$\underline{\text { PART } 1}$

Exercise 2.6

For any A-module, let $M[x]$ denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form

$$
m_{0}+m_{1} x+\cdots+m_{r} x^{r} \quad\left(m_{i} \in M\right) .
$$

Defining the product of an element of $A[x]$ and an element of $M[x]$ in the obvious way, show that $M[x]$ is an $A[x]$-module. Show that $M[x] \cong A[x] \otimes_{A} M$.

Observe that $M[x]$ is an abelian group, and let $\sum_{i=0}^{k} m_{i} x^{i} \in M[x]$ and $\sum_{i=0}^{l} a_{i} x^{i} \in$ $A[x]$. Then

$$
\left(\sum_{i=0}^{l} a_{i} x^{i}\right)\left(\sum_{i=0}^{k} m_{i} x^{i}\right)=\sum_{i=0}^{k+l} \sum_{r+s=i} a_{r} m_{s} x^{i}
$$

is an element of $M[x]$ since for each $i \sum_{r+s=i} a_{r} m_{s}$ is in M, and furthermore this multiplication is associative and distributive since polynomial multiplication is associative and distributive. Thus $M[x]$ has the structure of an $A[x]$-module.
Now we will show that $M[x] \cong A[x] \otimes_{A} M$. For

$$
\begin{array}{rlr}
M \otimes_{A} A[x] & =M \otimes_{A}\left(\bigoplus_{i \in \mathbb{N}} A x^{i}\right) & \\
& \cong \bigoplus_{i \in \mathbb{N}}\left(M \otimes_{A} A x^{i}\right) & \\
& \cong \bigoplus_{i \in \mathbb{N}} M x^{i} & \\
& =M[x] . &
\end{array}
$$

PART 2

Exercise 5.3

Let $f: B \rightarrow B^{\prime}$ be a homomorphism of A-algebras, and let C be an A-algebra. If f is integral, prove that $f \otimes 1: B \otimes_{A} C \rightarrow B^{\prime} \otimes_{A} C$ is integral. (This includes (5.6) ii) as a special case.)

Since f is integral, for every $x \in B^{\prime}$ there are $b_{1}, \ldots, b_{n} \in B$ such that

$$
x^{n}+f\left(b_{1}\right) x^{n-1}+\cdots+f\left(b_{n-1}\right) x+f\left(b_{n}\right)=0 .
$$

Then given any $c \in C$, we have (writing \otimes for \otimes_{A})

$$
\begin{aligned}
& (x \otimes c)^{n}+f \otimes 1\left(b_{1} \otimes c\right)(x \otimes c)^{n-1}+\cdots+f \otimes 1\left(b_{n-1} \otimes c^{n-1}\right)(x \otimes c)+f \otimes 1\left(b_{n} \otimes c^{n}\right) \\
= & x^{n} \otimes c^{n}+\left(f\left(b_{1}\right) \otimes c\right)\left(x^{n-1} \otimes c^{n-1}\right)+\cdots+\left(f\left(b_{n-1}\right) \otimes c\right)\left(x \otimes c^{n-1}\right)+f\left(b_{n}\right) \otimes c^{n} \\
= & x^{n} \otimes c^{n}+f\left(b_{1}\right) x^{n-1} \otimes c^{n}+\cdots+f\left(b_{n-1}\right) x \otimes c^{n}+f\left(b_{n}\right) \otimes c^{n} \\
= & \left(x^{n}+f\left(b_{1}\right) x^{n-1}+\cdots+f\left(b_{n-1}\right) x+f\left(b_{n}\right)\right) \otimes c^{n} \\
= & 0 .
\end{aligned}
$$

Thus $f \otimes 1$ is integral.

Exercise 5.8

(i) Let A be a subring of an integral domain B, and let C be the integral closure of A in B. Let f, g be monic polynomials in $B[x]$ such that $f g \in C[x]$. Then f, g are in $C[x]$. [Take a field containing B in which the polynomials f, g split into linear factors: say $f=\Pi\left(x-\xi_{i}\right), g=\Pi\left(x-\eta_{i}\right)$. Each ξ_{i} and each η_{i} is a root of $f g$, hence is integral over C. Hence the coefficients of f and g are integral over C.]
(ii) Prove the same result without assuming that B (or A) is an integral domain.

We follow the hint.
(i) Identify B with its inclusion in its field of quotients k. Then there is a splitting field F of f and g containing k, hence containing B. Let f and g have the factorizations

$$
f=\prod\left(x-\xi_{i}\right), \quad g=\prod\left(x-\eta_{i}\right) .
$$

Since $f g \in C[x]$ and C is the integral closure of A in B, each ξ_{i} and each η_{i} is a root of a monic polynomial with coefficients in C, hence integral over C. Since the integral closure of A in B (namely C) is integrally closed in B, this means that the ξ_{i} and η_{i} are in C. But each coefficient of f is a sum of products of the ξ_{i}, and each coefficient of g is a sum of products of the η_{i}. Since C is a ring, this means each coefficient of f and each coefficient of g is an element of C also. So $f \in C[x]$ and $g \in C[x]$.
(ii) Let \mathfrak{b} be a prime ideal of B and let $\mathfrak{a}=A \cap \mathfrak{b}$ and $\mathfrak{c}=C \cap \mathfrak{b}$. Then A / \mathfrak{a}, B / \mathfrak{b}, and C / \mathfrak{c} are integral domains, and by Proposition 5.6, C / \mathfrak{c} is integral over A / \mathfrak{a}, hence a subring of the integral closure of A / \mathfrak{a} in B / \mathfrak{b}. Since $f \cdot g \in C[x]$, reducing everything mod \mathfrak{b} gives us $\widehat{f} \cdot \widehat{g} \in(C / \mathfrak{c})[x]$, where \widehat{f} and \widehat{g} are the reductions of f and g, respectively. Therefore by part (i) of this exercise, $\widehat{f}, \widehat{g} \in D[x]$, where D is the integral closure of A / \mathfrak{a} in B / \mathfrak{b}. We wish to show $f, g \in C[x]$.
To see this, observe that nothing we have said so far depends on the choice of prime ideal \mathfrak{b} of B. Thus we have proven that for any prime ideal \mathfrak{b} of
B, the coefficients of \widehat{f} and those of \widehat{g} are integral over A / \mathfrak{a}. We will show that the coefficients are in fact in C. For suppose by way of contradiction that there is some $x \in B \backslash C$ such that $x+\mathfrak{b}$ is integral over A / \mathfrak{a} for every prime ideal \mathfrak{b} of B. Define

$$
S=\{p(x): p \in A[t] \text { monic }\}
$$

Since $x \notin C, x$ is not integral over A and so $0 \notin S$. Since also the product of two monic polynomials over A is a monic polynomial over A, S is a multiplicative submonoid of B. Thus by Lindenbaum's lemma, ${ }^{1} B \backslash S$ is a prime ideal of B; choose this as our prime ideal \mathfrak{b}. Then using the same notation as before, $x+\mathfrak{b}$ is integral over A / \mathfrak{a}. Then there is a monic polynomial over A / \mathfrak{a} with $x+\mathfrak{b}$ as a root. But this is just to say that there is a monic polynomial over A which on x takes on a value in $\mathfrak{b}=B \backslash S$, which contradicts the definition of S.

[^0]
Exercise 5.9

Let A be a subring of B and let C be the integral closure of A in B. Prove that $C[x]$ is the integral closure of $A[x]$ in $B[x]$. [If $f \in B[x]$ is integral over $A[x]$, then

$$
f^{m}+g_{1} f^{m-1}+\cdots+g_{m}=0 \quad\left(g_{i} \in A[x]\right) .
$$

Let r be an integer larger than m and the degrees of g_{1}, \ldots, g_{m} and let $f_{1}=f-x^{r}$, so that

$$
\left(f_{1}+x^{r}\right)^{m}+g_{1}\left(f_{1}+x^{r}\right)^{m-1}+\cdots+g_{m}=0
$$

or say

$$
f_{1}^{m}+h_{1} f_{1}^{m-1}+\cdots+h_{m}=0
$$

where $h_{m}=\left(x^{r}\right)^{m}+g_{1}\left(x^{r}\right)^{m-1}+\cdots+g_{m} \in A[x]$. Now apply Exercise 8 to the polynomials $-f_{1}$ and $f_{1}^{m-1}+h_{1} f_{1}^{m-2}+\cdots+h_{m-1}$.]

Since $x \in C[x]$ and x is integral over $C[x]$; and since $C \subset C[x]$ and C is integral over $A[x]$ since it is integral over $A \subset A[x]$; and since the set of elements of $B[x]$ which are integral over $A[x]$ form a ring; and since every element of $C[x]$ can be built up from x and C by means of ring operations, it follows that every element of $C[x]$ is integral over $A[x]$. Therefore if $C[x]$ is integrally closed, then it is the integral closure of $A[x]$ in $B[x]$.
To that end, let $f \in B[x]$ be integral over $C[x]$. We will show that $f \in C[x]$. Let $g_{1}, \ldots, g_{n} \in C[x]$ be such that

$$
f^{n}+g_{1} f^{n-1}+\cdots+g_{n-1} f+g_{n}=0
$$

Then

$$
f^{n}+g_{1} f^{n-1}+\cdots+g_{n-1} f=-g_{n} \in C[x]
$$

so

$$
f\left(f^{n-1}+g_{1} f^{n-2}+\cdots+g_{n-1}\right) \in C[x]
$$

and by Exercise 5.8 above, this implies $f \in C[x]$ as well, completing the proof.

Exercise 5.28

Let A be an integral domain, K its field of fractions. Show that the following are equivalent:
(1) $\quad A$ is a valuation ring of K;
(2) If $\mathfrak{a}, \mathfrak{b}$ are any two ideals of A, then either $\mathfrak{a} \subseteq \mathfrak{b}$ or $\mathfrak{b} \subseteq \mathfrak{a}$.

Deduce that if A is a valuation ring and \mathfrak{p} is a prime ideal of A, then $A_{\mathfrak{p}}$ and A / \mathfrak{p} are valuation rings of their fields of fractions.

- (1) $\Rightarrow(2)$. Let A be a valuation ring of K and $\mathfrak{a}, \mathfrak{b}$ be any two ideals of A, and suppose $\mathfrak{a} \not \subset \mathfrak{b}$, and suppose by way of contradiction that $\mathfrak{b} \not \subset \mathfrak{a}$. Then $\mathfrak{b} \neq 0$, so there is some $0 \neq b \in \mathfrak{b}$, and there is some $0 \neq a \in \mathfrak{a} \backslash \mathfrak{b}$. Then since A is a valuation ring of K, either $a / b \in A$ or $b / a \in A$. But $a / b \in A$ implies $(a / b) b \in \mathfrak{b}$, i.e. $a \in \mathfrak{b}$, which contradicts one of our hypotheses. But if on the other hand $b / a \in A$, then $(b / a) a \in \mathfrak{a}$, i.e. $b \in \mathfrak{a}$. But since this conclusion is independent of our choice of nonzero $b \in \mathfrak{b}$, it follows that $\mathfrak{b} \subset \mathfrak{a}$, which is a contradiction. We conclude therefore that if $\mathfrak{a} \not \subset \mathfrak{b}$, then $\mathfrak{b} \subset \mathfrak{a}$.
- $(2) \Rightarrow(1)$. Let $0 \neq a, b \in A$. By hypothesis, either $(a) \subset(b)$ or $(b) \subset(a)$, so either $a=c b$ for some $c \in A$ or else $b=d a$ for some $d \in A$. If the first case holds, then $c=a / b \in A$. Otherwise, $d=b / a \in A$. Since the choice of $a, b \neq 0$ was arbitrary, it follows that A is a valuation ring of K.

Now suppose A is a valuation ring and \mathfrak{p} is a prime ideal of A. Then condition (2) above holds of A, and so condition (2) holds of $A_{\mathfrak{p}}$ since containment of ideals is a local property. Likewise, condition (2) holds of A / \mathfrak{p} by the $1-1$ order-preserving correspondence between ideals of A and ideals of A / \mathfrak{p} of Proposition 1.1.

Exercise 5.30

> Let A be a valuation ring of a field K. The group U of units of A is a subgroup of the multiplicative group K^{*} of K.
> Let $\Gamma=K^{*} / U$. If $\xi, \eta \in \Gamma$ are represented by $x, y \in K$, define $\xi \geq \eta$ to mean $x y^{-1} \in A$. Show that this defines a total ordering on Γ which is compatible with the group structure (i.e., $\xi \geq \eta \Rightarrow \xi \omega \geq \eta \omega$ for all $\omega \in \Gamma$. In other words, Γ is a totally ordered abelian group. It is called the value group of A.
> Let $v: K^{*} \rightarrow \Gamma$ be the canonical homomorphism. Show that $v(x+y) \geq$ $\min (v(x), v(y))$ for all $x, y \in K^{*}$.

We show that \geq is a total order.

- Reflexivity. Suppose $\xi \in \Gamma$ is represented by $x \in K$. Since $x x^{-1}=1 \in A$, $\xi \geq \xi$.
- Transitivity. Suppose $\xi, \eta, \omega \in \Gamma$ are represented by $x, y, w \in K$, respectively, and that $\xi \geq \eta$ and $\eta \geq \omega$. Then $x y^{-1} \in A$ and $y z^{-1} \in A$, so

$$
x y^{-1} y z^{-1}=x z^{-1} \in A .
$$

Therefore $\xi \geq \omega$.

- Antisymmetry. Suppose $\xi, \eta \in \Gamma$ are represented by $x, y \in K$, respectively, and that $\xi \geq \eta$ and $\eta \geq \xi$. Then $x y^{-1} \in A$ and $y x^{-1} \in A$. But $x y^{-1}$ and $y x^{-1}$ are inverses, so $x y^{-1}$ is a unit of A, hence of K; i.e. $x y^{-1} \in U$. This implies $\xi \eta^{-1}=x y^{-1} U=1 \bmod U$, so ξ and η^{-1} are inverses, i.e. $\xi=\eta$.
- Totality. Suppose $\xi, \eta \in \Gamma$ are represented by $x, y \in K$, respectively. Since A is a valuation ring of K, either $x y^{-1} \in A$ or else $y x^{-1}=\left(x y^{-1}\right)^{-1} \in A$, hence either $\xi \geq \eta$ or $\eta \geq \xi$.
- Compatibility with the group structure. Suppose $\xi, \eta, \omega \in \Gamma$ are represented by $x, y, w \in K$, respectively, and that $\xi \geq \eta$. Then $x y^{-1}=$ $x w w^{-1} y^{-1}=(x w)(y w)^{-1} \in A$. But this is just to say that $\xi \omega \geq \eta \omega$.

Now let $x, y \in K^{*}$ and let $v(x)=\xi$ and $v(y)=\eta$ and $v(x+y)=\omega$. Then we will show that $v(x+y) \geq \min \{v(x), v(y)\}$, i.e. that either $\omega \geq \xi$ or $\omega \geq \eta$. From the definition of \geq, this means that either $(x+y) x^{-1}=1+y x^{-1} \in A$ or else $(x+y) y^{-1}=1+x y^{-1} \in A$. But A is a valuation ring of K, so either $x y^{-1} \in A$ or else $\left(x y^{-1}\right)^{-1}=y x^{-1} \in A$, hence either $1+x y^{-1} \in A$ or else $1+y x^{-1} \in A$. This completes the proof.

$\underline{\text { PART } 3}$

Exercise 5.31, corrected

Let Γ be a totally ordered abelian group (written additively), and let K be a field. A valuation of K with values in Γ is a mapping $v: K^{*} \rightarrow \Gamma$ such that:

$$
\begin{array}{ll}
\text { (1) } & v(x y)=v(x)+v(y) \text { and } \tag{1}\\
(2) & v(x+y) \geq \min \{v(x), v(y)\}
\end{array}
$$

for all $x, y \in K^{*}$. Show that the set $A=\{0\} \cup\left\{x \in K^{*} \mid v(x) \geq 0\right\}$ is a valuation ring of K. This ring is called the valuation ring of v, and the subgroup $v\left(K^{*}\right)$ of Γ is the value group of v. Describe the maximal ideal of A.

First we show that A is a ring.

- $0 \in A$, and for any $y \in K^{*}, v(y)=v(1 y)=v(1)+v(y)$. Thus $v(1)=0$, so $1 \in A$.
- Suppose $a, b \in A$. Then $v(a+b) \geq \min \{v(a), v(b)\} \geq 0$, so $a+b \in A$.
- Suppose $a, b \in A$. Then $v(a b)=v(a)+v(b) \geq 0$, so $a b \in A$.
- Suppose $a \in A$. Then $a^{2} \in A$, so

$$
0 \leq v\left(a^{2}\right)=v(-a \cdot-a)=v(-a)+v(-a)
$$

so $v(-a) \geq 0$ and $-a \in A$.

- A satisfies all the additional properties of a ring since it is a subset of K satisfying the above properties.

Next, suppose $x \in K^{*}$. We must show that either $x \in A$ or $x^{-1} \in A$. But $0=v(1)=$ $v\left(x x^{-1}\right)=v(x)+v\left(x^{-1}\right)$, so it cannot be the case that both $v(x)<0$ and $v\left(x^{-1}\right)<0$. Hence one of x, x^{-1} is in A.
Finally, the maximal ideal A is $\mathfrak{m}=\left\{x \in K^{*} \mid v(x)>0\right\}$. It is an ideal by (1) and (2), and it is maximal because it is the set of all non-units of A. For if $a \in A$ is a unit then $0=v(1)=v\left(a a^{-1}\right)=v(a)+v\left(a^{-1}\right)$, and since $v(a), v\left(a^{-1}\right) \geq 0$ this implies $v(a)=v\left(a^{-1}\right)=0$. And the reasoning here runs in reverse, so conversely $v(a)=0$ implies a is a unit in A.

$\underline{\text { PART } 4}$

Let A be the ring of all Gaussian integers with even imaginary parts, i.e., all $a+2 b i, a$ and b integers, $i^{2}=-1$. Prove that A is not integrally closed. What is the integral closure of A ?

Observe that $\pm i \notin A$, since $\pm i=0 \pm 1 i$ has odd imaginary part. However, the monic polynomial $x^{2}+1 \in A[x]$ since its coefficients have imaginary part 0 , and has roots $\pm i$. So i and $-i$ are integral over A but not in A. Thus A is not integrally closed.
Since i and A are both integral over A, every Gaussian integer is integral over A. Hence the ring G of all Gaussian integers is contained in the integral closure of A (in the field of fractions of A). But G is a UFD, hence integrally closed. So G is the integral closure of A.

[^0]: ${ }^{1}$ I am unsure of the name of this result, which is given as a parenthetical note in Example 1 on p. 38 of the textbook. The name "Lindenbaum's lemma" is given to a family of similar facts in logic.

