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The problem we consider here fits into the following class of questions: 
Let X be an algebraic structure ‘generated’ by a single element and let Y be 
a substructure; what relationship should exist between X and Y in order that 
Y be similarly generated by a single element? Examples are (i) X a cyclic 
group and Y a subgroup; (ii) X a simple algebraic field extension of a field k, 
Y an intermediate extension k C Y C X; (iii) Luroth’s theorem itself; 
(iv) A theorem of P. NI. Cohn [2] stating: If T is an indeterminate over a field k 
and B is a ring k C B C k[T], then B = k[f(T)] provided B is integrally 
closed. 

When WC rephrase (i) above in terms of group algebras, say x’ = Z(X) 
and Y’ = Z(Y), a common feature of these examples is that the larger ring 
is jIat-even free-over the subring. In this paper we deal with the problem 
of describing the A-subalgebras B of A[T] over which A[T] is flat. Under 
mild regularity conditions B turns out to be an augmented A-algebra with 
invertible augmentation ideal but may fail to be finitely generated even when 
A = Z. With A[T] faithfully flat over B-as in the examples above-the 
situation is more pleasant and B behaves much as a polynomial ring over A, 
or at least as’a symmetric algebra of a projective module. This will be the 
case whenever A is seminormal but may fail when this condition is lacking. 

1. THE AUGMENTATION IDEAL 

In this discussion let A be a commutative ring, let T be an indeterminate 
over A and let B be a subring A C B C A[T] over which A[T] is flat. We 
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assume that A # B and denote by I the ideal of B of all polynomials with 
constant term 0. It is an augmentation ideal. 

We express the fact that A[T] is simply generated over B using an exact 
sequence 

O-J-B[X]+A[T]-tO (“> 

with the indeterminate X mapping into T. We use now the accumulated 
information known on such J’s [7,9, 12, and 141 to derive properties of B. 
To insure the finiteness of J we impose a mild regularity condition. Let S(B) 
denote the minimal degree of nonzero polynomials in I. If S(B) = n, we 

assume the existence of a polynomial 

g = a,,Tn + ... + a,T 

in I where some ai is a regular element of A. Notice that this hypothesis 
forces a, to be regular element and that for any multiplicative system S C A, 

S(B) = S(B,). 
The reason for using a regular element in I of degree S(B) is motivated 

by the desire to rule out rings of the kind B = A[LT], where L is a pure 
ideal of A. 

The following is essentially the theorem of Cohn mentioned above [2, 181. 
It will imply, by a result of Gruson [15], the finiteness of J. 

(1.1) LEMMA. I f  some ai is a unit of A, then B = A[g]. 

Proof, We first assume that a, is a unit and A is a local ring. A[T] is 
now a finitely generated flat module over B. As 

E = A[T] & A[T] 

is a finitely generated flat module over A[T], it follows from [16] that E is 
A[T]-projective; by faithhfully flat descent A[T] is B-projective. Since B has 
no idempotents # 0, 1, we conclude that A[T] is B-projective of constant 
rank, say, Y. As A[T] contains a distinguished set of generators (1, T, T2,...} 
it is easy to see that at each localization at a prime of B the first r of these 
generators will be part of a minimal generating set. Thus A[T] is B-free on 
these elements. Let p[X] be the minimal polynomial of T over B. Note that 
p(X) is the generator of the ideal J in (*). Tensor the exact sequence by A[ T] 
over B[X] to get the inclusion 

JIXJ - BLV(X) = B. 
Let Jo be the image of J: j,, is generated by the ‘constant’ term ofp(X), say, 
h(T). We claim first that J0 = 1. If f  (T) E 1, then f  (X) - f(T) E J and thus 
f(T) E J,, . Conversely, if n(X) E J it is clear that the constant term of n(X) 
is divisible by T. In this case we conclude I = B * h(T). 
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h(T) is a polynomial of the following type 

b,T”” + -.+ + b,+lT’+l + b,Tr + a-* + b,T, b,EA. 

Since g(T) = h(T) . f(T), reading this equation modulo any prime ideal 
of A gives that b, ,..., bril are nilpotent elements and b, is an invertible 
element of A. If  b is a nonzero element of A that annihilates the elements 

b br+l ?,1 >...I we get a nonzero element in I of degree r-thus r = n. The 
element f( T) is then invertible and I = B . g(T). As g(T) is manic we easily 
conclude that B = A[g]. 

Let us go back to our original g(T). I f  f( T) is an element of B there is by 
the above a regular element s of A such that s . f E A[g], say 

s . f  = CO + qg + ... + c,g”. 

I f  we reduce this equation modulo s we get an algebraic dependence relation 
for g(T) in A/(s)[T]. Since g(T) is a nonzero divisor in A/(s)[T] we conclude 
that each ci is divisible by s. 

Having considered in (1 .l) the case when g(T) has a unit as a coefficient, 
we can now assume that g(T) be just regular. According to [7], [9], and [14] 
the B[X]-ideal J in the sequence (*) has the following properties: 

(i) J is an invertible ideal-in particular j is finitely generated; 

(ii) J has B-content (1)-that is, the idcal of B generated by the coeffi- 
cients of the polynomials in / is equal to B. This easily implies the existence 
of an element in I with A-content A itself. 

As indicated earlier the ideal I,, of B generated by the constant terms of all 
polynomials in J is then equal to I and invertible. WC resume these facts in 

(1.2) PROPOSITION. The augmentation ideal of B is invertible. The ideal of A 
generated by the coeficients of the elements in I is equal to (1). 

Consider now the sequence 

0 -+ I2 - I - I/P - 0. 

1/P is a rank one projective module over A. There is then a section s: 1/P -+ 
1 C B, and consequently a mapping 

Cs: Symm,(l/P) ---f B, 

where Symm,(-) is the symmetric algebra functor. Of course it is unlikely 
that any section s will lead to an isomorphism-in fact, an example will show 

481/43/2-23 
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the impossibility of finding a section leading to an isomorphism. Nevertheless, 
let gr($,) be the associated mapping of graded rings 

g+#+ SymmA(W2) - gr,W 

Much as in [17] we have: 

(1.3) PROPOSITION. gr(+,) is an isomorphism. 

Proof. We may assume that A is a local ring-or, using a partition of 
unity, assume that P = s(1/12) is a free A-submodule of I. Note I = P @ 12 
as A-modules. We claim that, more generally, 1’ = P* @ Ir+l, Y > 1. For 
this it suffices to show that in the sequence of A-modules 

0 

the restriction of $I to I r+l is an isomorphism. That I/ is a surjection is clear 
by raising the equation I = P 0 I2 to the rth power (possibly losing the 

direct sum decomposition). Suppose b E P’ n P+l. Pass now to the total ring 
of quotients of A, say K. Since B, = B @A K = K[g] we conclude that P 
is generated by ug + h, with u a unit of K (which may be taken equal to 1). 
But then P’ = A(g + Jr)‘, while Ii+’ = g’+lK[g] and b = 0. That gr(&) is 
both surjective and injective follows by localization. 

Examples of rings such as B above that are not symmetric algebras can be 
easily constructed using the Zariski Main Theorem: Letf( T) be a polynomial 
of A[T], with constant term 0 and of content (1); A[T] is then a quasifinite 
extension of B, = A[f]. Let B be th e integral closure of B, in A[T]. By the 
ZMT A[T] is B-flat. For instance, with A = Z and f  = 2T2 + T, a simple 
calculation will show that the integral closure of Z[f] is Z[2T2 + T, 2T]. 
We do not have to stop with the integral closure, that is, any ring C, B C C C 
A[T], will have the property that A[T] is flat over C. 

(1.4) EXAMPLE. Let us show the existence of such a ring C which is not 
finitely generated over Z. It will serve the purpose of dispersing some hope 
of what might be expected from (1.3). 

Let C = E[2T, T(2T + l),..., Ti(2T + l),...]. Note that 2T + 1 conducts 
Z[T] to C; if C is Noetherian Z[T] will b e a finitely generated submodule of 
C . (2T + 1)-i. Thus Z[T] will be an integral extension of C, which together 
with being an epimorphic extension makes C = Z[T]. We have then 

T =f(T) = b,(2T + 1pT” + ... + b,(2T + l)OLKTBK 
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where bi E Z, pi > 0 and if 01~ = 0 then bi = 2b’iai with ai E Z. Setting T = 
-l/2 we get 

- l/2 =: f( - 112) _ ai12Di1( - ] /2)Bil + f.. + aij2Bij( - 1 /2)Bij, 

which gives the contradiction -l/2 E H. Thus C is not a finitely generated 
Z-algebra. 

2. FAITHFULLY FLAT EXTENSIONS 

In this section we assume in addition to the preceding hypotheses that A[T] 
is faithfully flat over B or B-f.flat for short. 

One property of the augmentation ideal listed earlier is that there exists 

f  E I so that the content off is (1). Let g be, as before, a regular element in 1 
of degree 6(B). I f  K is the total ring of quotients of A we have from (1.1) that 
f  E K[g]. We may then write 

a*f=g-la, 

where h E A[T] (actually in B) for an appropriate regular element a E A. 
We recall the Dedekind content formula [l , Sect. 3, Prob. 211: if m = deg(h), 

or, in our case 

c(glz) . c(g)” = c(h) - c(gp+l, 

a * c(g)“’ = [c(g) * c(h)] * c(g)“. 

Let A’ be the integral closure of A. Then 

c(g) - c(h) - A’ = aA’, 

and c(g) * A’ is an invertible ideal of A’. It is easy to see that we can find an 

intermediate extension A C A, C A’, -4, finitely generated over A and with 
c(g) * A, an invertible Al-ideal. With this A, write B, = A, a.,( B, II = 
d, @)A I = augmentation ideal of B, . 

(2.1) THEORERI. B, g Symm,l(~1/~i2). 

Proof, We assume the change of rings made. The content L of g is now an 
invertible ideal of A. Note that L-lg C A[T]; as L(L-lg) C B and g EL(L-lg), 
by the faithful flatness of A[T] over B we get L-lg C B. (Actually only that 
,4[T]/B is torsion free over iz was needed.) 

Finally we claim L-lgB = I. As it suffices to show equality locally in the 
Zariski topology of A, localization and another application of (1.1) completes 
the proof. 
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Let us go back to the original A and observe some consequences on finite- 
ness derived through finite descent as in [5] and [l 11. It is immediate that the 
hypothesis “A[T] is B-f.flat” forces B to be A-f.flat. 

(2.2) COROLLARY. If A[T] is B-&t and A[T]/B is A-j&, then A[T] is 

B-f.$at. 

Proof. First, the hypothesis makes B A-flat. The passage A + A, , by 
the argument above, makes B, a symmetric algebra of a rank one projective 
A,-module. What is left is to show that A[T] is faithfully over A[g] whenever 

g is a polynomial in I of content (1). Now invoke [l l] to show that A[T] is 
B-f.flat. 

(2.3) COROLLARY. If A[T] is B-f.j’lat then B is A-projective. 

Proof. This time we use [5] for the descent of projectivity under a finite 
injective homomorphism. 

(2.4) COROLLARY. If A[T] is B-f.$at then B is an A-algebra of finite type. 

Proof. B, is an A,-algebra of finite type. Again by [5] we prove the state- 

ment. 

3. PICARD GROUPS AND DIFFERENTIALS 

The proof of (2.1) reveals that whenever B is a symmetric algebra I is an 
extension of an invertible ideal of A. It is natural then to consider I . A[T] 
and ask whether this is an extended ideal of A. In the faithfully flat case this 
reasoning leads to the obstruction to B being a symmetric algebra. Indeed, let 
Pit(A) and Pic(A[T]) be the Picard groups of A and A[T] and consider the 
usual exact sequence 

1 - Pit(A) -+ Pic(A[T]) -+ C(A) -+ 1. 

Denote by a(B) the image in C(A) of the class of I . A[T]. It is immediate 
that B is a symmetric algebra if and only if or(B) is the trivial element of C(A). 

We recall that there is a large class of Noetherian rings other than integrally 
closed domains for which C(A) is trivial. They are the so-called seminormal 
rings [13]. 

(3.1) COROLLARY. If A is seminormal and A[T] is B-f.Jat, then B is a 
symmetric algebra over A. In particular if A is a UFD then B = A[ f  ] for 
some polynomial f .  
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Now we consider the question on whether B is always a symmetric algebra. 
In the case of a nonseminormal ring containing a field of prime characteristic 
it will be ‘easy’ to find examples with B not a symmetric algebra. The reason 
for this relative easeness lies in observing the similarities between this problem 
with questions in cancellation of coefficient rings [3, 6 and 81, and adjusting 
to our case some examples of noncancellation. Later in this section we discuss 
the case of Q-algebras. 

(3.2) EXAMPLE. We present now an example of a ring B, A C B C A[T], 
with A[T] B-f.flat that is not a symmetric algebra over A. It is inspired by the 
example of noncancellation in polynomial rings described in [6]. 

Let A be a local domain of characteristic 2 with an element a in the quotient 
field of A but not in A and with u2, a3 E A (e.g. A = Z/(2)[[x2, x3]]). Let 
G = aT” + T E K[T], K the field of quotients of A. Let B = A[G2, aG2 + G]; 
note that B C A[T]. Let W be an indeterminate over B and let C = B[bVj. 
Put also 

U = G + a(G + uW)~ = (G + aG2) + a3W 
V= W+(G+aW)2= W+Gs+a2W2. 

U and V are elements of B[Wj and independent indeterminates over A. Thus 
A[U, V] C B[W]. We claim these rings are equal: 

w= v-(u+aV)2 

G + aG2 = U - a2W2 

G2 = W - a2W 

are all elements of A[U, V] and thus C = A[U, V]. In particular, as C is 
A-free, B is free over A also. 

We claim that A[T] is B-flat: Let A, = A[a], and denote by B, the image 
of B ga A, in A,[T]. B, = AJaG + G, G2] = A,[G]. Since B BA A, 
is Al-torsion free we conclude that B ma A, = B, . Finally note that AJT] = 
A[T] a8 B, , and by the descent result of [5] we conclude that A[T] is 
B-f.flat. 

Finally we show that B is not a symmetric algebra over A-which here 
means that B # A[F] for any polynomial F. Indeed note 

a2G = a3T2 + a2T = a2(aG2 + G) - asG2 E B. 

If we write a2G as a polynomial in F (degree (F) = 2) we conclude 

a2G = cF, F = a,T + alT2, ca, = as, cq = as. 

Let now Gs = dF + eF2; then c2F2 = a4G2 = dldF + aeF2 and thus 
c2 = a4e and d = 0. As G2 = eF2, 1 = eao2 and a,, is a unit in A. Thus 
c = a2a;’ and a,a a, 2 -’ = a3, which is a contradiction. 
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Remark. To get an example in charp > 0 we can use the argument 
above taking an element a E K\A, ap, a?‘flEA, G=aTPfTand B= 
A[Gp, aGp - Gj. 

The characteristic zero cases can, possibly, be better handled via the modules 
of differentials. In the sequence we use [lo] systematically and assume that A 
is a Q-algebra. 

Let -%M denote the module of A-differentials of B (similar notation for any 
other pair of rings). The change of rings A - A, yields the isomorphism 

As B, N Symm,l(1i/1,2) by (2.1), we conclude that IR,l,A1 is a projective 
B,-module of rank one. In fact, for a symmetric algebra S of a projective 
R-module P, we have the following canonical isomorphism 

given e @ b + b * d(e), e E P, b E S. With the finite descent result of [.5] again 
we conclude that .RBI, is a projective B-module of rank one. 

The sequence (*) and the inclusions A C B C A[T] give rise to the follow- 
ing exact sequences of modules of differentials: 

%,A &J WI - QA[T]/A - ~~)A[T],B -+ 0, 

J/J” -% Q,m&mWl - QAITl,B --f 0. 

As Q,,, & A[T] and J/J2 are both projective A[T]-modules of rank one 
and .Qslr~IB is a torsion module, the sequences above are exact at the left also. 
By Schanuel’s lemma 

J/J” 0 47 = %A Oe WI 0 WI. 

The usual device of taking exterior powers finally gives the isomorphism 

J/J” = Q,,, 6% WI. 

More accurately, d identifies J/J2 with the submodule of OaplI,., = A[T]dT 
generated by differentials such as 

(rb(T+-l + ... + b,) dT 

where b,.Xr + a.* + b,X + b, is an element of J. 
Let us examine the case when J/ J2 is A[T]-free, say J/J” N A[T] hdT. It 

is easy to see that h is then a polynomial of degree n - 1 and has A-content (1). 
For the polynomial g of degree n in I we then conclude that 

g’ = a * h. 
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As g and g’ have the same content when A is a @algebra, we conclude that 
the content of g is (u). We are now in the position to state 

(3.3) COROLLARY. Let A be a Q-algebra. If  A[T] is B-faithfully flat and 
J/J2 is A[T]-free, then B is a polynomial A-algebra. More generally, if the 
class of ]/ Jz in C(A) is trivial, then B is a symmetric algebra. 

What is not altogether clear is whether a(B) and the class /3(B) of J/J” in 
C(A) constitute the same obstruction to B being a symmetric algebra. 

4. AN OPEN PROBLEM 

For several variables the analog of the Liiroth’s problem discussed here 

is much different. Although the similarities between the questions raised 
at the Introduction are still valid for groups and fields [4], the equivalent 

of Cohn’s theorem involves deeper geometric properties. For instance, what 
are the k-subalgebras B of k[x, y] = C over which C is faithfully flat? 
B is a Noetherian regular ring of dimension at most two. If  the dimension 
of B is less than two, B = k[ f  ] ([lS]). W. Heinzer pointed out that if 
dim(B) = 2 the Zariski’s theorem on the Hilbert 14th. problem implies the 
finite generation of B. But whether one has to resort to this theorem and how 
close is B from being a polynomial ring remain unanswered questions. 
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