consider the standard Euclidean norm. Before formulating
Chung’s law of iterated logarithm for the hypoelliptic Brownian motion gt
we introduce the notation

φ (t) :=

√
log log t

t
.

Theorem 3.2 (Chung’s law of iterated logarithm). Let gt be the hypoelliptic
Brownian motion on the Heisenberg group H defined by (2.8). Then there
exists a constant c ∈ (0,∞) such that

(3.1) lim inf
t∈∞

φ (t) g∗t = c a.s.

Remark 3.3. Note that the hypoelliptic Brownian motion gt has the same
scaling property with respect to the norm induced by the homogeneous norm
ρ as a standard Brownian motion in a Euclidean space. Indeed,
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|gεt| := ρ (gtε, e) = 4

√
|Btε|4 +A2

tε

(d)
=

4

√
|
√
εBt|4 + (εAt)

2 =
√
ερ (gt, e) =

√
ε|gt|.

Therefore it is not surprising that the process gt and the standard Brownian
motion have the same rate φ(t) in Chung’s law of iterated logarithm.

As a consequence of Theorem 3.2 we can prove a small deviation principle
for gt.

Theorem 3.4 (Small deviation principle). The limit

(3.2) lim
ε→0
−ε2 logP (g∗1 < ε) = c2

exists with constant c being defined by (3.1).

Remark 3.5. Using scaling properties of gt we can formulate a small devi-
ation principle over an interval [0, T ]. Let T > 0 be fixed, then by Theorem
3.4 and Remark 3.3 we have that

lim
ε→0
−ε2 logP (g∗T < ε) = c2T.

Indeed,

lim
ε→0
−ε

2

T
logP (g∗T < ε) = lim

ε→0
−ε

2

T
logP

(
g∗1 <

ε√
T

)
= c2.

4. Preliminary estimates

We collect here several preliminary estimates that will be used throughout
the paper.

Proposition 4.1. Let Yt be a positive real-valued process and assume there
exist two finite positive constants 0 < a 6 b <∞ such that

lim inf
t→∞

−1

t
logP (Yt < 1) > a(4.1)

lim sup
t→∞

−1

t
logP (Yt < 1) 6 b.(4.2)

Let c, x and y be real numbers such that c > 1, and 0 < x < a 6 b < y, then
there exists an n0 ∈ N such that

(4.3)

∞∑
n=n0

P (Ysn < 1) <∞

where sn := 1
x log log cn, and

(4.4)

∞∑
n=n0

P (Yvn < 1) =∞

where vn is any positive sequence such that vn → ∞ as n → ∞, and vn 6
1
y log lognn for all n > n0.
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Proof. Let us first show (4.3). By (4.1) we have

P (Yt < 1) 6 e−at

for all large enough t. Therefore there exists an n1 ∈ N such that

∞∑
n=n1

P (Ysn < 1) 6
∞∑

n=n1

e−asn

=
∞∑

n=n1

e−
a
x
log log cn =

∞∑
n=n1

(
1

n log c

) a
x

which is a convergent series since x < a.
Let us now show (4.4). By (4.1) we have that

P (Yt < 1) > e−bt

for all large enough t, and hence there exists an n2 ∈ N such that

∞∑
n=n2

P (Yvn < 1) >
∞∑

n=n2

e−bvn

>
∞∑

n=n2

e
− b
y
log lognn

=
∞∑

n=n2

(
1

n log n

) b
y

which is divergent since b < y. The proof is then completed by taking
n0 := max (n1, n2). �

We first prove a weaker version of Theorem 3.4, namely that if the limit
in (3.2) exists, then it is finite and strictly positive. The estimates in Propo-
sition 4.3 will be used in the proof of Chung’s law of iterated logarithm.
First we introduce the following notation.

Notation 4.2 (Dirichlet eigenvalues in Rn). We denote by λ
(n)
1 the lowest

Dirichlet eigenvalue of −1
2∆Rn on the unit ball in Rn, where 0 < λ

(n)
1 6

λ
(n)
2 6 ... are Dirichlet eigenvalues for the Laplacian −1

2∆Rn in the unit ball
D := {x ∈ Rn, |x| < 1}.

Recall that the lowest Dirichlet eigenvalues appear in a small deviation
principle for a Brownian motion in Rn, see e.g. [11, Lemma 8.1]. Namely,
suppose bt is a standard Brownian motion in Rn, then

(4.5) lim
ε→0
−ε2 logP (b∗1 < ε) = λ

(n)
1 ,

where λ
(n)
1 is as in Notation 4.2, and

b∗1 := max
06t61

|bt|Rn .
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Proposition 4.3. Let gt be the hypoelliptic Brownian motion on the Heisen-
berg group H. Set

c− := lim inf
ε→0

−ε2 logP (g∗1 < ε) ,

c+ := lim sup
ε→0

−ε2 logP (g∗1 < ε) .

Then

(4.6) λ
(2)
1 6 c− 6 c+ 6 c

(
λ
(1)
1 , λ

(2)
1

)
,

where

c
(
λ
(1)
1 , λ

(2)
1

)
:= f(x∗) = inf

x∈(0,1)
f (x) ,

f(x) =
λ
(2)
1√

1− x
+
λ
(1)
1

√
1− x

4x
,

x∗ =

√
(λ

(1)
1 )2 + 32λ

(1)
1 λ

(2)
1 − 3λ

(1)
1

2
(

4λ
(2)
1 − λ

(1)
1

) ,

and λ
(n)
1 are the lowest Dirichlet eigenvalues on the unit ball as defined in

Notation 4.2.

Proof. The lower bound in (4.6) follows from the small deviation princi-
ple 4.5 for Rn-valued Brownian motion and the fact that P (g∗1 < ε) 6
P (B∗1 < ε).

Let us prove now the upper bound. For any x ∈ (0, 1) we have

P (g∗1 < ε) = P
(

max
06s61

(
|Bs|4R2 + |As|2R

)
< ε4

)
> P

(
B∗1 < (1− x)

1
4 ε, A∗1 <

√
xε2
)
.

It is well-known that At = bτ(t) where bt is a one-dimensional Brownian

motion independent of Bt, and τ(t) = 1
4

∫ t
0 |Bs|

2
R2ds, see for example [11,

Chapter 7, Section 6, Example 6.1]. Therefore we have
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P
(
B∗1 < ε (1− x)

1
4 , sup

06t61
|bτ(t)|R < ε2

√
x

)
= P

(
B∗1 < ε (1− x)

1
4 , sup

06t6τ(1)
|bt|R < ε2

√
x

)

> P

B∗1 < ε (1− x)
1
4 , sup

06t6 ε
2

4
(1−x)

1
2

|bt|R < ε2
√
x


= P

(
B∗1 < ε (1− x)

1
4 , b∗1 <

2ε
√
x

(1− x)
1
4

)

= P
(
B∗1 < ε (1− x)

1
4

)
P

(
b∗1 <

2ε
√
x

(1− x)
1
4

)
.

Thus

logP (g∗1 < ε) > logP
(
B∗1 < ε (1− x)

1
4

)
+ logP

(
b∗1 <

2ε
√
x

(1− x)
1
4

)
,

and hence

− ε2 logP (g∗1 < ε) 6 −ε2 (1− x)
1
2 logP

(
B∗1 < ε (1− x)

1
4

) 1

(1− x)
1
2

− ε2 4x

(1− x)
1
2

logP

(
b∗1 <

2
√
x

(1− x)
1
4

ε

)
(1− x)

1
2

4x
.

From the small deviation principle (4.5) for a Rn-valued Brownian motion
applied to Bt and bt it follows that

lim sup
ε→0

−ε2 logP (g∗1 < ε) 6
λ
(2)
1√

1− x
+
λ
(1)
1

√
1− x

4x

for all x in (0, 1). Note that

f (x) :=
λ
(2)
1√

1− x
+
λ
(1)
1

√
1− x

4x
> 0 for all x ∈ (0, 1)

always has a local minimum over (0, 1) even if we do not rely on the known

values of the eigenvalues λ
(2)
1 and λ

(1)
1 . It is easy to see that this minimum

is achieved at

x∗ =

√
(λ

(1)
1 )2 + 32λ

(1)
1 λ

(2)
1 − 3λ

(1)
1

2
(

4λ
(2)
1 − λ

(1)
1

) ∈ (0, 1)

which gives Equation (4.6). �
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5. Proof of the main results

5.1. Chung’s law of iterated logarithm for gt. The goal of this sec-
tion is to prove Theorem 3.2. Later in Proposition 5.5 we prove that

c := lim inft→∞ φ(t)g∗t is constant a.s., where φ (t) :=
√

log log t
t . For now

c is a random variable for which we first show lower and upper bounds in
Proposition 5.1 and Proposition 5.3.

Proposition 5.1 (Lower bound). For the lowest eigenvalue λ
(2)
1 as intro-

duced in Notation 4.2 we have

c = lim inf
t∈∞

φ (t) g∗t >
√
λ
(2)
1 a.s.

Proof. While this proof is motivated by [18], we provide a detailed argument

for completeness. Let r > 0 be such that 0 < r <

√
λ
(2)
1 . Then we can find

a constant M > 1 such that rM <

√
λ
(2)
1 . We will show that

P (c < r) = 0 for all 0 < r <

√
λ
(2)
1 .

We have

P (c < r) = P
(

lim inf
t→∞

φ(t)g∗t < r
)
6 P

⋂
k>1

⋃
n>k

{
inf

Mn6t6Mn+2
φ(t)g∗t < r

}
6 P

⋂
k>1

⋃
n>k

{
1

M
φ (Mn) g∗Mn < r

} = P

⋂
k>1

⋃
n>k

{
g∗
(
Mn−2

r2
φ (Mn)2

)
< 1

} ,

where g∗
(
Mn−2

r2
φ (Mn)2

)
:= g∗

Mn−2

r2
φ(Mn)2

. Here we used that

inf
a6t6b

φ(t)g∗t >

√
a√
b
φ(a)g∗a

for any 0 < a < b <∞. It is enough to show that

∞∑
n=1

P
(
g∗
(
Mn−2

r2
φ (Mn)2

)
< 1

)
<∞,

and then the result follows from the Borel-Cantelli Lemma. By (4.6) and
the scaling property of gt, it follows that

λ
(2)
1 6 lim inf

ε→0
−ε2P (g∗1 < ε) = lim inf

ε→0
−ε2P

(
max
06s61

|g 1
ε2
s| < 1

)
= lim inf

t→∞
−1

t
P
(

max
06s6t

|gs| < 1

)
= lim inf

t→∞
−1

t
P (g∗t < 1) .



SMALL DEVIATIONS, CHUNG’S LIL ON HEISENBERG GROUP 13

Moreover,

Mn−2

r2
φ (Mn)2 =

1

M2r2
log logMn,

and hence we can apply Proposition 4.1 with Yt = g∗t , a = λ
(2)
1 , sn =

1
x log logMn, and x = M2r2, since M2r2 < λ

(2)
1 . �

Our next step is to show that c is finite almost surely. To do so, we need
the following Lemma.

Lemma 5.2. Set tn = nn. Then for every ε > 0

(5.1) P

⋂
k>1

⋃
n>k

{
φ (tn) g∗tn−1

> ε
} = 0

Proof. It is enough to show that for any ε > 0

P

⋂
k>1

⋃
n>k

{
φ (tn)B∗tn−1

> ε
} = 0 and(5.2)

P

⋂
k>1

⋃
n>k

{
φ (tn)2A∗tn−1

> ε
} = 0.(5.3)

Indeed,{
φ (tn) g∗tn−1

> ε
}

=

{
φ (tn)4 max

06s6tn−1

(
|Bs|4R2 + |As|2

)
> ε4

}
⊂
{
B∗tn−1

>
ε

4
√

2φ (tn)

}
∪
{
A∗tn−1

>
ε2√

2φ (tn)2

}
,

and hence

P

⋂
k>1

⋃
n>k

{
φ (tn) g∗tn−1

> ε
}

6 P

⋂
k>1

⋃
n>k

{
φ (tn)B∗tn−1

>
ε
4
√

2

}
+ P

⋂
k>1

⋃
n>k

{
φ (tn)2A∗tn−1

>
ε2√

2

} .
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Let us first prove (5.2). For every ε fixed we have that{
ω : lim sup

n→∞
φ (tn) max

06s6tn−1

|Bs(ω)|R2 = 0

}
⊂
⋃
k>1

⋂
n>k

{
ω : φ (tn) max

06s6tn−1

|Bs(ω)|R2 < ε

}
.

Moreover, by [12, Lemma 1] we have that for tn = nn

lim sup
n→∞

φ (tn) max
06s6tn−1

|Bs|R2 = 0 a.s..

Combining everything together we have that for tn = nn

1 = P
(

lim sup
n→∞

φ (tn) max
06s6tn−1

|Bs|R2 = 0

)

6 P

⋃
k>1

⋂
n>k

{
φ (tn) max

06s6tn−1

|Bs(ω)|R2 < ε

} ,

and (5.2) is proven since

P

⋂
k>1

⋃
n>k

{
φ (tn)B∗tn−1

> ε
}

= 1− P

⋃
k>1

⋂
n>k

{
φ (tn) max

06s6tn−1

|Bs(ω)|R2 < ε

} .

Let us now prove (5.3). It follows from [3, Example on pp. 449-451] that
there exists a finite constant d > 0 such that with probability one we have
A∗tn−1

6 d t2n−1φ (tn−1)
2 eventually, that is,

P

⋃
k>1

⋂
n>k

{
A∗tn−1

6 d t2n−1φ (tn−1)
2
} = 1.

For any ε > 0 there exists an Nε such that for any n > Nε we have that
d t2n−1φ (tn−1)

2 φ (tn)2 6 ε. Set

Ek :=
⋂
n>k

{
φ (tn)2A∗tn−1

6 d t2n−1φ (tn−1)
2 φ (tn)2

}
.



SMALL DEVIATIONS, CHUNG’S LIL ON HEISENBERG GROUP 15

Then the family Ek is an increasing sequence of sets, and it the follows that⋃
k>1

⋂
n>k

{
A∗tn−1

6 d t2n−1φ (tn−1)
2
}

=
⋃
k>1

Ek ⊂
⋃
k>Nε

Ek

=
⋃
k>Nε

⋂
n>k

{
φ (tn)2A∗tn−1

6 d t2n−1φ (tn−1)
2 φ (tn)2

}
⊂
⋃
k>Nε

⋂
n>k

{
φ (tn)2A∗tn−1

6 ε
}
⊂
⋃
k>1

⋂
n>k

{
φ (tn)2A∗tn−1

6 ε
}
.

Therefore for any ε > 0 we have that

P

⋃
k>1

⋂
n>k

{
φ (tn)2A∗tn−1

6 ε
} = 1,

and so (5.3) is proven. �

Proposition 5.3 (Upper bound). Let c
(
λ
(1)
1 , λ

(2)
1

)
be as in Proposition 4.3,

then

c = lim inf
t∈∞

φ (t) g∗t 6

√
c
(
λ
(1)
1 , λ

(2)
1

)
a.s.

Proof. Set tn = nn. We will show that P (c > r) = 0 for any r >

√
c
(
λ
(1)
1 , λ

(2)
1

)
.

Since

P
(

lim inf
t

φ(t)g∗t > r
)
6 P

⋃
k>1

⋂
n>k

{
φ(tn)g∗tn > r

}
= 1− P

⋂
k>1

⋃
n>k

{
φ(tn)g∗tn 6 r

} ,

it is sufficient to show that for any r >

√
c
(
λ
(1)
1 , λ

(2)
1

)
(5.4) P

⋂
k>1

⋃
n>k

{
φ (tn) g∗tn 6 r

} = 1.

Fix r >

√
c
(
λ
(1)
1 , λ

(2)
1

)
and choose r1 such that

√
c
(
λ
(1)
1 , λ

(2)
1

)
< r1 < r.

Let us define the events

An :=

{
φ (tn) max

tn−16s6tn
|g−1tn−1

gs| < r1

}
,

Bn :=

{
φ (tn) g∗tn−1

<
r − r1

2

}
.
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Then by (2.7)on the event An ∩Bn we have

φ (tn) g∗tn 6 φ (tn) g∗tn−1
+ φ (tn) max

tn−16s6tn
|gtn−1g

−1
tn−1

gs|

6 φ (tn) g∗tn−1
+ φ (tn) |gtn−1 |+ φ (tn) max

tn−16s6tn
|g−1tn−1

gs|

6
r − r1

2
+
r − r1

2
+ r1 = r,

and hence

P (An ∩Bn) 6 P
(
φ (tn) g∗tn 6 r

)
.

By Lemma 5.2 we have P
(⋂

k>1

⋃
n>k B

c
n

)
= 0, and therefore

P

⋂
k>1

⋃
n>k

{
φ (tn) max

06s6tn−tn−1

|g−1tn−1
gs+tn−1 | < r1

}
= P

⋂
k>1

⋃
n>k

An

 = P

⋂
k>1

⋃
n>k

(An ∩Bn)


6 P

⋂
k>1

⋃
n>k

{φ (tn) g∗ (tn) 6 r}

 .

Equation (5.4) holds if we can show that

P

⋂
k>1

⋃
n>k

{
φ (tn) max

06s6tn−tn−1

|g−1tn−1
gs+tn−1 | < r1

} = 1.

Note that g−1tn−1
gs+tn−1

(d)
= gs and it is independent of Ftn−1 . Indeed,

g−1tn−1
gs+tn−1

(5.5)

=

(
Bs+tn−1 −Btn−1 ,

1

2

∫ s+tn−1

tn−1

ω (Bu, dBu) +
1

2
ω
(
Bs+tn−1 , Btn−1

))
(d)
=

(
Bs,

1

2

∫ s

0
ω (Bu, dBu)

)
= gs.

The assumptions of the Borel-Cantelli Lemma are satisfied, therefore we
only need to show that the series with the term

P
(
φ (tn) max

06s6tn−tn−1

|g−1tn−1
gs+tn−1 | < r1

)
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diverges. We have

P
(
φ (tn) max

06s6tn−tn−1

|g−1tn−1
gs+tn−1 | < r1

)
= P

(
max

06s6tn−tn−1

φ (tn)

r1
|gs| < 1

)
= P

(
g∗
(
tn − tn−1

r21
φ (tn)2

)
< 1

)
,

where g∗
(
tn−tn−1

r21
φ (tn)2

)
:= g∗tn−tn−1

r21
φ(tn)

2
.

By (4.6) and the scaling property of gt it follows that

c
(
λ
(1)
1 , λ

(2)
1

)
> lim sup

ε→0
−ε2P (g∗1 < ε) = lim sup

ε→0
−ε2P

(
max
06s61

|g 1
ε2
s| < 1

)
= lim sup

t→∞
−1

t
P
(

max
06s6t

|gs| < 1

)
= lim sup

t→∞
−1

t
P (g∗t < 1) .

Moreover

tn − tn−1
r21

φ (tn)2 =
1

r21

tn − tn−1
tn

log log tn

6
1

r21
log log tn =

1

r21
log lognn

and hence we can apply Proposition 4.1 with Yt = g∗t , b = c
(
λ
(1)
1 , λ

(2)
1

)
,

vn = 1
y log lognn, and y = r21, since r21 > c

(
λ
(1)
1 , λ

(2)
1

)
. �

Remark 5.4. In the proof of Proposition 5.3 we used left increments g−1tn−1
gs+tn−1.

It is easy to check that the argument does not work if one considers the right
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increments gs+tn−1g
−1
tn−1

instead. Indeed,

gs+tn−1g
−1
tn−1

=

(
Bs+tn−1 −Btn−1 ,

1

2

∫ s+tn−1

tn−1

ω (Bu, dBu)− 1

2
ω
(
Bs+tn−1 , Btn−1

))

=

(
Bs+tn−1 −Btn−1 ,

1

2

∫ s

0
ω
(
Bu+tn−1 −Btn−1 , dBu+tn−1

)
+

1

2

∫ s

0
ω
(
Btn−1 , dBu+tn−1

)
− 1

2
ω
(
Bs+tn−1 , Btn−1

))
=

(
Bs+tn−1 −Btn−1 ,

1

2

∫ s

0
ω
(
Bu+tn−1 −Btn−1 , dBu+tn−1

)
+

1

2
ω
(
Btn−1 , Bs+tn−1 −Btn−1

)
− 1

2
ω
(
Bs+tn−1 , Btn−1

))
=

(
Bs+tn−1 −Btn−1 ,

1

2

∫ s

0
ω
(
Bu+tn−1 −Btn−1 , dBu+tn−1

)
+ω

(
Btn−1 , Bs+tn−1 −Btn−1

))
(d)
=

(
Bs,

1

2

∫ s

0
ω (Bu, dBu) + ω

(
Btn−1 , Bs

))
6=
(
Bs,

1

2

∫ s

0
ω (Bu, dBu)

)
= gs.

This is a consequence of our choice of the (left) Brownian motion gt defined
by the left translation in (2.9).

The next Proposition completes the proof of Theorem 3.2.

Proposition 5.5. Let c be given by (3.1), then c is constant a.s.

Proof. Let Tu := σ {Br, r > u}, and T := ∩u>0Tu be the tail σ-algebra
generated by the Brownian motion, which is trivial by Kolmogorov’s 0-1
law. We will show that

(5.6) c4 = lim inf
t→∞

φ(t)4 max
u6s6t

[
|Bs|4 +

(
1

2

∫ s

u
ω (Bv, dBv)

)2
]
.

This means that the random variable c is Tu-measurable for every u and
hence T -measurable. Since T is trivial, then c is constant a.s. because T is
trivial. Let us now prove (5.6). Suppose u is fixed, and note that

(5.7) c = lim inf
t→∞

φ(t) max
u6s6t

|gs|.

Indeed,

max
u6s6t

|gs| 6 max
06s6t

|gs| 6 max
u6s6t

|gs|+ max
06s6u

|gs|,
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and (5.7) follows from the fact that limt→∞ φ(t) = 0. Using the triangular
inequality one can show that

max
u6s6t

[
|Bs|4 +

(
1

2

∫ s

u
ω (Bv, dBv)

)2
]
−A2

u − 2|Au| max
06s6t

|As|

6 max
u6s6t

|gs|4(5.8)

6 max
u6s6t

[
|Bs|4 +

(
1

2

∫ s

u
ω (Bv, dBv)

)2
]

+ 2A2
u + |Au| max

06s6t
|As|.

Indeed,

max
u6s6t

|gs|4 = max
u6s6t

[
|Bs|4 +A2

s

]
= max

u6s6t

[
|Bs|4 +

(
1

2

∫ s

u
ω (Bv, dBv) +Au

)2
]

= max
u6s6t

[
|Bs|4 +

(
1

2

∫ s

u
ω (Bv, dBv)

)2

+A2
u +Au

∫ s

u
ω (Bv, dBv)

]

6 max
u6s6t

[
|Bs|4 +

(
1

2

∫ s

u
ω (Bv, dBv)

)2
]

+A2
u +Au max

u6s6t
|
∫ s

u
ω (Bv, dBv) |

= max
u6s6t

[
|Bs|4 +

(
1

2

∫ s

u
ω (Bv, dBv)

)2
]

+A2
u +Au max

u6s6t
|As −Au|

6 max
u6s6t

[
|Bs|4 +

(
1

2

∫ s

u
ω (Bv, dBv)

)2
]

+ 2A2
u + |Au| max

06s6t
|As|,

and the upper bound in (5.8) is proven. Le us now show the lower bound.
We have that

max
u6s6t

[
|Bs|4 +

(
1

2

∫ s

u
ω (Bv, dBv)

)2
]

= max
u6s6t

[
|Bs|4 + (As −Au)2

]
= max

u6s6t

[
|Bs|4 +A2

s +A2
u − 2AuAs

]
6 max

u6s6t
|gs|4 +A2

u + 2 max
u6s6t

(−AuAs)

6 max
u6s6t

|gs|4 +A2
u + 2|Au| max

06s6t
|As|,

and the lower bound is also proven.
Before finishing the proof we recall that by [18, Theorem 1]

lim inf
t→∞

φ(t)2 max
06s6t

|As| =
π

4
a.s.

Then (5.6) follows by (5.8) and the fact that limt→∞ φ(t) = 0. �

We have actually proven a more quantitative version of Theorem 3.2 as
follows.
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Theorem 5.6 (Chung’s law of iterated logarithm with bounds). The con-
stant c = lim inft→∞ φ(t)g∗t in Theorem 3.2 satisfies√

λ
(2)
1 6 c 6

√
c
(
λ
(1)
1 , λ

(2)
1

)
,

where λ
(2)
1 is defined in Notation 4.2, and c

(
λ
(1)
1 , λ

(2)
1

)
is defined in Propo-

sition 4.3.

5.2. Small deviations for gt. We are now ready to prove Theorem 3.4,
that is, the small deviation principle for the hypoelliptic Brownian motion
gt.

Proof of Theorem 3.4. We recall the notation

c− := lim inf
ε→0

−ε2 logP (g∗1 < ε) ,

c+ := lim sup
ε→0

−ε2 logP (g∗1 < ε) ,

and

c := lim inf
t→∞

φ(t)g∗t .

We first show that

(5.9) c+ 6 c
2.

Let k ∈ (0, c+) be a fixed number, that is, k 6 lim supε→0−ε2 logP (g∗1 < ε).
This means that there exists an ε(k) such that

(5.10) P (g∗1 < ε) 6 exp

(
− k
ε2

)
,

for any ε 6 ε(k).
Now fix R > 1 and a number γ such that 0 < Rγ < k. Define tn = Rn > 1,

and εn = εn(k, γ,R) :=
√
γ

φ(tn+1)
√
tn

. Note that εn goes to zero as n goes to

infinity, and hence there exists an N = N(k, γ,R) such that εn 6 ε(k) for
any n > N(k, γ,R). Then we have that

P
(
g∗tn <

√
γ

φ (tn+1)

)
= P

(
g∗1 <

√
γ

φ (tn+1)
√
tn

)
= P (g∗1 < εn)

6 exp

(
− k

ε2n

)
= exp

(
−k
γ
φ (tn+1)

2 tn

)
= exp

(
−k
γ

tn
tn+1

log log tn+1

)
= exp

(
− k

Rγ
log logRn+1

)
=

(
1

(n+ 1) logR

) k
Rγ

,

for all n > N(k, γ,R), which is a term of a convergent series since Rγ < k.
Therefore for any 0 < k < c+, R > 1, 0 < Rγ < k, and tn = Rn we have
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that

∞∑
n=1

P
(
g∗tn <

√
γ

φ (tn+1)

)
<∞.

Hence by the Borel-Cantelli Lemma it follows that

P

⋃
k>1

⋂
n>k

{
g∗tn <

√
γ

φ (tn+1)

} = 0, that is,

P

⋂
k>1

⋃
n>k

{
g∗tn >

√
γ

φ (tn+1)

} = 1.

Therefore almost surely for all large n, g∗tn >
√
γ

φ(tn+1)
. The function φ(t) is

decreasing for t > 1, therefore t ∈ [tn, tn+1] we have

g∗t > g
∗
tn >

√
γ

φ (tn+1)
>
√
γ

φ (t)

which yields

c := lim inf
t→∞

φ(t)g∗t >
√
γ a.s.

for any γ < k
R < c+

R , and hence (5.9) is proven by letting first R go to 1,
and then k to c+.

Let us now show that

(5.11) c2 6 c−.

Suppose k > c−, then k > lim infε→0−ε2 logP (g∗1 < ε). Therefore there
exists an ε′(k) such that

(5.12) P (g∗1 < ε) > exp

(
− k
ε2

)
,

for any ε 6 ε′(k). Now set tn = nn and define

εn = εn(k) :=
k
√
c−

1√
tn − tn−1φ (tn)

,

Ekn :=

{
max

tn−16s6tn
|g−1tn−1

gs| <
k
√
c−

1

φ (tn)

}
.

Note that εn goes to zero as n goes to infinity, and hence there exists an
N(k) such that εn 6 ε′(k) for any n > N(k). We claim that, for any k > c−,∑∞

n=1 P
(
Ekn
)

=∞. Indeed, since by (5.5) the left increment g−1tn−1
gs+tn−1

(d)
=
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gt, we can use (5.12) to see that for n > N(k)

P
(
Ekn

)
= P

(
max

tn−16s6tn
|g−1tn−1

gs| <
k
√
c−

1

φ (tn)

)
= P

(
max

06s6tn−tn−1

|g−1tn−1
gs+tn−1 | <

k
√
c−

1

φ (tn)

)
= P

(
max

06s6tn−tn−1

|gs| <
k
√
c−

1

φ (tn)

)
= P (g∗1 < εn) > exp

(
− k

ε2n

)
= exp

(
−c−
k

tn − tn−1
tn

log log tn

)
> exp

(
−c−
k

log log tn

)
=

(
1

n log n

) c−
k

.

This yields
∑∞

n=1 P
(
Ekn
)

= ∞ since k > c−. Note that the events En are
independent because the increments are independent and

max
tn−16s6tn

|g−1tn−1
gs| = max

06s6tn−tn−1

|g−1tn−1
gs+tn−1 |

and g−1tn−1
gs+tn−1 is independent of Ftn−1 as shown in the proof of Proposition

5.3. Hence by the Borel-Cantelli Lemma we have that

P
(

lim sup
n→∞

Ekn

)
= P

⋂
j>1

⋃
n>j

{
φ (tn) max

tn−16s6tn
|g−1tn−1

gs| <
k
√
c−

} = 1,

which yields

lim inf
n→∞

φ (tn) max
tn−16s6tn

|g−1tn−1
gs| <

k
√
c−

a.s. for all k > c−,

and hence

(5.13) lim inf
n→∞

φ (tn) max
tn−16s6tn

|g−1tn−1
gs| 6

√
c− a.s.

We will show later in the proof that

(5.14) lim
n→∞

φ (tn) g∗tn−1
= 0 a.s.

Assume (5.14) for now, we can use 2.7 to see that

φ (tn) g∗tn 6 φ (tn) g∗tn−1
+ φ (tn) max

tn−16s6tn
|gs|

6 φ (tn) g∗tn−1
+ φ (tn) max

tn−16s6tn
|g−1tn−1

gs|+ φ (tn) |gtn−1 |

6 2φ (tn) g∗tn−1
+ φ (tn) max

tn−16s6tn
|g−1tn−1

gs|.

Therefore by (5.13) and (5.14) we have that

c := lim inf
t→∞

φ(t)g∗t 6 lim inf
n→∞

φ (tn) g∗tn

6 lim inf
n→∞

(
2φ (tn) g∗tn−1

+ φ (tn) max
tn−16s6tn

|gsg−1tn−1
|
)
6
√
c− a.s.,
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which proves (5.11). Let us now show (5.14). By Lemma 5.2 we have that
for any ε > 0

1 = P

⋃
k>1

⋂
n>k

{
φ (tn) g∗tn−1

< ε
} 6 P

(
lim sup
n→∞

φ (tn) g∗tn−1
< ε

)
.

So for every ε we have that

lim sup
n→∞

φ (tn) g∗tn−1
< ε a.s.

and hence lim supn→∞ φ (tn) g∗tn−1
= 0 a.s., which implies (5.14). �
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