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1 INTRODUCTION

Let R be a commutative 1ring, and let x be an
indeterminate over R. For a polynomial f €R|x], dencte by c(f)
- the so called content of £ - the ideal of R generated by the
coefficients of £f. Let U = {f €R[{x], £ is monic), and
V = {fe€R[x], c(f) = R} = R{x]-U{mR[x], m maximal ideal of R}.
U and V are multiplicatively closed subsets of R[X]. Set
R<x> = R[x]y and R(x) = R|x],. Then R[x| C R<x>C R(x),

R(x) is a localization (rings of fractions) of R«<x:, and both
R<x> and R(x) are flat R-modules.

Ever since R<x> played a prominent role in Quillen's
solution to Serre's conjecture {(Quillen 1976), and its
succeeding generalizations to non-Noetherian rings {Brewer &
Costa 1978, Lequain & Simis 1980), there has been a
considerable amount of interest in the properties of R<x>.
This interest expanded to include similarly constructed
localizations of R[x]. Notable among these constructions is
the ring R(x), which, through a variety of useful properties,
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provides a tool for proving results on R via passage to R(x).

The interest in the properties of R<x> and R(x) branched
in many directions (Akiba 1980, Anderson 1976, 1977,
Anderson, Anderson & Markanda 1985, Anderson, Dobbs & Fontana
1989, Arnold 1969, Brewer & Costa 1978, Brewer & Heinzer
1980, Ferrand 1982, Gilmer 1968, Gilmer & Heitmann 1980, Glaz
1989, 1991, Hinkle & Huckaba 1977, Huckaba & Papick 1980,
1981, LeRiche 1980, McDonald & Waterhouse 1981, Ratliff
1979). Several of these directions consider homological
properties of these two rings.

The present article centers around the author's work
(Glaz 1989, 1991) exploring the behavior of the weak and
global dimensions of R<x> and R(x). It is a combination of
survey of literature, the author's published results, and some
new results and open problems.

when investigating homological dimensions, in order to
obtain results of some significance, one cften needs to either
impose or highlight the already existing, underlying
finiteness conditions of the rings involved. In order to
maintain a clear distinction between the weak and global
dimensions, we impose a weaker condition than Noetherianess;
we ask that most rings involved in our investigation be
coherent. This condition arises naturally in this setting
since most rings of small weak o1 global dimension are
automatically coherent. This holds true for semisimple rings
(that is rings of global dimension () - these rings are
actually Noetherian; hereditary rings (that is rings of global
dimension 1); and Von Neumann regular rings (that is rings of
weak dimension 0). Although not all rings of weak dimension 1
are coherent, the ones of most interest are: semihereditary
rings are precisely those rings of weak dimension 1 which are
ccherent (Glaz 1989a). Section 2 of this papelr explores the
conditions under which R<x> and R(x) are coherent rings.

Historically, the interest in the homological properties
of R<x> and R(x) had a ring-theoretic quality concentrating
initially in exploring the condition under which R<x> or R{x)
are Prufer domains (that is semihereditary domains) and
Dedekind domains (that is hereditary domains). This approach
lead to investigations exploring divisibility properties of
R<x> and R{x). Section 3 surveys the 1literature in this
direction.

Sections 4 and 5 describe the author's results regarding
the behavior of the weak and global dimensions of R<x> and
R(x). The motivation for this work was the same as the
motivaticn for the investigations described in Section 3,
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namely a wish to understand the conditions that make R<X> or
R(x) semihereditary or hereditary (not necessarily domains) .
The ring theoretic approach led to investigations of
divisibility, while the homological algebra approach described
in Section 4 and 5 led to investigating behavior of weak and
global dimensions, coherent regularity and Cohen-Macaulayness.
These two kinds of investigations complement each other in
shedding light on the nature of the rings R<x> and R(X).

section 6 presents the author's results regarding
coherent regularity, a property that *contains" the
homological properties of the previous sections; and also
provides a discussion and some new results regarding the
property of being Cohen Macaulay.

2 COHERENCE

As mentioned in the introduction, the underlying
finiteness condition on rings that is present throughout the
investigations described in this paper is that of coherence.
This section determines necessary and sufficient conditions
for R<x> and R(x) to be coherent rings (Glaz 1989).

THEOREM 2.1 (Glaz 1989) Let R be a ring. The following
conditions are equivalent:

1. R[x] is a coherent ring.

2. R<x> is a coherent ring.

3. R(x) is a coherent ring.

Recall that a ring R is called a stably coherent ring if
for every positive integer n, the polynomial ring in n
variables over R is a coherent ring along with R. The class of
stably coherent rings includes a wide variety of rings, to
name a few: Noetherian rings, Von Neumann regular rings,
semihereditary rings, hereditary rings, coherent rings of
global dimension two and several others {(Glaz 1989%9a,1992,
vasconcelos 1972, 1976). If R is a stably coherent ring then
clearly so are R<x> and R(Xx). The surprising aspect of
Theorem 2.1 is that if R<x> or R(x) is a coherent ring then so
is R[x]. This does not guarantee that R is stably coherent. In
fact, it is still. an open question whether the coherence of
R[x] implies that R is a stably coherent ring.
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3 DIVISIBILITY

This section describes some of the results obtained in
investigating the divisibility properties of R<x> and R(x)
(Arnold 1969, Anderson 1977, Anderson, Anderson & Markanda
1985, Anderson, Dobbs & Fontana 1989, Brewer & Costa 1978,
Brewer & Heinzer 1980, Hinkle & Huckaba 1977, Huckaba &
Papick 1980, LeRiche 1980). The initial concern was with
determining conditions under which R<x> or R(x) is a Prufer or
a Dedekind domain. The investigation then branched into
related divisibility ©properties. of the variety of
divisibility properties that where considered, we chose to
present those most directly related to the original concern.

We start the discussion on the Prufer property of R<x>
and R(x) with the basic result:

THEOREM 3.1 (LeRiche 1980, Arnold 1969) Let R be a domain.
Then:

1. R<x> is a Priifer domain if and only if R is a Prufer domain.
2. R(x) is a Priifer domain if and only if R is a Prufer domain.

Prufer domains, that is semihereditary domains, can be
characterized in many ways, and therefore admit many
generalizations. We list a few of the classical
characterizations of a Prufer domain R, within the class of
domains:

1. Every finitely generated (nonzero) ideal of R is
invertible.

2. Every finitely generated ideal of R is locally principal.

3. Every localization of R by a prime ideal is a valuation
domain (and therefore its prime spectrum as a poset under
inclusion is a tree).

We consider the following generalizations: A ring R 1is
called an arithmetical ring if every finitely generated ideal
of R is locally principal. A ring R is called a Prufer ring if
every finitely generated regular ideal is invertible. A domain
R is called a treed domain if its prime spectrum as a poset
under inclusion is a tree, that is no mazimal ideal of R
contains incomparable prime ideals. A ring R is called a
strongly Prufer ring if every finitely generated ideal of R
with zero annihilator is locally principal. The next three
theorems provide the sufficient and necessary conditions for
R<x> or R(x) to be an arithmetical ring, a Prufer ring or a
treed domain.
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THEOREM 3.2 (Anderson, Anderson & Markanda 1985) Let R be a

ring. Then :

1. R<x> is arithmetical if and only if R is arithmetical,
Krull dim R ¢ 1, and every localization of R by a non-
maximal prime ideal is a field.

2. R(x) is arithmetical if and only if R is arithmetical.

Theorem 3.2(1) was also partially proved by LeRiche
(1980), and Theorem 3.2(2) was also proved by anderson (1977).

THEOREM 3.3 (Anderson, Anderson & Markanda 1985) Let R be a

ring. Then:

1. R<x> is a Prifer ring if and only if R is a strongly Prufer
ring, Krull dim R ¢ 1, and every localization of R by a
non-maximal prime ideal is a field.

2. R(x) is a Prufer ring if and only if R is a strongly priifer
ring.

pParticular cases of Theorem 3.3(1) were alsc proved by
LeRiche (1980) and by Brewer & Costa (1978). Particular cases
of Theorem 3.3(2) were also proved by arnold (196¢%), Hinkle &
Huckaba (1977), and Huckaba & Papick ( 1980).

THEOREM 3.4 (Anderson, Dobbs & Fontana 1989) Let R be a

domain. Then:

1. R<x> is treed if and only if R', the integral closure of R,
is a Priifer domain and Krull dim R ¢ 1. (It follows that R
is treed.)

2. R(x) is treed if and only if R is treed and R' is a Prufer
domain.

Next we consider the Dedekind domain property.

THEOREM 3.5 (LeRiche 1980, Arnold 1969) Let R be a domain.

Then:

1. R<x> is a Dedekind domain if and only if R is a Dedekind
domain.

2. R(x) is a Dedekind domain if and only if R is a Dedekind
domain.

,
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Like a Prifer domain, a Dedekind domain, that is a
hereditary domain, has many equivalent characterizations.
Rather then 1listing them we will mention some of the
properties of a Dedekind domain. A Dedekind domain 1is a
Noetherian Krull domain. If it has £finitely many maximal
ideals then it is a PID; if the number of maximal ideals is
infinite it is a, so called, Hilbert ring, that is a ring for
which every prime ideal is the intersection of maximal ideals.
Considering a ring satisfying any of these properties to be a
generalization of a Dedekind domain, we determine when R<x>
and R(x) are Hilbert rings, PIDs, or Krull domains.

THEOREM 3.6 (Brewer & Heinzer 1980, Anderson, Anderson &

Markanda 1985) Let R be a ring. Then:

1. If R is a Noetherian Hilbert ring then so is R<Xx>.

2. R(x) is a Hilbert ring if and only if R is a Hilbert ring
and every prime ideal of R(x) is an extension of a prime
ideal of R.

If R is Noetherian then R(x) is a Hilbert ring if and only
if R is a Hilbert ring and Krull dim R ¢ 1.

A particular case of Theorem 3.6(1) was independently
proved by LeRiche (1980).

THEOREM 3.7 (LeRiche 1980, Anderson, Anderson & Markanda 1985)
Let R be a domain. Then:

1. R<x> is a PID if and only if R is a PID.

2. R(X) is a PID if and only if R is a Dedekind domain.

THEOREM 3.8 ( Anderson, Anderson & Markanda 1985) Let R be a
domain. The following are equivalent:

1. R is a Krull domain.

2. R<x> is a Krull domain.

3. R{x) is a Krull domain.

We will conclude this section by considering several
related «classical divisibility properties, namely the
properties of being a GCD, a UFD, or an Euclidean domain.
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THEOREM 3.9 (Anderson, Anderson & Markanda 1985) Let R be a

domain. Then:

1. R<xX> is a GCD (respectively a UFD, respectively an
Euclidean domain) if and only if R is a GCD {respectively
a UFD, respectively an Euclidean domain).

2. R(x) is a GCD domain if and only if R is a G-GCD domain

(that is the intersection of every two nonzero principal
jdeals of R is an invertible ideal of R).
R(x) is a UFD if and only if R is a T-domain (that is every
nonzero principal ideal of R is a product of prime ideals).
R(x) is an Euclidean domain if and only if R is a Dedekind
domain.

For a variety of other divisibility properties, the
reader is advised to consider the papers mentioned in the
introduction of this section.

4 WEAK DIMENSION

In this section we explore the relation between the weak
dimension of R and that of R<x> or R(x) (Glaz 1989). Using
the notion of non-Noetherian grade, we pinpoint exact
relations between these weak dimensions, provided that R is a
stably coherent ring of finite weak dimension. As corollaries,
we determine necessary and sufficient conditions for R<x> and
R(x) to be Von Neumann regular and semihereditary.

We discuss briefly non-Noetherian grade, as defined by
Alfonsi (1977, 1981). Let R be a ring, let M be a finitely
presented R module, and let N be any R module. Then
gradeg(M,N) > n if there exists a faithfully flat R algebra S,
which may be taken to be a polynomial extension of R, and
elements f.,...,f. € (0:g M®pS), the annihilator of M®S in
S, which form an N ®p S regular sequence. The largest such
integer n is gradeR(M,N). If no largest integer n exists, put
gradeg (M,N) =oo. For a general R module M, gradeR(M,N) > n if
for every veM, (0:pvVY) contains a finitely generated ideal I,
satisfying gradeR(R/I,,N) > n. Finally, let (R,m) be a local
ring with maximat ideal m, and let M be any R module. The
depth of M is defined as depth M = depthgy M = gradeg (R/m M) .

In general, if R is a ring with R[x] coherent, the weak
dimensions of R<x> and R(X) are "nicely" bounded.
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THEOREM 4.1 (Glaz 1989) Let R be a ring for which R(x] is
coherent. Then:

1. w.dim R ¢ w.dim R<x> ¢ w.dim R + 1.

2. w.dim R ¢ w.dim R(x) ¢ w.dim R + 1.

For stably coherent rings of finite weak dimension we
have a more accurate description of the relations between
these weak dimensions.

THEOREM 4.2 (Glaz 1989) Let R be a stably coherent ring of
w.dim R = n <oc. Then:
1. w.dim R(x) = w.dim R.
2. If for every non-maximal prime ideal P of R, we have
depth Ry < n, then w.dim R<x> = w.dim R.
Otherwise w.dim R<x> = w.dim R + 1.

This theorem has a number of interesting corollaries.
Since depth Ry = ht P for any prime ideal P of a
Noetherian regular ring, we obtain:

COROLLARY 4.3 (Glaz 1989) Let R be a Noetherian regular ring.
Then w.dim R<x> = w.dim R.

As Von Neumann regular rings are rings of weak dimension
zero, we obtain:

COROLLARY 4.4 (Glaz 19389) Let R be a ring. The following are
equivalent:

1. R is a Von Neumann regular ring.

2. R<x> 1is a Von Neumann regular ring.

3. R(x) is a vVon Neumann regular ring.

As semihereditary rings are (stably)coherent rings of
weak dimension one, we obtain:
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COROLLARY 4.5 (Glaz 1989) Let R be a ring. Then:

1. R<x> is a semihereditary ring if and only if R is a
semihereditary ring of Krull dim R < 1.

2. R(x) is a semihereditary ring if and only if R is a
semihereditary ring.

Corollary 4.5{1) was also proved by LeRiche (1¢8C).
Theorem 3.1, the case of a Priufer domain, can be immediately
deduced from Corollary 4.5.

5. GLOBAL DIMENSION

This section explores the -clation between the global
dimension of R and that of R<x> or R(x) (Glaz 1991). Questions
related to global dimension are, in general, mcre difficult tc¢
answer than those related to the weak dimension. For that
reason our answers in this direction are not as complete as
the ones given in the previous section. We solve the cases of
dimensions zerc and one and provide examples that show that
rings of global dimension greater then one behave differently
then rings with lower global dimension.

The case when gl.dim R = O, that is when R 1s a
semisimple ring, can be solved using Theorem 4.1.

COROLLARY 5.1 (Glaz 1989) Let R be a ring. The following are
equivalent:

1. R is a semisimple ring.

2. R<x> is a semisimple ring.

3. R(x) is a semisimple ring.

The case where gl.dim R = 1, that is P is a hereditary
ring, was solved through detailed observation into the nature
of hereditary rings and the exact relation between prime

ideals in R<x> and prime ideals in R . The final result is as
follows:
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THEOREM 5.2 (Glaz 1991) Let R be a ring. The following are
equivalent:

1. R is a hereditary ring.

2. R<X> is a hereditary ring.

3. R(x) is a hereditary ring.

Theorem 3.5, the case of a Dedekind domain, can be
immediately deduced from Theorem 5.2.

When considering higher global dimensions we cannot
obtain the exact analog of Theorem 5.2. In general we can say
that the global dimensions of both R<x> and R(x) are bcunded
above by gl.dim R + 1.

A ring is N, -Noetherian if every ideal of R is at most
N, generated. If a ring R is N, -Noetherian, a submodule of
an ™, generated module is N . generated (Osofsky 1938).
Consequently, the ™ _,-Noetherian property of R is inherited by
both R(x) and R<x>. If a ring is N -Noetherian the global
dimensions of R(x) and R<x> bound the global dimension of R.

THEOREM 5.3 (Glaz 1991) Let R be an M ,-Noetherian ring. Then:
1. gl.dim R < gl.dim R<x> ¢ gl.dim R + 1.
2. gl.dim R ¢ gl.dim R(x) ¢ gl.dim R + 1.

But gl.dim R<x> does not have to be equal to gl.dim R
even in the presence of M, -Noetherianess. If a valuation
domain R is ™ _-Noetherian, but not N _,-Ncetherian, then
gl.dim R = n + 2 (Osofsky 1967); therefore one can construct
valuation domains of global dimension 2 and any Krull
dimension (Glaz 1991)). Using these constructions one exhibits
a family of local, stably coherent, ™ ,-Noetherian domains V
of global dimension 2 with gl.dim V<x> = 3.

EXAMPLE 5.4 (Glaz 1991) Let V be a valuation domain of

gl.dim V = 2. Then the following hold:

1. gl.dim v(x) = 2.

2. If Krull dim Vv > 3, then gl.dim V<x> = 3.

3. If Krull dim V = 2 and Vp is not a discrete valuation
domain for the prime ideal P of height one of Vv, then
gl.dim v<x> = 3. If VP is a discrete valuation domain, then
gl.dim V<x>pm € 2 for every prime ideal M of v<x>.

4. If Krull dim Vv £ 1, then gl.dim vex> = 2.
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This exémple raises a number of questions. To voice a
few: Do we always have (at least in the presence of
N -Noetherianess) gl.dim R(x) = gl.dim R? Under what exact
conditions will we have gl.dim R<x> = gl.dim R? Does the
conclusion of Theorem 5.3 hold without the assumption that R
is ™ -Noetherian?

6. REGULARITY AND COHEN MACAULAYNESS

The notion that in some way encompasses and reflects all
the homological properties described in the previous sections
is that of non-Noetherian regularity. A ring R is called a
reqgular ring if every finitely generated ideal of R has finite
projective dimension. If R is a Noetherian ring this is just
one formulation of the classical definition of regularity. The
notion was first introduced in a non-Noetherian setting
(particularly for local coherent rings) by Bertin (1971).
since then it was extended to general rings (Vasconcelos 13574,
Glaz 1987), although it has not been much explored outside of
the coherence setting. Every coherent ring of finite weak
dimension is a regular ring (the converse does not necessarily
hold even for local coherent rings). Therefore the class of
coherent reqular rings includes all classical non Noetherian
rings, 1in particular Von Neumann regular, semisimple,
semihereditary and hereditary rings. Regularity is well
behaved under passage to R<x> or R(X).

THEOREM 6.1 (Glaz 1989) Let R be a ring for which Rlx] is a
coherent ring. The following are equivalent:

1. R is a regular ring.

2. R<x> is a regular ring.

3. R(x) is a regular ring.

The next step in the investigation is to trace the Cohen
Macaulay behavior of R<x> and R(x). A ring R is a Cohen
Macaulay ring if depth RP = Krull dim Rp for every prime ideal
P of R. It is well known that a Noetherian regular ring is a
Cohen Macaulay ring. The first difficulty that we encounter
with the non-Noetherian definition is that even "the best"
coherent regular rings may not be Cohen Macaulay.

To construct examples we need this preliminary theorem.
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THEOREM 6.2 (Glaz 1989) Let (R,m) be a local coherent regular
ring with maximal ideal m. Then depth R = w.dim R.

Note that this theorem is the coherent eguivalent of
Serre's Theorem, which states that for a Nocetherian regular
ring R with maximal ideal m, gl.dim R = Krull dim R. To see
this note that since R is a Noetherian regular ring,

w.dim R = gl.dim R, and depth R is equal to the cardinality of
a system of parameters for m, which is equal to ht m, and
therefore to the Krull dim R.

EXAMPLE 6.3 A class of coherent regular rings which are not
Cohen Macaulay.

Let n be any positive integer, k a finite field, and
Xy,...,X, 1indeterminates over k. Let V be any valuation
overring of k[x,,...,%,]. Then Krull dim V = n, but by the
previous theorem, depth v = 1.

This example raises a gquestion that is more ideological
then mathematical. Can one find a definition of non-Noetherian
Cohen Macaulayness for a ring R which satisfies:

1. If R is a Noetherian ring this definition coincides with
the usual Noetherian Cohen Macaulay definition.

2. If R is a regular ring (coherent?) then R is Cohen
Macaulay.

We can determine when R<x> and R(x) are Cohen Macaulay.
Let R be a ring, and let p be a prime ideal of R with
PR[x] = PgQ<R(x] and QAR = p. R is called a strong-S-ring
if ht P = ht p for all prime ideals p of R. A strong-S-ring
satisfies that Krull dim R[x]) = Krull dim R + 1 (Kaplansky
1974). Since grade does nct change when passing to faithfully
flat extensions, we obtain:

THEOREM 6.4 Let R be a ring. The following are equivalent:
1. R is a Cohen Macaulay strong-S-ring.

2. R<x> is a Cohen Macaulay ring.

3. R(x) 1is a Cohen Macaulay ring.
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