Math 5020: An Introduction to Commutative Algebra Sarah Glaz

Assignment # 3

1: Page 32: Exercise 6

2: Page 67-72: Exercises: 3, 8, 9, 28, 30

3: Corrected Exercise 31, page 72: Let Γ be a totally ordered abelian group (written additively), and let *K* be a field. A *valuation of K with values in* Γ is a mapping v: $K^* \rightarrow \Gamma$ such that:

(1) v(xy) = v(x) + v(y)

(2) $v(x + y) \ge \min \{v(x), v(y)\}$

for all *x*, *y* ε *K**. Show that the set $A = \{0\} \cup \{x \in K^*, v(x) \ge 0\}$ is a valuation ring of *K*. This ring is called the *valuation ring of v*, and the subgroup $v(K^*)$ of Γ is the *value group of v*. Describe the maximal ideal of *A*.

4: Let *A* be the ring of all Gaussian integers with even imaginary parts, i.e., all a + 2bi, *a* and *b* integers, $i^2 = -1$. Prove that *A* is not integrally closed. What is the integral closure of *A*?