NOTE. I use \subset to mean "is a not necessarily proper subset of" and \subsetneq to mean "is a proper subset of."

<u>A.</u> Exercise 1

Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

Since x is nilpotent, x lies in every prime ideal. A fortiori, x lies in every maximal ideal. By the properties of ideals, -x therefore also lies in every maximal ideal. No proper ideal may contain 1—since otherwise that ideal contains all of (1) = A—and every maximal ideal is proper, so no maximal ideal may contain

$$1 = (1+x) + (-x).$$

Since every maximal ideal contains -x, it follows that no maximal ideal contains 1 + x. By Corollary 1.5, every non-unit of A is contained in a maximal ideal. By contraposition, every element contained in no maximal ideal is a unit. We conclude that 1 + x is a unit.

Now suppose that u is a unit of A. Then $u^{-1}x$ is a nilpotent (since the nilradical of A is an ideal of A). So by the preceding result, $1 + u^{-1}x$ is a unit. But then

$$u + x = u(1 + u^{-1}x)$$

is the product of two units, hence a unit.

Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f = a_0 + a_1 x^1 + \cdots + a_n x^n \in A[x]$. Prove that

- (i) f is a unit in $A[x] \Leftrightarrow a_0$ is a unit in A and a_1, \ldots, a_n are nilpotent. [If $b_0 + b_1 x + \cdots + b_m x^m$ is the inverse of f, prove by induction on r that $a_n^{r+1}b_{m-r} = 0$. Hence show that a_n is nilpotent, and then use Ex. 1.]
- (ii) f is nilpotent $\Leftrightarrow a_0, a_1, \dots, a_n$ are nilpotent.
- (iii) f is a zero-divisor \Leftrightarrow there exists $a \neq 0$ in A such that af = 0. [Choose a polynomial $g = b_0 + b_1 x + \dots + b_m x^m$ of least degree m such that fg = 0. Then $a_n b_m = 0$, hence $a_n g = 0$ (because $a_n g$ annihilates f and has degree < m). Now show by induction that $a_{n-r}g = 0$ ($0 \le r \le n$).]
- (iv) f is said to be *primitive* if $(a_0, a_1, \ldots, a_n) = (1)$. Prove that if $f, g \in A[x]$, then fg is primitive $\Leftrightarrow f$ and g are primitive.
- (i) Suppose that a_0 is a unit in A (hence in A[x]) and that a_1, \dots, a_n are nilpotent. Let $g = 0 + a_1x + \dots + a_nx^n$. Then by part (ii) of this exercise, g is nilpotent. But then $f = a_0 + g$ is the sum of a unit and a nilpotent, hence a unit by Exercise 1.

Conversely, suppose that f is a unit in A[x]. Let \mathfrak{N} denote the nilradical of A, and for each prime ideal $\mathfrak{p} \subset A$ let

$$\phi_{\mathfrak{p}}: A[x] \to (A/\mathfrak{p})[x]$$

be the reduction homomorphism mod \mathfrak{p} (i.e. the ring homomorphism such that the i^{th} coefficient of $\phi_{\mathfrak{p}}(h)$ is the reduction mod \mathfrak{p} of the i^{th} coefficient of h). Since ring homomorphisms take units to units, it follows from our hypothesis that $\phi_{\mathfrak{p}}(f)$ is a unit of $(A/\mathfrak{p})[x]$. But A/\mathfrak{p} is an integral domain, so the only units of $(A/\mathfrak{p})[x]$ are the units of A/\mathfrak{p} (under the canonical identification of A/\mathfrak{p} with degree zero polynomials in $(A/\mathfrak{p})[x]$.¹ Thus

$$a_1,\ldots,a_n\in\mathfrak{p}.$$

¹For a proof of this fact, consider that since A/\mathfrak{p} has no zero divisors, if $f, g \in (A/\mathfrak{p})[x]$ then $\deg(fg) = \deg(f) + \deg(g)$. Thus if fg = 1, $\deg(f) = \deg(g) = \deg(fg) = 0$, and the rest follows immediately.

But this holds for every prime ideal \mathfrak{p} of A, and so in fact $a_1, \ldots, a_n \in \mathfrak{N}$. To see that a_0 is a unit of A, note that if a_0 were a nonunit, then there would be a maximum ideal \mathfrak{m} of A containing a_0 , and then $\phi_{\mathfrak{m}}(f)$ would have constant term 0.

- (ii) Suppose that $f^n = 0$ for some n > 0. Then by Exercise 1, 1 + f is a unit and hence part (i) of this exercise—specifically and importantly, the second implication of part (i), in which we did <u>not</u> already take part (ii) for granted—implies that $1 + a_0$ is a unit and $a_1, \ldots, a_n \in \mathfrak{N}$. To see that $a_0 \in \mathfrak{N}$, consider that ring homomorphisms take nilpotents to nilpotents, and so in particular the evaluation-at-zero homomorphism takes nilpotents to nilpotents. But $f(0) = a_0$, so $a_0 \in \mathfrak{N}$.
- (iii) Suppose that for some $0 \neq a \in A$, af = 0. Then trivially, f is a zero-divisor. Conversely, suppose that there is no $0 \neq a \in A$ such that af = 0 (so $f \neq 0$). We will show that f is not a zero-divisor. For let $0 \neq b_0 + b_1 x + \dots + b_m x^m = g \in A[x]$. We will show by induction on deg(g) that $gf \neq 0$. If deg(g) = 0, then $gf \neq 0$ by hypothesis.

Now suppose by way of induction that no nonzero polynomial h of degree less than deg(g) satisfies hf = 0, and suppose by way of contradiction that gf = 0. Then in particular the leading term $b_m a_n x^{m+n} = 0$, i.e. $b_m a_n = 0$. Then $(a_ng)f = a_n(gf) = 0$, but (since $a_n b_m x^m = 0$) a_ng has degree less than deg(g)—contradicting the inductive hypothesis.

(iv) We will have need of the following fact.

LEMMA. f is primitive in A[x] if and only if f is nonzero in $(A/\mathfrak{m})[x]$ for every maximal ideal \mathfrak{m} of A. (That is, if and only if the polynomial obtained from f be reducing its coefficients mod \mathfrak{m} is not the zero polynomial in A/\mathfrak{m} .)

PROOF. Suppose $f \equiv 0 \mod \mathfrak{m}$ for some maximal ideal of A. Then every coefficient of f lies in \mathfrak{m} , so $(a_0, \ldots, a_n) \subset \mathfrak{m} \subsetneq (1)$. So f is not primitive.

Conversely, suppose that f is not primitive. Then (a_0, \ldots, a_n) is proper and hence contained in some maximal ideal \mathfrak{m} of A. Then $f \equiv 0 \mod \mathfrak{m}$.

Now, suppose that $f, g \in A[x]$ are primitive and fix a maximal ideal \mathfrak{m} of A. Because A/\mathfrak{m} is a field, $(A/\mathfrak{m})[x]$ is an integral domain. Thus $fg \neq 0$

in $(A/\mathfrak{m})[x]$ since $f, g \neq 0$. Since the choice of \mathfrak{m} was arbitrary, $fg \neq 0$ in $(A/\mathfrak{m})[x]$ for any maximal ideal \mathfrak{m} of A.

Conversely, suppose that fg is primitive. Then if either of f, g is not primitive, say f, then $f \equiv 0 \mod \mathfrak{m}$ for some maximal ideal \mathfrak{m} of A and hence $fg \equiv 0 \mod \mathfrak{m}$ —but this cannot be, since fg is primitive. So both f and g are primitive.

Let A be a ring in which every element x satisfies $x^n = x$ for some n > 1 (depending on x). Show that every prime ideal in A is maximal.

Fix a prime ideal \mathfrak{p} of A and let \mathfrak{a} be any ideal of A strictly containing \mathfrak{p} . Let $\phi: A \to A/\mathfrak{p}$ be the canonical projection and fix $y \in \mathfrak{a} \setminus \mathfrak{p}$ with $y^n = y$. Then $y^{n-1} \in \mathfrak{a}$, so $\phi(y^{n-1}) \in \phi(\mathfrak{a})$. But since $y \notin \mathfrak{p}$ and

$$0 = y - y^n = y(1 - y^{n-1}) \in \mathfrak{p}$$

and \mathfrak{p} is prime, it follows that $1 - y^{n-1} \in \mathfrak{p}$. But then

$$0 = \phi(1 - y^{n-1}) = 1 - \phi(y^{n-1}),$$

i.e. $\phi(y^{n-1}) = 1$. So $1 \in \phi(\mathfrak{a})$, meaning $\phi(\mathfrak{a}) = (1)$. By Proposition 1.1, every ideal of A/\mathfrak{p} is the image under ϕ of an ideal containing \mathfrak{p} . But $\phi(\mathfrak{p}) = (0)$, and we have just shown that $\phi(\mathfrak{a}) = (1)$ for any ideal of \mathfrak{a} strictly containing \mathfrak{p} . Thus the only two ideals of A/\mathfrak{p} are (0) and (1). So A/\mathfrak{p} is a field, which is to say that \mathfrak{p} is maximal.

A ring A is Boolean if $x^2 = x$ for all $x \in A$. In a Boolean ring A, show that

- (i) 2x = 0 for all $x \in A$;
- (ii) every prime ideal \mathbf{p} is maximal, and A/\mathbf{p} is a field with two elements;
- (iii) every finitely generated ideal in A is principal.
- (i) Observe that since A is commutative, if $x \in A$ then

$$x + 1 = (x + 1)^2 = x^2 + 2x + 1 = x + 2x + 1,$$

whence

$$0 = 2x.$$

(ii) • Let \mathfrak{p} be a prime ideal of A and suppose by way of contradiction that there is some proper ideal \mathfrak{a} of A strictly containing \mathfrak{p} . Observe that for any $x \in A$,

$$x(1-x) = x - x^2 = 0 \in \mathfrak{p},$$

so either $x \in \mathfrak{p}$ or $1 - x \in \mathfrak{p}$ since \mathfrak{p} is prime. Now let $y \in \mathfrak{a} \setminus \mathfrak{p}$. Since $y \notin \mathfrak{p}, 1 - y \in \mathfrak{p}$. But then $1 - y \in \mathfrak{a}$, meaning

$$(1-y) + y = 1 \in \mathfrak{a},$$

contradicting the hypothesis that \mathfrak{a} is a proper ideal of A. We conclude that \mathfrak{p} is maximal.

• Let \mathfrak{p} be a prime ideal of A and $\phi : A \to A/\mathfrak{p}$ be the canonical projection map. Fix $x \in A$. Then there are two cases: either $\phi(x) = 0$ or else $\phi(x) \neq 0$, in which case $x \notin \mathfrak{p}$. But then $1 - x \in \mathfrak{p}$, so

$$0 = \phi(1 - x) = 1 - \phi(x),$$

i.e. $\phi(x) = 1$. Thus $\phi(A) = A/\mathfrak{p} = 2$, the two-element field.²

²This of course proves that p is maximal free of charge. I have left in the separate proof of that fact because I enjoyed the argument.

(iii) Let I be an ideal of A with a finite set of generators $X = \{x_1, \ldots, x_n\}$. We will produce a single generator of I. In order to find a generator, we observe the correspondence between Boolean rings and Boolean algebras. In brief, the operations of a Boolean algebra and those of a Boolean ring are interdefinable, so that every nonzero Boolean ring B may be regarded as a Boolean algebra B^* and vice versa. Under this translation, \mathfrak{a} is a ring ideal of a Boolean ring B if and only if \mathfrak{a} is a lattice ideal of the Boolean algebra B^* .

Considering I as an ideal of A^* , we observe that $x \in I$ if and only if $x \leq g$, where the single generator g is $\bigvee X$. Translating this into the language of rings, we see that $x \in I$ if and only if x = xg, where the single generator g is

$$\sum_{0\neq\vec{\varepsilon}\in\mathbf{2}^n}x_1^{\varepsilon_1}x_2^{\varepsilon_2}\cdots x_n^{\varepsilon_n}$$

Since we have arrived at this generator by only the sketch of a proof, it remains to show carefully that

$$I = Ag.$$

To that end, fix $x_i \in X$. Without loss of generality we assume i = n. Then

$$\begin{aligned} x_n g &= x_n \sum_{0 \neq \vec{\epsilon} \in \mathbf{2}^n} x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_n^{\varepsilon_n} \\ &= x_n \left[x_n + \sum_{0 \neq \vec{\epsilon} \in \mathbf{2}^{n-1}} x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_{n-1}^{\varepsilon_{n-1}} (1+x_n) \right] \\ &= x_n^2 + \sum_{0 \neq \vec{\epsilon} \in \mathbf{2}^{n-1}} x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_{n-1}^{\varepsilon_{n-1}} (x_n + x_n^2) \\ &= x_n + \sum_{0 \neq \vec{\epsilon} \in \mathbf{2}^{n-1}} x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_{n-1}^{\varepsilon_{n-1}} (x_n + x_n) \\ &= x_n, \end{aligned}$$

since A has characteristic 2. Therefore $x_i = x_i g \in Ag$, i.e. $X \subset Ag$. But $g \in I$ so $Ag \subset I$, and I is by definition the smallest ideal containing X. Therefore Ag = I.

A local ring contains no idempotent $\neq 0, 1$.

Let A be a local ring and \mathfrak{m} its sole maximal ideal, and suppose by way of contradiction that $x \neq 0, 1$ is an idempotent element of A. Then since $x = x^2$,

$$0 = x - x^2 = x(1 - x),$$

and since $x \neq 0, 1$, it follows that x and 1 - x are each non-zero zero-divisors in A. In particular, x and 1 - x are non-units. By Corollary 1.5, every non-unit of A is contained in a maximal ideal of A. Since **m** is the only maximal ideal of A, it follows that $x, 1 - x \in \mathbf{m}$. But then since **m** is an additive group,

$$(1-x) + x = 1 \in \mathfrak{m},$$

contradicting the fact that \mathfrak{m} is a proper subset of A. We conclude that there is no nontrivial idempotent element $x \in A$.

Let A be a ring and X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E. Prove that

- (i) if \mathfrak{a} is the ideal generated by E, then $V(E) = V(\mathfrak{a}) = V(r(\mathfrak{a}))$.
- (ii) $V(0) = X, V(1) = \emptyset.$
- (iii) if $(E_i)_{i \in I}$ is any family of subsets of A, then

$$V\left(\bigcup_{i\in I} E_i\right) = \bigcap_{i\in I} V(E_i).$$

(iv) $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$ for any ideals $\mathfrak{a}, \mathfrak{b}$ of A.

(i) Since \mathfrak{a} is the intersection of all ideals containing E, it is in particular the case that every prime ideal containing E contains \mathfrak{a} . Therefore the set of all prime ideals containing E is identical to the set of all prime ideals containing \mathfrak{a} :

$$V(E) = V(\mathfrak{a}).$$

Now suppose $\mathfrak{p} \supset \mathfrak{a}$ is any prime ideal containing \mathfrak{a} . Then, using Exercise 1.13 parts (iii) and (vi),

$$\mathfrak{a} \subset \mathfrak{p} \Rightarrow \mathfrak{a} \cap \mathfrak{p} = \mathfrak{a}$$

$$\Rightarrow r(\mathfrak{a} \cap \mathfrak{p}) = r(\mathfrak{a})$$

$$\Rightarrow r(\mathfrak{a}) \cap r(\mathfrak{p}) = r(\mathfrak{a})$$

$$\Rightarrow r(\mathfrak{a}) \cap \mathfrak{p} = r(\mathfrak{a})$$

$$\Rightarrow r(\mathfrak{a}) \subset \mathfrak{p}.$$

Likewise, if $\mathfrak{p} \supset r(\mathfrak{a})$, then by Exercise 1.13(i), $\mathfrak{p} \supset \mathfrak{a}$. Therefore

$$V(\mathfrak{a}) = V(r(\mathfrak{a})).$$

(ii) Ideals of A are additive subgroups of A, hence contain 0. Therefore every prime ideal is a prime ideal containing 0:

$$V(0) = X.$$

By definition, prime ideals are proper, and therefore contain no units. Hence

$$V(1) = \emptyset.$$

(iii) Suppose that $\mathfrak{p} \in V(\bigcup_{i \in I} E_i)$. Then \mathfrak{p} is a prime ideal of A containing the union of—hence each of—the E_i . Therefore for each i, \mathfrak{p} is among the prime ideals containing $E_i: \mathfrak{p} \in \bigcap_{i \in I} V(E_i)$.

Conversely, suppose that $\mathfrak{p} \in \bigcap_{i \in I} V(E_i)$. Then for each i, \mathfrak{p} is a prime ideal containing E_i . Since \mathfrak{p} contains E_i for each i, \mathfrak{p} is a prime ideal containing the union of the collection $\{E_i\}_{i \in I}$: $\mathfrak{p} \in V(\bigcup_{i \in I} E_i)$.

(iv) Using part (i) of this exercise as well as the results of Exercise 1.13, we have

$$V(\mathfrak{a} \cap \mathfrak{b}) = V(r(\mathfrak{a} \cap \mathfrak{b})) = V(r(\mathfrak{a}\mathfrak{b})) = V(\mathfrak{a}\mathfrak{b}).$$

Now, suppose on the one hand that $\mathfrak{p} \in V(\mathfrak{a}) \cup V(\mathfrak{b})$. Then \mathfrak{p} is either a prime ideal containing \mathfrak{a} (hence $\mathfrak{a} \cap \mathfrak{b}$), or else \mathfrak{p} is a prime ideal containing \mathfrak{b} (hence $\mathfrak{a} \cap \mathfrak{b}$). Thus in any case, $\mathfrak{p} \in V(\mathfrak{a} \cap \mathfrak{b})$.

Conversely, suppose that $\mathfrak{p} \in V(\mathfrak{a} \cap \mathfrak{b})$. Then \mathfrak{p} is a prime ideal containing $\mathfrak{a} \cap \mathfrak{b}$. By Proposition 1.11(ii), it follows that \mathfrak{p} is either a prime ideal containing \mathfrak{a} or a prime ideal containing \mathfrak{b} , and so in either case that $\mathfrak{p} \in V(\mathfrak{a}) \cup V(\mathfrak{b})$.

Draw pictures of $\operatorname{Spec}(\mathbb{Z})$, $\operatorname{Spec}(\mathbb{R})$, $\operatorname{Spec}(\mathbb{C}[x])$, $\operatorname{Spec}(\mathbb{R}[x])$, $\operatorname{Spec}(\mathbb{Z}[x])$.

- Spec(\mathbb{Z}). \mathbb{Z} is an integral domain, so (0) is prime. And \mathbb{Z} is a PID, so all the remaining prime ideals are of the form (p) for prime $p \in \mathbb{Z}$.
- Spec(\mathbb{R}). Since \mathbb{R} is a field, it has only one prime ideal: (0).
- Spec($\mathbb{C}[x]$). \mathbb{C} is a field, so $\mathbb{C}[x]$ is a PID. Thus (0) is prime, and all the remaining prime ideals are of the form (p) for prime $p \in \mathbb{C}[x]$. Since $\mathbb{C}[x]$ is a PID, it is a UFD, so the prime polynomials are precisely the irreducible polynomials. Since \mathbb{C} is algebraically closed, the only irreducibles are the linear polynomials x z for $z \in \mathbb{C}$. In summary: the prime ideals of $\mathbb{C}[x]$ are (0) and (x z) for $z \in \mathbb{C}$.
- Spec($\mathbb{R}[x]$). \mathbb{R} is a field, so $\mathbb{R}[x]$ is a PID. Thus (0) is prime, and all the remaining prime ideals are of the form (p) for prime—irreducible, since $\mathbb{R}[x]$ is a UFD— $p \in \mathbb{R}[x]$. Every linear polynomial x r for $r \in \mathbb{R}$ is irreducible, and the only other irreducibles are the quadratics with two (conjugate) complex roots. In summary: the prime ideals of $\mathbb{R}[x]$ are (0), (x r) for $r \in \mathbb{R}$, and $(x^2 2\alpha x + \alpha^2 + \beta^2)$ for $\alpha, \beta \in \mathbb{R}$.
- Spec($\mathbb{Z}[x]$). \mathbb{Z} is an integral domain, so $\mathbb{Z}[x]$ is an integral domain. Hence (0) is prime. Furthermore, (p) is prime for $p \in \mathbb{Z}$ prime, since if $ab \in (p)$, then $a, b \in \mathbb{Z}$ and the rest follows immediately. Since \mathbb{Z} is a UFD, so is $\mathbb{Z}[x]$; therefore (p(x)) is prime for $p(x) \in \mathbb{Z}[x]$ irreducible. Lastly, if $p \in \mathbb{Z}$ is prime and $f \in \mathbb{Z}[x]$ is irreducible and irreducible mod p, and if f_p is the reduction of $f \mod p$, then (p, f) is prime since

$$\mathbb{Z}[x]/(p,f) \cong (\mathbb{Z}/(p))[x]/(f_p),$$

which is a field.³

³Note that I have not proven that these are the only prime ideals of $\mathbb{Z}[x]$, which is somewhat more involved.

Suppose A is a field. Then its only ideals are the trivial ideals, which are trivially prime. Conversely, suppose that every ideal of A is prime. Then in particular, (0) is prime, wherefore A is an integral domain. Fix any element $x \in A$. By hypothesis, either (x^2) is not proper and so x is a unit, or else (x^2) is prime and so $x \in (x^2)$. Then there is some $a \in A$ such that $x = ax^2$. But because A is an integral domain, we may cancel x to obtain

1 = ax.

Therefore in any case, x is a unit. We conclude that A is a field.

A commutative ring A is called Von Neumann regular (abbreviated VNR) if for every element $a \in A$ there is an element $b \in A$ such that $a^2b = a$. Show that A is VNR iff every ideal I of A is a radical ideal (that is, I is equal to its own radical). [Hint: use Exercise 1.13(iii) on page 9 of your textbook.]

Suppose every ideal of A is radical. Then in particular

$$(a^2) = \{x \in A : x^n \in Aa^2 \text{ for some } n > 0\}.$$

Because $a^2 \in (a^2)$, the above implies that $a \in (a^2)$. But this is just to say that there is some $b \in A$ such that $a = ba^2$; i.e. that A is VNR.

Conversely, suppose that A is VNR. Fix $x, a \in A$ and suppose that $x^n \in (a)$ for some n > 0. We wish to show that $x \in (a)$.⁴ By hypothesis, there is some $b \in A$ such that $bx^2 = x$. Now suppose by way of induction that $b^k x^{k+1} = x$ for some k > 0. Then

$$b^{k+1}x^{k+2} = b(b^kx^{k+1})x = b(x)x = bx^2 = x.$$

We conclude by induction that $b^k x^{k+1} = x$ for all k > 0—hence in particular that $b^{n-1}x^n = x$.

Since $x^n \in (a)$, there is some $u \in A$ such that $x^n = ua$. Therefore if we denote $b^{n-1}u = v \in A$,

$$x = b^{n-1}x^n = b^{n-1}ua = va,$$

so that $x \in (a)$. This completes the proof.

⁴This will complete the proof, since $\sqrt{(a)} \supset (a)$ trivially.