Commutative Algebra — Homework 1 David Nichols

(1%

NOTE. I use C to mean “is a not necessarily proper subset of” and C to mean “is a
proper subset of.”

A.

Exercise 1

Let = be a nilpotent element of a ring A. Show that 1+ x is a unit of A. Deduce
that the sum of a nilpotent element and a unit is a unit.

Since z is nilpotent, x lies in every prime ideal. A fortiori, x lies in every maximal
ideal. By the properties of ideals, —x therefore also lies in every maximal ideal. No
proper ideal may contain 1—since otherwise that ideal contains all of (1) = A—and
every maximal ideal is proper, so no maximal ideal may contain

l=142)+ (—x).

Since every maximal ideal contains —z, it follows that no maximal ideal contains
1+ 2. By Corollary 1.5, every non-unit of A is contained in a maximal ideal. By
contraposition, every element contained in no maximal ideal is a unit. We conclude
that 1 + z is a unit.

Now suppose that u is a unit of A. Then u~'x is a nilpotent (since the nilradical of
A is an ideal of A). So by the preceding result, 1 + v~ 'z is a unit. But then

u+x=u(l+u'z)

is the product of two units, hence a unit. [ |



Exercise 2

Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x,
with coefficients in A. Let f = ag + a12' + -+ + a,z™ € Alx]. Prove that

f is a unit in A[z] < ag is a unit in A and a4, ..., a, are nilpotent. [If
bo + bix + - -+ + b,,x™ is the inverse of f, prove by induction on r that
a’ b, . = 0. Hence show that a, is nilpotent, and then use Ex. 1.]

f is nilpotent < ag, aq, ..., a, are nilpotent.

f is a zero-divisor <> there exists a # 0 in A such that af = 0. [Choose
a polynomial g = by + byx + - -+ + b,,a™ of least degree m such that
fg =0. Then a,b,, = 0, hence a,g = 0 (because a,g annihilates f and
has degree < m). Now show by induction that a,_,g =0 (0 <r < n).]

f is said to be primitive if (ag,aq,...,a,) = (1). Prove that if f, g €
Alzx], then fg is primitive < f and g are primitive.

Suppose that ag is a unit in A (hence in Alz]) and that ay,--- ,a, are
nilpotent. Let ¢ = 0+ a1z + - -+ 4+ a,z™. Then by part (ii) of this exercise,
g is nilpotent. But then f = ag + g is the sum of a unit and a nilpotent,
hence a unit by Exercise 1.

Conversely, suppose that f is a unit in A[z]. Let 91 denote the nilradical
of A, and for each prime ideal p C A let

Oy : Ala] = (A/p)la]

be the reduction homomorphism mod p (i.e. the ring homomorphism such
that the i*" coefficient of ¢,(h) is the reduction mod p of the i coefficient
of h). Since ring homomorphisms take units to units, it follows from our
hypothesis that ¢,(f) is a unit of (A/p)[x]. But A/p is an integral domain,
so the only units of (A/p)[x] are the units of A/p (under the canonical
identification of A/p with degree zero polynomials in (A/p)[x]).! Thus

a1,...,0, €P.

For a proof of this fact, consider that since A/p has no zero divisors, if f,g € (A/p)[x] then
deg(fg) = deg(f) + deg(g). Thus if fg = 1, deg(f) = deg(g) = deg(fg) = 0, and the rest follows
immediately.



(iii)

But this holds for every prime ideal p of A, and so in fact ay,...,a, € .
To see that ag is a unit of A, note that if ay were a nonunit, then there
would be a maximum ideal m of A containing ag, and then ¢y (f) would
have constant term 0.

Suppose that f* = 0 for some n > 0. Then by Exercise 1, 1 + f is a
unit and hence part (i) of this exercise—specifically and importantly, the
second implication of part (i), in which we did not already take part (ii)
for granted—implies that 1 + a¢ is a unit and aq,...,a, € M. To see that
ag € N, consider that ring homomorphisms take nilpotents to nilpotents,
and so in particular the evaluation-at-zero homomorphism takes nilpotents
to nilpotents. But f(0) = ao, so ag € N.

Suppose that for some 0 # a € A, af = 0. Then trivially, f is a zero-divisor.

Conversely, suppose that there isno 0 # a € A such that af = 0 (so f # 0).
We will show that f is not a zero-divisor. For let 0 # by+byx+- - -+ b, a™ =
g € Alz]. We will show by induction on deg(g) that gf # 0. If deg(g) =0,
then gf # 0 by hypothesis.

Now suppose by way of induction that no nonzero polynomial A of degree
less than deg(g) satisfies hf = 0, and suppose by way of contradiction that
gf = 0. Then in particular the leading term b,,a,z™"" = 0, i.e. b,,a, = 0.
Then (a,g9)f = a,(gf) = 0, but (since a,b,,z™ = 0) a,g has degree less
than deg(g)—contradicting the inductive hypothesis.

We will have need of the following fact.

LEMMA. f is primitive in A[z] if and only if f is nonzero in
(A/m)[z] for every maximal ideal m of A. (That is, if and only
if the polynomial obtained from f be reducing its coefficients
mod m is not the zero polynomial in A/m.)

PROOF. Suppose f = 0 mod m for some maximal ideal of A.
Then every coefficient of f lies in m, so (ag,...,a,) C m C (1).
So f is not primitive.

Conversely, suppose that f is not primitive. Then (ao,...,a,)

is proper and hence contained in some maximal ideal m of A.
Then f =0 mod m. |

Now, suppose that f,g € A[z] are primitive and fix a maximal ideal m of
A. Because A/m is a field, (A/m)[z] is an integral domain. Thus fg # 0



in (A/m)[x] since f,g # 0. Since the choice of m was arbitrary, fg # 0 in
(A/m)[z] for any maximal ideal m of A.

Conversely, suppose that fg is primitive. Then if either of f, g is not
primitive, say f, then f = 0 mod m for some maximal ideal m of A and
hence fg = 0 mod m—but this cannot be, since fg is primitive. So both f
and g are primitive. |



Exercise 7

Let A be a ring in which every element z satisfies 2" = x for some n > 1
(depending on ). Show that every prime ideal in A is maximal.

Fix a prime ideal p of A and let a be any ideal of A strictly containing p. Let
¢ : A — A/p be the canonical projection and fix y € a \ p with y” = y. Then
Yyt €a,s0 ¢y ') € ¢(a). But since y ¢ p and

O=y—y"=y(l—y" ") ep

and p is prime, it follows that 1 — y"~! € p. But then

0=0(l—y" ) =1-0@""),

ie. ¢(y" ') =1. So 1 € ¢(a), meaning ¢(a) = (1). By Proposition 1.1, every ideal
of A/p is the image under ¢ of an ideal containing p. But ¢(p) = (0), and we have
just shown that ¢(a) = (1) for any ideal of a strictly containing p. Thus the only two
ideals of A/p are (0) and (1). So A/p is a field, which is to say that p is maximal.
|



Exercise 11

(i)
(iii)

A ring A is Boolean if x? = x for all x € A. In a Boolean ring A, show that

2¢ =0 for all x € A;
every prime ideal p is maximal, and A/p is a field with two elements;

every finitely generated ideal in A is principal.

(i)

(i)

Observe that since A is commutative, if z € A then

z+l=(r+1)P2=2*+22+1=0+21+1,

whence

0= 2x.

Let p be a prime ideal of A and suppose by way of contradiction that
there is some proper ideal a of A strictly containing p. Observe that
for any x € A,

r(l—z)=2—-2>=0¢p,

so either z € p or 1 — x € p since p is prime. Now let y € a\ p. Since
y¢p, 1 —y€p. But then 1 —y € a, meaning
1-y+y=1¢€aq,

contradicting the hypothesis that a is a proper ideal of A. We conclude
that p is maximal.

Let p be a prime ideal of A and ¢ : A — A/p be the canonical
projection map. Fix z € A. Then there are two cases: either ¢(z) =0
or else ¢(x) # 0, in which case = ¢ p. But then 1 —x € p, so

0=0(1-2)=1-9¢(),
i.e. ¢(z) =1. Thus ¢(A) = A/p = 2, the two-element field.?

2This of course proves that p is maximal free of charge. I have left in the separate proof of that
fact because I enjoyed the argument.



(iii)

Let I be an ideal of A with a finite set of generators X = {z1,...,x,}.
We will produce a single generator of I. In order to find a generator, we
observe the correspondence between Boolean rings and Boolean algebras.
In brief, the operations of a Boolean algebra and those of a Boolean ring
are interdefinable, so that every nonzero Boolean ring B may be regarded
as a Boolean algebra B* and vice versa. Under this translation, a is a ring

ideal of a Boolean ring B if and only if a is a lattice ideal of the Boolean
algebra B*.

Considering [ as an ideal of A*, we observe that x € I if and only if x < g,
where the single generator g is \/ X. Translating this into the language of
rings, we see that € I if and only if x = xg, where the single generator g

1S
§ : £1 €2
ml "EQ ..

0#£e€e2n

Since we have arrived at this generator by only the sketch of a proof, it
remains to show carefully that

I =Ag.

To that end, fix x; € X. Without loss of generality we assume ¢ = n. Then

§ €1 ,.€2
Ing — l‘n ZEI 1/172 ct
0#££€2n

=Ty | Ty + Z it as? (1 + )

07#£&€2n—1
n—1 2
—zi+ Y ARy (e + 1))
0#£ge2n—1
£1 €9 En—1
=Tn+ E oy’ ) (T + )
0#£ge2n—1

= Tn,

since A has characteristic 2. Therefore x; = x;9 € Ag, i.e. X C Ag. But
g € I so Ag C I, and [ is by definition the smallest ideal containing X.
Therefore Ag = 1. |



Exercise 12

A local ring contains no idempotent # 0, 1.

Let A be a local ring and m its sole maximal ideal, and suppose by way of contra-
diction that z # 0,1 is an idempotent element of A. Then since x = 22,

0=z—2"=2(1 —x),

and since x # 0, 1, it follows that z and 1 — x are each non-zero zero-divisors in A.
In particular,  and 1 — = are non-units. By Corollary 1.5, every non-unit of A is
contained in a maximal ideal of A. Since m is the only maximal ideal of A, it follows
that x;1 —x € m. But then since m is an additive group,

(I1—z)+zx=1€em,

contradicting the fact that m is a proper subset of A. We conclude that there is no
nontrivial idempotent element z € A. [ |



Exercise 15

Let A be a ring and X be the set of all prime ideals of A. For each subset £ of
A, let V(E) denote the set of all prime ideals of A which contain E. Prove that

(i) if a is the ideal generated by E, then V(E) = V(a) = V(r(a)).
(ii) V(0)=X,V(1)=2.
(iii) if (E;)ies is any family of subsets of A, then
1% (U E) =(V(E).
iel i€l

(iv) V(anb) =V(ab) = V(a) UV (b) for any ideals a, b of A.

(i) Since a is the intersection of all ideals containing F, it is in particular the
case that every prime ideal containing E contains a. Therefore the set
of all prime ideals containing E is identical to the set of all prime ideals
containing a:

V(E) = V(a).

Now suppose p D a is any prime ideal containing a. Then, using Exercise
1.13 parts (iii) and (vi),

aCp=anNp=a

(ii) Ideals of A are additive subgroups of A, hence contain 0. Therefore every
prime ideal is a prime ideal containing 0:

V(0) = X.



(iii)

By definition, prime ideals are proper, and therefore contain no units.
Hence
V(1) =@.

Suppose that p € V (UZE 7 E’Z) Then p is a prime ideal of A containing
the union of—hence each of—the E;. Therefore for each ¢, p is among the
prime ideals containing E;: p € (o, V(E;).

Conversely, suppose that p € (,.; V(£;). Then for each i, p is a prime ideal
containing F;. Since p contains E; for each ¢, p is a prime ideal containing
the union of the collection {E;}icr: p € V (Uie; Ei)-

Using part (i) of this exercise as well as the results of Exercise 1.13, we
have
V(ianb) =V(r(anb)) =V(r(ab)) =V (ab).

Now, suppose on the one hand that p € V(a) U V(b). Then p is either a
prime ideal containing a (hence aNb), or else p is a prime ideal containing
b (hence anb). Thus in any case, p € V(aNb).

Conversely, suppose that p € V(aNb). Then p is a prime ideal containing
a N b. By Proposition 1.11(ii), it follows that p is either a prime ideal
containing a or a prime ideal containing b, and so in either case that p €

V(a) UV (b). n



Exercise 16

Draw pictures of Spec(Z), Spec(R), Spec(Clz]), Spec(R[z]), Spec(Z]x]).

e Spec(Z). Z is an integral domain, so (0) is prime. And Z is a PID, so all the
remaining prime ideals are of the form (p) for prime p € Z.

e Spec(R). Since R is a field, it has only one prime ideal: (0).

e Spec(C[z]). C is a field, so C[z] is a PID. Thus (0) is prime, and all the
remaining prime ideals are of the form (p) for prime p € Clz]. Since C[z]
is a PID, it is a UFD, so the prime polynomials are precisely the irreducible
polynomials. Since C is algebraically closed, the only irreducibles are the linear
polynomials z — z for z € C. In summary: the prime ideals of C[z] are (0) and
(x — z) for z € C.

e Spec(R[z]). R is a field, so R[z] is a PID. Thus (0) is prime, and all the
remaining prime ideals are of the form (p) for prime—irreducible, since R[z] is
a UFD—p € Rz|. Every linear polynomial = — r for r € R is irreducible, and
the only other irreducibles are the quadratics with two (conjugate) complex
roots. In summary: the prime ideals of R[x] are (0), (z — r) for r € R, and

(22 — 2ax + o + 3?) for o, B € R.

e Spec(Z[x]). 7Z is an integral domain, so Z[z] is an integral domain. Hence
(0) is prime. Furthermore, (p) is prime for p € Z prime, since if ab € (p),
then a,b € Z and the rest follows immediately. Since Z is a UFD, so is Z[z];
therefore (p(z)) is prime for p(x) € Z[z] irreducible. Lastly, if p € Z is prime
and f € Z[z] is irreducible and irreducible mod p, and if f, is the reduction of
f mod p, then (p, f) is prime since

Zlz]/(p, f) = (Z/(p))[=]/(fp),
which is a field.? [ |

3Note that I have not proven that these are the only prime ideals of Z[x], which is somewhat
more involved.



B.

Let A be a commutative ring. Show that A is a field iff every ideal of A is prime. ‘

Suppose A is a field. Then its only ideals are the trivial ideals, which are trivially
prime. Conversely, suppose that every ideal of A is prime. Then in particular, (0) is
prime, wherefore A is an integral domain. Fix any element x € A. By hypothesis,
either (z?) is not proper and so x is a unit, or else (z?) is prime and so x € (z?).
Then there is some a € A such that x = az?. But because A is an integral domain,
we may cancel x to obtain

1 =ax.

Therefore in any case, x is a unit. We conclude that A is a field. |



C.

A commutative ring A is called Von Neumann regular (abbreviated VNR) if for
every element a € A there is an element b € A such that a?h = a. Show that
A is VNR iff every ideal I of A is a radical ideal (that is, I is equal to its own
radical). [Hint: use Exercise 1.13(iii) on page 9 of your textbook.]

Suppose every ideal of A is radical. Then in particular
(a®) ={zr € A: 2™ € Aa® for some n > 0}.
Because a? € (a?), the above implies that a € (a?). But this is just to say that there

is some b € A such that a = ba?; i.e. that A is VNR.

Conversely, suppose that A is VNR. Fix x,a € A and suppose that 2" € (a) for some
n > 0. We wish to show that z € (a).* By hypothesis, there is some b € A such that
bz? = x. Now suppose by way of induction that b*2**' = z for some k£ > 0. Then

VR = p(bF2 e = b(2)2 = ba? = .
We conclude by induction that b*2%+1 = x for all k& > 0—hence in particular that
blat = g

Since 2" € (a), there is some v € A such that 2" = wa. Therefore if we denote
blu=v € A,
r=b""12" = " tua = va,

so that = € (a). This completes the proof. [ |

4This will complete the proof, since \/(a) D (a) trivially.



