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Coherent ring theory constitutes a major area of research in commutative alge-
bra. The wealth of results in this area, beside being of interest in their own
right, contributed to the development of the general theory of commutative
rings and influences research in other areas of algebra.

This article surveys the evolution of the theory of coherent rings since its
beginning in 1960. The introduction describes the origin of the notion of coher-
ence in algebra and the amalgamation of several research trends in diverse dis-
ciplines such as algebraic geometry, complex analysis, number theory and
computer science, which gave rise to the definition of a coherent ring. The
main body of this article concentrates on the description of the most significant
topics of research in coherent ring theory and includes for each topic a
mathematical history, statements of the main results and their contribution to
the development of the general theory of commutative rings, and a probing of
possible future research direction. The article concludes by briefly highlighting
the impact of the research in coherent ring theory on other areas of algebra.

1. INTRODUCTION

For the past twenty to thirty years, research in commutative algebra has con-
centrated in two distinct, though occasionally intermingling, areas: Noetherian
and non-Noetherian ring theory. Without attempting to capture the depth or
the significance of the work done in either of these areas, one can roughly
describe them as follows. Noetherian ring theory includes mainly the study of
Noetherian regular and related rings and, more recently, computer-assisted
commutative algebra, while non-Noetherian ring theory includes the study of
rings with other finiteness properties rather than the ascending chain condition
on ideals which characterizes Noetherian rings. Of the myriad of rings falling
into this second category the most fascinating, the most extensively studied,
and those having an impact on other areas of algebra are the so-called
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coherent rings.

The history of coherent algebraic objects starts in 1944, in the area of ana-
lytic manifolds, an area that we nowadays connect more with analysis than
with algebra. In an attempt to investigate several global properties of analytic
manifolds, CARTAN [16] introduced a notion he called ‘a coherent system of
pointwise ideals,” which imposed certain finiteness properties on the collection
of all analytic functions in a neighborhood of every point of an analytic mani-
fold. Without actually naming it, Cartan discovered the notion of an analytic
coherent sheaf. In his 1953 paper, CARTAN [17] actually named his discovery
and proceeded along with SERRE [83] to apply the newly-developed concept to
change the definition and, consequently, revolutionize the theory of analytic
manifolds.

Two years later, in 1955, SERRE [84] introduced the notion of a coherent
algebraic sheaf. The definition is analogous to that of a coherent analytic
sheaf and, like the former, its application to algebraic geometry had far-
reaching consequences. SERRE, in his 1955-56 papers [84, 85], and later
GROTHENDIECK and DIEUDONNE in 1961-1971 [38-41]. redefined algebraic
varieties in terms of sheaves (and later in terms of schemes) and applied the
machinery of coherent sheaves to obtain global properties of varieties from
given local properties. These works produced a tremendous change in the field
of algebraic geometry and, in fact, marked the beginning of modern research
in the area.

Sheaves in algebraic geometry involve collections of rings and modules;
hence, it seemed natural to expect that the definition of a coherent algebraic
sheaf would give rise directly to an object in commutative algebra called a
coherent ring or a coherent module but, in fact, this was not the case. One
reason might be that, for the most part, the base rings considered in algebraic
geometry are Noetherian. The coherence conditions imposed on the sheaf
structure provided just the right kind of formal properties necessary for the
development of the sheaf cohomology machinery. The implications of these
conditions as a replacement and generalization of the Noetherian property of a
ring itself has, therefore, been explored in a different context. Nevertheless,
looking at both definitions, one can conclude in retrorespect that if an alge-
braic sheaf associated with a module over the spectrum of a ring is a coherent
sheaf, then the module itself is a coherent module. Coherent rings (and
coherent modules along with them) developed separately from algebraic
geometry either in the form of specific rings suited for particular research pur-
poses or as rings, not yet named, satisfying certain desirable properties. It was
not until 1964 that BOURBAKI [13], noticing the striking similarity between the
definitions, named these rings coherent rings.

The specific coherent rings that appear in commutative algebra form part of
the collection of all the classical non-Noetherian rings. A class of such rings,
whose beginnings date back to Hilbert, are the so-called Boolean rings, that is,
rings R satisfying x2=x for every element x of R. Boolean rings were first
connected with Hilbert’s spectral theorem; then, through the works of M.H.
STONE in 1936-1937 [86, 87], these rings became instrumental to the
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development of the notion of the spectrum of a commutative ring, and with
the introduction of computers they found their uses in computer science as
well. These versatile rings satisfy two useful finiteness properties related to
their ideals. The relation x(x — 1)=0 implies for every element x in R, the
ideal (0:x) = {y € R |xy = 0} is generated by the element x — 1, and for any
two ideals 7 and J we have I NJ =1J. We conclude that a Boolean ring R
satisfies the following properties:

(1) The intersection of two finitely generated ideals of R is a finitely generated
ideal of R, and for every x €R, (0:x) is a finitely generated ideal of R.

These properties will eventually characterize the rings which will be called
coherent rings.

A Boolean ring is but one of a larger class of rings, all of which turn out to
be coherent rings, called Von Neumann regular rings. The contribution made
by the Von Neumann regular rings to commutative algebra,, although less
dramatic than that of its subclass of Boolean rings, is nevertheless important.
Interest in these rings increased with the development of homological algebra
when it was noticed that their ring theoretic description, very similar to that of
Boolean rings, is equivalent to a certain homological property, namely, Von
Neumann regular rings are precisely those rings over which every module is
flat. In particular, a Von Neumann regular ring R satisfies the following pro-

perty:
(2) An arbitrary direct product of flat R modules is a flat R module.

This property, in its turn, will be an equivalent characterization of a coherent
ring.

Several other classical non-Noetherian rings appear through the relation
between commutative algebra and number theory. As early as 1847, KUMMER
[57], in his studies of cyclotomic fields, introduced the definition of ‘ideal
numbers’ which amount in modern language to defining valuations on a field
Q(a), where @ denotes the rational numbers and « is a p-th root of unity
#1(p is an odd prime). Through the numerous works of Kronecker and
Dedekind, this notion became fundamental to modern number theory. Over
80 years later, in 1931, KruLL [55] introduced and studied the general notion
of a valuation and the resulting valuation ring. A valuation ring is a ring with
no zero divisors, satisfying the property that for every two nonzero elements x
and y in R, either x/y ¢ R or y/x e R. Valuation rings became valuable tools for
investigating properties of rings in commutative algebra and of curves in alge-
braic geometry. Most valuation rings are not Noetherian rings, but they are all
coherent rings. A generalization of a valuation ring which is also coherent is a
Priifer ring, that is, a ring with no zero divisors which is ‘locally’ a valuation
ring. When allowing the ring to have zero divisors we obtain the so-called
semihereditary and hereditary rings as generalizations of valuation rings. These
rings, both of which are coherent, derive their importance from their
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homological characterizations as rings for which certain homological invariants
(weak and global dimensions, respectively) are less or equal to one.

The introduction of coherence provided a new outlook on the area of classi-
cal non-Noetherian rings and the resulting vigorous research considerably
enriched the subject.

The classical non-Noetherian rings described above do not exhaust the class
of known coherent rings; for instance, Noetherian rings themselves provide
one of the most important examples of coherent rings. Over a Noetherian ring,
every submodule of a finitely generated module is finitely generated. Every
finitely generated module is, therefore, finitely presented (that is, it is iso-
morphic to a quotient of two finitely generated modules). This makes the
category of finitely generated modules over a Noetherian ring particularly easy
to handle. A natural generalization is to consider rings R satisfying the follow-

ing property:

(3) Every finitely generated submodule of a finitely presented R module is
finitely presented.

The class of rings satisfying this property will be the class of coherent rings
and, by analogy, the category of finitely presented modules over a coherent
ring will acquire a special significance. It is, then, natural that an important
direction of research in coherent ring theory consists of asking to what extent
do results, which are known to hold for Noetherian rings, remain valid for
coherent rings. In some of these investigations the theory that developed in
order to obtain the answers had significance to the general theory of commuta-
tive rings.

The first paper to investigate the general notion of a coherent ring was
CHASE [18], 1990. It is well known that over a Noetherian ring, an arbitrary
direct product of injective modules is an injective module. Motivated by that
result, Chase asked for what rings arbitrary direct products of projective
(respectively flat) modules is a projective (respectively flat) module. The answer
in the case where the modules are flat is that this result holds for precisely
those rings which are coherent and, once again, coherent rings appear related
to the algebraic objects which they most resemble, in an indirect way. Chase,
without mentioning the term coherent, derived no less than seven equivalent
definitions of a coherent ring, three of which appear in this introduction as
properties (1), (2) and (3). The blend of purely homological (property (2)) and
entirely ring theoretic (property (1)) approaches to coherence characterizes,
from 1960 on, all research done in coherent ring theory.

In 1964, BourBAKI [13] performed the official naming of a coherent ring,
and although the relation to coherent sheaves is not pointed out, it appears
implicitly in a number of exercises where the reader is asked to prove several
properties of coherent rings analogous to the ones known to hold for algebraic
coherent sheaves. The construction of new coherent rings as a ‘flat directed
union’ of coherent rings appears among these properties. This construction
provides the most naturally occurring non-Noetherian coherent ring in a
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Noetherian setting, the ring k [x), x3,...], where k is a field, x,, x,,... are
variables over k, and k[x;, x;,..] is the ring consisting of the union of all
polynomial rings in finitely many variables k& and [x,,..., x,]. Each polyno-
mial ring in finitely many variables is a Noetherian ring, but their union
k[x,,x;,...] is a coherent ring which is not Noetherian.

CHASE’s paper [18], BOURBAKTI’s collection of exercises [13], and HARRIS’s
two notes [43, 44], written in 1966-67, form the foundation and beginning of
research into coherent ring theory.

The year 1968 saw the beginning of an intensification of research in the
theory of coherent rings, and an abundance of results started appearing in
journals. The most significant of these results are described in this paper along
with their particular mathematical history, the impact they had on the research
in commutative algebra, and possible future research directions in each topic.
This article also touches lightly on the relation between the research done in
commutative coherent ring theory and that conducted in the variety of other
coherent algebraic objects developed at about the same time, such as noncom-
mutative coherent rings, coherent groups, coherent matrices, coherent functors,
and coherent categories.

More specifically, Section 2 presents one of the most studied questions in
coherent ring theory, namely, the question of stable coherence, and its
ramification and contribution to the classification of rings of global dimension
two, to the construction of ‘special format’ cartesian squares of rings, and to
the definition of the concept of non-Noetherian grade. Section 3 explores the
""nown results in the study of the structure of the integral closure of a coherent
domain and the branching out of the research done in this subject into investi-
gating both overrings of domains, and the nature of prime ideals in polynomial
rings. Section 4 concentrates on ‘he investigation which was carried out in
order to clarify the relation between the compactness of the minimal prime
spectrum of a ring and the Von Neumann regularity of its total ring of quo-
tients, and describes the contribution that this investigation had made to our
understanding of classical non-Noetherian rings. Section 5 follows the evolu-
tion of the concept of non-Noetherian regularity and describes the enrichment
of our knowledge of the homological properties of several well-known universal
algebras that resulted from the investigation of this concept. Section 6 exhibits
several ring constructions that were developed, generalized, examined, or re-
examined as a direct consequence of the research done in coherent ring theory.
Section 7 approaches the notion of uniform coherence, a concept which is
closely related and has its origin in the concept of coherence, from a Noeth-
erian ring theory point of view. Section 8 highlights the impact that the
research in coherent ring theory has on the various areas of algebra.

2. HILBERT BAsis THEOREM

Hilbert Basis Theorem states that a polynomial ring in finitely many variables
over a Noetherian ring is a Noetherian ring. It is natural, and follows the
time-honored ring theorists’ tradition, that among the first questions to be
asked when studying coherence was whether this result is still valid when the
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Noetherian hypothesis is replaced by the coherence hypothesis. The answer in
general is no, and a ring R satisfying the property that the polynomial rings in
finitely many variables over R are coherent rings along with R, was termed a
stable coherent ring. The effort exerted in order to determine exactly which
rings are stably coherent rings led, among other results, to a classification
theory for rings of global dimension two, and to the conceptualization of a
unifying notion of non-Noetherian grade. The search for an answer proceeded
approximately in order of complexity of the ring. :

Von Neumann regular rings are stably coherent rings. This result was
proved independently by SOUBLIN [92], 1970, SABBAGH [78], 1974, VASCON-
CELOS [97], 1976 and FIELDHOUSE [25]. Valuation rings are stably coherent
rings. This result was proved independently by LEBIHAN [58], 1971 and Sas-
BAGH [78], 1974. More generally, semihereditary rings are stably coherent
rings. This result was proved by VASCONCELOS [96, 97], 1975-1976. It follows
that hereditary rings are stably coherent rings.

The ordering of complexity employed here has to do with two homological
invariants of a ring R that measure how close its modules are to being flat or
projective.

The flatness measurement, called the weak dimension, is denoted by
w.dim R. w.dim R = 0 means that all R modules are flat; this is equivalent to R
being a Von Neumann regular ring. w.dim R = 1 means that all ideals, but not
all modules, of R are flat. Together with coherence, this property is equivalent
to semihereditarity. w.dim R =2 means that ideals of R are ‘once removed’
from being flat; that is, if I is an ideal of R, and we map onto I a free R
module F, by a homomorphism p, then in the exact sequence

0->K—>F %510, with K =kerp, we have that X is a flat R module. That
is then the next order of complexity of a ring related to the weak dimension,
and here Hilbert Basis Theorem breaks down. SoOUBLIN [90], 1968, provided
an example of a coherent ring R, of w.dim R=2 for which R[x] is not
coherent.

EXAMPLE. R = I}VS,,, where N denotes the natural numbers, and
[ 2

S« =~ Q[[t, u]), the power series ring in indeterminates ¢ and u over the
rational numbers Q. R is a coherent ring (not a domain) of weak dimension
two, and the polynomial ring in one variable over R is not a coherent ring.

The second invariant employed in the ordering of the ring complexity meas-
ures how close are the R modules to being projective. This invariant is called
the global dimension of R and is denoted by gl.dim R. The relation between
the first and second invariants is w.dim R < gl.dim R. Now gl.dim R = 0 means
that every R module is projective. These rings are actually Noetherian
(semisimple) and, thus Hilbert Basis Theorem holds for them. gldimR =1
means that every ideal of R, but not every module of R, is projective. Those
are exactly the hereditary rings and as mentioned above, are stably coherent
rings. gldim R =2 means that the ideals of R are ‘once removed’ from being
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projective, in the same sense as the ideals of a ring of weak dimension two are
‘once removed’ from being flat. Surprisingly, in view of the situation for
coherent rings of w.dim R = 2, we have the result that coherent rings of global
dimension two are stably coherent rings. This result was proved by VASCON-
CELOS [95, 97], 1973, 1976, and GREENBERG & VASCONCELOS [36], 1976. The
proof makes use of a relation between a local ring of global dimension two
and a special format cartesian square of rings. These cartesian squares were
then investigated in their own right by GREENBERG [35,37], 1974, 1978, and
used by VASCONCELOs [93, 94, 97], 1972, 1974, 1976, to obtain a classification
of rings of global dimension two.

It was noticed, relatively early, that induction on the number of variables
used in the Noetherian case does not work in the coherent case. Rather, in
most proofs of stable coherence, the variables were used as one entity
x ={xy,...,X,}. Whether the coherence of the polynomial ring in one vari-
able over a ring R implies the stable coherence of R, is a question that is still
open.

ALPHONST's Ph. D. thesis [4], 1977, and subsequently published paper [5],
1980, had a significant impact on the study of stable coherence, and on the
general theory of commutative rings. At that time, there were several existing
definitions of non-Noetherian grade (see NORTHCOTT [65, 66], 1968, 1976 and
BARGER [9, 10], 1970, 1972) all having their useful properties. In his work
Alfonsi defined a unifying and more general non-Noetherian grade. This
allowed him to prove, among other results, the most general version of
Buchsbaum-Eisenbud exactness criteria for complexes over not necessarily
Noetherian rings. This criteria he used to prove the following result:

THEOREM. Let R be a coherent ring of finite weak dimension, then the polyno-
mial ring R[x,,...,x,] is a coherent ring if and only if Rp[x,,...,x,] is a
coherent ring for every prime ideal P of R.

This result greatly simplified all existing proofs of stable coherence, which
were lengthy and complex, GLAZ [32]. As an example, consider a Von Neu-
mann regular ring R. It is known that in this case Rp, the localization of R at
a prime ideal P, is a field for every prime ideal P of R, so the usual Hilbert
Basis Theorem guarantees that Rp[x,...,x,] are Noetherian, and therefore

coherent, rings, and thus by Alfonsi’s Theorem, so is R [x,..., x,]. The four
original proofs of this fact are each technically difficult and at least a page
long.

Using this theorem, Alfonsi sharpened Soublin’s counterexample to the case
of a coherent domain of weak dimension equal to two, namely one of the
localizations of the ring in Soublin’s original example.

3. THE INTEGRAL CLOSURE OF A COHERENT RING

For a domain R with field of quotients Q(R), let R = {seQ(R), f(s)=0 for
some polynomial f (x) with coefficient of highest power of x in f(x) equal of
one}. The ring R is called the integral closure of R. The relation between the
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properties of a domain R and that of R is traditionally utilized to gain more
information on the ring itself. In particular, one can ask to what extent proper-
ties of R are reflected by R.

If R is a Noetherian domain, we have accumulated a considerable amount of
information in that direction.

KRruLL [54], 1930, and Axizuki [3], 1935, proved that if R is a Noetherian
domain of Krull dim R =1, then R is a Priifer Noetherian domain (so-called
Dedekind domain). NAGATA [64], 1962, proved that if R is a Noetherian
domain of Krulldim R = 2, then R is a Noetherian domain. For rings R, with
Krull dim R = 3, MoR1 [62], 1953, and NAGATA [63], 1955, showed that R may
not be Noetherian, but it retains some finiteness properties by being a so-
called Krull domain.

The Krull dimension of a ring can, roughly speaking, be calculated as fol-
lows. Consider chains of prime ideal in R, 0 C P, CP, C ... C P,. If this is
the longest possible such chain, then Krulldim R = n. The results mentioned
above prove that the Noetheriannes property if preserved by the integral clo-
sure of Noetherian rings of Krull dimensions less than or equal to two but
may fail to do so for higher Krull dimensions.

The investigations into the nature of R, in case R is a coherent domain,is at
its very beginning. It is known that Krulldim R = KrulldimR (see KAPLANSKY
[53]). Coherence is not necessary of this result. Also, one can show that if R is
an integrally closed (that is, R = R) coherent domain of Krull dimension one,
then R is a Priifer domain. With this observation in mind, Vasconcelos posed
the following question:

QUESTION. Let R be a coherent domain of Krull dimension one. Is R a
Priifer domain (and, hence, necessarily coherent)?

The answer to this question is not yet known. The only known example of a
nontrivial coherent domain of Krull dimension one, due to HOCHSTER [28],
1984, has Priifer integral closure. The research into the nature of the integral
closure of a coherent domain of Krull dimension one resulted in several
instances of positive answers, and branched out into investigating, on one
hand, overrings of domains (an overring of a domain R is a ring S with
R CS C Q(R)) and, on the other hand, properties of prime ideals in polyno-
mial rings.

PapIck [69, 70, 71], 1978-1979, employed an overring approach to this ques-
tion. In the process, the one dimensionality property is dropped, to be
replaced by a stronger coherence assumption. Papick proved that if each
proper overring of a domain R is a coherent ring, then R is a Priifer domain.
Dosss [24], 1978, showed that if R is a going down domain the conclusion is
still valid if we ask that every overring of R be merely locally coherent.
Papick’s investigation led to a thorough study of pairs of domains for which
each intermediate domain is a coherent ring, PAPICK [72], 1981.

GLAZ & VASCONCELOS [28], 1984, approached the question by trying to
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exploit the relation between the Priifer property of R, and the content of cer-
tain prime ideals in the polynomial ring in one variable over R. (If P is a
prime ideal in R[x]-the polynomial ring in one variable over R, the content of
P, ¢(P) is equal to the ideal of R generated by the coefficients of all the poly-
nomials in P). The prime ideals in question, so-called uppers of zero satisfy
that P N R = 0. Among other results, Glaz and Vasconcelos proved that if R
is a coherent domain possessing a canonical module and satisfying that the
uppers of zero over R are finitely generated, then R is a Priifer domain. In the
process they thoroughly explored the question of finite generation of uppers of
zero over coherent domains. The investigation into the nature of uppers of zero
and related ideals continues. See, for example, HOUSTON & ZAFRULLAH [50],
and HAMANN, HOUSTON & JOHNSON [42].

4. MIN(R) AND THE TOTAL RING OF QUOTIENTS OF R.

For a ring R, Min(R)={P, P is a minimal prime ideal of R in the sense that
no other prime ideal of R is contained in P}, and Q(R)={a/b, a,b€R, and b
is a nonzero divisor in R}. Min (R) is called the space of minimal prime ideals
of R, and Q(R) is called the total ring of quotients of R. Note that for a
domain R, Min(R) = {0} and Q(R) is the field of quotients of R. In 1965,
HENRIKSEN and JERISON [46] published a paper exploring several properties of
Min(R). They modestly stated: ‘We are focusing attention on the space of
minimal prime ideals because of its special role to the case of rings of continu-
ous functions,’” and indeed, at that time it was hard to foresee the importance
v this set to the study of classical non-Noetherian rings. The set of all prime
ideals of a ring R, the so-called spectrum of R, denoted by Spec(R) can be
topologized in several ways. The most useful of these topologies is the so-called
Zariski topology. In the Zariski topology Min(R) becomes a subspace of
Spec(R). Among other results, Henriksen and Jerison conjectured that for a
reduced ring R (that is, a ring R with no nilpotent elements) Min(R) is com-
pact if and only if Q(R) is a Von Neumann regular ring.

In 1967-1968, OLIVIER [67, 68] discovered relations between the compactness
of Min(R), the Von Neumann regularity of Q(R), and the behavior of a cer-
tain universal algebra of R, namely the maximal flat epimorphic extension of a
reduced ring R.

It is only with the publication of QUENTEL’S paper [73] in 1971 that the
exact relation between the compactness of Min(R) and the Von Neumann
regularity of Q(R) was clarified, strangely enough, due to several errors in this
otherwise excellent paper. This clarification contributed significantly to our
understanding of the classical non-Noetherian rings.

QUENTEL provided a counterexample to Henriksen and Jerison’s conjecture
by exhibiting a reduced ring R with compact Min(R), whose total ring of
quotients (equal, in this case, to R itself) is not a Von Neumann regular ring.
This example, basically correctable and strikingly clever, nevertheless
represented a challenge inherent in the difficulties and minor errors of its expo-
sition. A correct version appears in [32]. I believe a similarly intriguing chal-
lenge motivated several people when confronting the error in the proof of one
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of Quentel’s results, providing an exact relation between the compactness of
Min(R) and the Von Neumann regularity of Q(R). Quentel corrected this
error in an erratum [75], published a year later, by weakening the original
result. Unfortunately, many of the important results in the rest of his paper
relied heavily on the corrected theorem, resulting in mathematical confusion.
Faced with this challenge, several other approached to the topic appeared.
One such work, MartLis [60], 1983, attacks the problem from a completely
different perspective. Further clarifications by different methods can be found
in VASCONCELOS [97] and in GLAZ [32]. The interesting phenomenon in which
an excellent piece of work containing some errors can, by virtue of the right
combination between the originality of the work and the nature of the errors,
revive an entire area of research, is not new in mathematics. For another
example of this phenomenon see HERMANN’s paper [47] and SEIDENBERG’s
‘correction’ papers [80, 81, 82].

The combined efforts of all those distinct approaches yielded the following
theorem:

THEOREM. Let R be a ring. The following conditions are equivalent.

(1) Min(R) is compact, and every principal ideal of R is flat.

(2) Every principal ideal of R is projective.

(3) Q(R) is Von Neumann regular, and every principal ideal of R is flat.

MarTLis [60] and QUENTEL [73] derived other characterizations of the compact-
ness of Min(R), as well as of the Von Neumann regularity of Q(R).

One of the consequences of this theorem is the proof that a coherent ring of
finite weak dimension has a Von Neumann regular total ring of quotients.
This result yielded, in its turn, most useful characterizations of semihereditary
and hereditary rings.

COROLLARY 1. Let R be a ring. The following conditions are equivalent:

(1) R is a semihereditary ring.

(2) R is a coherent ring and w.dimR < 1.

(3) Q(R) is a Von Neumann regular ring, and R,, is a valuation domain Jor
every maximal ideal m of R.

COROLLARY 2. A ring R is hereditary if and only if Q(R) is hereditary, and any
ideal of that R is not contained in any minimal prime ideal of R is projective.

The proof of Corollary 1 us due to MCRAE [61] for (1) & (2), and QUENTEL
[73] for (1) «>(3). The original proof of Corollary 2 is due to MAROT [59], while
proofs using the results of this section can be found in VASCONCELOS [97] and
GLAZ [32].

The interplay between the compactness of Min(R) and other properties of
the ring R continues to be explored through various approaches. See, for
example, HUTSON [51], 1988.
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5. COHERENT REGULAR RINGS

A commutative ring R is called a regular ring if every finitely generated ideal
of R has finite projective dimension, that is, every finitely generated ideal of R
is “finitely many places’ removed from being projective, in the sense described
in Section 2. For a Noetherian ring R this definition coincides with the classi-
cal definition of regularity, namely that every localization of R at a prime ideal
is a unique factorization domain.

There is a strong relation between the condition of regularity of a ring R
and the behavior of the weak and projective dimensions of modules over R.
For a Noetherian local ring R, Serre proved that R is a regular ring if and only
if w.dimR < o0. In this case we also have that w.dim R = Krull dim R. For a
coherent ring R the situation is not quite as tame. There are local, coherent
regular rings of infinite weak dimension.

EXAMPLE. R = k|[[x,, x,,...]], the power series ring in infinitely many vari-
ables over a field £, is a local, coherent regular ring of infinite weak dimension.

Nevertheless, any coherent ring of finite weak dimension is a regular ring and,
therefore, the class of coherent regular rings includes all classical non-
Noetherian rings, in particular Von Neumann regular, semihereditary, and
hereditary rings.

The notion of regularity has been extended from Noetherian rings to
coherent rings with a considerable degree of success.

BERTIN [11], 1971, extended the definition of regularity from Noetherian to
local coherent rings. He also proved that such rings are integrally closed.

QUENTEL [74], 1971, found necessary and sufficient conditions for a local,
coherent regular ring to be a unique factorization domain. Contrary to the
Noetherian case, this is not always true.

VASCONCELOS [97], 1976, proved that a local coherent regular ring is a
greatest common divisor domain. He also dropped the ‘local’ condition from
the definition of regularity.

When working with the notion of coherent regularity it is convenient to
separate, in a sense, the finiteness condition of coherence from the homological
condition on the ideals of the ring; thus, GLAZ [29], 1982, arrived at the
present definition. In addition, in GLAZ [31], a result is proved, which resem-
bles Serre’s condition for local Noetherian regularity, namely that for a local
coherent regular ring R, depth R = w.dim R. The similarity of this result to
Serre’s condition is derived from the fact that, for a local ring R, depth of R is
a notion related to non-Noetherian grade which, for a local Noetherian regular
ring, coincides with the Krull dimension of the ring.

Applying the results of section 4 we see that the total ring of quotients of a
coherent regular ring is a Von Neumann regular ring.

Research into the regularity of coherent rings branched out naturally into
two, not necessarily mutually exclusive, directions. One direction explores the
structural properties of a coherent regular ring. The results described above
comprise the total amount of knowledge known in the subject. Given that our
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understanding of the structural properties of Noetherian regular rings is con-
siderably broader, and it is still a vigorous subject of research, we see that
much more can be accomplished in that direction. One very basic topic of
interest will be the determination of the structure and properties of complete
coherent regular rings.

The other direction taken in the study of regularity for coherent rings deals
with the following set up: Given a ring R and an R algebra S, find conditions
for the extension R — § to ascend or descent coherent regularity. Here ‘ascent’
(respectively ‘descent’) of a property (P) means: if R (respectively S) satisfies
(P), so does S (respectively R). In particular, explore the exact relation
between the weak dimension of R and that of S, and determine necessary and
sufficient conditions for ascent or descent of Von Neumann regularity,
semihereditarity, and hereditary. The algebras S considered so far are: poly-
nomial rings, group rings, symmetric algebras, and various localizations of
polynomial rings.

GrAz [30], 1988, proved that the polynomial rings over a stably coherent
regular ring are coherent regular rings.

Using this result GLAZ [29, 30], 1987-1988, derived necessary and sufficient
conditions for the group ring RG of an abelian group G over a coherent ring R
to be coherent regular. Through a relation between the weak dimension of R,
that of RG and the rank of G, conditions were found for RG to be von Neu-
mann regular (see also AUSLANDER [7], 1957) or semihereditary, GLAZ [29],
1987. The conditions found in GrLAz [29] for the group ring RG to be a
coherent ring tie up with a topic of interest in noncommutative ring theory,
namely the determination of condition which will yield the coherence of RG,
and related algebras, given that R or G or both are not commutative. See, for
example, CHOO, LAM, and LuFr [19], 1973, Bierl and STREBEL [12], 1979,
ABERG [1], 1982, and Dicks & SCHOFIELD [22], 1988.

Graz [30], 1988, exhibited conditions for Sg(M), the symmetric algebra of a
rank one flat module M over a Noetherian ring R to be coherent regular.

In [31] and [33] GLAZ explored the coherence regularity, in particular Von
Neumann regularity, semihereditary, and hereditary of two well-known locali-
zations of the polynomial ring in one variable over a ring R, namely the rings
R<x> and R(x).

6. RING CONSTRUCTIONS

The special format cartesian square of rings, mentioned in section 2, is but one
of the ring constructions developed and explored as a direct consequence of
research into coherent rings.

Another class of such ring constructions is the class of rings of the type
D + M. These rings arise frequently in algebra, especially in connection with
counterexamples. The original definition required a valuation domain 7 with
maximal ideal M, K=T/M CT,and D a subring of K. Then the ring D + M
is equal to ¢~ '(D) where ¢:T — T/M is the natural map (1) =t + M. If Kis
actually contained in 7, the notation D + M is justified by the structure of
¢~ (D). An account of the basic properties of this construction can be found
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in GILMER [27]. The introduction of coherence resulted in a renewed interest
in the properties of these rings and, consequently, in their generalization. It
started as a not-so-simple question: When is a ring of the original D + M type
a coherent ring? This question was answered in 1976 by DoBBs & PAPICK [23].
The definition of the original construction was then extended to include any
domain T and any field K which is a retract of 7, that is, K C T and there is a
map :T — K satisfying (z) = ¢ for every ¢ in K. The properties of these newly
defined rings, including coherence, were explored by BREWER & RUTTER [14],
1976. Another ramification of the original definition was to consider rings of
the type R = D + xK[x] or = D + xDg[x], where K is a field, D is a subring
of K with field of quotients equal to K, S is a multiplicatively closed subset of
D, and x is an indeterminate. The properties of these rings were explored by
CosTA, MOTT & ZAFRULLAH [21] in 1978, and ZAFRULLAH [98]. The property
of coherent regularity and the behavior of the weak dimension of these ring
constructions have not yet been explored.

Let R be a ring and let M be an R module, the trivial extension of R by M,
denoted by Ra M is the set R X M with natural addition and multiplication
defined by (r, m}(”’,m’) = (r’,rm’ + m) for all r, ¥ €R and mm’eM. This
construction was described and used by NAGATA [64] in 1962. In 1975
VASCONCELOS [96] defined yet another useful measure of the coherence of a
ring R, the so-called A dimension of R. In his book [97], describing in more
detail the machinery of the A dimension, he posed the following problem:
—xhibit all positive integers as A dimensions of commutative rings.’ This
problem prompted a renewed investigation into the coherence and homological
properties of trivial ring extensions and resulted in the following attractive
answer provided by Roos [77] in 1931:

THEOREM. Let R be a local Noetherian Gorenstein ring with maximal ideal m.
Let E(R/m) be the injective envelope of R/m, then

Adim R a E(R/m)= Krull dim R.

There exists a local, Noetherian, Gorenstein ring of any given Krull dimension,
for example R =k[[xy,...,x,]l, the power series ring in n variables over a
field k is a local, Noetherian, Gorenstein ring of Krulldim R = n. Therefore,
E(R/m) the injective envelope of R/m (which in some sense is the smallest
injective module containing R/m) satisfies Adim R a E(R/m) = n, and Vascon-
celos’ problem is solved. A category theory approach to trivial ring extensions,
including their coherence properties, can be found in FOssUM, GRIFFITH &
REITEN [26], 1975.

Let R be a coherent ring and let R [[x]] be the power series ring in one vari-
able over R. Contrary to the existing situation for a polynomial ring over
R, R[[x]] need not be a coherent ring, even if the ring R is Von Neumann reg-
ular. The following example is due to SOUBLIN [92], 1970:
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EXAMPLE. Let R be the ring of all stationary sequences of rational numbers
with natural addition and multiplication. R is a Von Neumann regular ring,
and R{[x]] is not a coherent ring,

In 1977, BREWER, RUTTER & WATKINS [15] determined necessary and sufficient
conditions for a power series ring over a Von Neumann regular ring, to be a
coherent ring. JoNDRUP & SMALL [52], 1974, and VASCONCELOS [96], 1975,
proved independently that if R is a valuation domain of rank R > 1, then
R[[x]} is not a coherent ring. No other result concerning the coherence of a
power series ring is known. It will be of interest, for example, to explore the
situation for valuation domains of rank one.

7. UNIFORMLY COHERENT RINGS
The notion of uniform coherence was first introduced by SOUBLIN [88] in 1968.

DEFINITION. A commutative ring R is called a uniformly coherent ring if there
exists a map ¢:N — N, where N denotes the natural numbers, such that for
every neN, and any nonzero homomorphism f:R" — R, the kernel of fis gen-
erated by ¢(n) elements. The map ¢ is called the uniformity map of R.

Considering maps f from the free module R” to R, we see that Im fis an
ideal of R generated by n elements, and conversely, given / an ideal of R gen-
erated by n elements, there is a map f from the free module over R, R” onto I.
Thus, the uniformity condition of the definition guarantees that for every ideal
I of R generated by n elements, the modules of relations between the genera-
tors of I, that is, the modules ker f for the various maps: f:R"—I have a
finite and bounded number of generators that depends on n alone (and not on
I or on f).

In [88, 91] SouBLIN exhibited several of the basic properties of uniformly
coherent rings, in particular the close relation of this notion to coherence.
Thus, a uniformly coherent ring is a coherent ring, while for a ring R to be
uniformly coherent, it is necessary and sufficient that the ring RY, where N
denotes the natural numbers, is coherent.

In 1972 QUENTEL [76] exposed the exact relation between the uniform coher-
ence of a Noetherian ring and that of its localizations, namely:

THEOREM. A Noetherian ring R is a uniformly coherent ring if and only if all the
localizations of R at maximal ideals are uniformly coherent rings admitting a
common uniformity map.

Quentel also provided an example of a Noetherian ring which is not uniformly
coherent. In 1916, MACAULAY [2] constructed prime ideals P™ in k [x,y,z], the
polynomial ring in three variables over a field , which need at least m genera-
tors. Proving that the number of generators of prime ideals in a Noetherian
uniformly coherent ring is bounded, Quentel showed that k[x,y,z] is not a
uniformly coherent ring.
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In conjunction with the above theorem, the question as to which Noetherian
rings are uniformly coherent was settled between 1978 and 1983.

THEOREM. A local Noetherian ring R is a uniformly coherent ring if and only if
Krull dim R <2.

The proof that a local Noetherian ring of Krull dimension two is a uni-
formly coherent ring is due to SALLY [79], 1978. The converse was proved
independently by GoTo [34], 1983, and by KUMAR & NISHIMURA [56], 1983.

Which coherent rings are uniformly coherent? The answer to this question is
not yet known, although it is clear that it has to differ from the answer given
in the Noetherian case. SoUBLIN [88], 1968, had shown that a local ring of
global dimension less or equal to two is a uniformly coherent ring; thus, any
valuation domain of global dimension less or equal to two is a uniformly
coherent ring. It is known [97] that a valuation domain V has global dimen-
sion less or equal to two if and only if every ideal of V' can be generated by
less or equal to xo generators. Let n be a given positive integer, and take V to
be a valuation overring of k[x),...,X,], the polynomial ring in n variables
over a finite field k. Then V is a valuation domain of Krull dim V = n, and the
ideals of V are generated by less or equal to xo generators; therefore, V is uni-
formly coherent. We conclude that there exists a uniformly coherent ring in
any given Krull dimension.

8. CONCLUDING REMARKS

Just as the introduction of coherent sheaves revolutionized algebraic geometry
and, thus, contributed to a development which is Noetherian in nature, so do
other coherent objects appear in different, and sometimes unexpected, alge-
braic settings, and contribute to a deeper understanding of the area.

It is my hope that this paper has succeeded in conveying the magnitude of
the impact that research into coherent rings had on the development of com-
mutative algebra. This direct contribution to enrichment of knowledge,
broadening of concepts, and inspiration in defining related objects is not the
only way that the notion of coherence influences research in commutative alge-
bra. Coherent rings often become relevant in an indirect way, that is, when
the original investigation involved, to start with, only Noetherian or general
rings. Such an instance occurs when an investigated algebra over a Noetherian
ring ceases to be Noetherian. One example of this kind, described in section 5,
GLAz [30], is the coherence of the ring Sg(M), the symmetric algebra of a rank
one flat module over a Noetherian ring R of finite Krull dimension. It is only
through the coherence of this ring that properties like its regularity can be
properly explored and understood. In general, it seems that rings ‘larger than
Noetherian® play an increasingly important role in constructions of Noetherian
commutative algebra proper. A typical example is the recent works of HocH-
STER & HUNEKE [48, 49] on the absolute integral closure (in the sense of ARTIN
[6]) of a Noetherian domain. An investigation into the coherence properties of
these ring constructions will, no doubt, shed light on aspects of Noetherian
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ring theory. An example where coherence appears in a general setting can be
found in HEINZER & PAPICK [45]. This paper explores properties of contracted
ideals. A crucial step in their investigation, indeed the one that, to quote the
authors, ‘sets the stage for the succeeding results.” is the discovery that the
rings involved are coherent.

The notion of coherence is not restricted to algebraic geometry and commu-
tative algebra. As mentioned in section 5, noncommutative coherent rings are
explored in the context of group rings and related algebras. Here one should
also mention the free associative algebras explored by P.M. CoHN [20] in the
framework of the, necessarily coherent, free ideal rings. Though the (commu-
tative) polynomial ring in » variables x,,..., x, over a field k is a Noetherian
ring, its noncommutative counterpart, the free associative algebra
k <xy,...,x,> is merely coherent. Coherent groups were introduced by
BIiErI & STREBEL [12], and coherent matrices were defined by CHoo, LAM &
Lurr [19]. In [8] AUSLANDER defined and explored coherent functors, while
FossuM, GRIFFITH & REITEN [26] provide a good source for learning some of
the work done in coherent categories. The study of coherent objects conducted
in each of these diverse areas serves as an intermutual source of inspiration
and, thus, contributes to the advancement of all areas of algebra.

The author wishes to thank the referee for several valuable suggestions
which improved the presentation of this paper.
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