Note. I use \subset to mean "is a not necessarily proper subset of" and \subsetneq to mean "is a proper subset of."
A.

Exercise 1

Let x be a nilpotent element of a ring A. Show that $1+x$ is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

Since x is nilpotent, x lies in every prime ideal. A fortiori, x lies in every maximal ideal. By the properties of ideals, $-x$ therefore also lies in every maximal ideal. No proper ideal may contain 1 -since otherwise that ideal contains all of $(1)=A$-and every maximal ideal is proper, so no maximal ideal may contain

$$
1=(1+x)+(-x) .
$$

Since every maximal ideal contains $-x$, it follows that no maximal ideal contains $1+x$. By Corollary 1.5, every non-unit of A is contained in a maximal ideal. By contraposition, every element contained in no maximal ideal is a unit. We conclude that $1+x$ is a unit.

Now suppose that u is a unit of A. Then $u^{-1} x$ is a nilpotent (since the nilradical of A is an ideal of A). So by the preceding result, $1+u^{-1} x$ is a unit. But then

$$
u+x=u\left(1+u^{-1} x\right)
$$

is the product of two units, hence a unit.

Exercise 2

Let A be a ring and let $A[x]$ be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f=a_{0}+a_{1} x^{1}+\cdots+a_{n} x^{n} \in A[x]$. Prove that
(i) $\quad f$ is a unit in $A[x] \Leftrightarrow a_{0}$ is a unit in A and a_{1}, \ldots, a_{n} are nilpotent. [If $b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ is the inverse of f, prove by induction on r that $a_{n}^{r+1} b_{m-r}=0$. Hence show that a_{n} is nilpotent, and then use Ex. 1.]
(ii) $\quad f$ is nilpotent $\Leftrightarrow a_{0}, a_{1}, \ldots, a_{n}$ are nilpotent.
(iii) $\quad f$ is a zero-divisor \Leftrightarrow there exists $a \neq 0$ in A such that $a f=0$. [Choose a polynomial $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ of least degree m such that $f g=0$. Then $a_{n} b_{m}=0$, hence $a_{n} g=0$ (because $a_{n} g$ annihilates f and has degree $<m)$. Now show by induction that $a_{n-r} g=0(0 \leq r \leq n)$.]
(iv) $\quad f$ is said to be primitive if $\left(a_{0}, a_{1}, \ldots, a_{n}\right)=(1)$. Prove that if $f, g \in$ $A[x]$, then $f g$ is primitive $\Leftrightarrow f$ and g are primitive.
(i) Suppose that a_{0} is a unit in A (hence in $A[x]$) and that a_{1}, \cdots, a_{n} are nilpotent. Let $g=0+a_{1} x+\cdots+a_{n} x^{n}$. Then by part (ii) of this exercise, g is nilpotent. But then $f=a_{0}+g$ is the sum of a unit and a nilpotent, hence a unit by Exercise 1.

Conversely, suppose that f is a unit in $A[x]$. Let \mathfrak{N} denote the nilradical of A, and for each prime ideal $\mathfrak{p} \subset A$ let

$$
\phi_{\mathfrak{p}}: A[x] \rightarrow(A / \mathfrak{p})[x]
$$

be the reduction homomorphism mod \mathfrak{p} (i.e. the ring homomorphism such that the $i^{\text {th }}$ coefficient of $\phi_{\mathfrak{p}}(h)$ is the reduction mod \mathfrak{p} of the $i^{\text {th }}$ coefficient of h). Since ring homomorphisms take units to units, it follows from our hypothesis that $\phi_{\mathfrak{p}}(f)$ is a unit of $(A / \mathfrak{p})[x]$. But A / \mathfrak{p} is an integral domain, so the only units of $(A / \mathfrak{p})[x]$ are the units of A / \mathfrak{p} (under the canonical identification of A / \mathfrak{p} with degree zero polynomials in $(A / \mathfrak{p})[x]) .{ }^{1}$ Thus

$$
a_{1}, \ldots, a_{n} \in \mathfrak{p} .
$$

[^0]But this holds for every prime ideal \mathfrak{p} of A, and so in fact $a_{1}, \ldots, a_{n} \in \mathfrak{N}$. To see that a_{0} is a unit of A, note that if a_{0} were a nonunit, then there would be a maximum ideal \mathfrak{m} of A containing a_{0}, and then $\phi_{\mathfrak{m}}(f)$ would have constant term 0 .
(ii) Suppose that $f^{n}=0$ for some $n>0$. Then by Exercise $1,1+f$ is a unit and hence part (i) of this exercise - specifically and importantly, the second implication of part (i), in which we did not already take part (ii) for granted-implies that $1+a_{0}$ is a unit and $a_{1}, \ldots, a_{n} \in \mathfrak{N}$. To see that $a_{0} \in \mathfrak{N}$, consider that ring homomorphisms take nilpotents to nilpotents, and so in particular the evaluation-at-zero homomorphism takes nilpotents to nilpotents. But $f(0)=a_{0}$, so $a_{0} \in \mathfrak{N}$.
(iii) Suppose that for some $0 \neq a \in A, a f=0$. Then trivially, f is a zero-divisor. Conversely, suppose that there is no $0 \neq a \in A$ such that $a f=0$ (so $f \neq 0$). We will show that f is not a zero-divisor. For let $0 \neq b_{0}+b_{1} x+\cdots+b_{m} x^{m}=$ $g \in A[x]$. We will show by induction on $\operatorname{deg}(g)$ that $g f \neq 0$. If $\operatorname{deg}(g)=0$, then $g f \neq 0$ by hypothesis.
Now suppose by way of induction that no nonzero polynomial h of degree less than $\operatorname{deg}(g)$ satisfies $h f=0$, and suppose by way of contradiction that $g f=0$. Then in particular the leading term $b_{m} a_{n} x^{m+n}=0$, i.e. $b_{m} a_{n}=0$. Then $\left(a_{n} g\right) f=a_{n}(g f)=0$, but (since $\left.a_{n} b_{m} x^{m}=0\right) a_{n} g$ has degree less than $\operatorname{deg}(g)$-contradicting the inductive hypothesis.
(iv) We will have need of the following fact.

Lemma. f is primitive in $A[x]$ if and only if f is nonzero in $(A / \mathfrak{m})[x]$ for every maximal ideal \mathfrak{m} of A. (That is, if and only if the polynomial obtained from f be reducing its coefficients $\bmod \mathfrak{m}$ is not the zero polynomial in A / \mathfrak{m}.)
Proof. Suppose $f \equiv 0 \bmod \mathfrak{m}$ for some maximal ideal of A.
Then every coefficient of f lies in \mathfrak{m}, so $\left(a_{0}, \ldots, a_{n}\right) \subset \mathfrak{m} \subsetneq(1)$.
So f is not primitive.
Conversely, suppose that f is not primitive. Then $\left(a_{0}, \ldots, a_{n}\right)$ is proper and hence contained in some maximal ideal \mathfrak{m} of A. Then $f \equiv 0 \bmod \mathfrak{m}$.
Now, suppose that $f, g \in A[x]$ are primitive and fix a maximal ideal \mathfrak{m} of A. Because A / \mathfrak{m} is a field, $(A / \mathfrak{m})[x]$ is an integral domain. Thus $f g \neq 0$
in $(A / \mathfrak{m})[x]$ since $f, g \neq 0$. Since the choice of \mathfrak{m} was arbitrary, $f g \neq 0$ in $(A / \mathfrak{m})[x]$ for any maximal ideal \mathfrak{m} of A.
Conversely, suppose that $f g$ is primitive. Then if either of f, g is not primitive, say f, then $f \equiv 0 \bmod \mathfrak{m}$ for some maximal ideal \mathfrak{m} of A and hence $f g \equiv 0 \bmod \mathfrak{m}$-but this cannot be, since $f g$ is primitive. So both f and g are primitive.

Exercise 7

Let A be a ring in which every element x satisfies $x^{n}=x$ for some $n>1$ (depending on x). Show that every prime ideal in A is maximal.

Fix a prime ideal \mathfrak{p} of A and let \mathfrak{a} be any ideal of A strictly containing \mathfrak{p}. Let $\phi: A \rightarrow A / \mathfrak{p}$ be the canonical projection and fix $y \in \mathfrak{a} \backslash \mathfrak{p}$ with $y^{n}=y$. Then $y^{n-1} \in \mathfrak{a}$, so $\phi\left(y^{n-1}\right) \in \phi(\mathfrak{a})$. But since $y \notin \mathfrak{p}$ and

$$
0=y-y^{n}=y\left(1-y^{n-1}\right) \in \mathfrak{p}
$$

and \mathfrak{p} is prime, it follows that $1-y^{n-1} \in \mathfrak{p}$. But then

$$
0=\phi\left(1-y^{n-1}\right)=1-\phi\left(y^{n-1}\right)
$$

i.e. $\phi\left(y^{n-1}\right)=1$. So $1 \in \phi(\mathfrak{a})$, meaning $\phi(\mathfrak{a})=(1)$. By Proposition 1.1, every ideal of A / \mathfrak{p} is the image under ϕ of an ideal containing \mathfrak{p}. But $\phi(\mathfrak{p})=(0)$, and we have just shown that $\phi(\mathfrak{a})=(1)$ for any ideal of \mathfrak{a} strictly containing \mathfrak{p}. Thus the only two ideals of A / \mathfrak{p} are (0) and (1). So A / \mathfrak{p} is a field, which is to say that \mathfrak{p} is maximal.

Exercise 11

A ring A is Boolean if $x^{2}=x$ for all $x \in A$. In a Boolean ring A, show that
(i) $\quad 2 x=0$ for all $x \in A$;
(ii) every prime ideal \mathfrak{p} is maximal, and A / \mathfrak{p} is a field with two elements;
(iii) every finitely generated ideal in A is principal.
(i) Observe that since A is commutative, if $x \in A$ then

$$
x+1=(x+1)^{2}=x^{2}+2 x+1=x+2 x+1,
$$

whence

$$
0=2 x .
$$

(ii) - Let \mathfrak{p} be a prime ideal of A and suppose by way of contradiction that there is some proper ideal \mathfrak{a} of A strictly containing \mathfrak{p}. Observe that for any $x \in A$,

$$
x(1-x)=x-x^{2}=0 \in \mathfrak{p},
$$

so either $x \in \mathfrak{p}$ or $1-x \in \mathfrak{p}$ since \mathfrak{p} is prime. Now let $y \in \mathfrak{a} \backslash \mathfrak{p}$. Since $y \notin \mathfrak{p}, 1-y \in \mathfrak{p}$. But then $1-y \in \mathfrak{a}$, meaning

$$
(1-y)+y=1 \in \mathfrak{a},
$$

contradicting the hypothesis that \mathfrak{a} is a proper ideal of A. We conclude that \mathfrak{p} is maximal.

- Let \mathfrak{p} be a prime ideal of A and $\phi: A \rightarrow A / \mathfrak{p}$ be the canonical projection map. Fix $x \in A$. Then there are two cases: either $\phi(x)=0$ or else $\phi(x) \neq 0$, in which case $x \notin \mathfrak{p}$. But then $1-x \in \mathfrak{p}$, so

$$
0=\phi(1-x)=1-\phi(x)
$$

i.e. $\phi(x)=1$. Thus $\phi(A)=A / \mathfrak{p}=\mathbf{2}$, the two-element field. ${ }^{2}$

[^1](iii) Let I be an ideal of A with a finite set of generators $X=\left\{x_{1}, \ldots, x_{n}\right\}$. We will produce a single generator of I. In order to find a generator, we observe the correspondence between Boolean rings and Boolean algebras. In brief, the operations of a Boolean algebra and those of a Boolean ring are interdefinable, so that every nonzero Boolean ring B may be regarded as a Boolean algebra B^{*} and vice versa. Under this translation, \mathfrak{a} is a ring ideal of a Boolean ring B if and only if \mathfrak{a} is a lattice ideal of the Boolean algebra B^{*}.

Considering I as an ideal of A^{*}, we observe that $x \in I$ if and only if $x \leq g$, where the single generator g is $\bigvee X$. Translating this into the language of rings, we see that $x \in I$ if and only if $x=x g$, where the single generator g is

$$
\sum_{0 \neq \vec{\varepsilon} \in \mathbf{2}^{n}} x_{1}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} \cdots x_{n}^{\varepsilon_{n}} .
$$

Since we have arrived at this generator by only the sketch of a proof, it remains to show carefully that

$$
I=A g .
$$

To that end, fix $x_{i} \in X$. Without loss of generality we assume $i=n$. Then

$$
\begin{aligned}
x_{n} g & =x_{n} \sum_{0 \neq \vec{\varepsilon} \in \mathbf{2}^{n}} x_{1}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} \cdots x_{n}^{\varepsilon_{n}} \\
& =x_{n}\left[x_{n}+\sum_{0 \neq \vec{\varepsilon} \in \mathbf{2}^{n-1}} x_{1}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} \cdots x_{n-1}^{\varepsilon_{n-1}}\left(1+x_{n}\right)\right] \\
& =x_{n}^{2}+\sum_{0 \neq \vec{\varepsilon} \in \mathbf{2}^{n-1}} x_{1}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} \cdots x_{n-1}^{\varepsilon_{n-1}}\left(x_{n}+x_{n}^{2}\right) \\
& =x_{n}+\sum_{0 \neq \vec{\varepsilon} \in \mathbf{2}^{n-1}} x_{1}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} \cdots x_{n-1}^{\varepsilon_{n-1}}\left(x_{n}+x_{n}\right) \\
& =x_{n},
\end{aligned}
$$

since A has characteristic 2. Therefore $x_{i}=x_{i} g \in A g$, i.e. $X \subset A g$. But $g \in I$ so $A g \subset I$, and I is by definition the smallest ideal containing X. Therefore $A g=I$.

Exercise 12

A local ring contains no idempotent $\neq 0,1$.
Let A be a local ring and \mathfrak{m} its sole maximal ideal, and suppose by way of contradiction that $x \neq 0,1$ is an idempotent element of A. Then since $x=x^{2}$,

$$
0=x-x^{2}=x(1-x)
$$

and since $x \neq 0,1$, it follows that x and $1-x$ are each non-zero zero-divisors in A. In particular, x and $1-x$ are non-units. By Corollary 1.5, every non-unit of A is contained in a maximal ideal of A. Since \mathfrak{m} is the only maximal ideal of A, it follows that $x, 1-x \in \mathfrak{m}$. But then since \mathfrak{m} is an additive group,

$$
(1-x)+x=1 \in \mathfrak{m},
$$

contradicting the fact that \mathfrak{m} is a proper subset of A. We conclude that there is no nontrivial idempotent element $x \in A$.

Exercise 15

Let A be a ring and X be the set of all prime ideals of A. For each subset E of A, let $V(E)$ denote the set of all prime ideals of A which contain E. Prove that
(i) if \mathfrak{a} is the ideal generated by E, then $V(E)=V(\mathfrak{a})=V(r(\mathfrak{a}))$.
(ii) $\quad V(0)=X, V(1)=\varnothing$.
(iii) if $\left(E_{i}\right)_{i \in I}$ is any family of subsets of A, then

$$
V\left(\bigcup_{i \in I} E_{i}\right)=\bigcap_{i \in I} V\left(E_{i}\right) .
$$

(iv) $\quad V(\mathfrak{a} \cap \mathfrak{b})=V(\mathfrak{a b})=V(\mathfrak{a}) \cup V(\mathfrak{b})$ for any ideals $\mathfrak{a}, \mathfrak{b}$ of A.
(i) Since \mathfrak{a} is the intersection of all ideals containing E, it is in particular the case that every prime ideal containing E contains \mathfrak{a}. Therefore the set of all prime ideals containing E is identical to the set of all prime ideals containing \mathfrak{a} :

$$
V(E)=V(\mathfrak{a})
$$

Now suppose $\mathfrak{p} \supset \mathfrak{a}$ is any prime ideal containing \mathfrak{a}. Then, using Exercise 1.13 parts (iii) and (vi),

$$
\begin{aligned}
\mathfrak{a} \subset \mathfrak{p} & \Rightarrow \mathfrak{a} \cap \mathfrak{p}=\mathfrak{a} \\
& \Rightarrow r(\mathfrak{a} \cap \mathfrak{p})=r(\mathfrak{a}) \\
& \Rightarrow r(\mathfrak{a}) \cap r(\mathfrak{p})=r(\mathfrak{a}) \\
& \Rightarrow r(\mathfrak{a}) \cap \mathfrak{p}=r(\mathfrak{a}) \\
& \Rightarrow r(\mathfrak{a}) \subset \mathfrak{p} .
\end{aligned}
$$

Likewise, if $\mathfrak{p} \supset r(\mathfrak{a})$, then by Exercise 1.13(i), $\mathfrak{p} \supset \mathfrak{a}$. Therefore

$$
V(\mathfrak{a})=V(r(\mathfrak{a}))
$$

(ii) Ideals of A are additive subgroups of A, hence contain 0 . Therefore every prime ideal is a prime ideal containing 0 :

$$
V(0)=X
$$

By definition, prime ideals are proper, and therefore contain no units. Hence

$$
V(1)=\varnothing .
$$

(iii) \quad Suppose that $\mathfrak{p} \in V\left(\bigcup_{i \in I} E_{i}\right)$. Then \mathfrak{p} is a prime ideal of A containing the union of - hence each of - the E_{i}. Therefore for each i, \mathfrak{p} is among the prime ideals containing $E_{i}: \mathfrak{p} \in \bigcap_{i \in I} V\left(E_{i}\right)$.
Conversely, suppose that $\mathfrak{p} \in \bigcap_{i \in I} V\left(E_{i}\right)$. Then for each i, \mathfrak{p} is a prime ideal containing E_{i}. Since \mathfrak{p} contains E_{i} for each i, \mathfrak{p} is a prime ideal containing the union of the collection $\left\{E_{i}\right\}_{i \in I}: \mathfrak{p} \in V\left(\bigcup_{i \in I} E_{i}\right)$.
(iv) Using part (i) of this exercise as well as the results of Exercise 1.13, we have

$$
V(\mathfrak{a} \cap \mathfrak{b})=V(r(\mathfrak{a} \cap \mathfrak{b}))=V(r(\mathfrak{a b}))=V(\mathfrak{a} \mathfrak{b})
$$

Now, suppose on the one hand that $\mathfrak{p} \in V(\mathfrak{a}) \cup V(\mathfrak{b})$. Then \mathfrak{p} is either a prime ideal containing \mathfrak{a} (hence $\mathfrak{a} \cap \mathfrak{b}$), or else \mathfrak{p} is a prime ideal containing \mathfrak{b} (hence $\mathfrak{a} \cap \mathfrak{b}$). Thus in any case, $\mathfrak{p} \in V(\mathfrak{a} \cap \mathfrak{b})$.
Conversely, suppose that $\mathfrak{p} \in V(\mathfrak{a} \cap \mathfrak{b})$. Then \mathfrak{p} is a prime ideal containing $\mathfrak{a} \cap \mathfrak{b}$. By Proposition 1.11(ii), it follows that \mathfrak{p} is either a prime ideal containing \mathfrak{a} or a prime ideal containing \mathfrak{b}, and so in either case that $\mathfrak{p} \in$ $V(\mathfrak{a}) \cup V(\mathfrak{b})$.

Exercise 16

Draw pictures of $\operatorname{Spec}(\mathbb{Z}), \operatorname{Spec}(\mathbb{R}), \operatorname{Spec}(\mathbb{C}[x]), \operatorname{Spec}(\mathbb{R}[x]), \operatorname{Spec}(\mathbb{Z}[x])$.

- $\operatorname{Spec}(\mathbb{Z}) . \mathbb{Z}$ is an integral domain, so (0) is prime. And \mathbb{Z} is a PID, so all the remaining prime ideals are of the form (p) for prime $p \in \mathbb{Z}$.
- $\operatorname{Spec}(\mathbb{R})$. Since \mathbb{R} is a field, it has only one prime ideal: (0).
- $\operatorname{Spec}(\mathbb{C}[x])$. \mathbb{C} is a field, so $\mathbb{C}[x]$ is a PID. Thus (0) is prime, and all the remaining prime ideals are of the form (p) for prime $p \in \mathbb{C}[x]$. Since $\mathbb{C}[x]$ is a PID, it is a UFD, so the prime polynomials are precisely the irreducible polynomials. Since \mathbb{C} is algebraically closed, the only irreducibles are the linear polynomials $x-z$ for $z \in \mathbb{C}$. In summary: the prime ideals of $\mathbb{C}[x]$ are (0) and $(x-z)$ for $z \in \mathbb{C}$.
- $\operatorname{Spec}(\mathbb{R}[x])$. \mathbb{R} is a field, so $\mathbb{R}[x]$ is a PID. Thus (0) is prime, and all the remaining prime ideals are of the form (p) for prime - irreducible, since $\mathbb{R}[x]$ is a UFD $-p \in \mathbb{R}[x]$. Every linear polynomial $x-r$ for $r \in \mathbb{R}$ is irreducible, and the only other irreducibles are the quadratics with two (conjugate) complex roots. In summary: the prime ideals of $\mathbb{R}[x]$ are (0), $(x-r)$ for $r \in \mathbb{R}$, and $\left(x^{2}-2 \alpha x+\alpha^{2}+\beta^{2}\right)$ for $\alpha, \beta \in \mathbb{R}$.
- $\operatorname{Spec}(\mathbb{Z}[x]) . \mathbb{Z}$ is an integral domain, so $\mathbb{Z}[x]$ is an integral domain. Hence (0) is prime. Furthermore, (p) is prime for $p \in \mathbb{Z}$ prime, since if $a b \in(p)$, then $a, b \in \mathbb{Z}$ and the rest follows immediately. Since \mathbb{Z} is a UFD, so is $\mathbb{Z}[x]$; therefore $(p(x))$ is prime for $p(x) \in \mathbb{Z}[x]$ irreducible. Lastly, if $p \in \mathbb{Z}$ is prime and $f \in \mathbb{Z}[x]$ is irreducible and irreducible $\bmod p$, and if f_{p} is the reduction of $f \bmod p$, then (p, f) is prime since

$$
\mathbb{Z}[x] /(p, f) \cong(\mathbb{Z} /(p))[x] /\left(f_{p}\right)
$$

which is a field. ${ }^{3}$

[^2]B.

Let A be a commutative ring. Show that A is a field iff every ideal of A is prime.

Suppose A is a field. Then its only ideals are the trivial ideals, which are trivially prime. Conversely, suppose that every ideal of A is prime. Then in particular, (0) is prime, wherefore A is an integral domain. Fix any element $x \in A$. By hypothesis, either $\left(x^{2}\right)$ is not proper and so x is a unit, or else $\left(x^{2}\right)$ is prime and so $x \in\left(x^{2}\right)$. Then there is some $a \in A$ such that $x=a x^{2}$. But because A is an integral domain, we may cancel x to obtain

$$
1=a x .
$$

Therefore in any case, x is a unit. We conclude that A is a field.
C.

A commutative ring A is called Von Neumann regular (abbreviated VNR) if for every element $a \in A$ there is an element $b \in A$ such that $a^{2} b=a$. Show that A is VNR iff every ideal I of A is a radical ideal (that is, I is equal to its own radical). [Hint: use Exercise 1.13(iii) on page 9 of your textbook.]

Suppose every ideal of A is radical. Then in particular

$$
\left(a^{2}\right)=\left\{x \in A: x^{n} \in A a^{2} \text { for some } n>0\right\} .
$$

Because $a^{2} \in\left(a^{2}\right)$, the above implies that $a \in\left(a^{2}\right)$. But this is just to say that there is some $b \in A$ such that $a=b a^{2}$; i.e. that A is VNR.
Conversely, suppose that A is VNR. Fix $x, a \in A$ and suppose that $x^{n} \in(a)$ for some $n>0$. We wish to show that $x \in(a) .{ }^{4}$ By hypothesis, there is some $b \in A$ such that $b x^{2}=x$. Now suppose by way of induction that $b^{k} x^{k+1}=x$ for some $k>0$. Then

$$
b^{k+1} x^{k+2}=b\left(b^{k} x^{k+1}\right) x=b(x) x=b x^{2}=x .
$$

We conclude by induction that $b^{k} x^{k+1}=x$ for all $k>0$-hence in particular that $b^{n-1} x^{n}=x$.

Since $x^{n} \in(a)$, there is some $u \in A$ such that $x^{n}=u a$. Therefore if we denote $b^{n-1} u=v \in A$,

$$
x=b^{n-1} x^{n}=b^{n-1} u a=v a,
$$

so that $x \in(a)$. This completes the proof.

[^3]
[^0]: ${ }^{1}$ For a proof of this fact, consider that since A / \mathfrak{p} has no zero divisors, if $f, g \in(A / \mathfrak{p})[x]$ then $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. Thus if $f g=1, \operatorname{deg}(f)=\operatorname{deg}(g)=\operatorname{deg}(f g)=0$, and the rest follows immediately.

[^1]: ${ }^{2}$ This of course proves that \mathfrak{p} is maximal free of charge. I have left in the separate proof of that fact because I enjoyed the argument.

[^2]: ${ }^{3}$ Note that I have not proven that these are the only prime ideals of $\mathbb{Z}[x]$, which is somewhat more involved.

[^3]: ${ }^{4}$ This will complete the proof, since $\sqrt{(a)} \supset(a)$ trivially.

