
Commutative Algebra – Homework 1 David Nichols

Note. I use ⊂ to mean “is a not necessarily proper subset of” and ( to mean “is a
proper subset of.”

A.

Exercise 1

Let x be a nilpotent element of a ring A. Show that 1 +x is a unit of A. Deduce
that the sum of a nilpotent element and a unit is a unit.

Since x is nilpotent, x lies in every prime ideal. A fortiori, x lies in every maximal
ideal. By the properties of ideals, −x therefore also lies in every maximal ideal. No
proper ideal may contain 1—since otherwise that ideal contains all of (1) = A—and
every maximal ideal is proper, so no maximal ideal may contain

1 = (1 + x) + (−x).

Since every maximal ideal contains −x, it follows that no maximal ideal contains
1 + x. By Corollary 1.5, every non-unit of A is contained in a maximal ideal. By
contraposition, every element contained in no maximal ideal is a unit. We conclude
that 1 + x is a unit.

Now suppose that u is a unit of A. Then u−1x is a nilpotent (since the nilradical of
A is an ideal of A). So by the preceding result, 1 + u−1x is a unit. But then

u+ x = u(1 + u−1x)

is the product of two units, hence a unit. �



Exercise 2

Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x,
with coefficients in A. Let f = a0 + a1x

1 + · · ·+ anx
n ∈ A[x]. Prove that

(i) f is a unit in A[x] ⇔ a0 is a unit in A and a1, . . . , an are nilpotent. [If
b0 + b1x+ · · ·+ bmx

m is the inverse of f , prove by induction on r that
ar+1
n bm−r = 0. Hence show that an is nilpotent, and then use Ex. 1.]

(ii) f is nilpotent ⇔ a0, a1, . . . , an are nilpotent.

(iii) f is a zero-divisor⇔ there exists a 6= 0 in A such that af = 0. [Choose
a polynomial g = b0 + b1x + · · · + bmx

m of least degree m such that
fg = 0. Then anbm = 0, hence ang = 0 (because ang annihilates f and
has degree < m). Now show by induction that an−rg = 0 (0 ≤ r ≤ n).]

(iv) f is said to be primitive if (a0, a1, . . . , an) = (1). Prove that if f, g ∈
A[x], then fg is primitive ⇔ f and g are primitive.

(i) Suppose that a0 is a unit in A (hence in A[x]) and that a1, · · · , an are
nilpotent. Let g = 0 + a1x+ · · ·+ anx

n. Then by part (ii) of this exercise,
g is nilpotent. But then f = a0 + g is the sum of a unit and a nilpotent,
hence a unit by Exercise 1.

Conversely, suppose that f is a unit in A[x]. Let N denote the nilradical
of A, and for each prime ideal p ⊂ A let

φp : A[x]→ (A/p)[x]

be the reduction homomorphism mod p (i.e. the ring homomorphism such
that the ith coefficient of φp(h) is the reduction mod p of the ith coefficient
of h). Since ring homomorphisms take units to units, it follows from our
hypothesis that φp(f) is a unit of (A/p)[x]. But A/p is an integral domain,
so the only units of (A/p)[x] are the units of A/p (under the canonical
identification of A/p with degree zero polynomials in (A/p)[x]).1 Thus

a1, . . . , an ∈ p.

1For a proof of this fact, consider that since A/p has no zero divisors, if f, g ∈ (A/p)[x] then
deg(fg) = deg(f) + deg(g). Thus if fg = 1, deg(f) = deg(g) = deg(fg) = 0, and the rest follows
immediately.



But this holds for every prime ideal p of A, and so in fact a1, . . . , an ∈ N.
To see that a0 is a unit of A, note that if a0 were a nonunit, then there
would be a maximum ideal m of A containing a0, and then φm(f) would
have constant term 0.

(ii) Suppose that fn = 0 for some n > 0. Then by Exercise 1, 1 + f is a
unit and hence part (i) of this exercise—specifically and importantly, the
second implication of part (i), in which we did not already take part (ii)
for granted—implies that 1 + a0 is a unit and a1, . . . , an ∈ N. To see that
a0 ∈ N, consider that ring homomorphisms take nilpotents to nilpotents,
and so in particular the evaluation-at-zero homomorphism takes nilpotents
to nilpotents. But f(0) = a0, so a0 ∈ N.

(iii) Suppose that for some 0 6= a ∈ A, af = 0. Then trivially, f is a zero-divisor.

Conversely, suppose that there is no 0 6= a ∈ A such that af = 0 (so f 6= 0).
We will show that f is not a zero-divisor. For let 0 6= b0+b1x+· · ·+bmxm =
g ∈ A[x]. We will show by induction on deg(g) that gf 6= 0. If deg(g) = 0,
then gf 6= 0 by hypothesis.

Now suppose by way of induction that no nonzero polynomial h of degree
less than deg(g) satisfies hf = 0, and suppose by way of contradiction that
gf = 0. Then in particular the leading term bmanx

m+n = 0, i.e. bman = 0.
Then (ang)f = an(gf) = 0, but (since anbmx

m = 0) ang has degree less
than deg(g)—contradicting the inductive hypothesis.

(iv) We will have need of the following fact.

Lemma. f is primitive in A[x] if and only if f is nonzero in
(A/m)[x] for every maximal ideal m of A. (That is, if and only
if the polynomial obtained from f be reducing its coefficients
mod m is not the zero polynomial in A/m.)
Proof. Suppose f ≡ 0 mod m for some maximal ideal of A.
Then every coefficient of f lies in m, so (a0, . . . , an) ⊂ m ( (1).
So f is not primitive.
Conversely, suppose that f is not primitive. Then (a0, . . . , an)
is proper and hence contained in some maximal ideal m of A.
Then f ≡ 0 mod m. �

Now, suppose that f, g ∈ A[x] are primitive and fix a maximal ideal m of
A. Because A/m is a field, (A/m)[x] is an integral domain. Thus fg 6= 0



in (A/m)[x] since f, g 6= 0. Since the choice of m was arbitrary, fg 6= 0 in
(A/m)[x] for any maximal ideal m of A.

Conversely, suppose that fg is primitive. Then if either of f, g is not
primitive, say f , then f ≡ 0 mod m for some maximal ideal m of A and
hence fg ≡ 0 mod m—but this cannot be, since fg is primitive. So both f
and g are primitive. �



Exercise 7

Let A be a ring in which every element x satisfies xn = x for some n > 1
(depending on x). Show that every prime ideal in A is maximal.

Fix a prime ideal p of A and let a be any ideal of A strictly containing p. Let
φ : A → A/p be the canonical projection and fix y ∈ a \ p with yn = y. Then
yn−1 ∈ a, so φ(yn−1) ∈ φ(a). But since y /∈ p and

0 = y − yn = y(1− yn−1) ∈ p

and p is prime, it follows that 1− yn−1 ∈ p. But then

0 = φ(1− yn−1) = 1− φ(yn−1),

i.e. φ(yn−1) = 1. So 1 ∈ φ(a), meaning φ(a) = (1). By Proposition 1.1, every ideal
of A/p is the image under φ of an ideal containing p. But φ(p) = (0), and we have
just shown that φ(a) = (1) for any ideal of a strictly containing p. Thus the only two
ideals of A/p are (0) and (1). So A/p is a field, which is to say that p is maximal.
�



Exercise 11

A ring A is Boolean if x2 = x for all x ∈ A. In a Boolean ring A, show that

(i) 2x = 0 for all x ∈ A;

(ii) every prime ideal p is maximal, and A/p is a field with two elements;

(iii) every finitely generated ideal in A is principal.

(i) Observe that since A is commutative, if x ∈ A then

x+ 1 = (x+ 1)2 = x2 + 2x+ 1 = x+ 2x+ 1,

whence
0 = 2x.

(ii) • Let p be a prime ideal of A and suppose by way of contradiction that
there is some proper ideal a of A strictly containing p. Observe that
for any x ∈ A,

x(1− x) = x− x2 = 0 ∈ p,

so either x ∈ p or 1− x ∈ p since p is prime. Now let y ∈ a \ p. Since
y /∈ p, 1− y ∈ p. But then 1− y ∈ a, meaning

(1− y) + y = 1 ∈ a,

contradicting the hypothesis that a is a proper ideal of A. We conclude
that p is maximal.

• Let p be a prime ideal of A and φ : A → A/p be the canonical
projection map. Fix x ∈ A. Then there are two cases: either φ(x) = 0
or else φ(x) 6= 0, in which case x /∈ p. But then 1− x ∈ p, so

0 = φ(1− x) = 1− φ(x),

i.e. φ(x) = 1. Thus φ(A) = A/p = 2, the two-element field.2

2This of course proves that p is maximal free of charge. I have left in the separate proof of that
fact because I enjoyed the argument.



(iii) Let I be an ideal of A with a finite set of generators X = {x1, . . . , xn}.
We will produce a single generator of I. In order to find a generator, we
observe the correspondence between Boolean rings and Boolean algebras.
In brief, the operations of a Boolean algebra and those of a Boolean ring
are interdefinable, so that every nonzero Boolean ring B may be regarded
as a Boolean algebra B∗ and vice versa. Under this translation, a is a ring
ideal of a Boolean ring B if and only if a is a lattice ideal of the Boolean
algebra B∗.

Considering I as an ideal of A∗, we observe that x ∈ I if and only if x ≤ g,
where the single generator g is

∨
X. Translating this into the language of

rings, we see that x ∈ I if and only if x = xg, where the single generator g
is ∑

0 6=~ε∈2n

xε11 x
ε2
2 · · ·xεnn .

Since we have arrived at this generator by only the sketch of a proof, it
remains to show carefully that

I = Ag.

To that end, fix xi ∈ X. Without loss of generality we assume i = n. Then

xng = xn
∑

06=~ε∈2n

xε11 x
ε2
2 · · ·xεnn

= xn

xn +
∑

06=~ε∈2n−1

xε11 x
ε2
2 · · ·x

εn−1

n−1 (1 + xn)


= x2n +

∑
06=~ε∈2n−1

xε11 x
ε2
2 · · ·x

εn−1

n−1 (xn + x2n)

= xn +
∑

06=~ε∈2n−1

xε11 x
ε2
2 · · ·x

εn−1

n−1 (xn + xn)

= xn,

since A has characteristic 2. Therefore xi = xig ∈ Ag, i.e. X ⊂ Ag. But
g ∈ I so Ag ⊂ I, and I is by definition the smallest ideal containing X.
Therefore Ag = I. �



Exercise 12

A local ring contains no idempotent 6= 0, 1.

Let A be a local ring and m its sole maximal ideal, and suppose by way of contra-
diction that x 6= 0, 1 is an idempotent element of A. Then since x = x2,

0 = x− x2 = x(1− x),

and since x 6= 0, 1, it follows that x and 1 − x are each non-zero zero-divisors in A.
In particular, x and 1 − x are non-units. By Corollary 1.5, every non-unit of A is
contained in a maximal ideal of A. Since m is the only maximal ideal of A, it follows
that x, 1− x ∈ m. But then since m is an additive group,

(1− x) + x = 1 ∈ m,

contradicting the fact that m is a proper subset of A. We conclude that there is no
nontrivial idempotent element x ∈ A. �



Exercise 15

Let A be a ring and X be the set of all prime ideals of A. For each subset E of
A, let V (E) denote the set of all prime ideals of A which contain E. Prove that

(i) if a is the ideal generated by E, then V (E) = V (a) = V (r(a)).

(ii) V (0) = X, V (1) = ∅.

(iii) if (Ei)i∈I is any family of subsets of A, then

V

(⋃
i∈I

Ei

)
=
⋂
i∈I

V (Ei).

(iv) V (a ∩ b) = V (ab) = V (a) ∪ V (b) for any ideals a, b of A.

(i) Since a is the intersection of all ideals containing E, it is in particular the
case that every prime ideal containing E contains a. Therefore the set
of all prime ideals containing E is identical to the set of all prime ideals
containing a:

V (E) = V (a).

Now suppose p ⊃ a is any prime ideal containing a. Then, using Exercise
1.13 parts (iii) and (vi),

a ⊂ p⇒ a ∩ p = a

⇒ r(a ∩ p) = r(a)

⇒ r(a) ∩ r(p) = r(a)

⇒ r(a) ∩ p = r(a)

⇒ r(a) ⊂ p.

Likewise, if p ⊃ r(a), then by Exercise 1.13(i), p ⊃ a. Therefore

V (a) = V (r(a)).

(ii) Ideals of A are additive subgroups of A, hence contain 0. Therefore every
prime ideal is a prime ideal containing 0:

V (0) = X.



By definition, prime ideals are proper, and therefore contain no units.
Hence

V (1) = ∅.

(iii) Suppose that p ∈ V
(⋃

i∈I Ei

)
. Then p is a prime ideal of A containing

the union of—hence each of—the Ei. Therefore for each i, p is among the
prime ideals containing Ei: p ∈

⋂
i∈I V (Ei).

Conversely, suppose that p ∈
⋂

i∈I V (Ei). Then for each i, p is a prime ideal
containing Ei. Since p contains Ei for each i, p is a prime ideal containing
the union of the collection {Ei}i∈I : p ∈ V

(⋃
i∈I Ei

)
.

(iv) Using part (i) of this exercise as well as the results of Exercise 1.13, we
have

V (a ∩ b) = V (r(a ∩ b)) = V (r(ab)) = V (ab).

Now, suppose on the one hand that p ∈ V (a) ∪ V (b). Then p is either a
prime ideal containing a (hence a∩ b), or else p is a prime ideal containing
b (hence a ∩ b). Thus in any case, p ∈ V (a ∩ b).

Conversely, suppose that p ∈ V (a ∩ b). Then p is a prime ideal containing
a ∩ b. By Proposition 1.11(ii), it follows that p is either a prime ideal
containing a or a prime ideal containing b, and so in either case that p ∈
V (a) ∪ V (b). �



Exercise 16

Draw pictures of Spec(Z), Spec(R), Spec(C[x]), Spec(R[x]), Spec(Z[x]).

• Spec(Z). Z is an integral domain, so (0) is prime. And Z is a PID, so all the
remaining prime ideals are of the form (p) for prime p ∈ Z.

• Spec(R). Since R is a field, it has only one prime ideal: (0).

• Spec(C[x]). C is a field, so C[x] is a PID. Thus (0) is prime, and all the
remaining prime ideals are of the form (p) for prime p ∈ C[x]. Since C[x]
is a PID, it is a UFD, so the prime polynomials are precisely the irreducible
polynomials. Since C is algebraically closed, the only irreducibles are the linear
polynomials x− z for z ∈ C. In summary: the prime ideals of C[x] are (0) and
(x− z) for z ∈ C.

• Spec(R[x]). R is a field, so R[x] is a PID. Thus (0) is prime, and all the
remaining prime ideals are of the form (p) for prime—irreducible, since R[x] is
a UFD—p ∈ R[x]. Every linear polynomial x− r for r ∈ R is irreducible, and
the only other irreducibles are the quadratics with two (conjugate) complex
roots. In summary: the prime ideals of R[x] are (0), (x − r) for r ∈ R, and
(x2 − 2αx+ α2 + β2) for α, β ∈ R.

• Spec(Z[x]). Z is an integral domain, so Z[x] is an integral domain. Hence
(0) is prime. Furthermore, (p) is prime for p ∈ Z prime, since if ab ∈ (p),
then a, b ∈ Z and the rest follows immediately. Since Z is a UFD, so is Z[x];
therefore (p(x)) is prime for p(x) ∈ Z[x] irreducible. Lastly, if p ∈ Z is prime
and f ∈ Z[x] is irreducible and irreducible mod p, and if fp is the reduction of
f mod p, then (p, f) is prime since

Z[x]/(p, f) ∼= (Z/(p))[x]/(fp),

which is a field.3 �

3Note that I have not proven that these are the only prime ideals of Z[x], which is somewhat
more involved.



B.

Let A be a commutative ring. Show that A is a field iff every ideal of A is prime.

Suppose A is a field. Then its only ideals are the trivial ideals, which are trivially
prime. Conversely, suppose that every ideal of A is prime. Then in particular, (0) is
prime, wherefore A is an integral domain. Fix any element x ∈ A. By hypothesis,
either (x2) is not proper and so x is a unit, or else (x2) is prime and so x ∈ (x2).
Then there is some a ∈ A such that x = ax2. But because A is an integral domain,
we may cancel x to obtain

1 = ax.

Therefore in any case, x is a unit. We conclude that A is a field. �



C.

A commutative ring A is called Von Neumann regular (abbreviated VNR) if for
every element a ∈ A there is an element b ∈ A such that a2b = a. Show that
A is VNR iff every ideal I of A is a radical ideal (that is, I is equal to its own
radical). [Hint: use Exercise 1.13(iii) on page 9 of your textbook.]

Suppose every ideal of A is radical. Then in particular

(a2) = {x ∈ A : xn ∈ Aa2 for some n > 0}.

Because a2 ∈ (a2), the above implies that a ∈ (a2). But this is just to say that there
is some b ∈ A such that a = ba2; i.e. that A is VNR.

Conversely, suppose that A is VNR. Fix x, a ∈ A and suppose that xn ∈ (a) for some
n > 0. We wish to show that x ∈ (a).4 By hypothesis, there is some b ∈ A such that
bx2 = x. Now suppose by way of induction that bkxk+1 = x for some k > 0. Then

bk+1xk+2 = b(bkxk+1)x = b(x)x = bx2 = x.

We conclude by induction that bkxk+1 = x for all k > 0—hence in particular that
bn−1xn = x.

Since xn ∈ (a), there is some u ∈ A such that xn = ua. Therefore if we denote
bn−1u = v ∈ A,

x = bn−1xn = bn−1ua = va,

so that x ∈ (a). This completes the proof. �

4This will complete the proof, since
√
(a) ⊃ (a) trivially.


