Part 1

Exercise 2.6

For any A-module, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form

$$m_0 + m_1 x + \dots + m_r x^r \quad (m_i \in M).$$

Defining the product of an element of A[x] and an element of M[x] in the obvious way, show that M[x] is an A[x]-module. Show that $M[x] \cong A[x] \otimes_A M$.

Observe that M[x] is an abelian group, and let $\sum_{i=0}^{k} m_i x^i \in M[x]$ and $\sum_{i=0}^{l} a_i x^i \in A[x]$. Then

$$\left(\sum_{i=0}^{l} a_i x^i\right) \left(\sum_{i=0}^{k} m_i x^i\right) = \sum_{i=0}^{k+l} \sum_{r+s=i} a_r m_s x^i$$

is an element of M[x] since for each $i \sum_{r+s=i} a_r m_s$ is in M, and furthermore this multiplication is associative and distributive since polynomial multiplication is associative and distributive. Thus M[x] has the structure of an A[x]-module.

Now we will show that $M[x] \cong A[x] \otimes_A M$. For

$$M \otimes_A A[x] = M \otimes_A \left(\bigoplus_{i \in \mathbb{N}} Ax^i \right)$$

$$\cong \bigoplus_{i \in \mathbb{N}} \left(M \otimes_A Ax^i \right) \qquad (\text{Exercise 4, Assignment 2})$$

$$\cong \bigoplus_{i \in \mathbb{N}} Mx^i \qquad (Ax^i \text{ is free over } i, \text{ hence flat})$$

$$= M[x].$$

Part 2

Exercise 5.3

Let $f: B \to B'$ be a homomorphism of A-algebras, and let C be an A-algebra. If f is integral, prove that $f \otimes 1: B \otimes_A C \to B' \otimes_A C$ is integral. (This includes (5.6) ii) as a special case.)

Since f is integral, for every $x \in B'$ there are $b_1, \ldots, b_n \in B$ such that

$$x^{n} + f(b_{1})x^{n-1} + \dots + f(b_{n-1})x + f(b_{n}) = 0.$$

Then given any $c \in C$, we have (writing \otimes for \otimes_A)

$$(x \otimes c)^{n} + f \otimes 1(b_{1} \otimes c)(x \otimes c)^{n-1} + \dots + f \otimes 1(b_{n-1} \otimes c^{n-1})(x \otimes c) + f \otimes 1(b_{n} \otimes c^{n})$$

$$= x^{n} \otimes c^{n} + (f(b_{1}) \otimes c)(x^{n-1} \otimes c^{n-1}) + \dots + (f(b_{n-1}) \otimes c)(x \otimes c^{n-1}) + f(b_{n}) \otimes c^{n}$$

$$= x^{n} \otimes c^{n} + f(b_{1})x^{n-1} \otimes c^{n} + \dots + f(b_{n-1})x \otimes c^{n} + f(b_{n}) \otimes c^{n}$$

$$= (x^{n} + f(b_{1})x^{n-1} + \dots + f(b_{n-1})x + f(b_{n})) \otimes c^{n}$$

$$= 0.$$

Thus $f \otimes 1$ is integral.

- (i) Let A be a subring of an integral domain B, and let C be the integral closure of A in B. Let f, g be monic polynomials in B[x] such that $fg \in C[x]$. Then f, g are in C[x]. [Take a field containing B in which the polynomials f, g split into linear factors: say $f = \prod (x - \xi_i), g = \prod (x - \eta_i)$. Each ξ_i and each η_i is a root of fg, hence is integral over C. Hence the coefficients of f and g are integral over C.]
- (ii) Prove the same result without assuming that B (or A) is an integral domain.

We follow the hint.

(i) Identify B with its inclusion in its field of quotients k. Then there is a splitting field F of f and g containing k, hence containing B. Let f and g have the factorizations

$$f = \prod (x - \xi_i), \quad g = \prod (x - \eta_i).$$

Since $fg \in C[x]$ and C is the integral closure of A in B, each ξ_i and each η_i is a root of a monic polynomial with coefficients in C, hence integral over C. Since the integral closure of A in B (namely C) is integrally closed in B, this means that the ξ_i and η_i are in C. But each coefficient of f is a sum of products of the ξ_i , and each coefficient of g is a sum of products of the η_i . Since C is a ring, this means each coefficient of f and each coefficient of g is an element of C also. So $f \in C[x]$ and $g \in C[x]$.

(ii) Let \mathfrak{b} be a prime ideal of B and let $\mathfrak{a} = A \cap \mathfrak{b}$ and $\mathfrak{c} = C \cap \mathfrak{b}$. Then A/\mathfrak{a} , B/\mathfrak{b} , and C/\mathfrak{c} are integral domains, and by Proposition 5.6, C/\mathfrak{c} is integral over A/\mathfrak{a} , hence a subring of the integral closure of A/\mathfrak{a} in B/\mathfrak{b} . Since $f \cdot g \in C[x]$, reducing everything mod \mathfrak{b} gives us $\widehat{f} \cdot \widehat{g} \in (C/\mathfrak{c})[x]$, where \widehat{f} and \widehat{g} are the reductions of f and g, respectively. Therefore by part (i) of this exercise, $\widehat{f}, \widehat{g} \in D[x]$, where D is the integral closure of A/\mathfrak{a} in B/\mathfrak{b} . We wish to show $f, g \in C[x]$.

To see this, observe that nothing we have said so far depends on the choice of prime ideal \mathfrak{b} of B. Thus we have proven that for *any* prime ideal \mathfrak{b} of

B, the coefficients of \hat{f} and those of \hat{g} are integral over A/\mathfrak{a} . We will show that the coefficients are in fact in *C*. For suppose by way of contradiction that there is some $x \in B \setminus C$ such that $x + \mathfrak{b}$ is integral over A/\mathfrak{a} for every prime ideal \mathfrak{b} of *B*. Define

$$S = \{p(x) : p \in A[t] \text{ monic}\}.$$

Since $x \notin C$, x is not integral over A and so $0 \notin S$. Since also the product of two monic polynomials over A is a monic polynomial over A, S is a multiplicative submonoid of B. Thus by Lindenbaum's lemma,¹ $B \setminus S$ is a prime ideal of B; choose this as our prime ideal \mathfrak{b} . Then using the same notation as before, $x + \mathfrak{b}$ is integral over A/\mathfrak{a} . Then there is a monic polynomial over A/\mathfrak{a} with $x + \mathfrak{b}$ as a root. But this is just to say that there is a monic polynomial over A which on x takes on a value in $\mathfrak{b} = B \setminus S$, which contradicts the definition of S.

 $^{^{1}}$ I am unsure of the name of this result, which is given as a parenthetical note in Example 1 on p.38 of the textbook. The name "Lindenbaum's lemma" is given to a family of similar facts in logic.

Let A be a subring of B and let C be the integral closure of A in B. Prove that C[x] is the integral closure of A[x] in B[x]. [If $f \in B[x]$ is integral over A[x], then

$$f^m + g_1 f^{m-1} + \dots + g_m = 0 \quad (g_i \in A[x]).$$

Let r be an integer larger than m and the degrees of g_1, \ldots, g_m and let $f_1 = f - x^r$, so that

$$(f_1 + x^r)^m + g_1(f_1 + x^r)^{m-1} + \dots + g_m = 0$$

or say

$$f_1^m + h_1 f_1^{m-1} + \dots + h_m = 0,$$

where $h_m = (x^r)^m + g_1(x^r)^{m-1} + \dots + g_m \in A[x]$. Now apply Exercise 8 to the polynomials $-f_1$ and $f_1^{m-1} + h_1 f_1^{m-2} + \dots + h_{m-1}$.]

Since $x \in C[x]$ and x is integral over C[x]; and since $C \subset C[x]$ and C is integral over A[x] since it is integral over $A \subset A[x]$; and since the set of elements of B[x] which are integral over A[x] form a ring; and since every element of C[x] can be built up from x and C by means of ring operations, it follows that every element of C[x] is integral over A[x]. Therefore if C[x] is integrally closed, then it is the integral closure of A[x] in B[x].

To that end, let $f \in B[x]$ be integral over C[x]. We will show that $f \in C[x]$. Let $g_1, \ldots, g_n \in C[x]$ be such that

$$f^n + g_1 f^{n-1} + \dots + g_{n-1} f + g_n = 0.$$

Then

$$f^n + g_1 f^{n-1} + \dots + g_{n-1} f = -g_n \in C[x],$$

 \mathbf{SO}

$$f(f^{n-1} + g_1 f^{n-2} + \dots + g_{n-1}) \in C[x]$$

and by Exercise 5.8 above, this implies $f \in C[x]$ as well, completing the proof.

Let A be an integral domain, K its field of fractions. Show that the following are equivalent:

- (1) A is a valuation ring of K;
- (2) If \mathfrak{a} , \mathfrak{b} are any two ideals of A, then either $\mathfrak{a} \subseteq \mathfrak{b}$ or $\mathfrak{b} \subseteq \mathfrak{a}$.

Deduce that if A is a valuation ring and \mathfrak{p} is a prime ideal of A, then $A_{\mathfrak{p}}$ and A/\mathfrak{p} are valuation rings of their fields of fractions.

- (1)⇒(2). Let A be a valuation ring of K and a, b be any two ideals of A, and suppose a ⊄ b, and suppose by way of contradiction that b ⊄ a. Then b ≠ 0, so there is some 0 ≠ b ∈ b, and there is some 0 ≠ a ∈ a \ b. Then since A is a valuation ring of K, either a/b ∈ A or b/a ∈ A. But a/b ∈ A implies (a/b)b ∈ b, i.e. a ∈ b, which contradicts one of our hypotheses. But if on the other hand b/a ∈ A, then (b/a)a ∈ a, i.e. b ∈ a. But since this conclusion is independent of our choice of nonzero b ∈ b, it follows that b ⊂ a, which is a contradiction. We conclude therefore that if a ⊄ b, then b ⊂ a.
- $(2) \Rightarrow (1)$. Let $0 \neq a, b \in A$. By hypothesis, either $(a) \subset (b)$ or $(b) \subset (a)$, so either a = cb for some $c \in A$ or else b = da for some $d \in A$. If the first case holds, then $c = a/b \in A$. Otherwise, $d = b/a \in A$. Since the choice of $a, b \neq 0$ was arbitrary, it follows that A is a valuation ring of K.

Now suppose A is a valuation ring and \mathfrak{p} is a prime ideal of A. Then condition (2) above holds of A, and so condition (2) holds of $A_{\mathfrak{p}}$ since containment of ideals is a local property. Likewise, condition (2) holds of A/\mathfrak{p} by the 1-1 order-preserving correspondence between ideals of A and ideals of A/\mathfrak{p} of Proposition 1.1.

Let A be a valuation ring of a field K. The group U of units of A is a subgroup of the multiplicative group K^* of K.

Let $\Gamma = K^*/U$. If $\xi, \eta \in \Gamma$ are represented by $x, y \in K$, define $\xi \geq \eta$ to mean $xy^{-1} \in A$. Show that this defines a total ordering on Γ which is compatible with the group structure (i.e., $\xi \geq \eta \Rightarrow \xi \omega \geq \eta \omega$ for all $\omega \in \Gamma$). In other words, Γ is a totally ordered abelian group. It is called the *value group* of A.

Let $v : K^* \to \Gamma$ be the canonical homomorphism. Show that $v(x+y) \ge \min(v(x), v(y))$ for all $x, y \in K^*$.

We show that \geq is a total order.

- REFLEXIVITY. Suppose $\xi \in \Gamma$ is represented by $x \in K$. Since $xx^{-1} = 1 \in A$, $\xi \geq \xi$.
- TRANSITIVITY. Suppose $\xi, \eta, \omega \in \Gamma$ are represented by $x, y, w \in K$, respectively, and that $\xi \geq \eta$ and $\eta \geq \omega$. Then $xy^{-1} \in A$ and $yz^{-1} \in A$, so

$$xy^{-1}yz^{-1} = xz^{-1} \in A.$$

Therefore $\xi \geq \omega$.

- ANTISYMMETRY. Suppose $\xi, \eta \in \Gamma$ are represented by $x, y \in K$, respectively, and that $\xi \geq \eta$ and $\eta \geq \xi$. Then $xy^{-1} \in A$ and $yx^{-1} \in A$. But xy^{-1} and yx^{-1} are inverses, so xy^{-1} is a unit of A, hence of K; i.e. $xy^{-1} \in U$. This implies $\xi\eta^{-1} = xy^{-1}U = 1 \mod U$, so ξ and η^{-1} are inverses, i.e. $\xi = \eta$.
- TOTALITY. Suppose $\xi, \eta \in \Gamma$ are represented by $x, y \in K$, respectively. Since A is a valuation ring of K, either $xy^{-1} \in A$ or else $yx^{-1} = (xy^{-1})^{-1} \in A$, hence either $\xi \geq \eta$ or $\eta \geq \xi$.
- COMPATIBILITY WITH THE GROUP STRUCTURE. Suppose $\xi, \eta, \omega \in \Gamma$ are represented by $x, y, w \in K$, respectively, and that $\xi \geq \eta$. Then $xy^{-1} = xww^{-1}y^{-1} = (xw)(yw)^{-1} \in A$. But this is just to say that $\xi \omega \geq \eta \omega$.

Now let $x, y \in K^*$ and let $v(x) = \xi$ and $v(y) = \eta$ and $v(x + y) = \omega$. Then we will show that $v(x + y) \ge \min\{v(x), v(y)\}$, i.e. that either $\omega \ge \xi$ or $\omega \ge \eta$. From the definition of \ge , this means that either $(x + y)x^{-1} = 1 + yx^{-1} \in A$ or else $(x + y)y^{-1} = 1 + xy^{-1} \in A$. But A is a valuation ring of K, so either $xy^{-1} \in A$ or else $(xy^{-1})^{-1} = yx^{-1} \in A$, hence either $1 + xy^{-1} \in A$ or else $1 + yx^{-1} \in A$. This completes the proof.

$\underline{PART 3}$

Exercise 5.31, corrected

Let Γ be a totally ordered abelian group (written additively), and let K be a field. A valuation of K with values in Γ is a mapping $v : K^* \to \Gamma$ such that:

- (1) v(xy) = v(x) + v(y) and
- (2) $v(x+y) \ge \min\{v(x), v(y)\}$

for all $x, y \in K^*$. Show that the set $A = \{0\} \cup \{x \in K^* \mid v(x) \ge 0\}$ is a valuation ring of K. This ring is called the *valuation ring of* v, and the subgroup $v(K^*)$ of Γ is the *value group of* v. Describe the maximal ideal of A.

First we show that A is a ring.

- $0 \in A$, and for any $y \in K^*$, v(y) = v(1y) = v(1) + v(y). Thus v(1) = 0, so $1 \in A$.
- Suppose $a, b \in A$. Then $v(a+b) \ge \min\{v(a), v(b)\} \ge 0$, so $a+b \in A$.
- Suppose $a, b \in A$. Then $v(ab) = v(a) + v(b) \ge 0$, so $ab \in A$.
- Suppose $a \in A$. Then $a^2 \in A$, so

$$0 \le v(a^2) = v(-a \cdot -a) = v(-a) + v(-a),$$

so $v(-a) \ge 0$ and $-a \in A$.

• A satisfies all the additional properties of a ring since it is a subset of K satisfying the above properties.

Next, suppose $x \in K^*$. We must show that either $x \in A$ or $x^{-1} \in A$. But $0 = v(1) = v(xx^{-1}) = v(x) + v(x^{-1})$, so it cannot be the case that both v(x) < 0 and $v(x^{-1}) < 0$. Hence one of x, x^{-1} is in A.

Finally, the maximal ideal A is $\mathfrak{m} = \{x \in K^* \mid v(x) > 0\}$. It is an ideal by (1) and (2), and it is maximal because it is the set of all non-units of A. For if $a \in A$ is a unit then $0 = v(1) = v(aa^{-1}) = v(a) + v(a^{-1})$, and since $v(a), v(a^{-1}) \ge 0$ this implies $v(a) = v(a^{-1}) = 0$. And the reasoning here runs in reverse, so conversely v(a) = 0 implies a is a unit in A.

$\underline{PART 4}$

Let A be the ring of all Gaussian integers with even imaginary parts, i.e., all a + 2bi, a and b integers, $i^2 = -1$. Prove that A is not integrally closed. What is the integral closure of A?

Observe that $\pm i \notin A$, since $\pm i = 0 \pm 1i$ has odd imaginary part. However, the monic polynomial $x^2 + 1 \in A[x]$ since its coefficients have imaginary part 0, and has roots $\pm i$. So i and -i are integral over A but not in A. Thus A is not integrally closed.

Since i and A are both integral over A, every Gaussian integer is integral over A. Hence the ring G of all Gaussian integers is contained in the integral closure of A (in the field of fractions of A). But G is a UFD, hence integrally closed. So G is the integral closure of A.