Exercise 1

Let m and n be positive integers. Show that:

$$
\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z}) \cong \mathbb{Z} /(m, n) \mathbb{Z}
$$

where \mathbb{Z} denotes the integers, and $d=(m, n)$ denotes the greatest common divisor of m and n.

Let $L: \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z}) \rightarrow \mathbb{Z} /(m, n) \mathbb{Z}$ be defined as follows. If $f: \mathbb{Z} / m \mathbb{Z} \rightarrow$ $\mathbb{Z} / n \mathbb{Z}$ is \mathbb{Z}-linear, and if $f(1+m \mathbb{Z})=k+n \mathbb{Z}$, then

$$
L(f)=k+(m, n) \mathbb{Z}
$$

- L does in fact define a map from $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$ to $\mathbb{Z} /(m, n) \mathbb{Z}$. For suppose $f: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ is \mathbb{Z}-linear. Then since $1+m \mathbb{Z}$ has order m in $\mathbb{Z} / m \mathbb{Z}, f(1+m \mathbb{Z})$ has order dividing m. But since $f(1+m \mathbb{Z})$ is an element of $\mathbb{Z} / n \mathbb{Z}, n f(1+m \mathbb{Z}) \equiv 0 \bmod n$ and so $f(1+m \mathbb{Z})$ has order dividing n. Therefore $(m, n) f(1+m \mathbb{Z}) \equiv 0 \bmod n$ and hence we may construe $f(1+m \mathbb{Z})$ as an integer modulo (m, n).
- L is surjective. For given $k+(m, n) \mathbb{Z} \in \mathbb{Z} /(m, n) \mathbb{Z}$, we may define

$$
f: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}
$$

by $f(1+m \mathbb{Z})=k+n \mathbb{Z}$. Since $\operatorname{ord}(k) \mid(m, n)$, this defines a linear map $\mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$. And $L(f)=k+(m, n) \mathbb{Z}$.

- L is linear. For if $a, b \in \mathbb{Z}$ and $f, g \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$, then

$$
L(a f+b g)=(a f+b g)(1+m \mathbb{Z})=a f(1+m \mathbb{Z})+b g(1+m \mathbb{Z})=a L(f)+b L(g)
$$

- L is injective. For any linear map $\mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ is determined entirely by $f(1+m \mathbb{Z})$ (since $\mathbb{Z} / m \mathbb{Z}$ is cyclic) and hence any two linear maps $\mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ differ if and only if they differ at $1+m \mathbb{Z}$.

Exercise 2

Let A be a ring, \mathfrak{a} an ideal, M an A-module. Show that $(A / \mathfrak{a}) \otimes_{A} M$ is isomorphic to $M / \mathfrak{a} M$. [Tensor the exact sequence $0 \rightarrow \mathfrak{a} \rightarrow A \rightarrow A / \mathfrak{a} \rightarrow 0$ with M.]

Let $i: \mathfrak{a} \rightarrow A$ be inclusion and $p: A \rightarrow A / \mathfrak{a}$ be projection. Then

$$
0 \rightarrow \mathfrak{a} \xrightarrow{i} A \xrightarrow{p} A / \mathfrak{a} \rightarrow 0
$$

is exact, and so by the exactness of the tensor product,

$$
0 \rightarrow \mathfrak{a} \otimes_{A} M \xrightarrow{f} A \otimes_{A} M \xrightarrow{g}(A / \mathfrak{a}) \otimes_{A} M \rightarrow 0
$$

is exact also. ${ }^{12}$ Because $A \otimes_{A} M$ is uniquely isomorphic to M by $a \otimes_{A} m \mapsto a m$, there are maps h, k such that

$$
0 \rightarrow \mathfrak{a} M \xrightarrow{h} M \xrightarrow{k}(A / \mathfrak{a}) \otimes_{A} M \rightarrow 0
$$

is exact. By the exactness of the above sequence, $\operatorname{ker}(k)=\mathfrak{a} M$. Therefore by the first isomorphism theorem,

$$
M / \mathfrak{a} M \cong(A / \mathfrak{a}) \otimes_{A} M
$$

Exercise 3

Let A be a commutative ring, let I and J be ideals of A, and let M be an A-module. Show that: $(A / I) \otimes_{A}(A / J) \cong A /(I+J)$.

Here Exercise 2 does the heavy lifting. With $\mathfrak{a}=I$ and $M=A / J$, we obtain

$$
\begin{align*}
(A / I) \otimes_{A}(A / J) & \cong(A / J) /(I(A / J)) \\
& =(A / J) /((I A+J) / J) \\
& \cong A /(I A+J) \tag{Proposition2.1}\\
& =A /(I+J)
\end{align*}
$$

$$
(\mathrm{IA}=\mathrm{A})
$$

[^0]
Exercise 4

Let A be a commutative ring and let $\left\{M_{i}\right\}_{i \in T}$ and N be A-modules. Show that $\left(\oplus M_{i}\right) \otimes N \cong \oplus\left(M_{i} \otimes N\right)$.

Let $B:\left(\oplus M_{i}\right) \times N \rightarrow \oplus\left(M_{i} \otimes N\right)$ be given by

$$
\left(\left\{m_{i}\right\}_{i \in T}, n\right) \mapsto\left\{m_{i} \otimes n\right\}_{i \in T}
$$

Then B is bilinear:

$$
\begin{aligned}
B\left(\left\{a m_{i}\right\}_{i \in T}, n\right) & =\left\{\left(a m_{i}\right) \otimes n\right\}_{i \in T} \\
& =a \cdot\left\{m_{i} \otimes n\right\}_{i \in T}\left\{m_{i} \otimes(a n)\right\}_{i \in T}=B\left(\left\{m_{i}\right\}_{i \in T}, a n\right)
\end{aligned}
$$

and the additivity properties follow from those of the direct sum. Therefore by the universal property of the tensor product there is a unique linear map

$$
L:\left(\oplus M_{i}\right) \otimes N \rightarrow \oplus\left(M_{i} \otimes N\right)
$$

satisfying $L(x \otimes y)=B(x, y)$ on elementary tensors. Similarly, there are unique linear maps (one for each $i \in T$)

$$
K_{i}: M_{i} \otimes N \rightarrow\left(\oplus M_{i}\right) \otimes N
$$

satisfying

$$
\begin{gathered}
K_{i}\left(m_{i} \otimes n\right)=\left(0, \ldots, m_{i}, \ldots, 0\right) \otimes n \\
\uparrow \\
i^{\text {th }} \text { place }
\end{gathered}
$$

Let $K: \oplus\left(M_{i} \otimes N\right) \rightarrow\left(\oplus M_{i}\right) \otimes N$ be given by

$$
K\left(\left\{m_{i} \otimes n\right\}_{i \in T}\right)=\sum_{i \in T} K_{i}\left(m_{i} \otimes n\right) .
$$

Then K is linear because K_{i} is for each $i \in T$, and L and K are inverses.

Exercise 5

Let A be a commutative ring. Do Exercise 2.4 from the book, and conclude that any free A-module is flat.

Exercise 2.4

Let $M_{i}(i \in I)$ be any family of A-modules, and let M be their direct sum. Prove that M is flat \Leftrightarrow each M_{i} is flat.

Optional addition to this exercise (only if you learned about projective modules): One definition of a projective module A is: P is a projective A module iff P is a direct summand of a free A-module. Conclude that projective modules are flat.

We will use the notation 1 to denote the identity on M and 1_{i} to denote the identity on M_{i}.

Suppose M is flat. Then if N^{\prime}, N are A-modules, and $f: N^{\prime} \rightarrow N$ is injective, $f \otimes 1: N^{\prime} \otimes M \rightarrow N \otimes M$ is injective also (Proposition 2.19). By Exercise 4 and Proposition 2.14, it follows that there are isomorphisms h, k such that $h: N^{\prime} \otimes M \rightarrow \oplus_{i \in I}\left(N^{\prime} \otimes M_{i}\right)$ and $k: N \otimes M \rightarrow \oplus_{i \in I}\left(N \otimes M_{i}\right)$ and

$$
k \circ f \circ h^{-1}: \oplus_{i \in I}\left(N^{\prime} \otimes M_{i}\right) \rightarrow \oplus_{i \in I}\left(N \otimes M_{i}\right)
$$

is injective. Call the function above g, so that

$$
g: \oplus_{i \in I}\left(N^{\prime} \otimes M_{i}\right) \rightarrow \oplus_{i \in I}\left(N \otimes M_{i}\right)
$$

is injective, and for $i \in I$ let g_{i} denote the $i^{\text {th }}$ component of g. Then since g is injective, g_{i} is injective for each $i \in I .{ }^{3}$ But g_{i} is just

$$
f \otimes 1_{i}: N^{\prime} \otimes M_{i} \rightarrow N \otimes M_{i}
$$

So by Proposition 2.19, M_{i} is flat (for each $i \in I$, since the choice of index was arbitrary).

Conversely, suppose that M_{i} is flat for each $i \in I$. Then if N^{\prime}, N are A-modules and $f: N^{\prime} \rightarrow N$ is injective,

$$
f \otimes 1_{i}: N^{\prime} \otimes M_{i} \rightarrow N \otimes M_{i}
$$

[^1]is injective for each i. Hence the direct sum of these maps,
$$
\oplus_{i \in I}\left(f \otimes 1_{i}\right): \oplus_{i \in I}\left(N^{\prime} \otimes M_{i}\right) \rightarrow \oplus_{i \in I}\left(N \otimes M_{i}\right),
$$
is injective. But as before, the map displayed above is - up to composition with isomorphisms - the same as
$$
f \otimes 1: N^{\prime} \otimes\left(\oplus_{i \in I} M_{i}\right) \rightarrow N \otimes\left(\oplus_{i \in I} M_{i}\right)
$$
i.e.
$$
f \otimes 1: N^{\prime} \otimes M \rightarrow N \otimes M
$$
is injective. Hence by Proposition $2.19, M$ is flat. ${ }^{4}$

Exercise 6

Let $A[x]$ be the ring of polynomials in one indeterminate over a ring A. Prove that $A[x]$ is a flat A-algebra. [Use Exercise 4.]

We claim that

$$
A[x] \cong \bigoplus_{i \in \mathbb{N}} A
$$

Then by Exercise 2.4 (our Exercise 5), $A[x]$ is flat if and only if A is. But A is a flat A-algebra (because $A \otimes_{A} B \cong B$ for any A-algebra B). To see that

$$
A[x] \cong \bigoplus_{i \in \mathbb{N}} A
$$

observe that the map

$$
a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mapsto\left(a_{0}, a_{1}, \ldots, a_{n}, 0,0,0, \ldots\right)
$$

is linear and has inverse

$$
\left\{a_{i}\right\}_{i \in \mathbb{N}} \mapsto a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where a_{n} is the nonzero element of greatest index in the sequence $\left\{a_{i}\right\}_{i \in \mathbb{N}}$.

[^2]
Exercise 7

Let G and H be \mathbb{Z}-modules (abelian groups). Determine the structure of $G \otimes_{\mathbb{Z}} H$ in each of the following cases:
(i) $\quad G$ and H are infinite cyclic
(ii) $\quad G$ and H are finite cyclic
(iii) $\quad G$ is finite cyclic and H is infinite cyclic
(iv) $\quad G$ and H are finitely generated
(v) $\quad G$ and H are free
(i) If G and H are infinite cyclic, then $G \cong H \cong \mathbb{Z}$. So

$$
G \otimes_{\mathbb{Z}} H \cong \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}
$$

Thus $G \otimes_{\mathbb{Z}} H$ is an infinite cyclic group with generator $1 \otimes_{\mathbb{Z}} 1$, hence isomorphic to \mathbb{Z}; i.e. $G \otimes_{\mathbb{Z}} H$ is infinite cyclic.
(ii) If G and H are finite cyclic, then there are $m, n \in \mathbb{Z}$ such that $G \cong \mathbb{Z} / m \mathbb{Z}$ and $H \cong \mathbb{Z} / n \mathbb{Z}$. So

$$
G \otimes_{\mathbb{Z}} H \cong(\mathbb{Z} / m \mathbb{Z}) \otimes_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z})
$$

By Exercise 3, this means that

$$
G \otimes_{\mathbb{Z}} H \cong \mathbb{Z} /(m \mathbb{Z}+n \mathbb{Z}) \cong \mathbb{Z} /(m, n) \mathbb{Z}
$$

i.e. $G \otimes_{\mathbb{Z}} H$ is finite cyclic. To check that $m \mathbb{Z}+n \mathbb{Z}=(m, n) \mathbb{Z}$, we observe that since \mathbb{Z} is a PID, there is some $k \in \mathbb{Z}$ such that $m \mathbb{Z}+n \mathbb{Z}=k \mathbb{Z}$. Furthermore, since $m \mathbb{Z} \subset m \mathbb{Z}+n \mathbb{Z}$ and $n \mathbb{Z} \subset m \mathbb{Z}+n \mathbb{Z}, k \mid m$ and $k \mid n$. Thus $k \mid(m, n)$, meaning that $(m, n) \mathbb{Z} \subset k \mathbb{Z}$ (alternatively, this follows immediately from Bezout's identity). But suppose $m=k(m, n)$ and $n=l(m, n)$. Then for any $a, b \in \mathbb{Z}$,

$$
a m+b n=a k(m, n)+b l(m, n)=(a k+b l)(m, n) \in(m, n) \mathbb{Z}
$$

so $k \mathbb{Z} \subset(m, n) \mathbb{Z}$. This completes the proof.
(iii) If G is finite cyclic and H is infinite cyclic, then there is $m \in \mathbb{Z}$ such that $G \cong \mathbb{Z} / m \mathbb{Z}$ and $H \cong \mathbb{Z}$. So

$$
G \otimes_{\mathbb{Z}} H \cong(\mathbb{Z} / m \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z} \cong \mathbb{Z} / m \mathbb{Z},
$$

i.e. $G \otimes_{\mathbb{Z}} H$ is finite cyclic.
(iv) If G and H are finitely generated, then there are finite subsets $\left\{g_{1}, \ldots, g_{m}\right\} \subset$ G generating G and $\left\{h_{1}, \ldots, h_{n}\right\} \subset H$ generating H. For convenience we take each generating set to already contain the inverse of each of its elements. Take any two elements $g=\sum_{i} g_{i} \in G$ and $h=\sum_{j} h_{j} \in H$ (where the sums are finite and each g_{i} and h_{j} is among the finite set of generators; note that we don't strictly need coefficients from \mathbb{Z} since the generating sets are closed under inversion). Then

$$
\begin{aligned}
g \otimes_{\mathbb{Z}} h & =\left(\sum_{i} g_{i}\right) \otimes_{\mathbb{Z}}\left(\sum_{j} h_{j}\right) \\
& =\sum_{i}\left(g_{i} \otimes_{\mathbb{Z}}\left(\sum_{j} h_{j}\right)\right) \\
& =\sum_{i} \sum_{j}\left(g_{i} \otimes_{\mathbb{Z}} h_{j}\right) \\
& =\sum_{i, j}\left(g_{i} \otimes_{\mathbb{Z}} h_{j}\right) .
\end{aligned}
$$

Thus each elementary tensor may be written as a finite sum of elementary tensors whose components are generators. Since the elementary tensors generate $G \otimes_{\mathbb{Z}} H$, it follows that $G \otimes_{\mathbb{Z}} H$ is finitely generated. ${ }^{5}$

$$
\begin{aligned}
& { }^{5} \text { Professor Glaz observes that this can be made more explicit by writing } \\
& \qquad \begin{aligned}
G & \cong\left(\bigoplus_{i=1}^{r_{1}} \mathbb{Z}\right) \oplus\left(\bigoplus_{i=1}^{k_{1}} \mathbb{Z} / m_{i} \mathbb{Z}\right) \\
H & \cong\left(\bigoplus_{i=1}^{r_{2}} \mathbb{Z}\right) \oplus\left(\bigoplus_{i=1}^{k_{3}} \mathbb{Z} / n_{i} \mathbb{Z}\right)
\end{aligned}
\end{aligned}
$$

and now using Exercise 4 to get

$$
G \otimes_{\mathbb{Z}} H \cong \bigoplus_{i=1}^{r_{1}}\left(\left(\bigoplus_{i=1}^{r_{2}} \mathbb{Z}\right) \oplus\left(\bigoplus_{i=1}^{k_{1}} \mathbb{Z} / n_{i} \mathbb{Z}\right)\right) \oplus \bigoplus_{i=1}^{k}\left(\left(\bigoplus_{i=1}^{r_{2}} \mathbb{Z} / m_{i} \mathbb{Z}\right) \oplus\left(\bigoplus_{i=1}^{k} \mathbb{Z} /\left(m_{i}, n_{i}\right) \mathbb{Z}\right)\right)
$$

(v) If G and H are free, then there are index sets I, I^{\prime} such that $G=\oplus_{i \in I} \mathbb{Z}$ and $H=\oplus_{i \in I^{\prime}} \mathbb{Z}$. So (using Exercise 4 twice)

$$
\begin{aligned}
G \otimes_{\mathbb{Z}} H & =\left(\bigoplus_{i \in I} \mathbb{Z}\right) \otimes_{\mathbb{Z}}\left(\bigoplus_{i \in I^{\prime}} \mathbb{Z}\right) \\
& \cong \bigoplus_{i \in I}\left(\mathbb{Z} \otimes_{\mathbb{Z}}\left(\bigoplus_{i \in I^{\prime}} \mathbb{Z}\right)\right) \\
& \cong \bigoplus_{i \in I} \bigoplus_{i \in I^{\prime}}\left(\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}\right) \\
& =\bigoplus_{i \in I \times I^{\prime}}\left(\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}\right) \\
& \cong \bigoplus_{i \in I \times I^{\prime}} \mathbb{Z}
\end{aligned}
$$

so $G \otimes_{\mathbb{Z}} H$ is free.

Exercise 8

Use Exercise 7(ii) to do Exercise 1 on page 31. Also, find an alternative proof for Exercise 1.

Exercise 1
Show that $(\mathbb{Z} / m \mathbb{Z}) \otimes_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z})=0$ if m, n are coprime.

- In Exercise 7(ii), we showed that

$$
(\mathbb{Z} / m \mathbb{Z}) \otimes_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z}) \cong \mathbb{Z} /(m, n) \mathbb{Z} .
$$

Since $(m, n)=1$, this means that $(\mathbb{Z} / m \mathbb{Z}) \otimes_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z})$ is isomorphic to (therefore equal to) 0 .

- Alternatively, consider the exact sequence

$$
\mathbb{Z} \xrightarrow{f} \mathbb{Z} \xrightarrow{g} \mathbb{Z} / m \mathbb{Z} \longrightarrow 0
$$

where f is the map $a \mapsto m a$ and g is reduction modulo m. Then by Proposition 2.18, the following sequence (with the appropriate arrows) is exact:

$$
\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z} \xrightarrow{f \otimes 1} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z} \xrightarrow{g \otimes 1} \mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z} \longrightarrow 0
$$

Since $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} / n \mathbb{Z}$, we have another exact sequence

$$
\mathbb{Z} / n \mathbb{Z} \xrightarrow{a \mapsto m a} \mathbb{Z} / n \mathbb{Z} \longrightarrow \mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z} \longrightarrow 0
$$

Since $(m, n)=1, a \mapsto m a$ is onto and hence the kernel of the second map is all of $\mathbb{Z} / n \mathbb{Z}$, i.e. the map

$$
\mathbb{Z} / n \mathbb{Z} \longrightarrow \mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}
$$

in the above sequence is the zero map. But since the sequence is exact, this map is surjective, which is impossible unless $(\mathbb{Z} / m \mathbb{Z}) \otimes_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z})=0$.

- As another alternative, let $a \otimes b$ denote $(a+m \mathbb{Z}) \otimes_{\mathbb{Z}}(b+n \mathbb{Z}) \in \mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}$. Then

$$
\begin{aligned}
\underbrace{a \otimes b+\cdots+a \otimes b}_{m \text { times }} & =(\underbrace{a+\cdots+a}_{m \text { times }}) \otimes b \\
& =0 \\
& =a \otimes(\underbrace{b+\cdots+b}_{n \text { times }})=\underbrace{a \otimes b+\cdots+a \otimes b}_{n \text { times }},
\end{aligned}
$$

so $a \otimes b$ has order dividing m and dividing n. Since $(m, n)=1$ by hypothesis, this means that $a \otimes b=0$. But this holds for arbitrary $a \otimes b \in \mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}$, so $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}=0$.

[^0]: ${ }^{1}$ Here $f=i \otimes_{A} \mathrm{id}_{M}$ and $g=p \otimes_{A} \mathrm{id}_{M}$.
 ${ }^{2}$ Here Professor Glaz notes that the first link in this sequence isn't guaranteed.

[^1]: ${ }^{3}$ If $j \in I$ is such that $x \neq y \in N^{\prime} \otimes M_{i}$ but $g_{j}(x)=g_{j}(y)$, then $g(\hat{x})=g(\hat{y})$, where \hat{x} is the tuple with x in the $j^{\text {th }}$ place and 0 elsewhere, and similarly for \hat{y}.

[^2]: ${ }^{4}$ Professor Glaz adds: If F is free, $F \cong A^{I}=\oplus_{I} A$; since A is A-flat, F is flat.

