
Commutative Algebra – Homework 3 David Nichols

Part 1

Exercise 2.6

For any A-module, letM [x] denote the set of all polynomials in x with coefficients
in M , that is to say expressions of the form

m0 +m1x+ · · ·+mrx
r (mi ∈M).

Defining the product of an element of A[x] and an element of M [x] in the obvious
way, show that M [x] is an A[x]-module. Show that M [x] ∼= A[x]⊗A M .

Observe that M [x] is an abelian group, and let
∑k

i=0mix
i ∈ M [x] and
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is an element of M [x] since for each i
∑

r+s=i arms is in M , and furthermore this
multiplication is associative and distributive since polynomial multiplication is asso-
ciative and distributive. Thus M [x] has the structure of an A[x]-module.

Now we will show that M [x] ∼= A[x]⊗A M . For

M ⊗A A[x] = M ⊗A

(⊕
i∈N

Axi

)
∼=
⊕
i∈N

(
M ⊗A Ax

i
)

(Exercise 4, Assignment 2)

∼=
⊕
i∈N

Mxi (Axi is free over i, hence flat)

= M [x].



Part 2

Exercise 5.3

Let f : B → B′ be a homomorphism of A-algebras, and let C be an A-algebra.
If f is integral, prove that f ⊗ 1 : B ⊗A C → B′⊗A C is integral. (This includes
(5.6) ii) as a special case.)

Since f is integral, for every x ∈ B′ there are b1, . . . , bn ∈ B such that

xn + f(b1)x
n−1 + · · ·+ f(bn−1)x+ f(bn) = 0.

Then given any c ∈ C, we have (writing ⊗ for ⊗A)

(x⊗ c)n + f ⊗ 1(b1 ⊗ c)(x⊗ c)n−1 + · · ·+ f ⊗ 1(bn−1 ⊗ cn−1)(x⊗ c) + f ⊗ 1(bn ⊗ cn)

= xn ⊗ cn + (f(b1)⊗ c)(xn−1 ⊗ cn−1) + · · ·+ (f(bn−1)⊗ c)(x⊗ cn−1) + f(bn)⊗ cn

= xn ⊗ cn + f(b1)x
n−1 ⊗ cn + · · ·+ f(bn−1)x⊗ cn + f(bn)⊗ cn

= (xn + f(b1)x
n−1 + · · ·+ f(bn−1)x+ f(bn))⊗ cn

= 0.

Thus f ⊗ 1 is integral.



Exercise 5.8

(i) Let A be a subring of an integral domain B, and let C be
the integral closure of A in B. Let f, g be monic polynomials
in B[x] such that fg ∈ C[x]. Then f, g are in C[x]. [Take
a field containing B in which the polynomials f, g split into
linear factors: say f =

∏
(x− ξi), g =

∏
(x− ηi). Each ξi and

each ηi is a root of fg, hence is integral over C. Hence the
coefficients of f and g are integral over C.]

(ii) Prove the same result without assuming that B (or A) is an
integral domain.

We follow the hint.

(i) Identify B with its inclusion in its field of quotients k. Then there is a
splitting field F of f and g containing k, hence containing B. Let f and g
have the factorizations

f =
∏

(x− ξi), g =
∏

(x− ηi).

Since fg ∈ C[x] and C is the integral closure of A in B, each ξi and each ηi
is a root of a monic polynomial with coefficients in C, hence integral over
C. Since the integral closure of A in B (namely C) is integrally closed in
B, this means that the ξi and ηi are in C. But each coefficient of f is a sum
of products of the ξi, and each coefficient of g is a sum of products of the
ηi. Since C is a ring, this means each coefficient of f and each coefficient
of g is an element of C also. So f ∈ C[x] and g ∈ C[x].

(ii) Let b be a prime ideal of B and let a = A ∩ b and c = C ∩ b. Then A/a,
B/b, and C/c are integral domains, and by Proposition 5.6, C/c is integral
over A/a, hence a subring of the integral closure of A/a in B/b. Since

f · g ∈ C[x], reducing everything mod b gives us f̂ · ĝ ∈ (C/c)[x], where f̂
and ĝ are the reductions of f and g, respectively. Therefore by part (i) of

this exercise, f̂ , ĝ ∈ D[x], where D is the integral closure of A/a in B/b.
We wish to show f, g ∈ C[x].

To see this, observe that nothing we have said so far depends on the choice
of prime ideal b of B. Thus we have proven that for any prime ideal b of



B, the coefficients of f̂ and those of ĝ are integral over A/a. We will show
that the coefficients are in fact in C. For suppose by way of contradiction
that there is some x ∈ B \C such that x+ b is integral over A/a for every
prime ideal b of B. Define

S = {p(x) : p ∈ A[t] monic}.

Since x /∈ C, x is not integral over A and so 0 /∈ S. Since also the product
of two monic polynomials over A is a monic polynomial over A, S is a
multiplicative submonoid of B. Thus by Lindenbaum’s lemma,1 B \ S
is a prime ideal of B; choose this as our prime ideal b. Then using the
same notation as before, x+ b is integral over A/a. Then there is a monic
polynomial over A/a with x+b as a root. But this is just to say that there
is a monic polynomial over A which on x takes on a value in b = B \ S,
which contradicts the definition of S.

1I am unsure of the name of this result, which is given as a parenthetical note in Example 1
on p.38 of the textbook. The name “Lindenbaum’s lemma” is given to a family of similar facts in
logic.



Exercise 5.9

Let A be a subring of B and let C be the integral closure of A in B. Prove that
C[x] is the integral closure of A[x] in B[x]. [If f ∈ B[x] is integral over A[x],
then

fm + g1f
m−1 + · · ·+ gm = 0 (gi ∈ A[x]).

Let r be an integer larger than m and the degrees of g1, . . . , gm and let f1 = f−xr,
so that

(f1 + xr)m + g1(f1 + xr)m−1 + · · ·+ gm = 0

or say
fm
1 + h1f

m−1
1 + · · ·+ hm = 0,

where hm = (xr)m + g1(x
r)m−1 + · · · + gm ∈ A[x]. Now apply Exercise 8 to the

polynomials −f1 and fm−1
1 + h1f

m−2
1 + · · ·+ hm−1.]

Since x ∈ C[x] and x is integral over C[x]; and since C ⊂ C[x] and C is integral over
A[x] since it is integral over A ⊂ A[x]; and since the set of elements of B[x] which
are integral over A[x] form a ring; and since every element of C[x] can be built up
from x and C by means of ring operations, it follows that every element of C[x] is
integral over A[x]. Therefore if C[x] is integrally closed, then it is the integral closure
of A[x] in B[x].

To that end, let f ∈ B[x] be integral over C[x]. We will show that f ∈ C[x]. Let
g1, . . . , gn ∈ C[x] be such that

fn + g1f
n−1 + · · ·+ gn−1f + gn = 0.

Then
fn + g1f

n−1 + · · ·+ gn−1f = −gn ∈ C[x],

so
f
(
fn−1 + g1f

n−2 + · · ·+ gn−1
)
∈ C[x]

and by Exercise 5.8 above, this implies f ∈ C[x] as well, completing the proof.



Exercise 5.28

Let A be an integral domain, K its field of fractions. Show that the following
are equivalent:

(1) A is a valuation ring of K;

(2) If a, b are any two ideals of A, then either a ⊆ b or b ⊆ a.

Deduce that if A is a valuation ring and p is a prime ideal of A, then Ap and
A/p are valuation rings of their fields of fractions.

• (1)⇒(2). Let A be a valuation ring of K and a, b be any two ideals of A, and
suppose a 6⊂ b, and suppose by way of contradiction that b 6⊂ a. Then b 6= 0,
so there is some 0 6= b ∈ b, and there is some 0 6= a ∈ a \ b. Then since A
is a valuation ring of K, either a/b ∈ A or b/a ∈ A. But a/b ∈ A implies
(a/b)b ∈ b, i.e. a ∈ b, which contradicts one of our hypotheses. But if on the
other hand b/a ∈ A, then (b/a)a ∈ a, i.e. b ∈ a. But since this conclusion is
independent of our choice of nonzero b ∈ b, it follows that b ⊂ a, which is a
contradiction. We conclude therefore that if a 6⊂ b, then b ⊂ a.

• (2)⇒(1). Let 0 6= a, b ∈ A. By hypothesis, either (a) ⊂ (b) or (b) ⊂ (a), so
either a = cb for some c ∈ A or else b = da for some d ∈ A. If the first case
holds, then c = a/b ∈ A. Otherwise, d = b/a ∈ A. Since the choice of a, b 6= 0
was arbitrary, it follows that A is a valuation ring of K.

Now suppose A is a valuation ring and p is a prime ideal of A. Then condition (2)
above holds of A, and so condition (2) holds of Ap since containment of ideals is
a local property. Likewise, condition (2) holds of A/p by the 1-1 order-preserving
correspondence between ideals of A and ideals of A/p of Proposition 1.1.



Exercise 5.30

Let A be a valuation ring of a field K. The group U of units of A is a subgroup
of the multiplicative group K∗ of K.
Let Γ = K∗/U . If ξ, η ∈ Γ are represented by x, y ∈ K, define ξ ≥ η to mean
xy−1 ∈ A. Show that this defines a total ordering on Γ which is compatible with
the group structure (i.e., ξ ≥ η ⇒ ξω ≥ ηω for all ω ∈ Γ). In other words, Γ is
a totally ordered abelian group. It is called the value group of A.
Let v : K∗ → Γ be the canonical homomorphism. Show that v(x + y) ≥
min(v(x), v(y)) for all x, y ∈ K∗.

We show that ≥ is a total order.

• Reflexivity. Suppose ξ ∈ Γ is represented by x ∈ K. Since xx−1 = 1 ∈ A,
ξ ≥ ξ.

• Transitivity. Suppose ξ, η, ω ∈ Γ are represented by x, y, w ∈ K, respec-
tively, and that ξ ≥ η and η ≥ ω. Then xy−1 ∈ A and yz−1 ∈ A, so

xy−1yz−1 = xz−1 ∈ A.

Therefore ξ ≥ ω.

• Antisymmetry. Suppose ξ, η ∈ Γ are represented by x, y ∈ K, respectively,
and that ξ ≥ η and η ≥ ξ. Then xy−1 ∈ A and yx−1 ∈ A. But xy−1 and yx−1

are inverses, so xy−1 is a unit of A, hence of K; i.e. xy−1 ∈ U . This implies
ξη−1 = xy−1U = 1 mod U , so ξ and η−1 are inverses, i.e. ξ = η.

• Totality. Suppose ξ, η ∈ Γ are represented by x, y ∈ K, respectively. Since
A is a valuation ring of K, either xy−1 ∈ A or else yx−1 = (xy−1)−1 ∈ A, hence
either ξ ≥ η or η ≥ ξ.

• Compatibility with the group structure. Suppose ξ, η, ω ∈ Γ are
represented by x, y, w ∈ K, respectively, and that ξ ≥ η. Then xy−1 =
xww−1y−1 = (xw)(yw)−1 ∈ A. But this is just to say that ξω ≥ ηω.

Now let x, y ∈ K∗ and let v(x) = ξ and v(y) = η and v(x + y) = ω. Then we
will show that v(x + y) ≥ min{v(x), v(y)}, i.e. that either ω ≥ ξ or ω ≥ η. From
the definition of ≥, this means that either (x + y)x−1 = 1 + yx−1 ∈ A or else
(x + y)y−1 = 1 + xy−1 ∈ A. But A is a valuation ring of K, so either xy−1 ∈ A or
else (xy−1)−1 = yx−1 ∈ A, hence either 1 + xy−1 ∈ A or else 1 + yx−1 ∈ A. This
completes the proof.



Part 3

Exercise 5.31, corrected

Let Γ be a totally ordered abelian group (written additively), and let K be a
field. A valuation of K with values in Γ is a mapping v : K∗ → Γ such that:

(1) v(xy) = v(x) + v(y) and

(2) v(x+ y) ≥ min{v(x), v(y)}

for all x, y ∈ K∗. Show that the set A = {0}∪{x ∈ K∗ | v(x) ≥ 0} is a valuation
ring of K. This ring is called the valuation ring of v, and the subgroup v(K∗)
of Γ is the value group of v. Describe the maximal ideal of A.

First we show that A is a ring.

• 0 ∈ A, and for any y ∈ K∗, v(y) = v(1y) = v(1) + v(y). Thus v(1) = 0, so
1 ∈ A.

• Suppose a, b ∈ A. Then v(a+ b) ≥ min{v(a), v(b)} ≥ 0, so a+ b ∈ A.

• Suppose a, b ∈ A. Then v(ab) = v(a) + v(b) ≥ 0, so ab ∈ A.

• Suppose a ∈ A. Then a2 ∈ A, so

0 ≤ v(a2) = v(−a · −a) = v(−a) + v(−a),

so v(−a) ≥ 0 and −a ∈ A.

• A satisfies all the additional properties of a ring since it is a subset of K
satisfying the above properties.

Next, suppose x ∈ K∗. We must show that either x ∈ A or x−1 ∈ A. But 0 = v(1) =
v(xx−1) = v(x)+v(x−1), so it cannot be the case that both v(x) < 0 and v(x−1) < 0.
Hence one of x, x−1 is in A.

Finally, the maximal ideal A is m = {x ∈ K∗ | v(x) > 0}. It is an ideal by (1) and
(2), and it is maximal because it is the set of all non-units of A. For if a ∈ A is a
unit then 0 = v(1) = v(aa−1) = v(a)+v(a−1), and since v(a), v(a−1) ≥ 0 this implies
v(a) = v(a−1) = 0. And the reasoning here runs in reverse, so conversely v(a) = 0
implies a is a unit in A.



Part 4

Let A be the ring of all Gaussian integers with even imaginary parts, i.e., all
a + 2bi, a and b integers, i2 = −1. Prove that A is not integrally closed. What
is the integral closure of A?

Observe that ±i /∈ A, since ±i = 0±1i has odd imaginary part. However, the monic
polynomial x2 + 1 ∈ A[x] since its coefficients have imaginary part 0, and has roots
±i. So i and −i are integral over A but not in A. Thus A is not integrally closed.

Since i and A are both integral over A, every Gaussian integer is integral over A.
Hence the ring G of all Gaussian integers is contained in the integral closure of A
(in the field of fractions of A). But G is a UFD, hence integrally closed. So G is the
integral closure of A.


