Commutative Algebra — Homework 3 David Nichols

PART 1

Exercise 2.6

For any A-module, let M [z] denote the set of all polynomials in x with coefficients
in M, that is to say expressions of the form

mo +mix + - +mpz’  (m; € M).

Defining the product of an element of A[z| and an element of M|[z] in the obvious
way, show that M|z] is an A[x]-module. Show that M[z] = Alzx] @4 M.

Observe that M][z] is an abelian group, and let S ma* € M[z] and Y\, a;2" €

Alx]. Then
<; aixi> (; mixi> = Z Z a,msx’

1=0 r+s=1

is an element of M|xz] since for each 7 > . . a,m; is in M, and furthermore this
multiplication is associative and distributive since polynomial multiplication is asso-

ciative and distributive. Thus M [z] has the structure of an A[zx]-module.

Now we will show that M[z| = A[z] ®4 M. For

M ®qy A[J?] =M (@A(L’l>

ieN
= EB (M ®a A;z:i) (Exercise 4, Assignment 2)
ieN
x~ @ Mz’ (Az" is free over 7, hence flat)
ieN

= M|z].



PART 2

Exercise 5.3

Let f: B — B’ be a homomorphism of A-algebras, and let C' be an A-algebra.
If f is integral, prove that f ®1: B®4 C — B’ ®,4 C is integral. (This includes
(5.6) ii) as a special case.)

Since f is integral, for every x € B’ there are by,...,b, € B such that
2"+ f(b)2" e f(boer)z + f(ba) = 0.
Then given any ¢ € C, we have (writing ® for ®4)

)"+ fRlbhd@ed)"  +- -+ fR1b @ ) (z©e)+ [ 1b, ®c")
= 2" @+ (f(b) @)@ @)+ A (fba-1) @) (x @ T + f(ba) @
= 2"+ f(b)a" '@ "+ + flbp1)r @ "+ f(by) @ "
= (2" + f(b)z" o f(bur)z + f(b) © "
= 0.

Thus f ® 1 is integral.



Exercise 5.8

()

(i)

Let A be a subring of an integral domain B, and let C' be
the integral closure of A in B. Let f, g be monic polynomials
in Blz] such that fg € C[z]. Then f,g are in Clz]. [Take
a field containing B in which the polynomials f, g split into
linear factors: say f =[[(z —&), g = [[(x —n;). Each & and
each n; is a root of fg, hence is integral over C'. Hence the
coefficients of f and g are integral over C']

Prove the same result without assuming that B (or A) is an
integral domain.

We follow the hint.

(i)

Identify B with its inclusion in its field of quotients k. Then there is a
splitting field F' of f and g containing k, hence containing B. Let f and g
have the factorizations

f=1le-¢&), g=]]@-m.

Since fg € Clz] and C' is the integral closure of A in B, each ; and each n;
is a root of a monic polynomial with coefficients in C, hence integral over
C'. Since the integral closure of A in B (namely C') is integrally closed in
B, this means that the & and n; are in C. But each coeflicient of f is a sum
of products of the &;, and each coefficient of ¢ is a sum of products of the
n;. Since C' is a ring, this means each coefficient of f and each coefficient
of ¢ is an element of C also. So f € C[z] and g € C[x].

Let b be a prime ideal of B and let a = ANb and ¢ = CNb. Then A/a,
B/b, and C/c¢ are integral domains, and by Proposition 5.6, C'/¢ is integral
over A/a, hence a subring of the integral closure of A/a in B/b. Since
f g € Clz], reducing everything mod b gives us f - § € (C/¢)[z], where f
and g are the reductions of f and g, respectively. Therefore by part (i) of
this exercise, f, € Diz], where D is the integral closure of A/a in B/b.
We wish to show f, g € Clz].

To see this, observe that nothing we have said so far depends on the choice
of prime ideal b of B. Thus we have proven that for any prime ideal b of



B, the coefficients of fand those of g are integral over A/a. We will show
that the coefficients are in fact in C. For suppose by way of contradiction
that there is some « € B\ C such that x + b is integral over A/a for every
prime ideal b of B. Define

S ={p(z) : p € A[t] monic}.

Since x ¢ C, z is not integral over A and so 0 ¢ S. Since also the product
of two monic polynomials over A is a monic polynomial over A, S is a
multiplicative submonoid of B. Thus by Lindenbaum’s lemma,! B\ S
is a prime ideal of B; choose this as our prime ideal b. Then using the
same notation as before, = + b is integral over A/a. Then there is a monic
polynomial over A/a with x+ b as a root. But this is just to say that there
is a monic polynomial over A which on x takes on a value in b = B\ S,
which contradicts the definition of S.

'T am unsure of the name of this result, which is given as a parenthetical note in Example 1
on p.38 of the textbook. The name “Lindenbaum’s lemma” is given to a family of similar facts in
logic.



Exercise 5.9

Let A be a subring of B and let C' be the integral closure of A in B. Prove that
Clz] is the integral closure of Alx] in Blx]. [If f € Bl[z] is integral over Alx],
then

" g f" g =0 (g € Afa]).
Let r be an integer larger than m and the degrees of g4, ..., g,, and let f; = f—a",
so that

(i) +q(fi+a)" -+ gm =0

or say
A+l 4y =0,

where h,, = (7)™ + g1 (x")™ ' + -+ + g € Alz]. Now apply Exercise 8 to the
polynomials —f; and f{" ' + Ay f" 2+ 4 hpy ]

Since x € C[z] and x is integral over C[z]; and since C' C C[z] and C' is integral over
Alx] since it is integral over A C A[z]; and since the set of elements of B[z] which
are integral over A[z] form a ring; and since every element of C[z] can be built up
from x and C' by means of ring operations, it follows that every element of C|x] is
integral over A[x]. Therefore if C[z] is integrally closed, then it is the integral closure
of Alz] in Blz].

To that end, let f € B[z| be integral over Clz]. We will show that f € C|x]. Let
g1, -+, 9n € C[z] be such that

fn—i—glfnil—f-"'—i_gnflf_'—gn:0'

Then
4 af" 4+ guif = —gn € Clal,

SO
FU o f" 2+ 4 gur) € Cla]

and by Exercise 5.8 above, this implies f € C|x] as well, completing the proof.



Exercise 5.28

Let A be an integral domain, K its field of fractions. Show that the following
are equivalent:

(1) A is a valuation ring of K;
(2) If a, b are any two ideals of A, then either a C b or b C a.

Deduce that if A is a valuation ring and p is a prime ideal of A, then A, and
A/p are valuation rings of their fields of fractions.

e (1)=(2). Let A be a valuation ring of K and a,b be any two ideals of A, and
suppose a ¢ b, and suppose by way of contradiction that b ¢ a. Then b # 0,
so there is some 0 # b € b, and there is some 0 # a € a\ b. Then since A
is a valuation ring of K, either a/b € A or b/a € A. But a/b € A implies
(a/b)b € b, i.e. a € b, which contradicts one of our hypotheses. But if on the
other hand b/a € A, then (b/a)a € a, i.e. b € a. But since this conclusion is
independent of our choice of nonzero b € b, it follows that b C a, which is a
contradiction. We conclude therefore that if a ¢ b, then b C a.

e (2)=(1). Let 0 # a,b € A. By hypothesis, either (a) C (b) or (b) C (a), so
either a = ¢b for some ¢ € A or else b = da for some d € A. If the first case
holds, then ¢ = a/b € A. Otherwise, d = b/a € A. Since the choice of a,b # 0
was arbitrary, it follows that A is a valuation ring of K.

Now suppose A is a valuation ring and p is a prime ideal of A. Then condition (2)
above holds of A, and so condition (2) holds of A, since containment of ideals is
a local property. Likewise, condition (2) holds of A/p by the 1-1 order-preserving
correspondence between ideals of A and ideals of A/p of Proposition 1.1.



Exercise 5.30

Let A be a valuation ring of a field K. The group U of units of A is a subgroup
of the multiplicative group K* of K.

Let I' = K*/U. If {,n € T are represented by z,y € K, define £ > 1 to mean
xy~! € A. Show that this defines a total ordering on I" which is compatible with
the group structure (i.e., £ > n = &w > nw for all w € I'). In other words, T is
a totally ordered abelian group. It is called the value group of A.

Let v : K* — T be the canonical homomorphism. Show that v(z + y) >
min(v(z),v(y)) for all z,y € K*.

We show that > is a total order.

e REFLEXIVITY. Suppose £ € I is represented by # € K. Since z2~! =1 € A,

£2¢€.

e TRANSITIVITY. Suppose &,n,w € I' are represented by z,y,w € K, respec-
tively, and that £ > n and n > w. Then 2y~ € A and yz~! € A4, so

ry lyz b=zt e A
Therefore £ > w.

e ANTISYMMETRY. Suppose &,n € I' are represented by z,y € K, respectively,
and that £ > nand n > €. Then 2y~ € A and yz~! € A. But 2y~ ! and yz~!
are inverses, so zy ! is a unit of A, hence of K; i.e. xy~! € U. This implies
En~! = ay™'U = 1 mod U, so € and ! are inverses, i.e. £ = .

e TOTALITY. Suppose &, 1 € I' are represented by x,y € K, respectively. Since
A is a valuation ring of K, either zy~! € A or else yz ! = (xy~!)~! € A, hence
either € > norn>¢&.

e COMPATIBILITY WITH THE GROUP STRUCTURE. Suppose &,n,w € I are
represented by z,y,w € K, respectively, and that & > 7. Then zy~! =

rww ly™! = (zw)(yw)~t € A. But this is just to say that fw > nw.

Now let z,y € K* and let v(z) = £ and v(y) = n and v(z + y) = w. Then we
will show that v(z + y) > min{v(z),v(y)}, i.e. that either w > £ or w > 1. From
the definition of >, this means that either (z + y)z™' = 1+ yz' € A or else
(x+y)y ' =1+xy ' € A But Ais a valuation ring of K, so either zy~! € A or
else (zy~')™' = yz~! € A, hence either 1 +zy~' € A or else 1 + yz~! € A. This
completes the proof.



PART 3

Exercise 5.31, corrected

Let I' be a totally ordered abelian group (written additively), and let K be a
field. A wvaluation of K with values in I' is a mapping v : K* — I" such that:

(1) vlay) = v(z) + v(y) and
(2)  ole+y) > minfo(x), v(y)}

for all x,y € K*. Show that the set A = {0}U{z € K* | v(z) > 0} is a valuation
ring of K. This ring is called the valuation ring of v, and the subgroup v(K*)
of I" is the value group of v. Describe the maximal ideal of A.

First we show that A is a ring.

e 0 € A, and for any y € K*, v(y) = v(ly) = v(1) + v(y). Thus v(1) = 0, so
1eA

e Suppose a,b € A. Then v(a + b) > min{v(a),v(b)} >0, so a+b € A.
e Suppose a,b € A. Then v(ab) = v(a) + v(b) > 0, so ab € A.
e Suppose a € A. Then a? € A, so
0 <v(a®) =v(—a-—a) =v(—a)+ v(—a),
so v(—a) > 0 and —a € A.
e A satisfies all the additional properties of a ring since it is a subset of K

satisfying the above properties.

Next, suppose € K*. We must show that either x € Aor 27! € A. But 0 = v(1) =
v(zaz~!) = v(x)+v(z™"), so it cannot be the case that both v(z) < 0 and v(z~1) < 0.
Hence one of z,z7 ! is in A.

Finally, the maximal ideal A is m = {z € K* | v(x) > 0}. It is an ideal by (1) and
(2), and it is maximal because it is the set of all non-units of A. Forifa € A is a
unit then 0 = v(1) = v(aa™!) = v(a) +v(a™ '), and since v(a),v(a™t) > 0 this implies
v(a) = v(a™') = 0. And the reasoning here runs in reverse, so conversely v(a) = 0
implies a is a unit in A.



PART 4

Let A be the ring of all Gaussian integers with even imaginary parts, i.e., all
a + 2bi, a and b integers, i> = —1. Prove that A is not integrally closed. What
is the integral closure of A?

Observe that +i ¢ A, since +i = 0+ 14 has odd imaginary part. However, the monic
polynomial 2% + 1 € A[z] since its coefficients have imaginary part 0, and has roots
+i. So ¢ and —i are integral over A but not in A. Thus A is not integrally closed.

Since ¢ and A are both integral over A, every Gaussian integer is integral over A.
Hence the ring G of all Gaussian integers is contained in the integral closure of A
(in the field of fractions of A). But G is a UFD, hence integrally closed. So G is the

integral closure of A.



